Bağımsız Model Blok Dengeleme için Model Oluşturma ve Ön Sayısal Bilgi İşlemleri

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Bağımsız Model Blok Dengeleme için Model Oluşturma ve Ön Sayısal Bilgi İşlemleri"

Transkript

1 Bağımsız Model Blok Dengeleme çn Model Oluşturma ve Ön Sayısal Blg İşlemler Emnnur AYHAN* 1. Grş Fotogrametrk nreng çeştl ölçütlere göre sınıflandırılablr. Bu ölçütler dengelemede kullanılan brm, ver toplamada kullanılan yöntem ve araçlar olablr. Son yıllardak hesaplama araçlarındak gelşmelere paralel olarak analtk yöntemlere lg gttkçe artmaktadır. Analtk yöntemlern tümünde grş verler mono veya stereo komparatör ölçmeler yardımıyla elde edlen resm koordnatlarıdır. Elde edlen resm koordnatları blnen tüm hatalardan arındırıldıktan sonra fotogrametrk nrengde kullanılablr. Bağımsız modellerle blok dengeleme çn, tek resm ölçülernden stereomodeln oluşturulması ve lgl noktaların model koordnatlarının elde edlmesnde zlenen adımlar şunlardır.. Hazırlık çalışmaları. Ölçme şlemler. Resm koordnatlarının elde edlş. Resm koordnatlarına düzeltmelern getrlş. Sayısal karşılıklı yöneltme. Model koordnat hesabı 2. ANALİTİK YÖNTEMLERLE MODEL OLUŞTURMA 2.1. Hazırlık Çalışmaları İster analtk, ster analog yöntemde olsun fotogrametrk nrengnn gerçek anlamda gerçekleştrleblmes çn modeller, kolonlar arasındak bağlantının çok y br şeklde sağlanmış ve resmler üzernde yer alan yer kontrol noktalarının kesn olarak belrlenmş olması gerekr. Bu şlemler çeren hazırlık çalışmaları, çalışmaların en öneml br kısmını kapsamaktadır. 90

2 2.2. Ölçme İşlemler Bağımsız model blok dengeleme amacıyla resmler üzernden gerekl blglern alınması çeştl aletlerle yapılablr. Bu çalışmada fotogrametrk ölçme alet olarak monokomparator kullanılmıştır. Komparatordan blgsayara aktarılan blglern kullanıma hazırlanması çn brtakım şlemlerden geçrlmes gerekr. Elde edlen kayıtlar proğramlar yardımıyla komparator koordnatları olarak dğer şlemlere hazır duruma getrleblr Resm Koordnatlarının Elde Edlş Resm koordnatlarının elde edleblmes çn rasgele konumda bulunan komparator dk koordnat sstem le kalbrasayon raporundan alınan resm koordnat sstem arasında br lşk kurulablr. Bunun çn 6 fotoğrafın bulunduğu blokda çerceve şaretler kullanılarak benzerlk dönüşümü ve afn dönüşüm uygulanmıştır. Her k dönüşüm sonucunda ortak noktalardak artık hataları gösteren durum Tablo 1 de verlmştr /7/. Tablo 1 : Afn ve Benzerlk Dönüşümü Sonuçları Resm Afn Dönüşüm (m) Benzerlk Dönüşümü (m) No vx vy Konum vx vy Konum Ort.Hatası Ort.Hatası

3 2.4. Resm Koordnatlarına Getrlecek Düzeltmeler. Başlangıcın Düzeltlmş Asal Noktaya Alınması ve Flm Deformasyonu çn Düzeltme. Mercek Dstorsyonu çn Düzeltme. Yer Küresellğ çn Düzeltme. Atmosferk Kırılma çn Düzeltme Başlangıcın Düzeltlmş Asal Noktaya Alınması ve Flm Deformasyonu Emlsyon ve emlsyon taşıyıcı flm sıcaklık, nem gb çevre şartları, eskme ve kmyasal şlemler gb olayların fonksyonu olarak çok yönlü deformasyonlara uğrarlar. Komparator koordnatlarından resm koordnatlarına dönüşüm sırasında flm deformasyonu da gderlmş olur Mercek Dstorsyonu Fotogrametrk kameralardak mercekler brden fazla mercekten oluşan sstemlerdr. Bu nedenle görüntü merkez zdüşüm kuramının belrledğ noktadan farklı br noktada oluşur. Mercek dstorsyonu radyal (çapsal) ve teğetsel olmak üzere k kısma ayrılablr. Odak uzaklığının br fonksyonu olarak radyal mercek dstorsyonu, r r c tan D (1) formülü le fade edleblr. Burada, : Br ışının kamera eksen le yaptığı açı, c : Odak uzaklığı, r : Asal nokta le görüntü noktası arasındak uzaklıktır. Radyal mercek dstorsyonu ayrıca sürekl br fonksyon yardımıyla da, r D a0r + a1r 3 a2r 5 a3r 7 a4r 9... (2) şeklnde gösterleblr. Burada, a : Polnomun blnmeyen katsayıları, r : Çapsal mesafedek smetrk çapsal dstorsyondur. 92

4 Radyal mercek dstorsyonu ve onların bleşenler arasındak lşk, r x r y x y (3) şeklnde fade edleblr. Teğetsel dstorsyon, mercek bleşenlernn kusurlu merkezlendrlmes ve bleşk mercek ürünlerndek dğer kusurlardan dolayı ortaya çıkar. Teğetsel dstorsyonun bleşenler çn, x {P ( r 2x ) 2P xy}{1+ P r P r..} y { 2P xy + P ( r 2y )}{1+ P r P r..} 1 2 (4) formüller verleblr /3/. Burada, P 1, P 2, P 3, P 4 : Blnmeyen katsayılar, x, y : Br noktanın görüntü koordnatları r : Asal noktadan olan uzaklıktır. Düzeltlmş resm koordnatları, r x = x x = x1- r r y = y y = y1- r D D (5) formülleryle bulunablr Atmosferk Kırılma (Atmospherc Refracton) Atmosferk kırılma, ışın yolu boyunca olan bütün noktalardak havanın kırılma oranının br fonksyonudur. Kırılma oranı atmosfern bleşmne, basıncına ve sıcaklığına bağlıdır. Yarıçap yönündek atmosferk kırılmanın etks, 93

5 r R K r + r c 3 2 (6) fades le hesaplanablr /5/. Bu formüldek K, K H 2410 H 2410 h h H h h H * 10 6 (7) değerne eşttr. Burada, H (km) : Denzden tbaren uçuş yükseklğ h (km) : Ortalama araz yükseklğdr. Düzeltlmş resm koordnatları, r x = x1- r r y = y1- r R R (8) şeklnde yazılablr Yer Küresellğ (Earth Curvature) Küçük ölçekl resmlerden oluşan kolonlarda çok büyük br küresellk hatasından korunmak çn analtk çalışmalarda yer küresellğ düzeltmeler getrlr. Düzeltmeler başlıbaşına resmler veya stereo modellern (kolonlar veya bloklar) herbrne uygulanablr. Analog çalışmalarda kolonlar veya bloklarla, sayısal çalışmalarda se resmlerle çalışmak daha uygundur. Jeodezk koordnatların br referans düzlemne ndrgenmş şekl alındığından düzeltme poztf yönlüdür. Yer küresellğ, r K 3 3 h s cs (9) 2 2 2Rc 2Rh 94

6 formülü le fade edlr /3/. Burada, h: Araz nadr noktasından tbaren uçuş yükseklğ, R: Yer yarıcapı, s: Çapsal uzaklık, S: Yer küres üzernde nadr noktası le araz noktası arasındak uzaklık, c: odak uzaklığıdır. Denzden tbaren uçuş yükseklğ km Ortalama Araz Yükseklğ 1.2 km Yer Yarıçapı km Uçuş Yükseklğ km K Sabt 32.59*10 6 Değerler kullanılarak Tablo 2 sonuçları elde edlmştr /7/. Tablo 2 : Belrl uzaklıklar çn kırılma ve küresellk çn bulunan değerler Kırılma Küresellk Toplam r (mm) r R (m) r K (m) (m)

7 2.5. Sayısal Karşılıklı Yöneltme z L. H O - c y P x P R. H z O - c y x Z Y P Kesşen Işınlar Referans Sstem X Şekl 1 :Eşdüzlemllk (Coplanarty) Koşulu Resm koordnatlarına gerekl düzeltmeler getrldkten sonra model koordnat sstemne geçeblmek çn karşılıklı yöneltme yapılır. Analog karşılıklı yöneltmeye benzer şeklde sayısal şlemlerde de modelde y dağılmış en az beş noktaya htyaç vardır ve yapılması gereken bu beş noktadan çıkan ışınların kestrlmesdr/8/. Bu şlemle lgl olan eşdüzlemllk (coplanarty condton) koşulu, brden fazla fotoğrafta yer alan aynı noktanın csm noktasından herbr görüntüye gden görüntü ışınlarının br düzlem çersnde yer aldığı görüşüne dayanır /2/. Genel eşdüzlemllk (coplanarty) koşulu, [ x y - c ] R 0 bz - by - bz 0 bx by - bx 0 R 1 T 2 x y -c 0 (10) şeklnde yazılablr. Sayısal karşılıklı yöneltmede bx öneml değldr. bx n etks yöneltme elemanlarının bulunması sırasında yok edleblr. Bu şlem eşdüzlemllk eştlğndek temel matrs elemanlarının bx e bölünmesyle gerçekleştrlr. 96

8 [ x y - c ] R Burada; y = by bx z = bz bx 0 z - y - z 0 1 y R 1 T 2 x y -c 0 (11) le fade edlr /1/, /4/. Yöneltme elemanları olarak ya,,, y, z elemanları ya da 1, 1, 2, 2, 2 elemanları kullanılarak yöneltme şlemler yürütülür Sayısal Karşılıklı Yöneltmede Genel İşlemler * K 1, K 2, K 3, K 4 ve K5 le gösterleblen beş karşılıklı yöneltme elemanı seçlr. * K 1, K 2, K 3, K 4, K5 yöneltme blnmeyenlernn yaklaşık değerlern, K, K, K, K ve K düzeltmeler gösterdğ kabul edlr * Blnmeyenler çn çoğunlukla lk yaklaşk değerler K 1 K 2 K 3 K 4 K5 0 olarak alınır. (R1 I ) ; R 1; 1, 1, 1 yaklaşık değerlernden oluşturulmuş ortogonal br matrstr. * Modeldek her nokta çn co-planarty eksklğ, L c(y y ) formülü le hesaplanır. * Modeldek her nokta çn yöneltme blnmeyenlernn katsayılarından oluşan A matrs, a K a K + a K + a K a K L şeklnde oluşturulur. Kullanılmış elemanlara ve eştlğn doğrusallaştırma türüne bağlı olarak a j katsayıları farklı olur. 97

9 * Karşılıklı yöneltme çn en az beş nokta gerekldr. Beşten fazla nokta çn dengeleme yapılır. a a a a a a a a a a a a a a a K1 K2 K3 K4 K 5 = - L - L - L - L - L A K -L Dengeleme söz konusu olduğunda normal denklemler kurulur. T T A A K = -A L * Yöneltme blnmeyenlernn elde edlmes çn normal denklemler çözülür. T -1 T T -1 T ( A A) A A K = ( A A) A L T -1 T K = ( A A) A L * Düzeltlmş yöneltme elemanları hesaplanır. K ( yen) = K ( esk) + K 1 1 K ( yen) = K ( esk) + K K ( yen) = K ( esk) + K * En uygun sonuç alınana kadar terasyona devam edlr. * Yöneltme elemanlarının kesn değerler hesaplanır. * Her br model çn standart sapma ve y paralaksı hesaplanır. Sayısal karşılıklı yöneltmede yöneltme elemanlarına getrlecek düzeltmeler radyandan daha küçük se terasyon sona erdrlr. Bu yöntemde br dğer ölçüt de terasyon sayısıdır. Yaklaşık düşey resmlerde 3 veya 4 terasyon sonucunda stenlen sonuç elde edlr. 98

10 Aletlerdek deneysel karşılıklı yöneltmede terasyon y paralaksı 10m den daha küçük olduğu zaman durdurulur Model Koordnatlarının Elde Edlmes (Genel çerçevesyle) Z, Z Y, Y Z Y O X bx O bz by X X Z P R 1 R 2 P ( Zp - bz ) Xp Yp Xp - bx P Şekl 2: Model Koordnat Sstem Model koordnat sstemnn başlangıcı sol zdüşüm merkez alınması durumunda model koordnatlarının hesaplanmasındak adımlar; * Uygun bx değer seçlr ve by = bx y bz = bx z baz değerler hesaplanır. 99

11 * Merkezler aynı olan ( X, Y, Z ) le (x, y, c) ve ( X, Y, Z ) le (x, y, c) dk koordnat sstemlernde br sstemde blnen koordnatların dğernde fades bu koordnatların brer ortogonal dönüşüm matrsyle çarpılması suretyle elde edlr. R 1, R2 le dönüklükler gderlmş koordnatlar hesaplanır. X Y R Z x y -c 1 ve X Y R Z 2 x y c Genellkle R I, R de son terasyonla elde edlen yöneltme elemanlarının 1 2 fonksyonu olan dönüklük matrsdr. * Her nokta çn ölçek faktörler hesaplanır. t bxz bzx ; t bxz bzx (X Z X Z ) (X Z X Z ) * Model koordnatları X t X ; Z t Z Y = t Y ; Y = t Y + by ; Y Y Y 2 formüller le y paralaksı, y = Y Y şeklnde hesaplanablr. 3. SONUÇ Komparator koordnatlarından resm koordnatlarına geçşte dört çerceve noktası kullanılarak projektf dönüşüm uygulanması durumunda artık hatalar sıfır olur. Bu durum kaba hataların kontrol altına alınamaması demektr. Kaba hataların kontrol altına alınmasından dolayı dengeleme terch edlr. Çalışmada elde edlen sonuçlardan komparator ve resm koordnat sstemler arasındak lşk en y afn dönüşüm le sağlanablr /7/. 100

12 : Harta ve Kadastro Mühendslğ Yapılan çalışmada elde edlen sonuçlardan resm kenarlarına zorunlu kalmadıkça gdlmemes gerekr. Çünkü bu kısımlarda görüntü bozuk, yer küresellğ söz konusudur. Kısaca bütün resm hataları resm kenarlarına gdldkçe artar. Eşdüzlemllk (coplanarty) eştlğ le sayısal karşılıklı yöneltme şlemlernde zdüşüm merkezne ndrgenmş resm koordnatlarının kullanılması durumunda, normal denklem katsayılarının büyüklüğü nsbeten küçük olur ve bundan dolayı büyük kapanma hatalarından kaçınılmış olur. Ayrıca bazı katsayıların hesaplanması da bastleştrleblr. İlgl resm çftlernn analtk karşılıklı yöneltmes sonucunda oluşan artık paralaks hataları resm kaltes y olan resmlerde 7-8 m, daha kötü kaltel resmlerde se 13-14m cvarında elde edlmştr /7/. Çalışmalarda kullanılacak resmlern kaltes de öneml etkenlerden brdr. 4. KAYNAKLAR 1. Amer, F. : Photogrammetrc Trangulaton Part II Dgtal Orentaton of a Stereomodel and Dgtal Strp Formaton, ITC-Lecture Notes, Ayhan, E. : Dönel Yüzeylern Yakın Resm Fotogrametrs Yöntemleryle Belrlenmes, Doktora Tez, KTÜ, Trabzon, Gosh, S.K.. Analytcal Photogrammetry, Pergamon Press Inc. N.Y., Koyuncu, DD. : Büyük Ölçekl Fotogrametrk Çzgsel Hartaların Güncelleştrlmesnde Fotogrametrk Sayısal Yöntemler, Doktora Tez, KTÜ, Trabzon, Mofft, H. F. : Photogrammetry, Harper and Rovv, Publshers, Thrd Edton, Mkal, E.M. New York, Ölçücüoğlu, N. : Bağımsız Modellerle Blok Dengeleme, Harta Dergs, Sayı 91, Topsakal, E. : Bağımsız Model Blok Dengeleme çn Model Oluşturma ve Ön Sayısal Blg İşlemler, Master Tez, KTÜ, Trabzon, Yaşayan, A. : Türkyede Hava Tryangulasyonu Analz ve Teklfler, Doktora Tez, İTÜ İnş. Fak., Istanbul,

Bağımsız Model Blok Dengeleme için Model Oluşturma ve Ön Sayısal Bilgi İşlemleri

Bağımsız Model Blok Dengeleme için Model Oluşturma ve Ön Sayısal Bilgi İşlemleri Bağımsız Model Blok Dengeleme için Model Oluşturma ve Ön Sayısal Bilgi İşlemleri Eminnur AYHAN* 1. Giriş Fotogrametrik nirengi çeşitli ölçütlere göre sınıflandırılabilir. Bu ölçütler dengelemede kullanılan

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

VEKTÖRLER VE VEKTÖREL IŞLEMLER

VEKTÖRLER VE VEKTÖREL IŞLEMLER VEKTÖRLER VE VEKTÖREL IŞLEMLER 1 2.1 Tanımlar Skaler büyüklük: Sadece şddet bulunan büyüklükler (örn: uzunluk, zaman, kütle, hacm, enerj, yoğunluk) Br harf le sembolze edleblr. (örn: kütle: m) Şddet :

Detaylı

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ

4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Ünsal M.; Varol, A.: Soğutma Kulelernn Boyutlandırılması İçn Br Kuramsal 8 Mayıs 990, S: 8-85, Adana 4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Asaf Varol Fırat Ünverstes, Teknk Eğtm Fakültes,

Detaylı

Bulanık Mantık ile Hesaplanan Geoid Yüksekliğine Nokta Yüksekliklerinin Etkisi

Bulanık Mantık ile Hesaplanan Geoid Yüksekliğine Nokta Yüksekliklerinin Etkisi Harta Teknolojler Elektronk Dergs Clt: 5, No: 1, 2013 (61-67) Electronc Journal of Map Technologes Vol: 5, No: 1, 2013 (61-67) TEKNOLOJİK ARAŞTIRMALAR www.teknolojkarastrmalar.com e-issn: 1309-3983 Makale

Detaylı

2.a: (Zorunlu Değil):

2.a: (Zorunlu Değil): Uygulaa 5-7:.7 6 7 Baar Yarıyılı Jeodezk Ağlar e Uygulaaları UYGULAMA FÖYÜ,..7.a: (Zorunlu Değl: Yanına arılaayan br kule yükeklğnn trgonoetrk yükeklk belrlee yönteyle eaplanaı UYGULAMA.b : (Zorunlu C3

Detaylı

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre

bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak

Detaylı

ROBİNSON PROJEKSİYONU

ROBİNSON PROJEKSİYONU ROBİNSON PROJEKSİYONU Cengzhan İPBÜKER ÖZET Tüm yerkürey kapsayan dünya hartalarının yapımı çn, kartografk lteratürde özel br öneme sahp olan Robnson projeksyonu dk koordnatlarının hesabı brçok araştırmacı

Detaylı

KARMAŞIK SAYILAR. Derse giriş için tıklayın...

KARMAŞIK SAYILAR. Derse giriş için tıklayın... KARMAŞIK SAYILAR Derse grş çn tıklayın A Tanım B nn Kuvvetler C İk Karmaşık Sayının Eştlğ D Br Karmaşık Sayının Eşlenğ E Karmaşık Sayılarda Dört İşlem Toplama - Çıkarma Çarpma Bölme F Karmaşık Dülem ve

Detaylı

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının

X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının 1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell

Detaylı

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE

YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE BAÜ Fen Bl. Enst. Dergs (6).8. YAYII YÜK İE YÜKENİŞ YAPI KİRİŞERİNDE GÖÇE YÜKÜ HESABI Perhan (Karakulak) EFE Balıkesr Ünverstes ühendslk marlık Fakültes İnşaat üh. Bölümü Balıkesr, TÜRKİYE ÖZET Yapılar

Detaylı

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007

ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007 Yrd. Doç. Dr. Atlla EVİN Afyon Kocatepe Ünverstes 007 ENERJİ Maddenn fzksel ve kmyasal hal değşm m le brlkte dama enerj değşm m de söz s z konusudur. Enerj değşmler mler lke olarak Termodnamğn Brnc Yasasına

Detaylı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı SRY ÜNİVERSİESİ Djtal ontrol Laboratuvar Deney Föyü Deney No: 2 Sıvı Sevye ontrol Deney 2.. Deneyn macı Bu deneyn amacı, doğrusal olmayan sıvı sevye sstemnn belrlenen br çalışma noktası cvarında doğrusallaştırılmış

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Blgsayarla Görüye Grş Ders 8 Görüntü Eşleme Alp Ertürk alp.erturk@kocael.edu.tr Panorama Oluşturma Görüntüler eşlememz / çakıştırmamız gerekmektedr Panorama Oluşturma İk görüntüden özntelkler çıkar Panorama

Detaylı

Deprem Tepkisinin Sayısal Metotlar ile Değerlendirilmesi (Newmark-Beta Metodu) Deprem Mühendisliğine Giriş Dersi Doç. Dr.

Deprem Tepkisinin Sayısal Metotlar ile Değerlendirilmesi (Newmark-Beta Metodu) Deprem Mühendisliğine Giriş Dersi Doç. Dr. Deprem Tepksnn Sayısal Metotlar le Değerlendrlmes (Newmark-Beta Metodu) Sunum Anahat Grş Sayısal Metotlar Motvasyon Tahrk Fonksyonunun Parçalı Lneer Interpolasyonu (Pecewse Lnear Interpolaton of Exctaton

Detaylı

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3

( ) 3.1 Özet ve Motivasyon. v = G v v Operasyonel Amplifikatör (Op-Amp) Deneyin Amacı. deney 3 Yıldız Teknk Ünverstes Elektrk Mühendslğ Bölümü Deneyn Amacı İşlemsel kuvvetlendrcnn çalışma prensbnn anlaşılması le çeştl OP AMP devrelernn uygulanması ve ncelenmes. Özet ve Motvasyon.. Operasyonel Amplfkatör

Detaylı

ÖZET Yüksek Lisans Tezi. Kinematik Modelde Kalman Filtreleme Yöntemi ile Deformasyon Analizi. Serkan DOĞANALP. Selçuk Üniversitesi

ÖZET Yüksek Lisans Tezi. Kinematik Modelde Kalman Filtreleme Yöntemi ile Deformasyon Analizi. Serkan DOĞANALP. Selçuk Üniversitesi ÖZE Yüksek Lsans ez Knematk Modelde Kalman Fltreleme Yöntem le Deformasyon Analz Serkan DOĞANALP Selçuk Ünverstes Fen Blmler Ensttüsü Jeodez ve Fotogrametr Anablm Dalı Danışman: Yrd. Doç. Dr. Bayram URGU

Detaylı

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ BÖLÜM 6 ALTERNATİF AKIM DEVRE ÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ 6. ÇEVRE AKIMLAR ÖNTEMİ 6. SÜPERPOZİSON TEOREMİ 6. DÜĞÜM GERİLİMLER ÖNTEMİ 6.4 THEVENİN TEOREMİ 6.5 NORTON TEOREMİ Tpak GİRİŞ Alternatf akımın

Detaylı

TEKNOLOJĐK ARAŞTIRMALAR

TEKNOLOJĐK ARAŞTIRMALAR www.teknolojkarastrmalar.com ISSN:134-4141 Makne Teknolojler Elektronk Dergs 28 (1) 61-68 TEKNOLOJĐK ARAŞTIRMALAR Kısa Makale Tabakalı Br Dskn Termal Gerlme Analz Hasan ÇALLIOĞLU 1, Şükrü KARAKAYA 2 1

Detaylı

DEFORMASYONLARIN MODELLENMESİ. Levent TAŞÇI 1 ltasci@firat.edu.tr

DEFORMASYONLARIN MODELLENMESİ. Levent TAŞÇI 1 ltasci@firat.edu.tr DFORMSYOLRI MODLLMSİ Levent TŞÇI 1 ltasc@frat.edu.tr Öz: Deformasyonların belrleneblmes çn farklı çalışma grupları tarafından ortaya konulmuş farklı yaklaşımlar söz konusudur. Deformasyon analznde, bloklar

Detaylı

Çok Parçalı Basınç Çubukları

Çok Parçalı Basınç Çubukları Çok Parçalı Basınç Çubukları Çok parçalı basınç çubukları genel olarak k gruba arılır. Bunlar; a) Sürekl brleşk parçalardan oluşan çok parçalı basınç çubukları b) Parçaları arasında aralık bulunan çok

Detaylı

X- IŞIN FOTOGRAMETRİSİNİN ORTOPEDİDE ÜÇ BOYUTLU KULLANIMI İÇİN MATEMATİK MODELLER

X- IŞIN FOTOGRAMETRİSİNİN ORTOPEDİDE ÜÇ BOYUTLU KULLANIMI İÇİN MATEMATİK MODELLER AMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ YIL AMUKKALE UNIVERSITY ENGINEERING COLLEGE CİLT MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ SAYI JOURNAL OF ENGINEERING SCIENCES SAYFA : 998 : 4 : - : 685-69

Detaylı

ÇOK BĐLEŞENLĐ DAMITMA KOLONU TASARIMI PROF. DR. SÜLEYMAN KARACAN

ÇOK BĐLEŞENLĐ DAMITMA KOLONU TASARIMI PROF. DR. SÜLEYMAN KARACAN ÇOK BĐLEŞENLĐ DAMITMA KOLONU TASARIMI PROF. DR. SÜLEYMAN KARACAN 1 DAMITMA KOLONU Kmya ve buna bağlı endüstrlerde en çok kullanılan ayırma proses dstlasyondur. Uygulama alanı antk çağda yapılan alkol rektfkasyonundan

Detaylı

3. Parçaları Arasında Aralık Bulunan Çok Parçalı Basınç Çubukları

3. Parçaları Arasında Aralık Bulunan Çok Parçalı Basınç Çubukları 3. Parçaları Arasında Aralık Bulunan Çok Parçalı Basınç Çubukları Basınç çubukları brden fazla profl kullanılarak, bu profller arasında plan düzlemnde bell br mesafe bulunacak şeklde düzenleneblr. Bu teşklde,

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8 BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 8 FARKLI YÜZEY ÖZELLİKLERİNE SAHİP PLAKALARIN ISIL IŞINIM YAYMA ORANLARININ HESAPLANMASI BAŞKENT ÜNİVERSİTESİ

Detaylı

POLİNOMLARLA VE BULANIK MANTIK İLKELERİNE GÖRE GEOİT BELİRLEMENİN PRESİZYONA ETKİSİ

POLİNOMLARLA VE BULANIK MANTIK İLKELERİNE GÖRE GEOİT BELİRLEMENİN PRESİZYONA ETKİSİ TMMOB Harta ve Kadastro Mühendsler Odası 0. Türkye Harta Blmsel ve Teknk Kurultayı 8 Mart - Nsan 00, Ankara POLİNOMLARLA VE BULANIK MANTIK İLKELERİNE GÖRE GEOİT BELİRLEMENİN PRESİZONA ETKİSİ M. ılmaz,

Detaylı

MAK 744 KÜTLE TRANSFERİ

MAK 744 KÜTLE TRANSFERİ ZKÜ Fen Blmler Ensttüsü Makne Mühendslğ Anablm alı MAK 744 KÜTLE TRANSFERİ TERMOİNAMİK ve TRANSPORT BÜYÜKLÜKLERİNİN HESAPLANMASI İÇİN FORMÜLLER VE TABLOLAR Mustafa EYRİBOYUN ZONGULAK - 007 1. TERMOİNAMİK

Detaylı

HİPERSTATİK SİSTEMLER

HİPERSTATİK SİSTEMLER HİPERSTATİK SİSTELER Tanım: Bütün kest zorlarını ve bunlara bağlı olarak şekl değştrmelern ve yer değştrmelern hesabı çn denge denklemlernn yeterl olmadığı sstemlere Hperstatk Sstemler denr. Hperstatk

Detaylı

GPS VERĐLERĐNĐN ANALĐZĐ VE DEĞERLENDĐRĐLMESĐ

GPS VERĐLERĐNĐN ANALĐZĐ VE DEĞERLENDĐRĐLMESĐ GPS Verlernn Analz ve Değerlendrlmes 1 / 28 KOÜ-FBE JEODEZĐ VE JEOĐNFORMASYON ANABĐLĐM DALI GPS Verlernn Analz ve Değerlendrlmes 2 / 28 UYGULAMA Yaklaşık koordnatları ve ağ ölçme planı Şekl-1 de verlen

Detaylı

BOYUT ÖLÇÜMÜ VE ANALİZİ

BOYUT ÖLÇÜMÜ VE ANALİZİ BOYUT ÖLÇÜMÜ VE ANALİZİ.AMAÇ Br csmn uzunluğu, sıcaklığı, ağırlığı veya reng gb çeştl fzksel özellklernn belrlenme şlemler ancak ölçme teknğ le mümkündür. Br ürünün stenlen özellklere sahp olup olmadığı

Detaylı

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ

İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Türkye İnşaat Mühendslğ, XVII. Teknk Kongre, İstanbul, 2004 İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Nur MERZİ 1, Metn NOHUTCU, Evren YILDIZ 1 Orta Doğu Teknk Ünverstes, İnşaat Mühendslğ Bölümü, 06531 Ankara

Detaylı

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI  Ki-Kare Analizleri Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.

Detaylı

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır.

UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır. UYUM ĐYĐLĐĞĐ TESTĐ Posson: H o: Ver Posson dağılıma sahp br ktleden gelmektedr. H a : Ver Posson dağılıma sahp br ktleden gelmemektedr. Böyle br hpotez test edeblmek çn, önce Posson dağılım parametres

Detaylı

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI

DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.

Detaylı

1. KEYNESÇİ PARA TALEBİ TEORİSİ

1. KEYNESÇİ PARA TALEBİ TEORİSİ DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...

Detaylı

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir.

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir. Bölüm 2 Matrsler aım 2.1 F br csm, m, brer doğal sayı olsu. a F ( 1,.., m; j 1,..., ) olmak üzere, a11... a1 fadese m satır sütuda oluşa (veya m tpde) br F matrs der. am 1... a m Böyle br matrs daha sade

Detaylı

ZKÜ Mühendislik Fakültesi - Makine Mühendisliği Bölümü ISI VE TERMODİNAMİK LABORATUVARI Sudan Suya Türbülanslı Akış Isı Değiştirgeci Deney Föyü

ZKÜ Mühendislik Fakültesi - Makine Mühendisliği Bölümü ISI VE TERMODİNAMİK LABORATUVARI Sudan Suya Türbülanslı Akış Isı Değiştirgeci Deney Föyü ZKÜ Müendslk Fakültes - Makne Müendslğ Bölümü Sudan Suya Türbülanslı Akış Isı Değştrge Deney Föyü Şekl. Sudan suya türbülanslı akış ısı değştrge (H950 Deneyn adı : Boru çnde sudan suya türbülanslı akışta

Detaylı

a IIR süzgeç katsayıları ve N ( M) de = s 1 (3) 3. GÜRÜLTÜ GİDERİMİ UYGULAMASI

a IIR süzgeç katsayıları ve N ( M) de = s 1 (3) 3. GÜRÜLTÜ GİDERİMİ UYGULAMASI Fırat Ünverstes-Elazığ MİTRAL KAPAK İŞARETİ ÜZERİNDEKİ ANATOMİK VE ELEKTRONİK GÜRÜLTÜLERİN ABC ALGORİTMASI İLE TASARLANAN IIR SÜZGEÇLERLE SÜZÜLMESİ N. Karaboğa 1, E. Uzunhsarcıklı, F.Latfoğlu 3, T. Koza

Detaylı

MADEN DEĞERLENDİRME. Ders Notları

MADEN DEĞERLENDİRME. Ders Notları MADEN DEĞERLENDİRME Ders Notları Doç.Dr. Kaan ERARSLAN 008 ĐÇĐNDEKĐLER. GĐRĐŞ... 3. REZERV SINIFLARI VE HESAPLAMALARI... 4. Görünür rezervler...4.. Muhtemel Rezervler...6.3 Mümkün Rezervler...7.4 Belrl

Detaylı

Metin Madenciliği ile Soru Cevaplama Sistemi

Metin Madenciliği ile Soru Cevaplama Sistemi Metn Madenclğ le Soru Cevaplama Sstem Sevnç İlhan 1, Nevchan Duru 2, Şenol Karagöz 3, Merve Sağır 4 1 Mühendslk Fakültes Blgsayar Mühendslğ Bölümü Kocael Ünverstes slhan@kocael.edu.tr, nduru@kocael.edu.tr,

Detaylı

Türk Dilinin Biçimbilim Yapısından Yararlanarak Türkçe Metinlerin Farklı İmgelere Ayrılarak Kodlanması ve Sıkıştırılması

Türk Dilinin Biçimbilim Yapısından Yararlanarak Türkçe Metinlerin Farklı İmgelere Ayrılarak Kodlanması ve Sıkıştırılması Türk Dlnn Bçmblm Yapısından Yararlanarak Türkçe Metnlern Farklı İmgelere Ayrılarak Kodlanması ve Sıkıştırılması Banu DİRİ, M.Yahya KARSLIGİL Yıldız Teknk Ünverstes Elektrk Elektronk Fakültes - Blgsayar

Detaylı

QKUIAN. SAĞLIK BAKANLIĞI_ KAMU HASTANELERİ KURUMU Trabzon Ili Kamu Hastaneleri Birliği Genel Sekreterliği Kanuni Eğitim ve Araştırma Hastanesi

QKUIAN. SAĞLIK BAKANLIĞI_ KAMU HASTANELERİ KURUMU Trabzon Ili Kamu Hastaneleri Birliği Genel Sekreterliği Kanuni Eğitim ve Araştırma Hastanesi V tsttşfaktör T.C. SAĞLIK BAKANLIĞI KAMU HASTANELERİ KURUMU Trabzon Il Kamu Hastaneler Brlğ Genel Sekreterlğ Kanun Eğtm ve Araştırma Hastanes Sayı ı 23618724/?ı C.. Y** 08/10/2015 Konu : Yaklaşık Malyet

Detaylı

Göktürk-2 Stereoskopik Görüntülerinden Sayısal Yüzey Modeli Üretimi. Digital Surface Model Generation from Göktürk-2 Stereoscopic Images

Göktürk-2 Stereoskopik Görüntülerinden Sayısal Yüzey Modeli Üretimi. Digital Surface Model Generation from Göktürk-2 Stereoscopic Images Afyon Kocatepe Ünverstes Fen ve Mühendslk Blmler Dergs Göktürk-2 Stereoskopk Görüntülernden Sayısal Yüzey Model Üretm, Ok Afyon Kocatepe Unversty Journal of Scence and Engneerng AKÜ FEMÜBİD 17 (2017) Özel

Detaylı

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler 6.4.7 NÜMERİK ANALİZ Yrd. Doç. Dr. Hatce ÇITAKOĞLU 6 Müendslk sstemlernn analznde ve ugulamalı dsplnlerde türev çeren dferansel denklemlern analtk çözümü büük öneme saptr. Sınır değer ve/vea başlangıç

Detaylı

AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ

AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ III. ULUSAL HAVACILIK VE UZAY KONFERANSI 16-18 Eylül 2010, ANADOLU ÜNİVERSİTESİ, Eskşehr AĞIR BİR NAKLİYE UÇAĞINA AİT BİR YAPISAL BİLEŞENİN TASARIMI VE ANALİZİ Davut ÇIKRIKCI * Yavuz YAMAN Murat SORGUÇ

Detaylı

Rasgele Değişken Üretme Teknikleri

Rasgele Değişken Üretme Teknikleri Rasgele Değşken Üretme Teknkler Amaç Smülasyon modelnn grdlern oluşturacak örneklern üretlmes Yaygın olarak kullanılan ayrık veya sürekl dağılımların örneklenmes sürecn anlamak Yaygın olarak kullanılan

Detaylı

Calculating the Index of Refraction of Air

Calculating the Index of Refraction of Air Ankara Unversty Faculty o Engneerng Optcs Lab IV Sprng 2009 Calculatng the Index o Reracton o Ar Lab Group: 1 Teoman Soygül Snan Tarakçı Seval Cbcel Muhammed Karakaya March 3, 2009 Havanın Kırılma Đndsnn

Detaylı

Direct Decomposition of A Finitely-Generated Module Over a Principal Ideal Domain *

Direct Decomposition of A Finitely-Generated Module Over a Principal Ideal Domain * BİR ESAS İDEAL BÖLGESİ ÜZERİNDEKİ SONLU DOĞURULMUŞ BİR MODÜLÜN DİREK PARÇALANIŞI * Drec Decompoon of A Fnely-Generaed Module Over a Prncpal Ideal Doman * Zeynep YAPTI Fen Blmler Enüü Maemak Anablm Dalı

Detaylı

Koordinat Dönüşümünde Deney Tasarımı Yaklaşımı

Koordinat Dönüşümünde Deney Tasarımı Yaklaşımı Harta Teknolojler Elektronk Dergs Clt: 5, No: 1, 213 (37-46) Electronc Journal of Map Technologes Vol: 5, No: 1, 213 (37-46) TEKNOLOJİK ARAŞTIRMALAR www.teknolojkarastrmalar.com e-issn: 139-3983 Makale

Detaylı

04.10.2012 SU İHTİYAÇLARININ BELİRLENMESİ. Suİhtiyacı. Proje Süresi. Birim Su Sarfiyatı. Proje Süresi Sonundaki Nüfus

04.10.2012 SU İHTİYAÇLARININ BELİRLENMESİ. Suİhtiyacı. Proje Süresi. Birim Su Sarfiyatı. Proje Süresi Sonundaki Nüfus SU İHTİYAÇLARII BELİRLEMESİ Suİhtyacı Proje Süres Brm Su Sarfyatı Proje Süres Sonundak üfus Su ayrım çzs İsale Hattı Su Tasfye Tess Terf Merkez, Pompa İstasyonu Baraj Gölü (Hazne) Kaptaj Su Alma Yapısı

Detaylı

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI

Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI C.Ü. İktsad ve İdar Blmler Dergs, Clt 4, Sayı 1, 3 6 Kİ-KARE VE KOLMOGOROV SMİRNOV UYGUNLUK TESTLERİNİN SİMULASYON İLE ELDE EDİLEN VERİLER ÜZERİNDE KARŞILAŞTIRILMASI H. BİRCAN, Y. KARAGÖZ ve Y. KASAPOĞLU

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

Toplam Eşdeğer Deprem Yükünün Hesabı Bakımından 1975 Deprem Yönetmeliği İle 2006 Deprem Yönetmeliğinin Karşılaştırılması

Toplam Eşdeğer Deprem Yükünün Hesabı Bakımından 1975 Deprem Yönetmeliği İle 2006 Deprem Yönetmeliğinin Karşılaştırılması Fırat Ünv. Fen ve Müh. Bl. ergs Scence and Eng. J of Fırat Unv. 19 (2, 133-138, 2007 19 (2, 133-138, 2007 Toplam Eşdeğer eprem Yükünün Hesabı Bakımından 1975 eprem Yönetmelğ İle 2006 eprem Yönetmelğnn

Detaylı

AYIRMA KOLONLARININ TASARIMI-1

AYIRMA KOLONLARININ TASARIMI-1 AYIRMA KOLONLARININ TASARIMI-1 DİSTİLASYON KOLONLARININ TASARIMI Prof.Dr.Hasp Yenova İÇİNDEKİLER: 1. Grş 1 2. Sürekl Dstlasyon Prosesn Tanımı 1 Buhar- sıvı denge verler 3 2.1 Ger akma 4 2.2 Besleme noktasının

Detaylı

TEMEL DEVRE KAVRAMLARI VE KANUNLARI

TEMEL DEVRE KAVRAMLARI VE KANUNLARI TDK Temel Devre Kavramları ve Kanunları /0 TEMEL DEVRE KAVRAMLARI VE KANUNLARI GĐRĐŞ: Devre analz gerçek hayatta var olan fzksel elemanların matematksel olarak modellenerek gerçekte olması gereken sonuçların

Detaylı

T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 1 ÇOKLU ISI DEĞİŞTİRİCİSİ DENEYİ

T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER 1 ÇOKLU ISI DEĞİŞTİRİCİSİ DENEYİ T. C. GÜMÜŞHANE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE MÜHENDİSLİĞİ DENEYLER ÇOKLU ISI DEĞİŞTİRİCİSİ DENEYİ ÖĞRENCİ NO: ADI SOYADI: DENEY SORUMLUSU: YRD. DOÇ. DR. BİROL ŞAHİN

Detaylı

Öğretim planındaki AKTS TASARIM STÜDYOSU IV 214058100001312 2 4 0 4 9

Öğretim planındaki AKTS TASARIM STÜDYOSU IV 214058100001312 2 4 0 4 9 Ders Kodu Teork Uygulama Lab. Ulusal Kred Öğretm planındak AKTS TASARIM STÜDYOSU IV 214058100001312 2 4 0 4 9 Ön Koşullar : Grafk İletşm I ve II, Tasarım Stüdyosu I, II, III derslern almış ve başarmış

Detaylı

BETONARME YAPI TASARIMI

BETONARME YAPI TASARIMI BETONARME YAPI TASARIMI DEPREM HESABI Doç. Dr. Mustafa ZORBOZAN Mart 008 GENEL BİLGİ 18 Mart 007 ve 18 Mart 008 tarhler arasında ülkemzde kaydedlen deprem etknlkler Kaynak: http://www.koer.boun.edu.tr/ssmo/map/tr/oneyear.html

Detaylı

AĞIRLIKLI KALANLAR YÖNTEMİ VE BAZI UYGULAMALARI

AĞIRLIKLI KALANLAR YÖNTEMİ VE BAZI UYGULAMALARI AĞIRLIKLI KALALAR YÖTEMİ VE BAZI UYGULAMALARI Pamukkale Ünverstes Fen Blmler Ensttüsü Yüksek Lsans Tez Matematk Anablm Dalı Mukaddes ÖKTE Danışman: Doç. Dr. Uğur YÜCEL Temmuz DEİZLİ TEŞEKKÜR Bu çalışmanın

Detaylı

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI

ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN SINANMASI V. Ulusal Üretm Araştırmaları Sempozyumu, İstanbul Tcaret Ünverstes, 5-7 Kasım 5 ENDÜSTRİNİN DEĞİŞİK İŞ KOLLARINDA İHTİYAÇ DUYULAN ELEMANLARIN YÜKSEK TEKNİK EĞİTİM MEZUNLARINDAN SAĞLANMASINDAKİ BEKLENTİLERİN

Detaylı

BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ ÖRNEK 20 İKİ KATLI YIĞMA KONUT BİNASININ TASARIMI

BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ ÖRNEK 20 İKİ KATLI YIĞMA KONUT BİNASININ TASARIMI BÖLÜM II D ÖRNEK 0 BÖLÜM II D. YENİ YIĞMA BİNALARIN TASARIM, DEĞERLENDİRME VE GÜÇLENDİRME ÖRNEKLERİ ÖRNEK 0 İKİ KATLI YIĞMA KONUT BİNASININ TASARIMI 0.1. BİNANIN GENEL ÖZELLİKLERİ...II.0/ 0.. TAŞIYICI

Detaylı

Fumonic 3 radio net kablosuz duman dedektörü. Kiracılar ve mülk sahipleri için bilgi

Fumonic 3 radio net kablosuz duman dedektörü. Kiracılar ve mülk sahipleri için bilgi Fumonc 3 rado net kablosuz duman dedektörü Kracılar ve mülk sahpler çn blg Tebrk ederz! Darenze akıllı fumonc 3 rado net duman dedektörler monte edlmştr. Bu şeklde ev sahbnz yasal donanım yükümlülüğünü

Detaylı

Akköse, Ateş, Adanur. Matris Yöntemleri ile dış etkilerden meydana gelen uç kuvvetlerinin ve uç yerdeğiştirmelerinin belirlenmesinde;

Akköse, Ateş, Adanur. Matris Yöntemleri ile dış etkilerden meydana gelen uç kuvvetlerinin ve uç yerdeğiştirmelerinin belirlenmesinde; MATRİS ÖNTEMER 1. GİRİŞ Matrs öntemler; gerçek sürekl apının erne, matrs bçmnde ade edleblen blnen atalet (elemslk) ve elastklk öellklerne sahp sonl büüklüktek apısal elemanlardan olşan matematksel br

Detaylı

ÇOK BOYUTLU EŞLEŞMİŞ ÇİFTLER ARASINDAKİ FARKIN SINAMASINDA PERMÜTASYON YÖNTEMİNİN BİR DEĞERLENDİRMESİ. Burak ŞİMŞEK YÜKSEK LİSANS TEZİ İSTATİSTİK

ÇOK BOYUTLU EŞLEŞMİŞ ÇİFTLER ARASINDAKİ FARKIN SINAMASINDA PERMÜTASYON YÖNTEMİNİN BİR DEĞERLENDİRMESİ. Burak ŞİMŞEK YÜKSEK LİSANS TEZİ İSTATİSTİK ÇOK BOYUTLU EŞLEŞMİŞ ÇİFTLER ARASINDAKİ FARKIN SINAMASINDA PERMÜTASYON YÖNTEMİNİN BİR DEĞERLENDİRMESİ Burak ŞİMŞEK YÜKSEK LİSANS TEZİ İSTATİSTİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TEMMUZ 2007 ANKARA

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI FOTOGRAMETRİ I GEOMETRİK ve MATEMATİK TEMELLER Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi)

JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi) JFM316 Elektrk Yöntemler ( Doğru Akım Özdrenç Yöntem) yeryüzünde oluşturacağı gerlm değerler hesaplanablr. Daha sonra aşağıdak formül kullanılarak görünür özdrenç hesaplanır. a K I K 2 1 1 1 1 AM BM AN

Detaylı

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre

DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre 1 DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cnemre 2 BİRİNCİ BÖLÜM HEDEF PROGRAMLAMA 1.1 Grş Karar problemler amaç sayısına göre tek amaçlı ve çok amaçlı

Detaylı

YAPISAL SİSTEMLERİN GÖÇME OLASILIĞININ MONTE CARLO YAKLAŞIMI İLE BELİRLENMESİ

YAPISAL SİSTEMLERİN GÖÇME OLASILIĞININ MONTE CARLO YAKLAŞIMI İLE BELİRLENMESİ YILDIZ TEKNİK ÜNİVERSİTESİ EN BİLİMLERİ ENSTİTÜSÜ YAPISAL SİSTEMLERİN GÖÇME OLASILIĞININ MONTE CARLO YAKLAŞIMI İLE BELİRLENMESİ İnşaat Mühends Kadr MENTEŞ BE İnşaat Mühendslğ Anablm Dalı Yapı Programında

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI FOTOGRAMETRİ I GEOMETRİK ve MATEMATİK TEMELLER Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF329 FOTOGRAMETRİ I DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/

Detaylı

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim.

Standart Model (SM) Lagrange Yoğunluğu. u, d, c, s, t, b. e,, Şimdilik nötrinoları kütlesiz Kabul edeceğiz. Kuark çiftlerini gösterelim. SM de yer alacak fermyonlar Standart Model (SM) agrange Yoğunluğu u s t d c b u, d, c, s, t, b e e e,, Şmdlk nötrnoları kütlesz Kabul edeceğz. Kuark çftlern gösterelm. u, c ve t y u (=1,,) olarak gösterelm.

Detaylı

Açık Poligon Dizisinde Koordinat Hesabı

Açık Poligon Dizisinde Koordinat Hesabı Açık Polon Dzsnde Koordnat Hesabı Problem ve numaralı noktalar arasında açılacak tüneln doğrultusunu belrlemek amacıyla,,3,4, noktalarını çeren açık polon dzs tess edlmş ve şu ölçme değerler elde edlmştr.

Detaylı

Farklı hızlara sahip heyelan bloklarının Bulanık Çıkarım Sistemleri ile belirlenmesi

Farklı hızlara sahip heyelan bloklarının Bulanık Çıkarım Sistemleri ile belirlenmesi tüdergs/d mühendslk Clt:8, Sayı:3, 67-80 Hazran 2009 Farklı hızlara sahp heyelan bloklarının Bulanık Çıkarım Sstemler le belrlenmes Mustafa ACAR *, Tevfk AYAN İTÜ Fen Blmler Ensttüsü, Jeodez ve Fotogrametr

Detaylı

Bilimsel Hazırlık Programı COĞRAFİ BİLGİ SİSTEMLERİ

Bilimsel Hazırlık Programı COĞRAFİ BİLGİ SİSTEMLERİ Taşınmaz Değerleme ve Gelştrme Anablm Dalı Blmsel Hazırlık Programı COĞRAFİ BİLGİ SİSTEMLERİ Doç. Dr. Volkan YILDIRIM Karadenz Teknk Ünverstes, GISLab Trabzon «CBS de Ağ Analzler ve Sayısal Yükseklk Modeller»

Detaylı

FOTOGRAMETRİK NOKTA AĞLARI İÇİN BASİT BİR OPTİMİZASYON METODU

FOTOGRAMETRİK NOKTA AĞLARI İÇİN BASİT BİR OPTİMİZASYON METODU Selçuk Ünverstes Jeode ve Fotogrametr Mühendslğ Öğretmnde 0. õl Sempoumu6-8 Ekm 00 Kona SUNULMUŞ İLDİRİ FOTOGRMETRİK NOKT ĞLRI İÇİN SİT İR OTİMİSON METODU Esra TUNÇ Jurgen FRIEDRICH Fev KRSLI Karaden Teknk

Detaylı

Biyomedikal Amaçlı Basınç Ölçüm Cihazı Tasarımı

Biyomedikal Amaçlı Basınç Ölçüm Cihazı Tasarımı Byomedkal Amaçlı Basınç Ölçüm Chazı Tasarımı Barış Çoruh 1 Onur Koçak 2 Arf Koçoğlu 3 İ. Cengz Koçum 4 1 Ayra Medkal Yatırımlar Ltd. Şt, Ankara 2,4 Byomedkal Mühendslğ Bölümü, Başkent Ünverstes, Ankara,

Detaylı

Anahtar Kelimeler: Newton, En-dik iniș, Eșlenik Gradyen, Gauss-Newton ve Sönümlü En-küçük Kareler Ters-çözüm Yöntemleri, Tikhonov Düzgünleștiricisi.

Anahtar Kelimeler: Newton, En-dik iniș, Eșlenik Gradyen, Gauss-Newton ve Sönümlü En-küçük Kareler Ters-çözüm Yöntemleri, Tikhonov Düzgünleștiricisi. ÜREV ABANLI PARAMERE KESİRİM YÖNEMLERİ (DERIVAIVE BASED PARAMEER ESIMAION MEHODS) Ahmet uğrul BAȘOKUR Ankara Ünverstes Mühendslk Fakültes Jeofzk Müh. Bölümü, andoğankampusu, 61 Ankara basokur@eng.ankara.edu.tr

Detaylı

Kontrol noktaları (X,Y,Z) Şekil 1- Stereodeğerlendirme ve tek resim değerlendirmesi için kontrol noktaları gereksinimi.

Kontrol noktaları (X,Y,Z) Şekil 1- Stereodeğerlendirme ve tek resim değerlendirmesi için kontrol noktaları gereksinimi. FOTOGRAMETRİK NİRENGİ 1.GEREKÇE VE TANIM Stereodeğerlendirme yapabilmek için, stereo model alanında, en az üç, olabilirse köşelere gelecek şekilde dört kontrol noktasına gerek vardır. Tek resim değerlendirmesi

Detaylı

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit Karadez Te Üverstes Blgsayar Mühedslğ Bölümü 5-6 Güz Yarıyılı Sayısal Çözümleme Ara Sıav Soruları Tarh: Kasım 5 Perşembe Süre: daa. f ( ( + a e fosyouu sabt otası olmadığı bldğe göre, a 'ı alableceğ e

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ. BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI FOTOGRAMETRİ II FOTOGRAMETRİK NİRENGİ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI http://geomatik.beun.edu.tr/marangoz/ İÇERİK Giriş Yer Kontrol Noktaları

Detaylı

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI

TRANSPORT PROBLEMI için GELIsTIRILMIs VAM YÖNTEMI Yönetm, Yl 9, Say 28, Ekm - 1997,5.20-25 TRANSPORT PROBLEMI ÇIN GELIsTIRILMIs VAM YÖNTEMI Dr. Erhan ÖZDEMIR I.Ü. Teknk Blmler M.Y.O. L.GIRIs V AM transport problemlerne en düsük malyetl baslangç çözüm

Detaylı

ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR.

ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR. ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI YÜKSEK LİSANS TEZİ SOFT KÜMELER VE BAZI SOFT CEBİRSEL YAPILAR Ebubekr İNAN DANIŞMAN Yrd. Doç. Dr. Mehmet Al ÖZTÜRK ADIYAMAN 2011 Her

Detaylı

DİNAMİK ANALİZ PROBLEMLERİ İÇİN YENİ BİR ADIM ADIM SAYISAL ÇÖZÜMLEME YÖNTEMİ

DİNAMİK ANALİZ PROBLEMLERİ İÇİN YENİ BİR ADIM ADIM SAYISAL ÇÖZÜMLEME YÖNTEMİ . Türkye Deprem Mühendslğ ve Ssmoloj Konferansı 5-7 Eylül 0 MKÜ HATAY DİNAMİK ANALİZ PROBLEMLERİ İÇİN YENİ BİR ADIM ADIM SAYISAL ÇÖZÜMLEME YÖNTEMİ ÖZET: H. Çlsalar ve K. Aydın Yüksek Lsans Öğrencs, İnşaat

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Taımlayıcı İstatstkler br değerler dzs statstksel olarak geel özellkler taımlaya ölçülerdr Taımlayıcı İstatstkler Yer Göstere Ölçüler Yaygılık Ölçüler Yer Göstere Ölçüler Br dağılımı

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

Soğutucu Akışkan Karışımlarının Kullanıldığı Soğutma Sistemlerinin Termoekonomik Optimizasyonu

Soğutucu Akışkan Karışımlarının Kullanıldığı Soğutma Sistemlerinin Termoekonomik Optimizasyonu Soğutucu Akışkan arışımlarının ullanıldığı Soğutma Sstemlernn ermoekonomk Optmzasyonu * 1 Hüseyn aya, 2 ehmet Özkaymak ve 3 rol Arcaklıoğlu 1 Bartın Ünverstes akne ühendslğ Bölümü, Bartın, ürkye 2 arabük

Detaylı

DÜŞEY ELEKTRİK SONDAJI VERİLERİNİN YORUMU

DÜŞEY ELEKTRİK SONDAJI VERİLERİNİN YORUMU DÜŞEY ELEKTRİK SONDAJI VERİLERİNİN YORUMU Prof.Dr. Ahmet Tuğrul BAŞOKUR Jeofzk Mühendslğ Bölümü Mayıs 4 İletşm: Prof. Dr. Ahmet T. BAŞOKUR Ankara Ünverstes, Mühendslk Fakültes Jeofzk Mühendslğ Bölümü 6

Detaylı

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI

OLASILIĞA GİRİŞ. Biyoistatistik (Ders 7: Olasılık) OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI OLASILIĞA GİRİŞ Yrd. Doç. Dr. Ünal ERKORKMAZ Sakarya Ünverstes Tıp Fakültes Byostatstk Anablm Dalı uerkorkmaz@sakarya.edu.tr OLASILIK, TIP ve GÜNLÜK YAŞAMDA KULLANIMI Br olayındoğal koşullar altında toplumda

Detaylı

T.C. ULUDAĞ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KONUŞMACI TANIMA YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ. Cemal HANİLÇİ

T.C. ULUDAĞ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KONUŞMACI TANIMA YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ. Cemal HANİLÇİ T.C. ULUDAĞ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KONUŞMACI TANIMA YÖNTEMLERİNİN KARŞILAŞTIRMALI ANALİZİ Cemal HANİLÇİ YÜKSEK LİSANS TEZİ ELEKTRONİK MÜHENDİSLİĞİ ANABİLİM DALI BURSA-2007 T.C. ULUDAĞ ÜNİVERSİTESİ

Detaylı

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA

YÖNETİM VE EKONOMİ Yıl:2006 Cilt:13 Sayı:1 Celal Bayar Üniversitesi İ.İ.B.F. MANİSA YÖNETİM VE EKONOMİ Yıl:2006 Clt:3 Sayı: Celal Bayar Ünverstes İ.İ.B.F. MANİSA Bulanık Araç Rotalama Problemlerne Br Model Öners ve Br Uygulama Doç. Dr. İbrahm GÜNGÖR Süleyman Demrel Ünverstes, İ.İ.B.F.,

Detaylı

Dersin Yürütülmesi Hakkında. (Örgün / Yüz Yüze Eğitim için) (Harmanlanmış Eğitim için) (Uzaktan Eğitim için)

Dersin Yürütülmesi Hakkında. (Örgün / Yüz Yüze Eğitim için) (Harmanlanmış Eğitim için) (Uzaktan Eğitim için) Ders Kodu Teork Uygulama Lab. Uluslararası Muhasebe ve Fnansal Raporlama Standartları Ulusal Kred Öğretm planındak AKTS 344000000000510 3 0 0 3 6 Ön Koşullar : Bu dersn ön koşulu ya da yan koşulu bulunmamaktadır.

Detaylı

YATIRIM PROJELERi ANALiziNDE BLACK-SCHOLES OPSiYON FiYATLAMA MODELiNiN KULLANIMI

YATIRIM PROJELERi ANALiziNDE BLACK-SCHOLES OPSiYON FiYATLAMA MODELiNiN KULLANIMI YATIRIM PROJELER ANALzNDE BLACK-SCHOLES OPSYON FYATLAMA MODELNN KULLANIMI Yrd. Doç. Dr. Erkan Uysal Ankara Ünverstes Syasal Blgler Fakültes Özet Bu çalışmada, fnansal opsyon fyatlama modellernn yatınm

Detaylı

TEKNOLOJİK ARAŞTIRMALAR

TEKNOLOJİK ARAŞTIRMALAR wwwteknolojkarastrmalarcom ISSN:1304-4141 Makne eknolojler Elektronk Dergs 00 (4 1-14 EKNOLOJİK ARAŞIRMALAR Makale Klask Eş Eksenl (Merkezl İç İçe Borulu Isı Değştrcsnde Isı ransfer ve Basınç Kaybının

Detaylı

Communication Theory

Communication Theory Communcaton Theory ENFORMASYON TEORİSİ KODLAMA Doç. Dr. Hakan Doğan ENFORMASYON DEYİMİ NEDEN KULLANILMIŞ? Kaynaklarn, kanalların,alıcıların blg karakterstklern ncelemek. Blgnn letmn optmze etmek çn İletmn

Detaylı

GÖKTÜRK-2 STEREOSKOPİK GÖRÜNTÜLERİNDEN SAYISAL YÜZEY MODELİ ÜRETİMİ

GÖKTÜRK-2 STEREOSKOPİK GÖRÜNTÜLERİNDEN SAYISAL YÜZEY MODELİ ÜRETİMİ GÖKTÜRK-2 STEREOSKOPİK GÖRÜNTÜLERİNDEN SAYISAL YÜZEY MODELİ ÜRETİMİ Al Özgün Ok Nevşehr H.B.V. Ünverstes, Jeodez ve Fotogrametr Mühendslğ Bölümü, 50300, 2000 Evler, Nevşehr ozgunok@nevsehr.edu.tr, ozguneo@gmal.com

Detaylı

GPS/IMU VE YER KONTROL NOKTASININ FARKLI KOMBİNASYONLARI İLE ÜRETİLMİŞ ORTOFOTO GÖRÜNTÜLERİN PLANİMETRİK DOĞRULUKLARININ DEĞERLENDİRİLMESİ

GPS/IMU VE YER KONTROL NOKTASININ FARKLI KOMBİNASYONLARI İLE ÜRETİLMİŞ ORTOFOTO GÖRÜNTÜLERİN PLANİMETRİK DOĞRULUKLARININ DEĞERLENDİRİLMESİ Türkye Ulusal Fotogrametr ve Uzaktan Algılama Brlğ VII. Teknk Sempozyumu (TUFUAB 013), 3-5 Mayıs 013, KTÜ, Trabzon. GPS/IMU VE YER KONTROL NOKTASININ FARKLI KOMBİNASYONLARI İLE ÜRETİLMİŞ ORTOFOTO GÖRÜNTÜLERİN

Detaylı

Mühendisler İçin Ölçme Bilgisi

Mühendisler İçin Ölçme Bilgisi Mühendsler İçn Ölçme Blgs KAYNAKLAR. Topografya (Ölçme Blgs), Cevat İNAL, Al ERDİ, Ferruh YILDIZ Şubat 996 Atlas Ktapev, KONYA 2. Ölçme Blgs, Erdoğan ÖZBENLİ, Türkay TÜDEŞ, Karadenz Teknk Ünverstes Basımev,

Detaylı

YAPILARIN ENERJİ ESASLI TASARIMI İÇİN BİR HESAP YÖNTEMİ

YAPILARIN ENERJİ ESASLI TASARIMI İÇİN BİR HESAP YÖNTEMİ YAPILARI EERJİ ESASLI TASARIMI İÇİ BİR HESAP YÖTEMİ Araş. Gör. Onur MERTER Araş. Gör. Özgür BOZDAĞ Prof. Dr. Mustafa DÜZGÜ Dokuz Eylül Ünverstes Dokuz Eylül Ünverstes Dokuz Eylül Ünverstes Fen Blmler Ensttüsü

Detaylı

ADJUSTED DURBIN RANK TEST FOR SENSITIVITY ANALYSIS IN BALANCED INCOMPLETE BLOCK DESIGN

ADJUSTED DURBIN RANK TEST FOR SENSITIVITY ANALYSIS IN BALANCED INCOMPLETE BLOCK DESIGN SAÜ Fen Edebyat Dergs (2010-I) F.GÖKPINAR v.d. DENGELİ TAMAMLANMAMIŞ BLOK TASARIMINDA, DUYUSAL ANALİZ İÇİN DÜZELTİLMİŞ DURBİN SIRA SAYILARI TESTİ Fkr GÖKPINAR*, Hülya BAYRAK, Dlşad YILDIZ ve Esra YİĞİT

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Gülesen ÜSTÜNDAĞ BAZI PARAMETRİK OLMAYAN İSTATİSTİKSEL YÖNTEMLERİN İNCELENMESİ İSTATİSTİK ANABİLİM DALI ADANA, 005 ÇUKUROVA ÜNİVERSİTESİ

Detaylı

Basel II Geçiş Süreci Sıkça Sorulan Sorular

Basel II Geçiş Süreci Sıkça Sorulan Sorular Basel II Geçş Sürec Sıkça Sorulan Sorular Soru No: 71 Cevaplanma Tarh: 06.03.2012 İlgl Hüküm: --- Konu: Gayrmenkul İpoteğyle Temnatlandırılmış Alacaklar İçn KR510AS Formunun Doldurulmasına İlşkn Örnek

Detaylı