JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi)

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi)"

Transkript

1 JFM316 Elektrk Yöntemler ( Doğru Akım Özdrenç Yöntem) yeryüzünde oluşturacağı gerlm değerler hesaplanablr. Daha sonra aşağıdak formül kullanılarak görünür özdrenç hesaplanır. a K I K AM BM AN BN (1.34) Burada K geometrk faktör olarak smlendrlr ve uzaklık boyutundadır. Hesaplanan gerlm farkı elektrodlar arasındak uzaklığa, yere uygulanan akıma ve homoen ortamın özdrencne bağlıdır. Fakat gerçekte yer homoen değldr ve arazde ölçülen gerlm farkı ( ) kullanılarak (1.34) denklemnden hesaplanan özdrenç; Görünür Özdrenç (GÖ) olarak adlandırılır. GÖ, eolok yapının şeklne, özdrencne ve kullanılan elektrod dzlmne bağlıdır. GÖ tanımlamasına göre; ortam homoen ve zotrop se ölçülen GÖ ortamın özdrencne eşt olmalıdır. Tabakalı br ortamda GÖ eğrs AB/2' nn küçük değerler çn brnc tabakanın özdrencne, AB/2' nn büyük değerler çn son tabakanın özdrencne asmtot olmalıdır. Ayrıca GÖ, AB/2 nn ara değerlernde de ara tabakaların özdrencne yakın olmalıdır (Spes and Eggers 1986, Başokur 1994). Arazde ölçülen gerlm farkları, homoen ve zotrop ortama at olmadığından bundan sonrak bölümlerde GÖ kavramı ( a ) kullanılacaktır. Prof.Dr.M.E.Candansayar, Ankara Ünv. Müh.Fak. Jeofzk Müh.Böl (Bu notu yazardan habersz fotokop le çoğaltmak yasaktır) -10 Ocak / 94

2 JFM316 Elektrk Yöntemler ( Doğru Akım Özdrenç Yöntem) 7.4. DAÖ Yöntemnde, 2-B Modelleme Uygulaması çn Yararlı Blgler 2-B modelleme k amaç çn kullanılablr. Brncs, öngörülen br eolok yapı üzernde DAÖ ölçümlernn nasıl olacağını görmek. Bu eskden, hesaplanan ve arazde ölçülen GÖ değerlern karşılaştırarak (deneme yanılma yöntem) eolok model kestrmek çn yapılırdı. İkncs, 2-B ters çözüm de her yneleme çn kuramsal görünür özdrençler hesaplamak. Günümüzde daha çok knc amaç çn 2-B modelleme den yararlanılmaktadır. Buraya kadar DAÖ yöntemnde 2-B modellemenn kuramsal temeller verlmştr. Burada se uygulamada 2-B modellemenn nasıl yapıldığı Şekl 1.7 de verlen algortmaya göre zleyen şeklde yapılır. 1- VERİ GİRİŞİ İstasyon Sayısı = N İstasyonların koordnatları = (x, z) Her stasyonda hesaplanacak GÖ sayısı = M Her stasyon çn M adet AB/2 ve MN değerler 2- MODEL ve HESAPLAMA AĞLARININ OLUŞTURULMASI X- ve Y- yönünde blok sayısı dx ve dz değerler belrlenr 3- MODEL AĞINDA HER BLOK İÇİN ÖZDİRENÇ DEĞERLERİNİN ATANMASI 4- BİR ÖNCEKİ BÖLÜMDE ANLATILDIĞI ŞEKİLDE HER İSTASYONDAKİ AB/2 VE MN DEĞERLERİ İÇİN GÖ LERİN Şekl DAÖ yöntemnde 2-B modellemede zlenen adımları gösteren akış şeması. Br profl boyunca stasyon koordnatları ve her stasyonda seçlen elektrod dzlm çn GÖ değerlernn hesaplanacağı AB/2 ve MN değerler okunur. Örnek ver dosyası Tablo 1.1 de görülmektedr Prof.Dr.M.E.Candansayar, Ankara Ünv. Müh.Fak. Jeofzk Müh.Böl (Bu notu yazardan habersz fotokop le çoğaltmak yasaktır) -10 Ocak / 94

3 JFM316 Elektrk Yöntemler ( Doğru Akım Özdrenç Yöntem) Tablo B modellemede kullanılan örnek ver dosyası 9 (İstasyon Sayısı) (İstasyon No., ölçü sayısı, x-koordnatı ve z-koordnatı) No AB/2 MN (İstasyon No., ölçü sayısı, x-koordnatı ve z-koordnatı) No AB/2 MN (İstasyon No., ölçü sayısı, x-koordnatı ve z-koordnatı) No AB/2 MN Br düşey elektrk sondaı ölçüsünde, AB/2 mesafes brkaç metreden yüzlerce metreye kadar seçleblr. 2-B modelleme yaparken yanyana brden fazla stasyonun tanımlanacağı br ağ düzenlemek ve bu ağı kullanarak düz çözümün yapılması çok büyük bellek kapastes olan çok hızlı blgsayarları gerektrr. Bu nedenle k ağ kullanılmaktadır. Bunlardan brs model ağı (Model Mesh) (Şekl 1.8.a), dğer se sonlu elemanlar hesaplama ağıdır (Fnte Element Calculaton Mesh) (Şekl 1.8.b). Model ağında, özdrenç değer bulunacak bloklar ve bu blokların boyutları tanımlıdır. Programda bu ağ oluşturulurken yanal yönde her stasyon arasına br blok otomatk olarak yerleştrlr. Düşey yönde blok dernlkler, se sonlu elemanlar hesaplama ağındakne eşt olacak şeklde logartmk olarak artmaktadır. Model ağı stasyon sayısı, stasyonlar arasındak mesafe ve GÖ değerlernn hesaplanacağı AB/2 ve MN değerler gözönünde bulundurularak oluşturulur. Bu değerler kullanılarak Model ağı çn x- ve z- yönündek blok sayısı le bu bloklarının boyutları (dx ve dz değerler) tanımlanır. Tablo 1.2 de model ağı le lgl örnek br dosya görülmektedr. Sonlu elemanlar hesaplama ağı se düz çözüm yapılırken kullanılan ve elemanların tanımlandığı ağdır. Bu ağ, 2-B modellemede br stasyon çn kullanılır. GÖ değerlernn hesaplanacağı stasyon, hesaplama ağı' nın merkeznde olacak şeklde, model ağı Prof.Dr.M.E.Candansayar, Ankara Ünv. Müh.Fak. Jeofzk Müh.Böl (Bu notu yazardan habersz fotokop le çoğaltmak yasaktır) -10 Ocak / 94

4 JFM316 Elektrk Yöntemler ( Doğru Akım Özdrenç Yöntem) hesaplama ağının üzerne konur. Hesaplama ağı' nın elemanlarına, her elemana karşılık gelen model ağındak blok' ların özdrenç değerler atanır. Modelleme programının doğru sonuç vermes çn hesaplama ağı aşağıdak kurallara uygun oluşturulmalıdır. a- Ağın merkeznde x- ve z-yönünde blok aralığı, en küçük MN değernden küçük olmalıdır. b- Yanal ve düşey yönde, hücre aralıkları ardarda gelen k AB/2 değernn tek br hücre çne düşmeyecek şeklde belrlenmeldr. c- Sınır koşullarının uygulanablmes çn ağın sol-sağ ve alt sınırına yaklaştıkça hücrelern boyutları logartmk olarak artırılmalıdır. Bu koşullar gözönüne alınarak oluşturulan model ve hesaplama ağları, test edlmeldr. Test şlem çn, model ağında bütün blok özdrençler aynı alınır (homoen yarısonsuz model). GÖ tanımına göre homoen ortamda, ölçülen GÖ, ortamın özdrencne eşt olmalıdır. Örneğn, bütün blok özdrençlernn 100 ohm-m alınması durumunda, düz çözüm sonucu hesaplanan GÖ değerler en fazla %5 hata le ( ohm-m arasında) 100 ohm-m cvarında olmalıdır. Eğer hata oranı daha yüksek se model ve hesaplama ağı tekrar gözden geçrlmeldr. Ancak bu test geçtkten sonra, stenen model çn 2-B düz çözüm yapılmalıdır. Bu testn yapılmaması durumunda yanlış sonuçlar elde edleblr. Günümüzde, model ve hesaplama ağı otomatk oluşturulmaktadır. Ayrıca model ağındak blok özdrençler grafk arayüzü programları le kolayca oluşturulablmektedr. Ancak ynede yukarda sözü edlen testn yapılması şarttır. Prof.Dr.M.E.Candansayar, Ankara Ünv. Müh.Fak. Jeofzk Müh.Böl (Bu notu yazardan habersz fotokop le çoğaltmak yasaktır) -10 Ocak / 94

5 JFM316 Elektrk Yöntemler ( Doğru Akım Özdrenç Yöntem) Tablo 1.2. Model ağı blglern çeren örnek ver dosyası. NX NZ (x- ve z-yönünde blok sayısı DX (x-yönünde blok kalınlıkları) DZ (z-yönünde blok kalınlıkları) Model Ağı (18x12 blok) NO RHO (blok numarası, özdrenç değer) Yukarda Tablo 1.1 ve Tablo 1.2 de verlen örnek dosyalardak gb ver dosyaları hazırlandıktan sonra, br öncek bölümde anlatıldığı şeklde GÖ değerlernn hesaplayan program çalıştırılır. Bu programın sonucunda, Tablo 1.1 de her stasyon çn verlen AB/2 ve MN değer çn GÖ değerler hesaplanır. Örnekte verlen 9 stasyon çn elde edlen GÖ değerler kullanılarak Şekl 1.9 dak gb GÖ yapma kest çzleblr. (a) Prof.Dr.M.E.Candansayar, Ankara Ünv. Müh.Fak. Jeofzk Müh.Böl (Bu notu yazardan habersz fotokop le çoğaltmak yasaktır) -10 Ocak / 94

6 JFM316 Elektrk Yöntemler ( Doğru Akım Özdrenç Yöntem) İstasyon Numarası N x (b) z Şekl 1.8. Doğrusal üçgen elemanlara bölünmüş sonlu elemanlar hesaplama ağı (a) ve model ağı' nın (b) şematk gösterm (Uchda ve Murakam,1990). Prof.Dr.M.E.Candansayar, Ankara Ünv. Müh.Fak. Jeofzk Müh.Böl (Bu notu yazardan habersz fotokop le çoğaltmak yasaktır) -10 Ocak / 94

7 AB/2 (m) AB/2 (m) Dernlk (m) AB/2(m) JFM316 Elektrk Yöntemler ( Doğru Akım Özdrenç Yöntem) İstasyon No 0 (a) 2-B Özdrenç Model ohm-m 10 ohm-m 50 ohm-m ohm-m to to to to to B Düz Çözüm Görünür Öözdrenç Yapma-Kestler (b) AMN (c) MNB (d) (AMN+MNB)/ x (m) Şekl 1.9. (a) 2-B özdrenç model, bu modelden 2-B düz çözüm sonucu (b) AMN, (c) MNB ve (d) (AMN+MNB)/2 GÖ yapma-kestler. Prof.Dr.M.E.Candansayar, Ankara Ünv. Müh.Fak. Jeofzk Müh.Böl (Bu notu yazardan habersz fotokop le çoğaltmak yasaktır) -10 Ocak / 94

8 JFM316 Elektrk Yöntemler ( Doğru Akım Özdrenç Yöntem) 8. DAÖ VERİLERİNİN 2B ve 3B TERS ÇÖZÜMÜ Ters çözüm, br verden, bu very elde etmemz sağlayan matematksel modeln parametrelern hesaplamak şeklnde tanımlanablr. Genel olarak eofzk problemler doğrusal değldr. Burada doğrusal olmayan problemlern çözümünde kullanılan Yuvarlatılmış Sönümlü En-küçük kareler (smoothng) veya OCCAM olarak blnen ters çözüm algortması le DAÖ verlernn 2-B ters çözümü anlatılacaktır. DAÖ yöntemnde ters çözüm yaparken, yerçnde özdrençlern genş aralıkta değşmesnden dolayı ver ve parametre uzayında logartmalar alınır. 2-B ters çözümde br doğrultu boyunca brden fazla stasyonda ölçülmüş görünür özdrenç verler kullanılır. M adet parametre ve N adet ölçülen vernn logartmaları P logp, d log a, 1,...,M 1,..., N (2.1) şeklnde gösterlsn. Burada, p parametreler (blok özdrençlern), P parametrelern logartmasını, a se ölçülen görünür özdrenç verlern ve P se bu GÖ değerlernn logartmasını temsl Ölç. etmektedr. Ölçülen ver (d ) le hesaplanan ver (d ) arasındak hata eners (E) Hes. N 1 2 Ölç. Hes. d (x E d (2.2) ) bağıntısı le hespalanablr. d (P ) fonksyonununu parametreler ( P ) le olan lşksn doğrusallaştırmak çn Taylor sersne açılırsa ve yüksek derecel termler hmal edlrse d (P k ) d (P (k1) ) M 1 d P P (k1) P (k), 1,2,...,N (2.3) elde edlr. Burada k yneleme (teraton) numarasıdır. E' y en-küçüklemek çn blnmeyen parametrelere göre kısm türevler alınarak sıfıra eştlenr. E P 0 (2.4) Prof.Dr.M.E.Candansayar, Ankara Ünv. Müh.Fak. Jeofzk Müh.Böl (Bu notu yazardan habersz fotokop le çoğaltmak yasaktır) -10 Ocak / 94

9 JFM316 Elektrk Yöntemler ( Doğru Akım Özdrenç Yöntem) Denklem (2.3) denklem (2.4) de yerne konursa ve blnmeyen parametrelere alınırsa aşağıdak eştlk elde edlr. P göre kısm türevler N M ölç y Ölç. Hes. d (k1) d d (P ) 1 P (k 1) 1 P P P (k1) P (k) 0 (2.5) Yukardak denklemde P çözülür ve dzey formunda aşağıdak gb yazılablr ΔP (k) 1 (k 1) T (k 1) (k 1) T (k 1) A A A Δd (2.6) Burada T- dzeyn devrğn (Transpose) göstermektedr. Yukardak denklemde, ölç d (k1) A, P P (k1) (k) (k) (k1) ΔP P P, (k) Ölç. Hes. d d Δd (2.7) fade etmektedr. Denklem (2.6) en-küçük kareler veya Gauss-Newton çözümü olarak blnr. Denklem (2.6)' da A T A dzey çarpımı sonucu tekl (sngular) br dzey elde edleblr. Bu nedenle köşegen elemanlara br katsayı eklenerek sönümlü en-küçük kareler çözümü aşağıdak gb yazılablr. ΔP (k) 1 (k 1) T (k 1) (k 1) T (k 1) A A I A Δd λ (2.8) elde edlr. Burada sönüm faktörü (dampng factor) ve I se brm dzeydr. Ters çözüm sırasında her yneleme sonunda E küçüleblr. Fakat, bloklar arası an özdrenç değşm veya olamayacak kadar çok yüksek veya çok düşük özdrenç değerlernden dolayı kaba br 2-B model elde edleblr. Elde edlen bu model parametrelernn düz çözümü ölçülen ver değerlern sağlayacağı halde bu model gerçek yapıyı yansıtmaz. Yukardak gb belrszlkler modelden kaldırmak çn Sasak (1981) denklem (2.8)' e yuvarlatma faktörü (smootng factor) eklemştr. Modelden belrszlkler kaldırmak çn aşağıdak gb tanımlanan Laplacan süzgeç operatörü kullanılır. Sol Sağ Üst Alt P P P P 4P, 1,..., M ~ P (2.9) Prof.Dr.M.E.Candansayar, Ankara Ünv. Müh.Fak. Jeofzk Müh.Böl (Bu notu yazardan habersz fotokop le çoğaltmak yasaktır) -10 Ocak / 94

10 JFM316 Elektrk Yöntemler ( Doğru Akım Özdrenç Yöntem) Burada, Sol,Sağ,Üst ve Alt ndsler -nnc bloğa komşu olan blokları, göstermektedr. Denklem (2.9) tüm bloklar çn uygulanırsa ~ P CP se yuvarlatma faktörünü (2.10) elde edlr. Burada C, MxM boyutlu yuvarlatma faktörlern çeren kare dzeydr. C T le yukardak denklem çarpıp, sonucu (2.3.12) denklemne eklersek ΔP (k) 1 (k 1) T (k 1) T (k 1) T (k 1) A A C C A Δd (2.11) elde edlr. Bu çözüm yuvarlatılmış sönümlü en-küçük kareler ters çözümü (smoothng or OCCAM nverson) olarak blnr. Burada kısm türev fades ( hesaplanablr. d / P ), gerçel vernn logartmk hesabından aşağıdak gb d P p a log a logp (2.12) Ters çözüm' ün lk adımında, önkestrm parametreler le düz çözüm yapılır. Bu konu br öncek bölümde anlatılmıştır. Hesaplanan ver le ölçülen ver kullanılarak hata (msft ) ( d ) hesaplanır. Ayrıca Jakobyen dzeyn elemaları olan, vernn parametrelere göre kısm türevler de d / P ) düz (1) ( çözüm sırasında hesaplanır. Elde edlen değerler, denklem (2.11)' de yerne konarak çözülür ve bu değer kullanılarak yen parametre aşağıdak gb hesaplanır. (2) ΔP değer (2) (2) (1) ΔP p p e, = 1, 2,, M (2.13) Yneleme; hata (msft), tanımlanan lmt' den küçük oluncaya kadar devam eder Kısm Türevler İçeren Dzeyn Hesaplanması DAÖ verlernn 2-B ters çözümü' nde kısm türevlern hesaplanması çok zaman almaktadır. Bu nedenle genelde karşıtlık (recprocty) teorsnden yararlanılır. Bu teorye göre, yeryüzüne yerleştrlen akım ve gerlm elektrodları brbrnn yern aldığında ölçülen GÖ değer değşmez. Genel dzey denklem, L adet düğüm noktası çn aşağıdak gb yazılablr. Prof.Dr.M.E.Candansayar, Ankara Ünv. Müh.Fak. Jeofzk Müh.Böl (Bu notu yazardan habersz fotokop le çoğaltmak yasaktır) -10 Ocak / 94

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

DÜŞEY ELEKTRİK SONDAJI VERİLERİNİN YORUMU

DÜŞEY ELEKTRİK SONDAJI VERİLERİNİN YORUMU DÜŞEY ELEKTRİK SONDAJI VERİLERİNİN YORUMU Prof.Dr. Ahmet Tuğrul BAŞOKUR Jeofzk Mühendslğ Bölümü Mayıs 4 İletşm: Prof. Dr. Ahmet T. BAŞOKUR Ankara Ünverstes, Mühendslk Fakültes Jeofzk Mühendslğ Bölümü 6

Detaylı

Anahtar Kelimeler: Newton, En-dik iniș, Eșlenik Gradyen, Gauss-Newton ve Sönümlü En-küçük Kareler Ters-çözüm Yöntemleri, Tikhonov Düzgünleștiricisi.

Anahtar Kelimeler: Newton, En-dik iniș, Eșlenik Gradyen, Gauss-Newton ve Sönümlü En-küçük Kareler Ters-çözüm Yöntemleri, Tikhonov Düzgünleștiricisi. ÜREV ABANLI PARAMERE KESİRİM YÖNEMLERİ (DERIVAIVE BASED PARAMEER ESIMAION MEHODS) Ahmet uğrul BAȘOKUR Ankara Ünverstes Mühendslk Fakültes Jeofzk Müh. Bölümü, andoğankampusu, 61 Ankara basokur@eng.ankara.edu.tr

Detaylı

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Ünsal M.; Varol, A.: Soğutma Kulelernn Boyutlandırılması İçn Br Kuramsal 8 Mayıs 990, S: 8-85, Adana 4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Asaf Varol Fırat Ünverstes, Teknk Eğtm Fakültes,

Detaylı

DÜ EY ELEKTRİK SONDAJI VERİLERİNİN YORUMU

DÜ EY ELEKTRİK SONDAJI VERİLERİNİN YORUMU DÜ EY ELEKTRİK SONDAJI VERİLERİNİN YORUMU Prof.Dr. Ahmet Tuğrul BA OKUR TMMOB JEOFİZİK MÜHENDİSLERİ ODASI EĞİTİM YAYINLARI NO: 5 ISBN 978-9944-89-969-7 Mll Müdafaa Cad. N: /7 Kızılay/ANKARA Tel: 3 48 4

Detaylı

DENEY 8 İKİ KAPILI DEVRE UYGULAMALARI

DENEY 8 İKİ KAPILI DEVRE UYGULAMALARI T.C. Maltepe Ünverstes Müendslk ve Doğa Blmler Fakültes Elektrk-Elektronk Müendslğ Bölümü EK 0 DERE TEORİSİ DERSİ ABORATUAR DENEY 8 İKİ KAP DERE UYGUAMAAR Haırlaanlar: B. Demr Öner Same Akdemr Erdoğan

Detaylı

TEMEL DEVRE KAVRAMLARI VE KANUNLARI

TEMEL DEVRE KAVRAMLARI VE KANUNLARI TDK Temel Devre Kavramları ve Kanunları /0 TEMEL DEVRE KAVRAMLARI VE KANUNLARI GĐRĐŞ: Devre analz gerçek hayatta var olan fzksel elemanların matematksel olarak modellenerek gerçekte olması gereken sonuçların

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

ÇOK BĐLEŞENLĐ DAMITMA KOLONU TASARIMI PROF. DR. SÜLEYMAN KARACAN

ÇOK BĐLEŞENLĐ DAMITMA KOLONU TASARIMI PROF. DR. SÜLEYMAN KARACAN ÇOK BĐLEŞENLĐ DAMITMA KOLONU TASARIMI PROF. DR. SÜLEYMAN KARACAN 1 DAMITMA KOLONU Kmya ve buna bağlı endüstrlerde en çok kullanılan ayırma proses dstlasyondur. Uygulama alanı antk çağda yapılan alkol rektfkasyonundan

Detaylı

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.

Detaylı

Basel II Geçiş Süreci Sıkça Sorulan Sorular

Basel II Geçiş Süreci Sıkça Sorulan Sorular Basel II Geçş Sürec Sıkça Sorulan Sorular Soru No: 71 Cevaplanma Tarh: 06.03.2012 İlgl Hüküm: --- Konu: Gayrmenkul İpoteğyle Temnatlandırılmış Alacaklar İçn KR510AS Formunun Doldurulmasına İlşkn Örnek

Detaylı

BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ ÖRNEK 20 İKİ KATLI YIĞMA KONUT BİNASININ TASARIMI

BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ ÖRNEK 20 İKİ KATLI YIĞMA KONUT BİNASININ TASARIMI BÖLÜM II D ÖRNEK 0 BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ ÖRNEK 0 İKİ KATLI YIĞMA KONUT BİNASININ TASARIMI 0.1. BİNANIN GENEL ÖZELLİKLERİ...II.0/ 0.. TAŞIYICI

Detaylı

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ BÖLÜM 6 ALTERNATİF AKIM DEVRE ÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ 6. ÇEVRE AKIMLAR ÖNTEMİ 6. SÜPERPOZİSON TEOREMİ 6. DÜĞÜM GERİLİMLER ÖNTEMİ 6.4 THEVENİN TEOREMİ 6.5 NORTON TEOREMİ Tpak GİRİŞ Alternatf akımın

Detaylı

ZKÜ Mühendislik Fakültesi - Makine Mühendisliği Bölümü ISI VE TERMODİNAMİK LABORATUVARI Sudan Suya Türbülanslı Akış Isı Değiştirgeci Deney Föyü

ZKÜ Mühendislik Fakültesi - Makine Mühendisliği Bölümü ISI VE TERMODİNAMİK LABORATUVARI Sudan Suya Türbülanslı Akış Isı Değiştirgeci Deney Föyü ZKÜ Müendslk Fakültes - Makne Müendslğ Bölümü Sudan Suya Türbülanslı Akış Isı Değştrge Deney Föyü Şekl. Sudan suya türbülanslı akış ısı değştrge (H950 Deneyn adı : Boru çnde sudan suya türbülanslı akışta

Detaylı

T.C. ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ JEOFİZİK MÜHENDİSLİĞİ BÖLÜMÜ BİTİRME ÖDEVİ II ELEKTRİK SONDAJI VERİLERİNİN BİR BOYUTLU TERS ÇÖZÜMÜ

T.C. ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ JEOFİZİK MÜHENDİSLİĞİ BÖLÜMÜ BİTİRME ÖDEVİ II ELEKTRİK SONDAJI VERİLERİNİN BİR BOYUTLU TERS ÇÖZÜMÜ T.C. ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ JEOFİZİK MÜHENDİSLİĞİ BÖLÜMÜ BİTİRME ÖDEVİ II ELEKTRİK SONDAJI VERİLERİNİN BİR BOYUTLU TERS ÇÖZÜMÜ HAZIRLAYAN : FATİH YAKUT Fakülte No : 02291522 ANKARA 2006

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI V. Ulusal Üretm Araştırmaları Sempozyumu, İstanbul Tcaret Ünverstes, 5-7 Kasım 5 ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN

Detaylı

FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ

FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ 1 Nasır Çoruh, Tarık Erfdan, 3 Satılmış Ürgün, 4 Semra Öztürk 1,,4 Kocael Ünverstes Elektrk Mühendslğ Bölümü 3 Kocael Ünverstes Svl Havacılık Yüksekokulu ncoruh@kocael.edu.tr,

Detaylı

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE BAÜ Fen Bl. Enst. Dergs (6).8. YAYII YÜK İE YÜKENİŞ YAPI KİRİŞERİNDE GÖÇE YÜKÜ HESABI Perhan (Karakulak) EFE Balıkesr Ünverstes ühendslk marlık Fakültes İnşaat üh. Bölümü Balıkesr, TÜRKİYE ÖZET Yapılar

Detaylı

Calculating the Index of Refraction of Air

Calculating the Index of Refraction of Air Ankara Unversty Faculty o Engneerng Optcs Lab IV Sprng 2009 Calculatng the Index o Reracton o Ar Lab Group: 1 Teoman Soygül Snan Tarakçı Seval Cbcel Muhammed Karakaya March 3, 2009 Havanın Kırılma Đndsnn

Detaylı

PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI

PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI PÜRÜZLÜ AÇIK KANAL AKIMLARINDA DEBİ HESABI İÇİN ENTROPY YÖNTEMİNİN KULLANILMASI Mehmet ARDIÇLIOĞLU *, Galp Seçkn ** ve Özgür Öztürk * * Ercyes Ünverstes, Mühendslk Fakültes, İnşaat Mühendslğ Bölümü Kayser

Detaylı

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim.

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim. SM de yer alacak fermyonlar Standart Model (SM) agrange Yoğunluğu u s t d c b u, d, c, s, t, b e e e,, Şmdlk nötrnoları kütlesz Kabul edeceğz. Kuark çftlern gösterelm. u, c ve t y u (=1,,) olarak gösterelm.

Detaylı

KAFES SİSTEMLERİN UYGULAMAYA YÖNELİK OPTİMUM TASARIMI

KAFES SİSTEMLERİN UYGULAMAYA YÖNELİK OPTİMUM TASARIMI PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K BİLİMLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 1999 : 5 : 1 : 951-957

Detaylı

Direct Decomposition of A Finitely-Generated Module Over a Principal Ideal Domain *

Direct Decomposition of A Finitely-Generated Module Over a Principal Ideal Domain * BİR ESAS İDEAL BÖLGESİ ÜZERİNDEKİ SONLU DOĞURULMUŞ BİR MODÜLÜN DİREK PARÇALANIŞI * Drec Decompoon of A Fnely-Generaed Module Over a Prncpal Ideal Doman * Zeynep YAPTI Fen Blmler Enüü Maemak Anablm Dalı

Detaylı

Şiddet-Süre-Frekans Bağıntısının Genetik Algoritma ile Belirlenmesi: GAP Örneği *

Şiddet-Süre-Frekans Bağıntısının Genetik Algoritma ile Belirlenmesi: GAP Örneği * İMO Teknk Derg, 28 4393-447, Yazı 29 Şddet-Süre-Frekans Bağıntısının Genetk Algortma le Belrlenmes: GAP Örneğ * Hall KARAHAN* M. Tamer AYVAZ** Gürhan GÜRARSLAN*** ÖZ Bu çalışmada, Genetk Algortma (GA)

Detaylı

04.10.2012 SU İHTİYAÇLARININ BELİRLENMESİ. Suİhtiyacı. Proje Süresi. Birim Su Sarfiyatı. Proje Süresi Sonundaki Nüfus

04.10.2012 SU İHTİYAÇLARININ BELİRLENMESİ. Suİhtiyacı. Proje Süresi. Birim Su Sarfiyatı. Proje Süresi Sonundaki Nüfus SU İHTİYAÇLARII BELİRLEMESİ Suİhtyacı Proje Süres Brm Su Sarfyatı Proje Süres Sonundak üfus Su ayrım çzs İsale Hattı Su Tasfye Tess Terf Merkez, Pompa İstasyonu Baraj Gölü (Hazne) Kaptaj Su Alma Yapısı

Detaylı

AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ

AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ III. ULUSAL HAVACILIK VE UZAY KONFERANSI 16-18 Eylül 2010, ANADOLU ÜNİVERSİTESİ, Eskşehr AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ Davut ÇIKRIKCI * Yavuz YAMAN Murat SORGUÇ

Detaylı

ÖZET Yüksek Lisans Tezi. Kinematik Modelde Kalman Filtreleme Yöntemi ile Deformasyon Analizi. Serkan DOĞANALP. Selçuk Üniversitesi

ÖZET Yüksek Lisans Tezi. Kinematik Modelde Kalman Filtreleme Yöntemi ile Deformasyon Analizi. Serkan DOĞANALP. Selçuk Üniversitesi ÖZE Yüksek Lsans ez Knematk Modelde Kalman Fltreleme Yöntem le Deformasyon Analz Serkan DOĞANALP Selçuk Ünverstes Fen Blmler Ensttüsü Jeodez ve Fotogrametr Anablm Dalı Danışman: Yrd. Doç. Dr. Bayram URGU

Detaylı

Tek Yönlü Varyans Analizi

Tek Yönlü Varyans Analizi Tek Yönlü Varyan Analz Nedr ve hang durumlarda kullanılır? den fazla grupların karşılaştırılmaı öz konuu e, çok ayıda t-tet nn kullanılmaı, Tp I hatanın artmaına yol açar; Örneğn, eğer 5 grubu kşerl olarak

Detaylı

PARABOLİK YOĞUNLUK FONKSİYONUNU KULLANARAK SEDİMANTER TEMEL DERİNLİKLERİNİN KESTİRİMİ

PARABOLİK YOĞUNLUK FONKSİYONUNU KULLANARAK SEDİMANTER TEMEL DERİNLİKLERİNİN KESTİRİMİ Uygulamalı Yerblmler Sayı: (Mayıs-Hazran ) -9 PARABOLİK YOĞUNLUK FONKSİYONUNU KULLANARAK SEDİMANTER TEMEL DERİNLİKLERİNİN KESTİRİMİ Estmaton of Sedmentary Basement Depths By Usng Parabolc Densty Functon

Detaylı

BORULARDA, BORU BAĞLANTI ELEMANLARINDA VE GEÇİŞ BORULARINDA ENERJİ KAYIPLARI

BORULARDA, BORU BAĞLANTI ELEMANLARINDA VE GEÇİŞ BORULARINDA ENERJİ KAYIPLARI 547 BORULARDA, BORU BAĞLANTI ELEMANLARINDA VE GEÇİŞ BORULARINDA ENERJİ KAYIPLARI Mehmet ATILGAN Harun Kemal ÖZTÜRK ÖZET Boru akış problemlernn çözümünde göz önünde bulundurulması gereken unsurlardan en

Detaylı

ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR.

ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR. ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR Ebubekr İNAN DANIŞMAN Yrd. Doç. Dr. Mehmet Al ÖZTÜRK ADIYAMAN 2011 Her

Detaylı

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre 1 DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cnemre 2 BİRİNCİ BÖLÜM HEDEF PROGRAMLAMA 1.1 Grş Karar problemler amaç sayısına göre tek amaçlı ve çok amaçlı

Detaylı

ÇELİK UZAYSAL ÇERÇEVE YAPILARIN OPTİMUM TASARIMI

ÇELİK UZAYSAL ÇERÇEVE YAPILARIN OPTİMUM TASARIMI ÇELİK UZAYSAL ÇERÇEVE YAPILARIN OPTİMUM TASARIMI M. Sedat HAYALİOĞLU *, S. Özgür DEĞERTEKİN * * Dcle Ünverstes, Müh.-Mm. Fak., İnşaat Müh. Böl., Dyarbakır ÖZET Bu çalışmada çelk uzay çerçevelern, Amerkan

Detaylı

6. NORMAL ALT GRUPLAR

6. NORMAL ALT GRUPLAR 6. ORMAL ALT GRUPLAR G br grup ve olsun. 5. Bölümden çn eştlğnn her zaman doğru olamayacağını blyoruz. Fakat bu özellğ sağlayan gruplar, grup teorsnde öneml rol oynamaktadır. Bu bölümde bu tür grupları

Detaylı

ORTOTROPİK ZİNCİR YAN PLAKALARINDA GERİLME YIĞILMASI KATSAYILARININ HESAPLANMASI

ORTOTROPİK ZİNCİR YAN PLAKALARINDA GERİLME YIĞILMASI KATSAYILARININ HESAPLANMASI PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 997 : 3 : 3 :45-49

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Gülesen ÜSTÜNDAĞ BAZI PARAMETRİK OLMAYAN İSTATİSTİKSEL YÖNTEMLERİN İNCELENMESİ İSTATİSTİK ANABİLİM DALI ADANA, 005 ÇUKUROVA ÜNİVERSİTESİ

Detaylı

Çok Parçalı Basınç Çubukları

Çok Parçalı Basınç Çubukları Çok Parçalı Basınç Çubukları Çok parçalı basınç çubukları genel olarak k gruba arılır. Bunlar; a) Sürekl brleşk parçalardan oluşan çok parçalı basınç çubukları b) Parçaları arasında aralık bulunan çok

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A)

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A) KOCELİ ÜNİVERSİTESİ Mühendslk akültes Makna Mühendslğ Bölümü Mukavemet I Vze Sınavı () dı Soyadı : 18 Kasım 013 Sınıfı : No : SORU 1: Şeklde verlen levhalar aralarında açısı 10 o la 0 o arasında olacak

Detaylı

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY

PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ. χ 2 Kİ- KARE TESTLERİ. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIBAY PARAMETRİK OLMAYAN HİPOTEZ TESTLERİ Kİ- KARE TESTLERİ Doç.Dr. Al Kemal ŞEHİRLİOĞLU Araş.Gör. Efe SARIAY Populasyonun nceledğmz br özellğnn dağılışı blenen dağılışlardan brsne, Normal Dağılış, t Dağılışı,

Detaylı

DEFORMASYONLARIN MODELLENMESİ. Levent TAŞÇI 1 ltasci@firat.edu.tr

DEFORMASYONLARIN MODELLENMESİ. Levent TAŞÇI 1 ltasci@firat.edu.tr DFORMSYOLRI MODLLMSİ Levent TŞÇI 1 ltasc@frat.edu.tr Öz: Deformasyonların belrleneblmes çn farklı çalışma grupları tarafından ortaya konulmuş farklı yaklaşımlar söz konusudur. Deformasyon analznde, bloklar

Detaylı

Biyomedikal Amaçlı Basınç Ölçüm Cihazı Tasarımı

Biyomedikal Amaçlı Basınç Ölçüm Cihazı Tasarımı Byomedkal Amaçlı Basınç Ölçüm Chazı Tasarımı Barış Çoruh 1 Onur Koçak 2 Arf Koçoğlu 3 İ. Cengz Koçum 4 1 Ayra Medkal Yatırımlar Ltd. Şt, Ankara 2,4 Byomedkal Mühendslğ Bölümü, Başkent Ünverstes, Ankara,

Detaylı

Üç Boyutlu Yapı-Zemin Etkileşimi Problemlerinin Kuadratik Sonlu Elemanlar ve Sonsuz Elemanlar Kullanılarak Çözümü

Üç Boyutlu Yapı-Zemin Etkileşimi Problemlerinin Kuadratik Sonlu Elemanlar ve Sonsuz Elemanlar Kullanılarak Çözümü ECAS Uluslararası Yapı ve Deprem Mühendslğ Sempozyumu, Ekm, Orta Doğu Teknk Ünverstes, Ankara, Türkye Üç Boyutlu Yapı-Zemn Etkleşm Problemlernn Kuadratk Sonlu Elemanlar ve Sonsuz Elemanlar Kullanılarak

Detaylı

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI Yönetm, Yl 9, Say 28, Ekm - 1997,5.20-25 TRANSPORT PROBLEMI ÇIN GELIsTIRILMIs VAM YÖNTEMI Dr. Erhan ÖZDEMIR I.Ü. Teknk Blmler M.Y.O. L.GIRIs V AM transport problemlerne en düsük malyetl baslangç çözüm

Detaylı

Veride etiket bilgisi yok Denetimsiz öğrenme (unsupervised learning) Neden gereklidir?

Veride etiket bilgisi yok Denetimsiz öğrenme (unsupervised learning) Neden gereklidir? MEH535 Örünü Tanıma 7. Kümeleme (Cluserng) Doç.Dr. M. Kemal GÜLLÜ Elekronk ve Haberleşme Mühendslğ Bölümü web: hp://akademkpersonel.kocael.edu.r/kemalg/ E-posa: kemalg@kocael.edu.r Verde eke blgs yok Denemsz

Detaylı

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE TEK ÇARPIMSAL SİNİR HÜCRELİ YAPAY SİNİR AĞI MODELİNİN EĞİTİMİ İÇİN ABC VE BP YÖNTEMLERİNİN KARŞILAŞTIRILMASI ÖZ

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE TEK ÇARPIMSAL SİNİR HÜCRELİ YAPAY SİNİR AĞI MODELİNİN EĞİTİMİ İÇİN ABC VE BP YÖNTEMLERİNİN KARŞILAŞTIRILMASI ÖZ ANADOLU ÜNİVERSİTESİ Blm ve Teknoloj Dergs A-Uygulamalı Blmler ve Mühendslk Clt: 14 Sayı: 3 013 Sayfa: 315-38 ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE Faruk ALPASLAN 1, Erol EĞRİOĞLU 1, Çağdaş Hakan ALADAĞ,

Detaylı

a IIR süzgeç katsayıları ve N ( M) de = s 1 (3) 3. GÜRÜLTÜ GİDERİMİ UYGULAMASI

a IIR süzgeç katsayıları ve N ( M) de = s 1 (3) 3. GÜRÜLTÜ GİDERİMİ UYGULAMASI Fırat Ünverstes-Elazığ MİTRAL KAPAK İŞARETİ ÜZERİNDEKİ ANATOMİK VE ELEKTRONİK GÜRÜLTÜLERİN ABC ALGORİTMASI İLE TASARLANAN IIR SÜZGEÇLERLE SÜZÜLMESİ N. Karaboğa 1, E. Uzunhsarcıklı, F.Latfoğlu 3, T. Koza

Detaylı

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans

Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans Farklı Varyans Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans Y X 1 Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = s Farklı Varyans Zaman EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern

Detaylı

MADEN DEĞERLENDİRME. Ders Notları

MADEN DEĞERLENDİRME. Ders Notları MADEN DEĞERLENDİRME Ders Notları Doç.Dr. Kaan ERARSLAN 008 ĐÇĐNDEKĐLER. GĐRĐŞ... 3. REZERV SINIFLARI VE HESAPLAMALARI... 4. Görünür rezervler...4.. Muhtemel Rezervler...6.3 Mümkün Rezervler...7.4 Belrl

Detaylı

THOMAS-FİERİNG MODELİ İLE SENTETİK AKIŞ SERİLERİNİN HESAPLANMASINDA YENİ BİR YAKLAŞIM

THOMAS-FİERİNG MODELİ İLE SENTETİK AKIŞ SERİLERİNİN HESAPLANMASINDA YENİ BİR YAKLAŞIM Osmangaz Ünverstes Müh.Mm.Fak.Dergs C.XVII, S., 004 Eng.&Arch.Fac.Osmangaz Unversty, Vol.XVII, No :, 004 THOMAS-FİERİNG MODELİ İLE SENTETİK AKIŞ SERİLERİNİN HESAPLANMASINDA YENİ BİR YAKLAŞIM Recep BAKIŞ,

Detaylı

T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 1 ÇOKLU ISI DEĞİŞTİRİCİSİ DENEYİ

T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 1 ÇOKLU ISI DEĞİŞTİRİCİSİ DENEYİ T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER ÇOKLU ISI DEĞİŞTİRİCİSİ DENEYİ ÖĞRENCİ NO: ADI SOYADI: DENEY SORUMLUSU: YRD. DOÇ. DR. BİROL ŞAHİN

Detaylı

Toplam Eşdeğer Deprem Yükünün Hesabı Bakımından 1975 Deprem Yönetmeliği İle 2006 Deprem Yönetmeliğinin Karşılaştırılması

Toplam Eşdeğer Deprem Yükünün Hesabı Bakımından 1975 Deprem Yönetmeliği İle 2006 Deprem Yönetmeliğinin Karşılaştırılması Fırat Ünv. Fen ve Müh. Bl. ergs Scence and Eng. J of Fırat Unv. 19 (2, 133-138, 2007 19 (2, 133-138, 2007 Toplam Eşdeğer eprem Yükünün Hesabı Bakımından 1975 eprem Yönetmelğ İle 2006 eprem Yönetmelğnn

Detaylı

TEKNOLOJİK ARAŞTIRMALAR

TEKNOLOJİK ARAŞTIRMALAR wwwteknolojkarastrmalarcom ISSN:1304-4141 Makne eknolojler Elektronk Dergs 00 (4 1-14 EKNOLOJİK ARAŞIRMALAR Makale Klask Eş Eksenl (Merkezl İç İçe Borulu Isı Değştrcsnde Isı ransfer ve Basınç Kaybının

Detaylı

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA YÖNETİM VE EKONOMİ Yıl:2006 Clt:3 Sayı: Celal Bayar Ünverstes İ.İ.B.F. MANİSA Bulanık Araç Rotalama Problemlerne Br Model Öners ve Br Uygulama Doç. Dr. İbrahm GÜNGÖR Süleyman Demrel Ünverstes, İ.İ.B.F.,

Detaylı

TÜRKİYE DEKİ 22 BARALI 380 kv LUK GÜÇ SİSTEMİ İÇİN EKONOMİK DAĞITIM VE OPTİMAL GÜÇ AKIŞI YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ

TÜRKİYE DEKİ 22 BARALI 380 kv LUK GÜÇ SİSTEMİ İÇİN EKONOMİK DAĞITIM VE OPTİMAL GÜÇ AKIŞI YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING FACULTY MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 7 : 3 : 3 : 369-378

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Berrn GÜLTAY YÜKSEK LİSANS TEZİ ÇOKLU İÇ İLİŞKİ VE EKOLOJİK REGRESYON İSTATİSTİK ANABİLİM DALI ADANA, 9 ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOKLU

Detaylı

C PROGRAMLAMA YRD.DOÇ.DR. BUKET DOĞAN PROGRAM - ALGORİTMA AKIŞ ŞEMASI

C PROGRAMLAMA YRD.DOÇ.DR. BUKET DOĞAN PROGRAM - ALGORİTMA AKIŞ ŞEMASI C PROGRAMLAMA DİLİ YRD.DOÇ.DR. BUKET DOĞAN 1 PROGRAM - ALGORİTMA AKIŞ ŞEMASI Program : Belirli bir problemi çözmek için bir bilgisayar dili kullanılarak yazılmış deyimler dizisi. Algoritma bir sorunun

Detaylı

NOT: Deney kılavuzunun Dönme Dinamiği Aygıtının Kullanımı İle İlgili Bilgiler Başlıklı Bölümü okuyunuz.

NOT: Deney kılavuzunun Dönme Dinamiği Aygıtının Kullanımı İle İlgili Bilgiler Başlıklı Bölümü okuyunuz. 8. AÇISAL HIZ, AÇISAL İVME VE TORK Hazırlayan Arş. Grv. M. ERYÜREK NOT: Deney kılavuzunun Dönme Dnamğ Aygıının Kullanımı İle İlgl Blgler Başlıklı Bölümü okuyunuz. AMAÇ 1. Küle merkez boyunca geçen ab br

Detaylı

ROBİNSON PROJEKSİYONU

ROBİNSON PROJEKSİYONU ROBİNSON PROJEKSİYONU Cengzhan İPBÜKER ÖZET Tüm yerkürey kapsayan dünya hartalarının yapımı çn, kartografk lteratürde özel br öneme sahp olan Robnson projeksyonu dk koordnatlarının hesabı brçok araştırmacı

Detaylı

VANTİLATÖR TASARIMI. Şekil 1. Merkezkaç vantilatör tipleri

VANTİLATÖR TASARIMI. Şekil 1. Merkezkaç vantilatör tipleri 563 VANTİLATÖR TASARIMI Fuat Hakan DOLAY Cem PARMAKSIZOĞLU ÖZET Bu çalışmada merkezkaç ve eksenel vantlatör tpler çn gelştrlmş olan matematksel modeln çözümünü sağlayan br blgsayar programı hazırlanmıştır.

Detaylı

3. Telin kesit alanı, 4. lsıtılan telin diren ci, R = R o. 5. Devreden geçen proton sayısı, q = (N e. 6. X ve Y ilet ken le ri nin di renç le ri,

3. Telin kesit alanı, 4. lsıtılan telin diren ci, R = R o. 5. Devreden geçen proton sayısı, q = (N e. 6. X ve Y ilet ken le ri nin di renç le ri, . ÖÜ EETİ ODE SOU - DEİ SOUN ÇÖZÜEİ. Teln kest alanı, 400 mm 4.0 4 m. a a a a n boyu,, a n kest alanı, a.a a a a Teln drenc se, ρ., 500 4.0 6. 4 5 Ω dur. 40. Telden geçen akım, ohm kanunundan, 40 48 amper

Detaylı

Bulanık Mantık ile Hesaplanan Geoid Yüksekliğine Nokta Yüksekliklerinin Etkisi

Bulanık Mantık ile Hesaplanan Geoid Yüksekliğine Nokta Yüksekliklerinin Etkisi Harta Teknolojler Elektronk Dergs Clt: 5, No: 1, 2013 (61-67) Electronc Journal of Map Technologes Vol: 5, No: 1, 2013 (61-67) TEKNOLOJİK ARAŞTIRMALAR www.teknolojkarastrmalar.com e-issn: 1309-3983 Makale

Detaylı

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS

YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS YAŞAM ÇÖZÜMLEMESİNDE AYKIRI DEĞERLER OUTLIERS IN SURVIVAL ANALYSIS NURAY TUNCER PROF. DR. DURDU KARASOY Tez Danışmanı Hacettepe Ünverstes Lsansüstü Eğtm-Öğretm Yönetmelğnn İstatstk Anablm Dalı İçn Öngördüğü

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (4. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (4. Hafta) KAFES SİSTEMLER STATİK (4. Hafta) Düz eksenden oluşan çubukların birbiriyle birleştirilmesiyle elde edilen sistemlere kafes sistemler denir. Çubukların birleştiği noktalara düğüm noktaları adı verilir.

Detaylı

Soğutucu Akışkan Karışımlarının Kullanıldığı Soğutma Sistemlerinin Termoekonomik Optimizasyonu

Soğutucu Akışkan Karışımlarının Kullanıldığı Soğutma Sistemlerinin Termoekonomik Optimizasyonu Soğutucu Akışkan arışımlarının ullanıldığı Soğutma Sstemlernn ermoekonomk Optmzasyonu * 1 Hüseyn aya, 2 ehmet Özkaymak ve 3 rol Arcaklıoğlu 1 Bartın Ünverstes akne ühendslğ Bölümü, Bartın, ürkye 2 arabük

Detaylı

DEĞİŞKEN DÖVİZ KURLARI ORTAMINDA GLOBAL BİR ŞİRKETTEKİ ESNEKLİĞİN DEĞERİ VE OPTİMUM KULLANIMI

DEĞİŞKEN DÖVİZ KURLARI ORTAMINDA GLOBAL BİR ŞİRKETTEKİ ESNEKLİĞİN DEĞERİ VE OPTİMUM KULLANIMI DEĞİŞKEN DÖVİZ KURLARI ORTAMINDA GLOBAL BİR ŞİRKETTEKİ ESNEKLİĞİN DEĞERİ VE OPTİMUM KULLANIMI Mehmet Aktan Atatürk Ünverstes, Endüstr Mühendslğ Bölümü, 25240, Erzurum. Özet: Dövz kurlarındak değşmler,

Detaylı

TEKNOLOJĐK ARAŞTIRMALAR

TEKNOLOJĐK ARAŞTIRMALAR www.teknolojkarastrmalar.com ISSN:305-63X Yapı Teknolojler Elektronk Dergs 008 () - TEKNOLOJĐK ARAŞTIRMALAR Makale Başlığın Boru Hattı Etrafındak Akıma Etks Ahmet Alper ÖNER Aksaray Ünverstes, Mühendslk

Detaylı

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KAFES SİSTEMLERİN OPTİMUM TASARIMI. YÜKSEK LİSANS TEZİ Mak. Müh.

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KAFES SİSTEMLERİN OPTİMUM TASARIMI. YÜKSEK LİSANS TEZİ Mak. Müh. İSTANBUL TEKNİK ÜNİVERSİTESİ EN BİLİMLERİ ENSTİTÜSÜ KAES SİSTEMLERİN OPTİMUM TASARIMI YÜKSEK LİSANS TEZİ Mak. Müh. Cem Celal TUTUM Anablm Dalı : MAKİNA MÜHENDİSLİĞİ Programı : KATI CİSİMLERİN MEKANİĞİ

Detaylı

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI C.Ü. İktsad ve İdar Blmler Dergs, Clt 4, Sayı 1, 3 6 Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI H. BİRCAN, Y. KARAGÖZ ve Y. KASAPOĞLU

Detaylı

TRAFİK İŞARETLERİNİN HOUGH DÖNÜŞÜMÜ VE DVM KULLANILARAK SINIFLANDIRILMASI TRAFFIC SIGN CLASSIFICATION USING HOUGH TRANSFORM AND SVM

TRAFİK İŞARETLERİNİN HOUGH DÖNÜŞÜMÜ VE DVM KULLANILARAK SINIFLANDIRILMASI TRAFFIC SIGN CLASSIFICATION USING HOUGH TRANSFORM AND SVM TRAFİK İŞARETLERİNİN HOUGH DÖNÜŞÜMÜ VE DVM KULLANILARAK SINIFLANDIRILMASI TRAFFIC SIGN CLASSIFICATION USING HOUGH TRANSFORM AND SVM Emrah ONAT SDT - Space & Defence Technologes A.Ş. emrahonat@yahoo.com

Detaylı

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu;

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; 4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x,x,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x + a x + L + a x = b n n a x + a x + L + a x = b n n a x + a

Detaylı

ASİMETRİK BİR DİELEKTRİK DİLİM DALGA KILAVUZUNUN ETKİN KIRILMA İNDİSİNİN TEORİK OLARAK HESAPLANMASI

ASİMETRİK BİR DİELEKTRİK DİLİM DALGA KILAVUZUNUN ETKİN KIRILMA İNDİSİNİN TEORİK OLARAK HESAPLANMASI Eskşehr Osmangaz Ünverstes Mühendslk Mmarlık Fakültes Dergs Clt:XXII, Sayı:, 009 Journal of Engneerng and Archtecture Faculty of Eskşehr Osmangaz Unversty, Vol: XXII, No:, 009 Makalenn Gelş Tarh : 06.0.009

Detaylı

T.C. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI

T.C. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI T.C. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI ÜÇ FAZLI ASENKRON MOTORLARIN YAPAY SİNİR AĞLARI İLE VEKTÖR ESASLI HIZ KONTROLÜ ZAFER KOCA

Detaylı

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ Prof. Dr. İbrahim UZUN Yayın No : 2415 İşletme-Ekonomi Dizisi : 147 5. Baskı Eylül 2012 - İSTANBUL ISBN 978-605 - 377-438 - 9 Copyright Bu kitabın

Detaylı

ENDÜSTRİYEL BİR ATIK SUYUN BİYOLOJİK ARITIMI VE ARITIM KİNETİĞİNİN İNCELENMESİ

ENDÜSTRİYEL BİR ATIK SUYUN BİYOLOJİK ARITIMI VE ARITIM KİNETİĞİNİN İNCELENMESİ ENDÜSTRİYEL BİR ATIK SUYUN BİYOLOJİK ARITIMI VE ARITIM KİNETİĞİNİN İNCELENMESİ Emel KOCADAYI EGE ÜNİVERSİTESİ MÜH. FAK., KİMYA MÜH. BÖLÜMÜ, 35100-BORNOVA-İZMİR ÖZET Bu projede, Afyon Alkalot Fabrkasından

Detaylı

Aerodinamik Akışların Modellenmesinde Döngülü Olan ve Olmayan 7 Yaklaşımın Uygulanması

Aerodinamik Akışların Modellenmesinde Döngülü Olan ve Olmayan 7 Yaklaşımın Uygulanması Aerodnamk Akışların Modellenmesnde Döngülü Olan ve Olmayan 7 Yaklaşımın Uygulanması Mehmet Önder Efe, Marco Debas, Peng Yan, Htay Özbay 4, Mohammad Sammy 5 Elektrk ve Elektronk Mühendslğ Bölümü TOBB Ekonom

Detaylı

NİTEL TERCİH MODELLERİ

NİTEL TERCİH MODELLERİ NİTEL TERCİH MODELLERİ 2300 gözlem sayısı le verlen değşkenler aşağıdak gbdr: calsma: çocuk çalışıyorsa 1, çalışmıyorsa 0 (bağımlı değşken) Anne_egts: Anne eğtm sevyes Baba_egts: Baba eğtm sevyes Kent:

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

PROJE PLANLAMASINDA BULANIK HEDEF PROGRAMLAMA YAKLAŞIMI. Müh. Ramadan VATANSEVER

PROJE PLANLAMASINDA BULANIK HEDEF PROGRAMLAMA YAKLAŞIMI. Müh. Ramadan VATANSEVER İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ PROJE PLANLAMASINDA BULANIK HEDEF PROGRAMLAMA YAKLAŞIMI YÜKSEK LİSANS TEZİ Müh. Ramadan VATANSEVER Anablm Dalı: İşletme Mühendslğ Programı: İşletme

Detaylı

T.C. ULUDAĞ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KONUŞMACI TANIMA YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ. Cemal HANİLÇİ

T.C. ULUDAĞ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KONUŞMACI TANIMA YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ. Cemal HANİLÇİ T.C. ULUDAĞ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KONUŞMACI TANIMA YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ Cemal HANİLÇİ YÜKSEK LİSANS TEZİ ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI BURSA-2007 T.C. ULUDAĞ ÜNİVERSİTESİ

Detaylı

Konveks Sınıf Modelleri Kullanarak Dijital İmgelerdeki Nesne Görüntülerinin Konumlarının Bulunması. Proje No: 109E279

Konveks Sınıf Modelleri Kullanarak Dijital İmgelerdeki Nesne Görüntülerinin Konumlarının Bulunması. Proje No: 109E279 Konveks Sınıf Modeller Kullanarak Djtal İmgelerdek Nesne Görüntülernn Konumlarının Bulunması Proje No: 109E279 Doç. Dr. Hakan Çevkalp Hüseyn Gündüz Musa Aydın Güvenç Usanmaz Onur Akyüz ŞUBAT 2013 ESKİŞEHİR

Detaylı

Resmi Gazetenin 29.12.2012 tarih ve 28512 sayılı ile yayınlanmıştır. TEİAŞ Türkiye Elektrik İletim Anonim Şirketi

Resmi Gazetenin 29.12.2012 tarih ve 28512 sayılı ile yayınlanmıştır. TEİAŞ Türkiye Elektrik İletim Anonim Şirketi İletm Sstem Sstem Kullanım ve Sstem İşletm Tarfelern Hesaplama ve Uygulama Yöntem Bldrm Resm Gazetenn 29.12.2012 tarh ve 28512 sayılı le yayınlanmıştır. TEİAŞ Türkye Elektrk İletm Anonm Şrket Bu Doküman

Detaylı

İNTEGRAL DENKLEM METODU (IEM) KULLANILARAK MMIC DEVRELERİN ANALİZİ

İNTEGRAL DENKLEM METODU (IEM) KULLANILARAK MMIC DEVRELERİN ANALİZİ T.C. FIRAT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İNTEGRAL DENKLEM METODU (IEM) KULLANILARAK MMIC DEVRELERİN ANALİZİ Zülfü GENÇ Tez Yönetcs Yrd. Doç. Dr. Hasan Hüseyn BALIK DOKTORA TEZİ ELEKTRİK-ELEKTRONİK

Detaylı

MATLAB GUI İLE DA MOTOR İÇİN PID DENETLEYİCİLİ ARAYÜZ TASARIMI INTERFACE DESING WITH PID CONTROLLER FOR DC MOTOR BY MATLAB GUI

MATLAB GUI İLE DA MOTOR İÇİN PID DENETLEYİCİLİ ARAYÜZ TASARIMI INTERFACE DESING WITH PID CONTROLLER FOR DC MOTOR BY MATLAB GUI İler Teknoloj Blmler Dergs Clt 2, Sayı 3, 10-18, 2013 Journal of Advanced Technology Scences Vol 2, No 3, 10-18, 2013 MATLAB GUI İLE DA MOTOR İÇİN PID DENETLEYİCİLİ ARAYÜZ TASARIMI M. Fath ÖZLÜK 1*, H.

Detaylı

A A A FEN BİLİMLERİ SINAVI FİZİK TESTİ 1 FİZ (LYS2)

A A A FEN BİLİMLERİ SINAVI FİZİK TESTİ 1 FİZ (LYS2) DİAT! SORU İTAÇIĞINIZIN TÜRÜNÜ A OARA CEVA ÂĞIDINIZA İŞARETEMEİ UNUTMAINIZ. FEN BİİMERİ SINAVI FİZİ TESTİ 1. Bu testte 30 soru vardır.. Cevaplarınızı, cevap kâğıdının Fzk Test çn ayrılan kısına şaretleynz.

Detaylı

2. STEGANOGRAFİ 1. GİRİŞ

2. STEGANOGRAFİ 1. GİRİŞ 1. GİRİŞ Bu çalışmada, steganograf sstemnn FPGA üzernde tasarımı ve gerçeklenmes sağlanmıştır. Esk Yunancada gzlenmş yazı anlamına gelen steganograf, blgnn görünürlüğünü gzleme blmne verlen smdr. Günümüzde

Detaylı

ANADOLU ÜNivERSiTESi BiliM VE TEKNOLOJi DERGiSi ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY CiltNol.:2 - Sayı/No: 2 : 413-417 (2001)

ANADOLU ÜNivERSiTESi BiliM VE TEKNOLOJi DERGiSi ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY CiltNol.:2 - Sayı/No: 2 : 413-417 (2001) ANADOLU ÜNvERSTES BlM VE TEKNOLOJ DERGS ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY CltNol.:2 - Sayı/No: 2 : 413-417 (1) TEKNK NOTrrECHNICAL NOTE ELEKTRK ARK FıRıNıNDA TERMODNAMGN KNC YASASıNıN

Detaylı

FİZİK-I LABORATUVARI

FİZİK-I LABORATUVARI TRAKYA ÜNİVERSİTESİ FEN FAKÜLTESİ FİZİK BÖLÜMÜ FİZİK-I LABORATUVARI 2011 Öğrencnn:..................... FİZİK BÖLÜMÜ LABORATUVAR KURALLARI 1) Deney başlangıç saatnden 10 dakkadan daha geç gelenler ve deney

Detaylı

TEKNOLOJİ, PİYASA REKABETİ VE REFAH

TEKNOLOJİ, PİYASA REKABETİ VE REFAH TEKNOLOJİ, PİYASA REKABETİ VE REFAH Dr Türkmen Göksel Ankara Ünverstes Syasal Blgler Fakültes Özet Bu makalede teknoloj sevyesnn pyasa rekabet ve refah sevyes üzerndek etkler matematksel br model le ncelenecektr

Detaylı

SAYISAL SİSTEMLER LABORATUVARI DENEY FÖYÜ. ITU Elektronik ve Haberleşme Mühendisliği Bölümü

SAYISAL SİSTEMLER LABORATUVARI DENEY FÖYÜ. ITU Elektronik ve Haberleşme Mühendisliği Bölümü SAYISAL SİSTEMLER LABORATUVARI DENEY FÖYÜ ITU Elektronk ve Haberleşme Mühendslğ Bölümü 2012 Grş Bu derste kapı sevyesndek uygulamalardan başlanarak kombnezonsal ve ardışıl devrelern analz ve sentezler

Detaylı

01.01.2015 tarih ve 29223 sayılı Resmi Gazetede yayımlanmıştır. TEİAŞ Türkiye Elektrik İletim Anonim Şirketi

01.01.2015 tarih ve 29223 sayılı Resmi Gazetede yayımlanmıştır. TEİAŞ Türkiye Elektrik İletim Anonim Şirketi 01.01.2015 tarh ve 29223 sayılı Resm Gazetede yayımlanmıştır. Bu Doküman Hakkında TEİAŞ Türkye Elektrk İletm Anonm Şrket İletm Sstem Sstem Kullanım ve Sstem İşletm Tarfelern Hesaplama ve Uygulama Yöntem

Detaylı

BULANIK HEDEF PROGRAMLAMA VE BİR TEKSTİL FİRMASINDA UYGULAMA ÖRNEĞİ

BULANIK HEDEF PROGRAMLAMA VE BİR TEKSTİL FİRMASINDA UYGULAMA ÖRNEĞİ Eskşehr Osmangaz Ünverstes Sosyal Blmler Dergs Clt: 6 Sayı: 2 Aralık 2005 BULANIK HEDEF PROGRAMLAMA VE BİR TEKSTİL FİRMASINDA UYGULAMA ÖRNEĞİ İrfan ERTUĞRUL Pamukkale Ünverstes İİBF, Denzl ÖZET Günümüzde

Detaylı

Fen ve Mühendislik için Fizik 1 Ders Notları: Doç.Dr. Ahmet CANSIZ

Fen ve Mühendislik için Fizik 1 Ders Notları: Doç.Dr. Ahmet CANSIZ 9. ÇİZGİSEL (OĞRUSAL) OENTU VE ÇARPIŞALAR 9. Kütle erkez Ssten kütle erkeznn yern ssten ortalaa konuu olarak düşüneblrz. y Δ Δ x x + x = + Teraz antığı le düşünürsek aşağıdak bağıntıyı yazablrz: Δ= x e

Detaylı

KAFES SİSTEMLERİN GERİLME, YER DEĞİŞTİRME, BURKULMA VE DOĞAL FREKANS KISITLARI ALTINDA OPTİMUM TASARIMI

KAFES SİSTEMLERİN GERİLME, YER DEĞİŞTİRME, BURKULMA VE DOĞAL FREKANS KISITLARI ALTINDA OPTİMUM TASARIMI KAFES SİSTEMLERİN GERİLME, YER DEĞİŞTİRME, BURKULMA VE DOĞAL FREKANS KISITLARI ALTINDA OPTİMUM TASARIMI Cem Celal TUTUM İ.T.Ü. ROTAM, Makne Yük. Müh. ÖZET: Bu çalışmada düzlemsel kafes sstemlern belrl

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR II DOĞRUSAL ISI İLETİMİ DENEYİ 1.Deneyin Adı: Doğrusal ısı iletimi deneyi..

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt:13 Sayı:2 sh.75-87 Mayıs 2012

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt:13 Sayı:2 sh.75-87 Mayıs 2012 DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Clt:13 Sayı:2 sh.75-87 Mayıs 2012 ÇELİK YAPI SİSTEMLERİNDE İKİNCİ MERTEBE ANALİZ YÖNTEMLERİNİN İNCELENMESİ (INVESTIGATION OF SECOND ORDER ANALYSIS

Detaylı

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi Pamukkale University Journal of Engineering Sciences Pamukkale Ünverstes Mühendslk Blmler Dergs, Clt 0, Sayı 3, 04, Sayfalar 85-9 Pamukkale Ünverstes Mühendslk Blmler Dergs Pamukkale Unversty Journal of Engneerng Scences PREFABRİK ENDÜSTRİ YAPIARININ ARMONİ

Detaylı

Şek. 1 () t e bağlayan diferansiyel denklemi elde ediniz. (5p) H s

Şek. 1 () t e bağlayan diferansiyel denklemi elde ediniz. (5p) H s YTÜ EEKTONİK VE HABEEŞME MÜHENDİSİĞİ BÖÜMÜ DEVEE VE SİSTEME ANABİİM DAI DEVE VE SİSTEM ANAİZİ DESİ. VİZE_ÇÖZÜMEİ Soru : Şekl dek derey göz önüne alarak k t t Şek. a) () t ı k () t e bağlayan dferansyel

Detaylı

UZAY ÇERÇEVE SİSTEMLERİN ELASTİK-PLASTİK ANALİZİ İÇİN BİR YÖNTEM

UZAY ÇERÇEVE SİSTEMLERİN ELASTİK-PLASTİK ANALİZİ İÇİN BİR YÖNTEM ECAS Uluslararası Yapı ve Deprem ühendslğ Sempozyumu, Ekm, Orta Doğu Teknk Ünverstes, Ankara, Türkye UZAY ÇERÇEVE SİSTEERİN STİK-PASTİK ANAİZİ İÇİN BİR YÖNTE Erdem Damcı, Turgay Çoşgun, Tuncer Çelk, Namık

Detaylı