Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1"

Transkript

1 Örek.1 YÖNEYLEM ARAŞTIRMASI III Markov Süreçleri Ders 7 Yrd. Doç. Dr. Beyazıt Ocakta Web site: ocakta.bau.edu.tr Reault marka otomobil sahilerii bir soraki otomobillerii de Reault olma olasılığıı.8; Tofaş otomobil sahilerii bir soraki otomobillerii Reault olma olasılığı.6 olduğuu varsayalım. X, müşterii. arabasıı Reault olması 1, müşterii. arabasıı Tofaş olması P( X 1 X )? 1 P( X X 1)? () 1.8. P Örek.1 () 1? P PP P PP ? adım geçiş olasılıkları, koşullu olasılıklar dır. Çükü bu olasılıklar içi başlagıç durumua koşullaıyoruz. ( ) Öreği ij P( X j X i) olasılığı içi Markov zicirii başlagıç durumuu i olduğuu varsaydık ve adım sora j durumua geçiş olasılığıı hesaladık. 1

2 Kesikli Zama Markov Zicirii başlagıç durumuu bildiğimizi varsayalım ve Markov Zicirii adım sora j durumuda olma ( ) olasılığı P( X j) ı bulalım. j ( ) j P( X j) olasılığıı hesalamak içi Markov Zicirii başlagıç olasılık dağılımı, 1,,..., N yı belirlemeliyiz.,,,..., ( ), ( 1), ( ),..., ( ) N P X P X P X P X N 1 ( ) Satır vektörü i aşağıdaki gibi taımla: ( ) ( ) ( ) ( ) ( ), 1,,..., N P( X ), P( X 1), P( X ),..., P( X N) P( X j) yi tolam olasılık formülüü kullaarak hesalayabiliriz Tolam Olasılık Formülü B 1, B,..., B olayları, Ω durum uzayıı ayrık kümeye arçalaışı olsu. Eğer B i B j =Ø ise; B i ve B j kümeleri ayrıktır.. Ω A olayıı olasılığıı edir? B 1 B B 4 B A B -1 B Çoğu zama aşağıdaki formülü kullaarak P(A) yı bulmak daha kolaydır. Tolam Olasılık Formülü P( A) P( A/ B ) P( B ) P( A/ B ) P( B )... P( A/ B ) P( B ) i1 B B 1 B 1 1 P( A/ Bi) P( Bi) B 4 Bu formüle Tolam Olasılık Formülü deir. A B -1 B

3 Markov Ziciri başlagıçta,1,,...n durumlarıda biri olabileceği içi; X,1,,...N değerleride birii alabilir. Bu edele P(X =j) aşağıdaki gibi hesalaır. P( X j) P( X j / X ) P( X ) P( X j / X 1) P( X 1)... P( X j / X N) P( X N) i P( X j / X i) P( X i) Bua göre, ( ) j i P( X j) P( X j / X i) P( X i) i i P( X i) P( X j / X i) ( ) i ij ( ) j bulmak içi vektörüyle adım geçiş matrisii j. sütuuu çarmalıyız. Olasılıklar j. sütu, 1,..., N Koşulsuz olasılık dağılımı bulmak içi satır vektörü ile P () matrisii çararız: P () P ( ) ( ) ( ) ( ) ( ) ( ) ( ), 1,,..., N Örek.1 (devam) Örek.1 de bir adım geçiş matrisi (Reault-Tofaş) Markov Zicirii başlagıç dağılmı:.8. P adım soraki Kesikli Zama Markov Zicirii koşulsuz dağılımıı hesalayı.

4 (4)? Örek.1 (devam) P P P (4) (4) P Örek. durumlu ve aşağıdaki bir adım geçiş matrisi P ye sahi bir Markov Ziciri düşüü..5.5 P Markov Zicirii başlagıç dağılmı: 1 adım soraki Kesikli Zama Markov Zicirii koşulsuz dağılımıı hesalayı. Çözüm Soruda soruluyor. P ,.917,. PX ( ) PX ( 1) PX ( ) KZMZ lerii Uzu Döem Davraışı Şu aa kadar küçük adım sayıları (öreği =,,4,,1) içi geçiş olasılıkları hesaladık. Adım sayıları öreği 1 yada daha büyük olsaydı geçiş olasılıkları e olurdu? Uzu Döem Davraış Aalizide adım sayısı sosuza gitseydi, adım geçiş olasılıklarıı e olacağı sorusua yaıt arıyoruz. 4

5 KZMZ lerii Uzu Döem Davraışı ( ) lim var mıdır? ij Eğer varsa, bu durumda adım geçiş olasılıkları başlagıç durum dağılımıda bağımsızdır. ( ) Uzu Döem aalizide, lim ij j olu olmadığıa yaıt arıyoruz.!!! Yukarıdaki deklemde π j i Markov zicirii başlagıç durumua bağlı olmadığıa dikkat edi. Limit (Durağa Hal) Dağılımı TEOREM: Eğer tek bir çözüme sahise, lim ( ) ij j N ve j i ij i Normalizasyo Deklemi, 1,..., N a Markov Zicirii limit (kararlı hal) dağılımı deir N i 1 vardır ve başlagıç durumu i de bağımsızdır. i Örek X Varsayalım ki,, S,1, durum uzayıa sahi KZMZ olsu....5 P Adım geçiş olasılığı üstte verile bu Markov zicirii kararlı hal (limit) dağılımıı bulu. Örek Kararlı hal dağılımıı aşağıdaki gibi bulabiliriz:...5,,,, ve, Bua göre bizim bilimeye ve deklemimiz var. Çözüm içi ilk deklemde biri fazla, bu edele bu deklemlerde birii çıkarısız. 1 1!!! Normalizasyo deklemii çıkarmayı. 5

6 Örek Şimdi bilimeyeli dekleme sahibiz. Lieer Cebir derside böyle bir sistemi tek biz çözümü olduğuu biliyoruz. Elimizdeki deklemleri yeide düzeleyerek aşağıdaki hale getirebiliriz: (1) () Örek () o lu deklemde,. 1. i deklem te yerie koy: i elde ederiz. Şimdi 1. ve 11. i (1) o lu deklemde yerie koy ve içi çöz:.8.1(. ).55(1 1. ).77 Örek ve 1.(.77).1111,.5185 buluur Bua göre Markov zicirii limit (karar hal) dağılımı aşağıdaki gibidir:,,.74,.1111,.5185 π 1 Bulduğumuz bu dağılım e alama gelir? Kararlı Hal Dağılımıı Alamı Kararlı hal dağılımıı e alama geldiğii görebilmek içi gittikçe P () i e e olduğua bakmamız gerekir. For = P ( ) For =1 ( ) P For P ( ) P (), 1 içi ayı kaldığıda, kararlı hal dağılımı vardır. 6

7 Kararlı Hal Dağılımıı Alamı Limit dağılımı başlagıç durumu i de bağımsızdır: P () ( ) i ayı kaldığı 11 içi i bulalım: ( ) ( ) ( ) P , 1, Kararlı Hal Dağılımıı Alamı 11 adım sora başlagıçta durumuda olmaı, 1, i e olduğua bakmaksızı koşulsuz olasılığı: Bu edele, ( ) 1.74( ).74 π 1.74,.1111,.5185 limit (kararlı hal) dağılımı, başlagıç durum dağılımı da bağımsızdır. Kararlı Hal Dağılımıı Alamı Kararlı hal olasılığı; süreci büyük sayıda geçişte sora ( ) sora belli bir söz gelimi j buluma olasılığıı, başlagıç dağılımı da bağımsız ola π j değerie yaklaşacağıı alamıa gelir. 7

18.06 Professor Strang FİNAL 16 Mayıs 2005

18.06 Professor Strang FİNAL 16 Mayıs 2005 8.6 Professor Strag FİNAL 6 Mayıs 25 ( Pua) P,..., P R deki oktalar olsu. ( ai, ai2,..., a i) P i i koordiatlarıdır. Bütü P i oktasıı içere bir cx +... + cx = hiperdüzlemi bulmak istiyoruz. a) Bu hiperdüzlemi

Detaylı

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR LARI -BOYUTLU (ÖKLİT) I Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a 1, a 2,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

Ders 8 in Özeti YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 9. Bir Markov Zincirinin Sınıflandırılması. Örnek: Kumarbazın İflası

Ders 8 in Özeti YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 9. Bir Markov Zincirinin Sınıflandırılması. Örnek: Kumarbazın İflası Ders 8 in Özeti YÖEYLEM ARAŞTIRMASI III Markov Süreçleri Ders 9 Durağan Dağılım Koşulsuz olasılık dağılımı (n) P Uzun Dönem Analizi Limit (Kararlı Hal) Dağılımı,,..., Bir Markov Zincirinin Sınıflandırılması

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

Yıldız Teknik Üniversitesi Endüstri Mühendisliği Bölümü KARAR TEORİSİ MARKOV SÜREÇLERİ. Markov Analizi

Yıldız Teknik Üniversitesi Endüstri Mühendisliği Bölümü KARAR TEORİSİ MARKOV SÜREÇLERİ. Markov Analizi Yıldız Teknik Üniversitesi Endüstri Mühendisliği Bölümü KARAR TEORİSİ MARKOV SÜREÇLERİ Doç. Dr. İhsan KAYA Markov Analizi Markov analizi, bugün çalışan bir makinenin ertesi gün arızalanma olasılığının

Detaylı

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler.

İşlenmemiş veri: Sayılabilen yada ölçülebilen niceliklerin gözlemler sonucu elde edildiği hali ile derlendiği bilgiler. OLASILIK VE İSTATİSTİK DERSLERİ ÖZET NOTLARI İstatistik: verileri toplaması, aalizi, suulması ve yorumlaması ile ilgili ilkeleri ve yötemleri içere ve bu işlemleri souçlarıı probabilite ilkelerie göre

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LISANS TEZİ MARKOV ZİNCİRLERİNDE BOOTSTRAP. Serhat DUMAN İSTATİSTİK ANABİLİM DALI ANKARA 2006

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LISANS TEZİ MARKOV ZİNCİRLERİNDE BOOTSTRAP. Serhat DUMAN İSTATİSTİK ANABİLİM DALI ANKARA 2006 ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LISANS TEZİ MARKOV ZİNCİRLERİNDE BOOTSTRAP Serhat DUMAN İSTATİSTİK ANABİLİM DALI ANKARA 26 Her hakkı saklıdır Yrd. Doç. Dr. İhsa KARABULUT u daışmalığıda,

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

MARKOV ZİNCİRLERİNDE DURUMLARIN SINIFLANDIRILMASI

MARKOV ZİNCİRLERİNDE DURUMLARIN SINIFLANDIRILMASI SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II MARKOV ZİNCİRLERİNDE DURUMLARIN SINIFLANDIRILMASI DERS NOTLARI 1 Önceki derslerimizde pek çok geçişten sonra n-adım geçiş olasılıklarının

Detaylı

DERS 5. Limit Süreklilik ve Türev

DERS 5. Limit Süreklilik ve Türev DERS 5 imit Süreklilik ve Türev İlk dersimizi solarıda, it sözüğü kullaılmada bu sözükle iade edile kavram ele alımıştıbak.. Bu dersimizde, it kavramıa biraz daa akıda bakaağız ve bu kavram ardımıla süreklilik

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

{ 1 3 5} { 2 4 6} OLASILIK HESABI

{ 1 3 5} { 2 4 6} OLASILIK HESABI OLASILIK HESABI Bu derste, uygulamalarda sıkça karşılaşıla, Olasılık Uzaylarıda bazılarıa değieceğiz ve verilmiş bir Olasılık Uzayıda olasılık hesabı yapacağız. Ω. Ω solu sayıda elemaa sahip olsu. Ω {

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ 5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ Bir lieer deklemi geel çözümüü bulmak homoje kısmı temel çözümlerii belirlemesie bağlıdır. Sabit katsayılı diferasiyel deklemleri temel çözümlerii

Detaylı

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri

Kuyruk Teorisi Ders Notları: Bazı Kuyruk Modelleri uyruk Teorisi Ders Notları: Bazı uyruk Modelleri Mehmet YILMAZ mehmetyilmaz@akara.edu.tr 10 ASIM 2017 11. HAFTA 6 Çok kaallı, solu N kapasiteli, kuyruk sistemi M/M//N/ Birimleri sisteme gelişleri arasıdaki

Detaylı

Yard. Doç. Dr. Mustafa Akkol

Yard. Doç. Dr. Mustafa Akkol Yard. Doç. Dr. Mustaa Akkol Değişim Oraı: oksiouu değişimii ile, i değişimii İle östere. Değişim oraı olur. Diğer tarata olduğuda, Değişim oraı ve 0, alalım. Örek: Yard. Doç. Dr. Mustaa Akkol olur. 0,

Detaylı

OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe)

OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe) OLĐMPĐYATLARA HAZIRLIK ĐÇĐN DOĞRUSAL ĐNDĐRGEMELĐ DĐZĐ PROBLEMLERĐ ve ÇÖZÜMLERĐ (L. Gökçe) Matematikte sayı dizileri teorisii ilgiç bir alt kolu ola idirgemeli diziler kousu olimpiyat problemleride de karşımıza

Detaylı

Ders 1: Markov Zincirleri YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 4. Stokastik Süreç Nedir? Stokastik Süreç Nedir?

Ders 1: Markov Zincirleri YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 4. Stokastik Süreç Nedir? Stokastik Süreç Nedir? Ders : Markov Zincirleri YÖNEYLEM ARAŞTIRMASI III Markov Süreçleri Ders 4 Yrd. Doç. Dr. Beyazıt Ocaktan E-mail: bocaktan@gmail.com Ders İçerik: nedir? Markov Zinciri nedir? Markov Özelliği Zaman Homojenliği

Detaylı

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve BÖLÜM III Kogrüaslar Taım 3. N sabit bir sayı, a, b Z olma üzere, eğer ( a b) ise a ile b, modülüe göre ogrüdür deir ve a b(mod ) şelide gösterilir. Asi halde, yai F ( a b) ise a ile b ye modülüe göre

Detaylı

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV (

Detaylı

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı)

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı) 3 TAHMİNLEYİCİLERİN ÖZELLİKLERİ 3.1. Sapmasızlık 3.. Tutarlılık 3.3. Etkilik miimum varyas 3.4. Aralık tahmii (güve aralığı) İyi bir tahmi edici dağılımı tahmi edilecek populasyo parametresie yakı civarda

Detaylı

BEKLENEN DEĞER. 6. Ders. Tanım: X, bir rasgele değişken ve g : R R, B B R için x : g x B B R özelliğine sahip bir fonksiyon olmak üzere:

BEKLENEN DEĞER. 6. Ders. Tanım: X, bir rasgele değişken ve g : R R, B B R için x : g x B B R özelliğine sahip bir fonksiyon olmak üzere: 6. Ders BEKLENEN DEĞER Taım: X, bir rasgele değişke ve g : R R, B BR içi x : gx B BR özelliğie sahip bir foksiyo olmak üzere: i) X kesikli ve ii) X sürekli ve gx fx olduğuda, x EgX gxfx gx fxdx olduğuda,

Detaylı

MEKANİK TESİSATTA EKONOMİK ANALİZ

MEKANİK TESİSATTA EKONOMİK ANALİZ MEKANİK TESİSATTA EKONOMİK ANALİZ Mustafa ÖZDEMİR İ. Cem PARMAKSIZOĞLU ÖZET Düya çapıda rekabeti ö plaa çıktığı bu gükü şartlarda, e gelişmiş ürüü, e kısa sürede, e ucuza üretmek veya ilk yatırım ve işletme

Detaylı

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız.

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız. Sayılar Teorisi Kouları Geel Sıavları www.sbelia.wordpress.com SINAV I(IDENTITIES WITH SQUARES) 4 4. a 4b (Sopphie Germai Deklemi) çarpalarıa ayırıız.. 4 4 = A ise A ı sadece = durumuda asal olduğuu ispatlayıız..

Detaylı

{ 1 3 5} UYGULAMA-2 OLASILIK HESABI { } i, i = 1, 2,, n elemanına aşağıdaki özelliklere sahip bir p. her bir ω. sayısı karşılık getirilsin.

{ 1 3 5} UYGULAMA-2 OLASILIK HESABI { } i, i = 1, 2,, n elemanına aşağıdaki özelliklere sahip bir p. her bir ω. sayısı karşılık getirilsin. UYGULAMA- OLASILIK HESABI Ω. Ω solu sayıda elemaa sahip olsu. Ω { ω, ω,, ω }, U olmak üzere, Ω ı her bir ω i, i,,, elemaıa aşağıdaki özelliklere sahip bir p i sayısı karşılık getirilsi. ) p 0, i,,...,

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

Bileşik faiz hesaplamalarında kullanılan semboller basit faizdeki ile aynıdır. Temel formüller ise şöyledir:

Bileşik faiz hesaplamalarında kullanılan semboller basit faizdeki ile aynıdır. Temel formüller ise şöyledir: 1 BİLEŞİK FAİZ: Basit faiz hesabı kısa vadeli(1 yılda az) kredi işlemleride uygulaa bir metot idi. Ayrıca basit faiz metoduda her döem içi aapara sabit kalmakta olup o döem elde edile faiz tutarı bir soraki

Detaylı

BAĞINTI VE FONKSİYON

BAĞINTI VE FONKSİYON BAĞINTI VE FONKSİYON SIRALI N-Lİ x, x, x,..., x tae elema olsu. ( x, x, x,..., x ) yazılışıda elemaları sırası öemli ise x, x, x,..., x ) e sıralı -li deir. x, x, x,..., x ) de ( x (, x, x ( x, ) sıralı

Detaylı

ASAL ÇARPANLARINA AYIRMA ÇÖZÜMLÜ SORULAR

ASAL ÇARPANLARINA AYIRMA ÇÖZÜMLÜ SORULAR ASAL ÇARPANLARINA AYIRMA ÇÖZÜMLÜ SORULAR 1) 60 sayısıı asal çarpalarıa ayrılmış şekli aşağıdakilerde hagisidir? A)..5 D)..5 B)..5 E)..5 C)..5 1.Yötem: 60 180 90 45 60..5 tir. 15 5 5 1.Yötem: Öğrecilerimizi1.Yötemde

Detaylı

HARDY-CROSS METODU VE UYGULANMASI

HARDY-CROSS METODU VE UYGULANMASI HRY-ROSS MTOU V UYGUNMSI ğ şebekelerde debi bir oktaya çeşitli yollarda gelebildiği içi, şebekei er agi bir borusua suyu agi yolda geldiğii ilk bakışta söyleyebilmek geellikle mümkü değildir. Çözümleme

Detaylı

Bağımsızlık özelliğinden hareketle Ortak olasılık fonksiyonu (sürekli ise

Bağımsızlık özelliğinden hareketle Ortak olasılık fonksiyonu (sürekli ise YTÜ-İktisat İstatistik II Örekleme ve Öreklem Dağılımları BASİT RASSAL ÖRNEKLEME N tae ese arasıda taelik bir öreklem seçilmesii istediğii düşüelim. eseli olaaklı her öreklemi seçilme şasıı eşit kıla seçim

Detaylı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı

Dr. AKIN PALA. Damızlık Değeri, genotipik değer, allel frekansları. Damızlık değeri hesabı. Damızlık değeri hesabı. Damızlık değeri hesabı Damızlık Değeri, geotipik değer, allel frekasları Aki Pala, aki@comu.edu.tr ttp://members.comu.edu.tr/aki/ Damızlık değeri esabı µ Ökkeş =800 gr gülük calı ağırlık Sürü A Sürü µ Döller µ 500gr 700 DD esabı

Detaylı

Bu bölümde birkaç yak nsak dizi örne i daha görece iz.

Bu bölümde birkaç yak nsak dizi örne i daha görece iz. 19B. Yak sak Gerçel Dizi Örekleri Bu bölümde birkaç yak sak dizi öre i daha görece iz. Verdi imiz örekleri her biri hem kedi bafl a hem de kulla la yötem aç s da öemlidir. Örek 19B.1. lim 1/ = 1. Ka t:

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

Hiperbolik ve Küresel Uzaylarda Bir Simetrik Dörtyüzlünün Hacmi Üzerine. Abstract. Özet

Hiperbolik ve Küresel Uzaylarda Bir Simetrik Dörtyüzlünün Hacmi Üzerine. Abstract. Özet Hiperboli Küresel Uzaylarda Bir Simetri Dörtyüzlüü Hacmi Üzerie Bai KARLIĞA arliaga@gazi.edu.tr Gazi Üirsitesi Fe Edebiyat Faültesi atemati Bölümü 06500 Aara T.oullar/Aara urat SAVAŞ msavas@gazi.edu.tr

Detaylı

T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI

T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI GAUSS BALANS VE GAUSS KOBALANS SAYILARI ÜZERİNE YÜKSEK LİSANS TEZİ MUSTAFA YILMAZ DENİZLİ, TEMMUZ - 07 T.C. PAMUKKALE ÜNİVERSİTESİ

Detaylı

Matematik Olimpiyatları İçin

Matematik Olimpiyatları İçin KONU ANLATIMLI Matematik Olimpiyatları İçi İdirgemeli Diziler, Kombiatorik ve Cebirsel Uygulamaları LİSE MATEMATİK OLİMPİYATLARI İÇİN Lokma Gökçe, Osma Ekiz İdirgemeli Diziler ve Uygulamaları Lokma Gökçe,

Detaylı

v = ise v ye spacelike vektör,

v = ise v ye spacelike vektör, D.P.Ü. Fe Bilimleri Estitüsü 1. ayı Mayıs 6 emi-pozitif Ortogoal Matrisler içi Alteratif İi Yötem WO ALERNAIVE MEHOD FOR EMI-POIIVE OROGONAL MARICE B. BÜKCÜ* *Gaziosmapaşa Üiversitesi, Fe-Edebiyat Faültesi,

Detaylı

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir.

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir. 203-204 Bahar REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyo Basit doğrusal regresyo modeli: y i = β 0 + β x i + ε i Modeli matris gösterimi, y i = [ x i ] β 0 β + ε i şeklidedir. x y 2 gözlem

Detaylı

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ POLİNOMLARDA İNDİRGENEBİLİRLİK Derleye Osma EKİZ Eskişehir Fatih Fe Lisesi. GİRİŞ Poliomları idirgeebilmesi poliomları sıfırlarıı bulmada oldukça öemlidir. Şimdi poliomları idirgeebilmesi ile ilgili bazı

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

Venn Şeması ile Alt Kümeleri Saymak

Venn Şeması ile Alt Kümeleri Saymak Ve Şeması ile lt Kümeleri Saymak Osma Ekiz Bu çalışmada verile bir kümei çeşitli özellikleri sağlaya alt küme veya alt kümlerii ve şeması yardımıyla saymaya çalışacağız. Temel presibimiz aradığımız alt

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN

İç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.

Detaylı

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi,

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi, . Ders Büyü Sayılar Kauları Kouya geçmede öce DeMoivre-Stirlig formülüü ve DeMoivre-Laplace teoremii hatırlayalım. DeMoivre, geel terimi, a!,,, 3,... e ola dizii yaısa olduğuu göstermiş, aca limitii bulamamış.

Detaylı

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi 3 Cebirsel Olarak Çözüme Gitmede Wegsteı Yötemi Bu yötem bir izdüşüm tekiğie dayaır ve yalış pozisyo olarak isimledirile matematiksel tekiğe yakıdır. Buradaki düşüce f() çizgisi üzerideki bilie iki oktada

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri,

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri, POLİNOMLAR Taım : a0, a, a,..., a, a reel sayılar ve doğal sayı olmak üzere P x = a x + a x +... + a x + a x + a biçimideki ifadelere x e bağlı reel katsayılı poliom (çok terimli) deir. 0 a 0 ax + a x

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

Bu bölümde kan tlayaca m z teoremi, artan ve üstten s -

Bu bölümde kan tlayaca m z teoremi, artan ve üstten s - 18. S rl ve Arta Diziler Bu bölümde ka tlayaca m z teoremi, arta ve üstte s - rl bir gerçel say dizisii üsts ra çarpmas a ramak kal r biçimide özetleyebiliriz. (Üsts r kavram Bölüm 19 da görece iz.) flte

Detaylı

İKTİSATÇILAR İÇİN MATEMATİK

İKTİSATÇILAR İÇİN MATEMATİK Kostadi Treçevski Aeta Gatsovska Naditsa İvaovska İKTİSATÇILAR İÇİN MATEMATİK DÖRT YILLIK MESLEKİ OKULLARA AİT SINIF III İKTİSAT - HUKUK VE TİCARET MESLEĞİ TİCARET VE PAZARLAMA TEKNİSYENİ Deetleyeler:

Detaylı

4. Ders Fisher informasyonu s f rdan büyük ve sonlu, yani 0 < I() < 1; R f(x; )dx (kesikli da¼g l mlarda R yerine P.

4. Ders Fisher informasyonu s f rdan büyük ve sonlu, yani 0 < I() < 1; R f(x; )dx (kesikli da¼g l mlarda R yerine P. 4. Ders tkilik Küçük varyasl olmak, tahmi edicileri vazgeçilmez bir özelli¼gidir. Bir tahmi edicii, yal veya yas z, küçük varyasl olmas isteir. Parametrei kedisi () veya bir foksiyou (g()) ile ilgili tahmi

Detaylı

BÖLÜM II. Asal Sayılar. p ab ise p a veya p b dir.

BÖLÜM II. Asal Sayılar. p ab ise p a veya p b dir. BÖLÜM II Asal Sayılar Taım. p > tam sayısıı de ve ediside başa bölei yosa bu sayıya asal sayı deir. de büyü asal olmaya sayılara da bileşi sayı deir. Teorem. Eğer p bir asal sayı ve p ab ise p a veya p

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

T.C. BOZOK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI. Yüksek Lisans Tezi GENELLEŞTİRİLMİŞ NÖRLUND TOPLANABİLME METODU.

T.C. BOZOK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI. Yüksek Lisans Tezi GENELLEŞTİRİLMİŞ NÖRLUND TOPLANABİLME METODU. T.C. BOZOK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI Yüksek Lisas Tezi GENELLEŞTİRİLMİŞ NÖRLUND TOPLANABİLME METODU Elif SERİN Tez Daışmaı Yrd. Doç. Dr.Abdullah SÖNMEZOĞLU Yozgat 202

Detaylı

SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II MARKOV ZİNCİRLERİ DERS NOTLARI

SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II MARKOV ZİNCİRLERİ DERS NOTLARI SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II MARKOV ZİNCİRLERİ DERS NOTLARI STOKASTİK (RASSAL) SÜREÇLER Bazen rassal değişkenlerin zamanla nasıl değiştiğiyle ilgileniriz. Örneğin

Detaylı

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler

3. Ders Parametre Tahmini Tahmin Edicilerde Aranan Özellikler 3. Ders Parametre Tahmii Tahmi Edicilerde Araa Özellikler Gerçek düyada rasgelelik olgusu içere bir özellik ile ilgili ölçme işlemie karş l k gele X rasgele de¼gişkeii olas l k (yo¼guluk) foksiyou, F ff(;

Detaylı

POLĐNOMLAR YILLAR ÖYS

POLĐNOMLAR YILLAR ÖYS YILLAR 4 5 6 7 8 9 ÖSS - - - - - - ÖYS POLĐNOMLAR a,a,a,..., a P () = a + a +... + a R ve N olmak üzere; ifadesie Reel katsayılı.ci derecede bir değişkeli poliom deir. P()= a sabit poliom, (a ) P()= sıfır

Detaylı

YÖNEYLEM ARAŞTIRMASI-2 -Markov Zincirleri-

YÖNEYLEM ARAŞTIRMASI-2 -Markov Zincirleri- YÖNEYLEM ARAŞTIRMASI-2 -Markov Zincirleri- Hazırlayan Yrd. Doç. Selçuk Üniversitesi Mühendislik Fakültesi - Endüstri Mühendisliği Bölümü Giriş Zaman içerisinde tamamen önceden kestirilemeyecek şekilde

Detaylı

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ Lokma Gökçe Olimpiyat problemlerii çözümüde eşitsizlik teorisi öemli bir yer tutar. Baze bir maksimum miimum değer problemide, baze bir geometrik eşitsizlik kaıtıda, baze

Detaylı

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R İ H S A N T İ M U Ç İ N D O L A P C İ, Y İ Ğ İ T A K S O Y M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R P U B L I S H E R O F T H I S B O O K Copyright 13 İHSAN TİMUÇİN DOLAPCİ, YİĞİT AKSOY

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üiversitesi İşaat Mühedisliği Bölümü umutokka@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN idrolik Aabilim Dalı Balıkesir Üiversitesi İşaat Mühedisliği Bölümü Bölüm 5 Örekleme

Detaylı

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları

PROJE RAPORU. PROJENİN ADI: Karmaşık Sayıların n. Dereceden Kökler Toplamı ve Trigonometrik Yansımaları PROJE RAPORU PROJENİN ADI: Karmaşık Sayıları. Derecede Kökler Toplamı ve Trigoometrik Yasımaları PROJENİN AMACI: Karmaşık sayıı karekökleri toplamı sıfırdır. Peki. derecede kök toplamı içi de geçerli miydi?

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

METAL MATRİSLİ DAİRESEL DELİKLİ KOMPOZİT LEVHALARDA ARTIK GERİLMELERİN ANALİZİ

METAL MATRİSLİ DAİRESEL DELİKLİ KOMPOZİT LEVHALARDA ARTIK GERİLMELERİN ANALİZİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K Bİ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 1999 : 5 : -3 : 141-146

Detaylı

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar

Permütasyon Kombinasyon Binom Aç l m. Olas l k ve statistik. Karmafl k Say lar 0 0 0 Gerçek Say lar Kümesii Geiflletme Gere i Kümesi Aalitik Düzlemde Gösterilmesi Efllei i Modülü da fllemler ki Karmafl k Say Aras daki Uzakl k Karmafl k Say Geometrik Yeri Kutupsal Gösterimi Karmafl

Detaylı

DETERMINANTLAR. 1. Permütasyon. 1. Permütasyon ) permütasyonundaki ters dönüşüm. 1. Permütasyon 2. BÖLÜM ( )

DETERMINANTLAR. 1. Permütasyon. 1. Permütasyon ) permütasyonundaki ters dönüşüm. 1. Permütasyon 2. BÖLÜM ( ) . BÖÜM. Permütsyo Tım: Bir tm syılr {,,, } kümesideki elemlrı tekrr olmksızı frklı DETERMINNTR sırlmlrıı düzelemesie permütsyo deir. Örek: {,, 3} tm syılr kümesii ltı frklı permütsyou vrdır: (,, 3), (,,

Detaylı

BÖLÜM DETERMINANTLAR SD 1

BÖLÜM DETERMINANTLAR SD 1 SD 1 2. BÖLÜM DETERMINANTLAR 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 2 1 2 22 21 1 12 11 1. Permütsyo Tım: Bir tm syılr {1, 2,, } kümesideki elemlrı tekrr olmksızı frklı sırlmlrıı düzelemesie

Detaylı

FREKANS CEVABI YÖNTEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI

FREKANS CEVABI YÖNTEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI FREKANS CEVABI YÖNEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI G(s (r(t ı Laplace döüşümü; A(s B(s A(s (s p (s p L(s p C(s G(sR(s R(s R s A(s B(s R(s A(s R a C(s L B(s s s j s j s p a b b s

Detaylı

ÖZET Doktora Tezi KISITLI DURUM KALMAN FİLTRESİ VE BAZI UYGULAMALARI Esi KÖKSAL BABACAN Akara Üiversitesi Fe Bilimleri Estitüsü İstatistik Aabilim Dal

ÖZET Doktora Tezi KISITLI DURUM KALMAN FİLTRESİ VE BAZI UYGULAMALARI Esi KÖKSAL BABACAN Akara Üiversitesi Fe Bilimleri Estitüsü İstatistik Aabilim Dal ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ KISITLI DURUM KALMAN FİLTRESİ VE BAZI UYGULAMALARI Esi KÖKSAL BABACAN İSTATİSTİK ANABİLİM DALI ANKARA 2009 Her hakkı saklıdır ÖZET Doktora Tezi

Detaylı

Đki Oyun Yaz Dnemi 22 Haziran 2011, Çarşamba Đst201 Đstatistik Teorisi Dersin konusu: Olasılık Hesabı

Đki Oyun Yaz Dnemi 22 Haziran 2011, Çarşamba Đst201 Đstatistik Teorisi Dersin konusu: Olasılık Hesabı Đki Oyu Yaz Demi 22 Hazira 20, Çarşamba Đst20 Đstatistik Teorisi Dersi kousu: Olasılık Hesabı - Çocuklar, Đstatistik Teorisi bir tarafa, istatistikçileri işi rasgelelik ortamıda hesap yapmaktır. Şöyle

Detaylı

Bu yaz da kuramsal olarak sonsuz, ancak uygulamada

Bu yaz da kuramsal olarak sonsuz, ancak uygulamada Matematik Düyas, 2008-I E Basit Yaz -Tura Oyular Üzerie Ali Nesi* / aesi@bilgi.edu.tr, 3 0, 4, 3 3, 0, 4 0, 4, 3 3, 3, * stabul Bilgi Üiversitesi Matematik Bölümü ö retim üyesi. Yazar Matematik ve Oyu

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açı Ders Malzemeleri http://ocw.mit.edu Bu materyallerde alıtı yapma veya Kullaım Koşulları haıda bilgi alma içi http://ocw.mit.edu/terms veya http://www.aciders.org.tr adresii ziyaret ediiz. 18.102

Detaylı

1. GAZLARIN DAVRANI I

1. GAZLARIN DAVRANI I . GZLRIN DRNI I İdeal Gazlar ç: lm 0 RT İdeal gazlar ç: RT Hacm() basıçla() değşk sıcaklıklarda değşm ekl.. de gösterlmştr. T >T 8 T T T 3 asıç T 4 T T 5 T 7 T 8 Molar Hacm ekl.. Gerçek br gazı değşk sıcaklıklardak

Detaylı

MERAKLISINA MATEMATİK

MERAKLISINA MATEMATİK TRİGONOMETRİ : Siüs i b c R si si y si z İsptı : m(ëo).m(ëa) m(ëo).m(ëb) m(ëo).m(ëc) m(ëo) m(ëo) y m(ëo) z b c b c & si & si y & si y R R R R R R si si y b si z c & & & R R R & R.si & b R.siy & c R.siz

Detaylı

Analiz II Çalışma Soruları-2

Analiz II Çalışma Soruları-2 Aaliz II Çalışma Soruları- So gücelleme: 04040 (I Aşağıdaki foksiyoları (ilgili değişkelere göre türevlerii buluuz 7 cos π 8 log (si π ( si ta e 9 4 5 6 + cot 0 sec sit t si( e + e arccos ( e cos(ta (II

Detaylı

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI RASTLANTISAL MÖBIUS DÖNÜŞÜMLERİ YÜKSEK LİSANS TEZİ.

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI RASTLANTISAL MÖBIUS DÖNÜŞÜMLERİ YÜKSEK LİSANS TEZİ. T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI RASTLANTISAL MÖBIUS DÖNÜŞÜMLERİ YÜKSEK LİSANS TEZİ Fikri CENGİZ Balıkesir, Eylül-2007 ÖZET RASTLANTISAL MÖBIUS DÖNÜŞÜMLERİ Fikri

Detaylı

DIRAC SİSTEMİ İÇİN BİR SINIR DEĞER PROBLEMİ

DIRAC SİSTEMİ İÇİN BİR SINIR DEĞER PROBLEMİ DIRAC SİSTEMİ İÇİN BİR SINIR DEĞER PROBLEMİ UFUK KAYA Mersi Üiversitesi Fe Bilimleri Estitüsü Matematik Aa Bilim Dalı YÜKSEK LİSANS TEZİ Tez Daışmaı Prof. Dr. Nazım KERİMOV MERSİN Hazira - 8 ÖZ Bu çalışmada

Detaylı

Yrd.Doç. Dr. Mustafa Akkol

Yrd.Doç. Dr. Mustafa Akkol komşuluğu: Taım: ; isteildiği kadar küçük seçilebile poziti bir sayı olmak üzere a a açık aralığıa a R sayısıı komşuluğu deir Örek : Taım: a a a a ve 0 00 olsu ' i 0 00 0 00 999 00 : Z R bir dizi deir

Detaylı

Su Yapıları II Hidroelektrik Enerji Üretimi

Su Yapıları II Hidroelektrik Enerji Üretimi Su Yapıları II Hidroelektrik Eerji Üretimi Yrd. Doç. Dr. Burha ÜNAL Bozok Üiversitesi Mühedislik Mimarlık Fakültesi İşaat Mühedisliği Bölümü Yozgat Yrd. Doç. Dr. Burha ÜNAL Bozok Üiversitesi aat Mühedislii

Detaylı

H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Kısım Bir Reel Değişkeli Foksiyolar Teorisi Prof.Dr.Hüseyi Çakallı 3 H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Reel

Detaylı

MONTE CARLO BENZETİMİ

MONTE CARLO BENZETİMİ MONTE CARLO BENZETİMİ U(0,) rassal değişkeler kullaılarak (zamaı öemli bir rolü olmadığı) stokastik ya da determiistik problemleri çözümüde kullaıla bir tekiktir. Mote Carlo simülasyou, geellikle statik

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim

Detaylı

Polinom İnterpolasyonu

Polinom İnterpolasyonu Polom İterpolasyou (Ara Değer Bulma Br foksyou solu sayıdak, K, R oktalarıda aldığı f (, f (,, f ( değerler bls (foksyou keds blmyor. Bu oktalarda geçe. derecede br tek, P a + a + a + + a (... polumu vardır

Detaylı

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir.

HİPOTEZ TESTLERİ. İstatistikte hipotez testleri, karar teorisi olarak adlandırılır. Ortaya atılan doğru veya yanlış iddialara hipotez denir. HİPOTEZ TETLERİ İstatistikte hipotez testleri, karar teorisi olarak adladırılır. Ortaya atıla doğru veya yalış iddialara hipotez deir. Öreği para hilesizdir deildiğide bu bir hipotezdir. Ortaya atıla iddiaya

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ

Problem 1. Problem 2. Problem 3. Problem 4. PURPLE COMET MATEMATİK BULUŞMASI Nisan 2010 LİSE - PROBLEMLERİ PURPLE COMET MATEMATİK BULUŞMASI Nisa 2010 LİSE - PROBLEMLERİ c Copyright Titu Adreescu ad Joatha Kae Çeviri. Sibel Kılıçarsla Casu ve Fatih Kürşat Casu Problem 1 m ve aralarıda asal pozitif tam sayılar

Detaylı

Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları

Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları 4.Ders Rasgele Vektörler Çok Değişkenli Olasılık Dağılımları Tanım:,U, P bir olasılık uzayı ve X, X,,X n : R n X, X,,X n X, X,,X n olmak üzere, her a, a,,a n R n için : X i a i, i,, 3,,n U özelliği sağlanıyor

Detaylı

Lineer Bağımlılık ve Lineer Bağımsızlık

Lineer Bağımlılık ve Lineer Bağımsızlık Lineer Bağımlılık ve Lineer Bağımsızlık Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayı ve alt uzay yapısını daha iyi tanıyacak, Bir vektör uzayındaki vektörlerin

Detaylı

x A şeklinde gösterilir. Aksi durum ise x A olarak

x A şeklinde gösterilir. Aksi durum ise x A olarak BÖLÜM I OLSILIK Küme teorisi, matematiği geliştirilmesi ve öğretimide gittikçe daha fazla yararlaıla koularda biridir. yrıca olasılıkla ilgili birici bölümü temel aracıdır. Bu kısımda amaç, olasılık kousuda

Detaylı

YAPISAL ELEMANLARIN TİTREŞİM FREKANSLARININ ANALİZİ İÇİN ÜÇ BOYUTLU TIMOSHENKO KİRİŞ ELEMANI

YAPISAL ELEMANLARIN TİTREŞİM FREKANSLARININ ANALİZİ İÇİN ÜÇ BOYUTLU TIMOSHENKO KİRİŞ ELEMANI 2. Türkiye Deprem Mühedisliği ve Sismoloji Koferası YAPISAL ELEMANLARIN TİTREŞİM FREKANSLARININ ANALİZİ İÇİN ÜÇ BOYUTLU TIMOSHENKO KİRİŞ ELEMANI ÖZET: O. Soydaş 1 ve A. Sarıtaş 2 1 Doktora Öğrecisi, İşaat

Detaylı

Veri Ağlarında Gecikme Modeli

Veri Ağlarında Gecikme Modeli Veri Ağlarında Gecikme Modeli Giriş Veri ağlarındaki en önemli performans ölçütlerinden biri paketlerin ortalama gecikmesidir. Ağdaki iletişim gecikmeleri 4 farklı gecikmeden kaynaklanır: 1. İşleme Gecikmesi:

Detaylı

Artan-Azalan Fonksiyonlar Ekstremumlar. Yard. Doç. Dr. Mustafa Akkol

Artan-Azalan Fonksiyonlar Ekstremumlar. Yard. Doç. Dr. Mustafa Akkol Artan-Azalan Fonksiyonlar Ekstremumlar Yard. Doç. Dr. Mustaa Akkol Artan ve Azalan Fonksiyonlar Tanım: a,b aralığında tanımlı bir onksiyonu verilsin., a,b ve için, ise onksiyonu a,b aralığında artan, ise

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

T.C. SELÇUK ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ

T.C. SELÇUK ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ T.C. SELÇUK ÜNĠVERSĠTESĠ FEN BĠLĠMLERĠ ENSTĠTÜSÜ SĠRKÜLANT MATRĠSLERĠN SAYISAL ĠġARET ĠġLEMEDE KULLANIMI Ahmet ÖTELEġ YÜKSEK LĠSANS TEZĠ Matematik Aabilim Dalıı Ağustos-0 KONYA Her Hakkı Saklıdır ÖZET

Detaylı

14. Kümelerin Niceliklerinin Kıyaslanışı ve Sonsuzluğun Mertebeleri

14. Kümelerin Niceliklerinin Kıyaslanışı ve Sonsuzluğun Mertebeleri =2. Kısmı Başı= 14. Kümeleri Niceliklerii Kıyaslaışı ve Sosuzluğu Mertebeleri Sosuz kümeleri iceliklerii kıyaslamak içi, öğe sayısı yaklaşımı yetersizdir. Farklı bir yaklaşım gereklidir. İki küme A, B

Detaylı

h)

h) ĐZMĐR FEN LĐSESĐ TÜMEVARIM-DĐZĐLER-SERĐLER ÇALIŞMA SORULARI TÜME VARIM:. Aşağıdaki ifadelerde geel bir kural çıkarabilir misiiz? a) p()= ++4 poliomuda değişkeie 0,,,, değerleri verdiğimizde elde edile

Detaylı