ÖRNEK 3712 nin esas ölçüsünü bulunuz. ÇÖZÜM esas ölçüsü 112 olur. ÖRNEK ÇÖZÜM cos 1, 1 sin 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ÖRNEK 3712 nin esas ölçüsünü bulunuz. ÇÖZÜM esas ölçüsü 112 olur. ÖRNEK ÇÖZÜM cos 1, 1 sin 1"

Transkript

1 MTEMTİK TRİGONOMETRİ - I irim Çember II III sin I IV 0 nin esas ölçüsünü bulunuz olduğundan, esas ölçüsü olur I ölge (0 < < II ölge ( ) < < ) III ölge ( < < IV ölge ( ) < < ) sin tan cot gradın esas ölçüsünü bulunuz olduğundan, esas ölçüsü 00 olur çı Ölçü irimleri erece: Çemberin 0 da ini gören merkez açıya denir Grad: Çemberin 00 de ini gören merkez açıya G denir Radyan: Çemberin yarıçap uzunluğundaki yayı gören merkez açıya rad denir Trigonometrik Fonksiyonlar Sin - os sin (0,) P(, sin) sin (, 0) (, 0) * 0 G 00 R (0, ) * ı 0 ı ıı 0 Esas Ölçü 0 < 0 ve k Z, + k 0 ise nın Esas ölçüsü 0 < 00 G ve k Z, + k 00 G ise, nın Esas Ölçüsü G 0 < ve k Z, + k ise nın Esas ölçüsü Rad, sin sin0 0 sin 90 sin 0 0 sin 0 os0 os sin Ü n i v e r s i t e y e H a z ı r l ı k M a t e m a t i k e r g i s i / S a y ı w w w a k a d e m i v i z y o n c o m t r

2 T R İ G O N O M E T R İ - l Tan - ot sin cot tan ( ) P tan cot (y ) tan 0 0 cot 0 (Tanımsız) tan cot tan90 (Tanımsız) cot 90 0 sin tan, cot sin Sekant Kosekant (sec ec) sec ec, sin sec90 Tanımsız, ec 0 Tanımsız sec 0 Tanımsız, ec 0 Tanımsız tan 0 0 cot 0 (Tanımsız) ec sin sec P tan 0 (Tanımsız) cot < < iken, sin < tan < < cot < < 90 iken, < cot < sin < tan açısı 0 ile 90 arasında artarken, sin ve tan artar, ve cot azalır sin sin 0 0 sin sin 0 0 sin 90 0 tan 0 cot 90 0 tan 0 cot 0 tan cot tan 0 cot 0 tan 90 cot 0 Tanımsız Trigonometrik Fonksiyonlarda Özdeşlikler 0 < < olmak üzere, ( ) ( + ) [ bölge] [ bölge] sin ( ) sin ( ) tan ( ) tan cot ( ) cot, sin ( + ) sin, ( + ), tan ( + ) tan, cot ( + ) cot ik Üçgende ar çıların Trigonometrik Oranları Hipotenis (c) Komşu dik kenar (b) Karşı a sin Hipotenüs c tan sec Karşı Komşu sin tan cot a cot b c b 90 iken, sec ec olur ec Karşı dik kenar (a) Komşu Hipotenüs Komşu Karşı b a c sin a b c ( ) ( + ) ( ) ( ) [ bölge], ( + ) () (çının kendisi bölge) sin ( ) sin ( ) tan ( ) tan cot ( ) cot ( θ) ( θ) [ bölge] [ bölge] sin ( ), sin ( ) ( ) sin, ( ) sin tan ( ) cot, tan ( ) cot cot ( ) tan, cot ( ) tan Ü n i v e r s i t e y e H a z ı r l ı k M a t e m a t i k e r g i s i / S a y ı w w w a k a d e m i v i z y o n c o m t r

3 M T E M T İ K θ θ [ bölge] [ bölge] sin ( ), sin( ) ( ) sin, ( ) sin tan ( ) cot, tan( ) cot cot ( ) tan, cot( ) tan şağıdaki trigonometrik değerleri hesaplayınız a sin c e tan g cot a sin ( ) ( ) b sin ( 0) d ( 0) f tan ( 0) h cot ( 0) sin ( ) sin b sin ( 0) sin 0 c ( ) ( + d ( 0) 0 e tan ( ) tan ( f tan ( 0) tan (0) ) ) tan g cot ( ) cot ( ) cot h cot ( 0) cot ( 0) cot 0 sin + cot 0 + işleminin sonucunu bulunuz sin + cot ( cot 0) f( ) sin ( sin ( ) ( )) + sin + sin + sin ( ) ( ( )) cot 00tan 0 sin 00 işleminin sonucunu bulunuz cot 00 cot 0 tan 0 tan 0 sin 00 sin 0 cot 00 tan 0 sin 00 ( ) ( ) ( ) Trigonometrik Oranlardan iri Verildiğinde iğerinin ulunması (, ) ve sin olduğuna göre,, tan, cot değerlerini bulunuz (, ) sin bölge tan f() sin ( ) + sin ( ) f( ) değerini bulunuz olduğuna göre, cot w w w a k a d e m i t e m e l l i s e s i c o m Ö z e l c a r K a l i t e e ğ e r M i l a t T e m e l L i s e s i

4 T R İ G O N O M E T R İ - l (, ) ve olduğuna göre, değerini bulunuz,,, tan < < ve tan olduğuna göre, cot tan ifadesinin sayısal değerini bulunuz F E F FE E ve olduğuna göre, tan( E değerini bulunuz F E y sin < < ( bölge) tan tan, tan tan 0 00 olsun olur tan tan( y) tany Şekil eş kareden oluşmaktadır cot çarpımı kaçtır? sin 0 + sin + sin + + sin 0 toplamını bulunuz + 90 iken sin ve sin + kurallarından yararlanılarak, sin 0+sin + +sin ( ) tane Ü n i v e r s i t e y e H a z ı r l ı k M a t e m a t i k e r g i s i / S a y ı olsun olur cot Toplam ve Fark Formülleri sin(a b) sinab sinba sin(a b) sinab sinba w w w a k a d e m i v i z y o n c o m t r

5 M T E M T İ K sin0 ve sin değerlerini bulunuz sin 0 sin (0 + ) sin 0 + sin 0 sin sin ( 0) sin 0 sin 0 ( a b) ab sinasinb ( a b) ab sinasinb ve değerlerini bulunuz ( + 0) 0 sin sin 0 (0 ) [veya ( 0)] 0 + sin 0 sin tan a tan b tan(a b) tan atanb tan a tan b tan(a b) tan atan b kare, E E olduğuna göre, tan değerini bulunuz y tan tany tan tan( y) tantany tan in sayısal değerini bulunuz E tan tan0 tan ( 0) tantan0 cotacotb cot( a b) cota cotb cotacotb cot( a b) cota cotb E ir üçgeninde açısının tanjantı, açısının cot 0 olduğuna göre, cot değerini bulunuz tanjantı olduğuna göre, açısının tanjantını bulunuz tan ( + tan (0 tan tan tan tan tan ( + tantan tan olduğuna göre, tan, cot cot ( 0) cotcot0 cot cot0 w w w a k a d e m i t e m e l l i s e s i c o m Ö z e l c a r K a l i t e e ğ e r M i l a t T e m e l L i s e s i

6 T R İ G O N O M E T R İ - l şağıdaki ifadelerin sayısal değerlerini bulunuz a cot0cot0 cot0 cot0 b (0 + a) ( a) sin(0 + a) sin( a) c d sin + 0 sin sin 0 cot0cot0 a cot( 0 0) cot0 cot0 cot 0 b (0 + a) ( a) sin (0 + a) sin( a) c [(0 + a) + ( a)] d sin + sin 0 + sin 0 sin (0 ) 0 sin 0 ( sin sin ) 0 0 ( ) 0 ( ) 0 9 t olduğuna göre, sin değerini bulunuz sin sin tan tan tan cot cot cot şağıdaki ifadeleri hesaplayınız a sin 0 sin b 0 c d e sin a sin 0 b sin 0 sin 0 sin0 0 c ( ) sin0 0, sin 0 ( 0) sin sin ( 9) 9 t sin ( 9) sin 9 sin 9 t t t t t ( t ) t Yarım çı Formülleri t d 0 e sin sin sin Ü n i v e r s i t e y e H a z ı r l ı k M a t e m a t i k e r g i s i / S a y ı w w w a k a d e m i v i z y o n c o m t r

7 M T E M T İ K y olduğuna göre, ile y arasındaki ilişki nedir? y y y ( ) y y + (0, ) ve sin olduğuna göre, değerini bulunuz sin sin olduğuna göre, sin değerini bulunuz a b a b sina sinb sin a b a b sina sinb sin a b a b a b a b a b a b sin sin sin(a b) tana tanb ab sin(a b) tana tanb ab sin(a b) cota cotb sinasinb sin(b a) cota cotb sinasinb farkını bulunuz sin sin 0 sin ( ) sin + toplamını bulunuz sin + sin + sin sin + sin sin sin 0 sin una göre, sin a sin a sin a a a tan a tana tana tan a sin sin () sin sin 9 önüşüm Formülleri a siny + y olduğuna göre, y oranını bulunuz siny sin sin y sin y y y y sin y w w w a k a d e m i t e m e l l i s e s i c o m Ö z e l c a r K a l i t e e ğ e r M i l a t T e m e l L i s e s i

8 T R İ G O N O M E T R İ - l sin y sin y sin siny y y sin sin oranını bulunuz sin 0 Ters önüşüm Formülleri sina sinb cot - [(a+ b) - (a- b)] a b [(a+ b) (a- b)] sina b [sin(a+ b) sin(a- b)] çarpımını bulunuz [ ] [0 + ] sin çarpımını bulunuz sin sin [sin 0 + sin 0] [ ] Ü n i v e r s i t e y e H a z ı r l ı k M a t e m a t i k e r g i s i / S a y ı sin 0 sin 0 sin 0 sin 0 çarpımını bulunuz sin 0sin 0 sin 0 sin 0 sin 0 [ sin 0 [ sin 0 [ [ [ ( 0 0)] ( sin )] ] sin 0 (sin 0 + sin( 0)] + (sin 0 sin 0 + sin )] + sin [0 + sin ] sin 0 sin 0 sin 0 çarpımını bulunuz çarpımını bulunuz ( ) ( ) [ + ] [sin + sin ] olmak üzere, ( )( ) [ sin ] [ ) ( ] [ ] [0] 0 w w w a k a d e m i v i z y o n c o m t r

9 M T E M T İ K Ç Ö Z Ü M L Ü T E S T 0 lik yayın esas ölçüsü kaçtır? sin 00, 0, tan 9 nin işaretleri sırası ile aşağıdakilerden hangisidir?, +,,, +,, +, +, +,, + 0 lik yayın esas ölçüsü aşağıdakilerden hangisidir? < < ve olduğuna göre, kaçtır? tan cot ifadesinin değeri ıı lik açı kaç derece kaç dakika kaç saniyedir? ı ıı ı ıı ı ıı ı ıı ıı 0 < < ve olduğuna göre, kaçtır? olduğuna göre, kaçtır? tan 9 [, ) olmak üzere, olduğuna göre, sec kaçtır? a tan b tan 0 c tan 0 a, b ve c nin sayısal değerlerinin büyükten küçüğe sıralanışı aşağıdakilerden hangisidir? c > a > b a > c > b c > b > a a > b > c b > a > c 0 + y 90 ve sin y olduğuna göre, + y toplamı kaçtır? w w w a k a d e m i t e m e l l i s e s i c o m 9 Ö z e l c a r K a l i t e e ğ e r M i l a t T e m e l L i s e s i

10 T R İ G O N O M E T R İ - l sin olduğuna göre, sin nedir? sin00 ifadesinin eşiti kaçtır? 0 0 ifadesinin sonucu kaçtır? sin ifadesinin sonucu kaçtır? sin sin işleminin sonucu kaçtır? sin toplamı kaçtır? olmak üzere, sin ( )sin( ) ifadesinin değeri kaçtır? 9 sin çarpımı kaçtır? sin ifadesinin eşiti kaçtır? 0 sin ifadesinin değeri kaçtır? Ü n i v e r s i t e y e H a z ı r l ı k M a t e m a t i k e r g i s i / S a y ı 0 w w w a k a d e m i v i z y o n c o m t r

11 M T E M T İ K olduğundan esas ölçü 0 evap dır Ç Ö Z Ü M L E R olduğundan esas ölçü 0 olur evap dir tan < < ( bölge), cot ( tan cot 0 < <, ( bölge) ) (, ) evap dir,, ıı 0 ıı 0 ıı 9 ı 0 ı 0 ı ıı ı ıı ı ıı evap dir tan 0 0 evap dir 90 ve sin olur evap dir a tan tan b tan 0 tan 0 c tan 0 tan 0 Tanjant fonksiyonunun değeri (0 den 90 ye doğru) açı büyüdükçe artar tan < tan 0 < tan 0, buradan da a > b > c evap dir 9 [,, sec ] ( bölge) evap dir sin 00 (III bölge) 0 (II bölge) tan 9 (III bölge) + evap E dir 0 + y 90 sin y ise y + 90, y + + y 90 y + denklem sistemi çözülürse, ve y 9 olur + y evap dir w w w a k a d e m i t e m e l l i s e s i c o m Ö z e l c a r K a l i t e e ğ e r M i l a t T e m e l L i s e s i

12 T R İ G O N O M E T R İ - l sin, sin sin () sin sin (sin a sina sin a) evap dir sin0 sin evap dir (a b sin 0 sin a b sin 0 sin 0 sin a b sin ) 0 evap dir sin (sin )(sin + ) (sin )() ( ) ( ) 0 evap dır sin sin sin ( sin ) (sin sin ) (sina sin b sin a b sin 0 sin 0 0 a b ) evap dir sin () (sin) sin sin (sin ) sin +, + sin 0 +, sin sin0 evap dir sin ( ) sin ( ) [ ( ) ( )] [ ( sin )] 9 sin sin sin evap E dir evap dir sin sin sin0 evap dir 0 sin 0 ( 0 sin ) ( 0) + evap dir Ü n i v e r s i t e y e H a z ı r l ı k M a t e m a t i k e r g i s i / S a y ı w w w a k a d e m i v i z y o n c o m t r

13 M T E M T İ K K O N U T E K R R T E S T İ 0 kaç radyandır? eşkenar üçgen, olduğuna göre, tan kaçtır? 00 grad kaç derecedir? ikizkenar üçgeninde, br 0 br H radyanlık yayın esas ölçüsü kaç radyandır? [] [H] olduğuna göre, kaçtır? 0 radyanlık yayın esas ölçüsü kaç radyandır? karesinde, E E olduğuna göre, tan kaçtır? 9 9 E bir dikdörtgen, E > E br 0 br m( m(e olduğuna göre, E uzunluğu kaç br dir? 0 9 E 9 toplamı kaçtır? w w w a k a d e m i t e m e l l i s e s i c o m Ö z e l c a r K a l i t e e ğ e r M i l a t T e m e l L i s e s i

14 T R İ G O N O M E T R İ - l 0 toplamının yarısı aşağıdakilerden hangisidir? sec ec < < olmak üzere, sin tan tan ifadesi aşağıdakilerden hangisine eşittir? + tan tan + tan I sin( ) II ( ) III tan ( ) cot IV cot ( ) cot Yukarıdaki ifadelerden kaç tanesi doğrudur? Hiçbiri şağıdakilerden hangisi sin ( a) ifadesine özdeş değildir? a ( + a) ( a) sin ( a) sin( + a) T sin ( ) ( ) sin( ) olduğuna göre, T aşağıdakilerden hangisine eşittir? 9 ( ) olduğuna göre, tancot çarpımı kaçtır? sin( ) + ( + ) + ( + ) ifadesi aşağıdakilerden hangisine eşittir? ( ) ifadesi aşağıdakilerden hangisine eşit değildir? sin( + ) sin ( ) sin( ) ( ) 9 0 aşağıdakilerden hangisine eşittir? sin sin 0 < < ve 0 olduğuna göre, kaçtır? ifadesinin eşiti aşağıdakilerden han- 0 sin ( ) gisidir? Ü n i v e r s i t e y e H a z ı r l ı k M a t e m a t i k e r g i s i / S a y ı w w w a k a d e m i v i z y o n c o m t r

15 M T E M T İ K K O N U T E K R R T E S T İ sin ifadesinin eşiti kaçtır? 0 nin değeri aşağıdakilerden hangisidir? tan nin değeri kaçtır? sin ifadesinin eşiti kaçtır? 0 < < ve olduğuna göre, kaçtır? Şekilde verilen dörtgenine göre, kaçtır? 0 olduğuna göre, kaçtır? ikizkenar dik üçgeninde br m( 90 m ( olduğuna göre, tan nın değeri kaçtır? 9 aşağıdakilerden hangisine eşit değildir? sin ( ) sin ( ) ( ) sin sin w w w a k a d e m i t e m e l l i s e s i c o m Ö z e l c a r K a l i t e e ğ e r M i l a t T e m e l L i s e s i

16 T R İ G O N O M E T R İ - l 0 0 < < olduğuna göre, ifadesi aşağıdakilerden hangisidir? olduğuna göre, ifadesinin en sade hali nedir? sin + olduğuna göre, kaçtır? kesrinin en sade hali nedir? sin tan cot tan ifadesinin aşağıdakilerden hangisine sin0 sin0 sin eşittir? üçgeninde, m( 90 olduğuna göre, kaçtır? (a b) (a b) ifadesinin en sade sinb şekli aşağıdakilerden hangisidir? sina sina a sina a tan + tan toplamı kaçtır? 9 sin0sin0 ifadesinin değeri aşağıdakilerden hangisidir? 0 + sin toplamının sonucu aşağıdakilerden hangisidir? sin0 ifadesinin değeri kaçtır? Ü n i v e r s i t e y e H a z ı r l ı k M a t e m a t i k e r g i s i / S a y ı w w w a k a d e m i v i z y o n c o m t r

TRİGONOMETRİ Test -1

TRİGONOMETRİ Test -1 TRİGONOMETRİ Test -. y. y K O O. nalitik düzlemde verilen O merkezli birim çemberde hangi noktanın koordinatları (0, ) dir? (O noktası orijindir.) O y [OK] açıortay olmak üzere, nalitik düzlemde verilen

Detaylı

Cebir Notları. Trigonometri TEST I. 37π 'ün esas ölçüsü kaçtır? Gökhan DEMĐR,

Cebir Notları. Trigonometri TEST I. 37π 'ün esas ölçüsü kaçtır? Gökhan DEMĐR, , 00 M ebir Notları Gökhan EMĐR, gdemir@yahoo.com.tr Trigonometri. TEST I π 'ün esas ölçüsü kaçtır? ) p ) p ) p ) π p. tanθ = ) ) olduğuna göre, sinθ değeri kaçtır? ) ). 0 'nin esas ölçüsü kaçtır?. θ

Detaylı

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80.

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80. 11 ÖLÜM SİZİN İÇİN SÇTİLR LRİMİZ 1 80 0 bir dörtgen = = = m() = 80 m() = 0 Verilenlere göre, açısının ölçüsü kaç derecedir? 0 10 0 bir üçgen m() = 0 m() = 10 m() = 0 Yukarıda verilenlere göre, oranı kaçtır?

Detaylı

TOPLAM VE FARK YAYLAR. PA + = olup, OP = 1 alınacak olursa, OP P

TOPLAM VE FARK YAYLAR. PA + = olup, OP = 1 alınacak olursa, OP P TOPLM VE FRK YYLR a, b R için; Sin( a + b) Sina. sb +. sa Sin( a b) Sina. sb. sa s ( a + b) sa. sb Sina. s ( a b) sa. sb + Sina. İspat: a) Sin( a b) P + lup, OP alınacak lursa, OP P Sin( a + b) P bulunur.

Detaylı

Trigonometrik Fonksiyonlar

Trigonometrik Fonksiyonlar Trigonometrik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 6 Amaçlar Bu üniteyi çalıştıktan sonra; açı kavramını hatırlayacak, açıların derece ölçümünü radyan ölçümüne ve tersine çevirebilecek, trigonometrik

Detaylı

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY A. AÇI Başlangıç noktaları aynı olan iki ışının birleşim kümesine açı denir. Bu ışınlara açının kenarları, başlangıç noktasına ise açının köşesi denir. B. YÖNLÜ AÇI

Detaylı

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT ÜÇGNLR ÜNİT. ÜNİT. ÜNİT. ÜNİT. ÜNİT ÜÇGNLRİN ŞLİĞİ Üçgende çılar. azanım : ir üçgenin iç açılarının ölçüleri toplamının 80, dış açılarının ölçüleri toplamının 0 olduğunu gösterir. İki Üçgenin şliği. azanım

Detaylı

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4.

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4. POLİNOMLAR I MATEMATİK. Aşağıdakilerden kaç tanesi polinomdur? I. ( ) P = + II. ( ) P = + III. ( ) + + P = + 6. ( ) ( ) ( ) P = a b a + b sabit polinom olduğuna göre ( ) ( ) ( ) P a +P b +P 0 toplamı kaçtır?

Detaylı

9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI

9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI 9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI KONULAR DİK ÜÇGENLERDE METRİK BAĞINTILAR 1. Pythagoras (Pisagor) Bağıntısı. Euclides (öklit) Bağıntısı 3. Pisagor ve öklit Bağıntıları ile İlgili Problemler

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ 14. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ 14. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI EGE ÖLGESİ 4. OKULLR RSI MTEMTİK YRIŞMSI 8. SINIF ELEME SINVI TEST SORULRI. n bir tamsayı olmak üzere, n n 0 ( 4.( ) +.( ) + 7 + 8 ) işleminin sonucu kaçtır? ) 0 ) 5 ) 6 ). ir kitapçıda rastgele seçilen

Detaylı

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır?

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır? . f: R { 4} R, > ise ( ) 4 f =, ise 6 8. ( ) f = 6 + m + 4 eğrisinin dönüm noktasının ordinatı olduğuna göre, m kaçtır? ) 7 ) 8 ) 9 ) E) fonksiyonu aşağıdaki değerlerinin hangisinde süreksizdir? ) ) )

Detaylı

Örnek...1 : Birim çember kullanarak aşağıdaki ifadeleri hesapla yın ız. Örnek...2 : sin 2 12+cos sin 67+cos 34. sin41 işleminin sonucu kaçtır?

Örnek...1 : Birim çember kullanarak aşağıdaki ifadeleri hesapla yın ız. Örnek...2 : sin 2 12+cos sin 67+cos 34. sin41 işleminin sonucu kaçtır? RİGNMERİ İR AÇININ KSİNÜS VE SİNÜS DEĞERLERİ Merk ezi orijin ve arıçapı birim olan çem bere birim çem ber denir. Standart pozisonda (Köşesi orijinde, başlangıç kenarı ve Kosinüs Sinüs önü pozitif ön olan

Detaylı

. K. AÇI I ve UZUNLUK 5. C. e k s TR e m. m(cab)= 5x, m(acd)= 3x, m(abe)= 2x. O merkezli çemberde m(bac)= 75º . O ? F 75º

. K. AÇI I ve UZUNLUK 5. C. e k s TR e m. m(cab)= 5x, m(acd)= 3x, m(abe)= 2x. O merkezli çemberde m(bac)= 75º . O ? F 75º Geometri Çözmek ir yrıcal calıkt ktır ÇI I ve UZUNLUK 1? m()=, m()=, m()= 7º merkezli çemberde m()= 7º Verilenlere göre açısının ölçüsü kaç derecedir? ) 10 ) 1 ) 10 ) 1 ) 17 Verilenlere göre açısının ölçüsü

Detaylı

8. ÜNİTE TRİGONOMETRİK FONKSİYONLAR

8. ÜNİTE TRİGONOMETRİK FONKSİYONLAR 8. ÜNİTE TRİGONOMETRİK FONKSİYONLAR KONULAR 1. TRİGONOMETRİ 2. Açı 3. Yönlü Açı 4. Yönlü Yaylar 5. Birim Çember 6. Açı Ölçü Birimleri 7. Derece 8. Radyan 9. Grad 10. Esas Ölçü 11. TRİGONOMETRİK FONKSİYONLAR

Detaylı

TEST. Dik Üçgen ve Pisagor Bağıntısı. 4. Dik Kenarlar Hipotenüs. 5. Aşağıdaki dik üçgenlerden hangisinin çevre uzunluğu en fazladır?

TEST. Dik Üçgen ve Pisagor Bağıntısı. 4. Dik Kenarlar Hipotenüs. 5. Aşağıdaki dik üçgenlerden hangisinin çevre uzunluğu en fazladır? ik Üçgen ve Pisagor ağıntısı. Sınıf atematik Soru ankası TEST 1.. ik enarlar Hipotenüs m m cm 1 cm cm 60 cm y cm 100 cm z cm 1, cm 1,3 cm ir el fenerinden çıkan ışık m yol alarak yukarıdaki m uzunluğundaki

Detaylı

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir?

SINIF TEST. Üslü Sayılar A) 4 B) 5 C) 6 D) 7 A) - 5 B) - 4 C) 5 D) 7. sayısı aşağıdakilerden hangisine eşittir? 8. SINIF. Üslü Sayılar - = T olduğuna göre T kaçtır? A) - B) - C) D) 7 TEST.. 0 - işleminin sonucu kaç basamaklı bir sayıdır? A) B) C) 6 D) 7. n =- 7 için n ifadesinin değeri kaçtır? A) - 8 B) - C) 8 D)

Detaylı

MC TEST-I Aşağıdaki eşitliklerin doğru olduğunu gösteriniz π 2π

MC TEST-I Aşağıdaki eşitliklerin doğru olduğunu gösteriniz π 2π MC TEST-I Aşağıdaki eşitliklerin doğru olduğunu gösteriniz π π 1) 4 sin.sin +.sin + = sin ) π π 4 cos.cos +.cos + = cos www.matematikclub.com, 006 Cebir Notları Gökhan DEMĐR, gdemir@yahoo.com.tr TRĐGONOMETRĐ

Detaylı

4. 8. A. D 2. ABC üçgeninin alanı kaç birim karedir? ABC üçgeninin alanı kaç birim karedir? A) 16 B) 18 C) 20 D) 24 E) 32 120º 135º

4. 8. A. D 2. ABC üçgeninin alanı kaç birim karedir? ABC üçgeninin alanı kaç birim karedir? A) 16 B) 18 C) 20 D) 24 E) 32 120º 135º ğlence başlıyor yor 1 º 0º üçgeninin alanı kaç birim karedir? ) ) 9 LN SI 1 LN SI 1 )1 ) üçgeninin alanı kaç birim karedir? üçgeninin alanı kaç birim karedir? ) ) ) ) ) ) üçgen, = birim, = birim, m() =

Detaylı

7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR

7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR 7. ÜNİTE DOĞRUDA VE ÜÇGENDE AÇILAR KONULAR 1. DOĞRUDA AÇILAR 2. Açı 3. Açının Düzlemde Ayırdığı Bölgeler 4. Açı Ölçü Birimleri 5. Ölçülerine Göre Açılar 6. Açıortay 7. Tümler Açı 8. Bütünler Açı 9. Ters

Detaylı

TÜRKİYE GENELİ DENEME SINAVI LYS - 1 MATEMATİK

TÜRKİYE GENELİ DENEME SINAVI LYS - 1 MATEMATİK TÜRKİY GNLİ SINVI LYS - 1 7 MYIS 017 LYS 1 - TSTİ 1. u testte 80 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz. + k+ n 15 + 10 1. : = + 6 16 + 8 0 + 8 olduğuna

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

Sayfa No. Test No İÇİNDEKİLER TRİGONOMETRİ

Sayfa No. Test No İÇİNDEKİLER TRİGONOMETRİ TRİGONOMETRİ İÇİNDEKİLER Sayfa No Test No YÖNLÜ AÇI VE YÖNLÜ YAY KAVRAMI -AÇI ÖLÇÜ BİRİMLERİ...00-00.... BİRİM ÇEMBER...00-00.... BİR AÇININ ESAS ÖLÇÜSÜ...00-00.... BİR AÇININ TRİGONOMETRİK ORANLARININ

Detaylı

DERS: MATEMATİK I MAT101(04)

DERS: MATEMATİK I MAT101(04) DERS: MATEMATİK I MAT0(0) ÜNİTE: FONKSİYONLAR KONU:. TRİGONOMETRİK FONKSİYONLAR Öncelikle açı ölçü birimlerine göz atalım: Bilindiği gibi bir tam açının ölçüsü 0 derecedir. Diğer bir açı ölçü birimi de

Detaylı

1986 ÖYS. 3 b. 2 b C) a= 1. Aşağıdaki ABC üçgeninde. BD kaç cm dir? C) 3 D) 8 E)

1986 ÖYS. 3 b. 2 b C) a= 1. Aşağıdaki ABC üçgeninde. BD kaç cm dir? C) 3 D) 8 E) ÖYS. Aşağıdaki ABC üçgeninde. BD kaç cm dir? 0. Aşağıdaki şekilde ABCD bir yamuk ve AECD bir paralel kenardır.. Aşağıdaki şekilde EAB ve FBC eşkenar üçgendir. AECD nin alanı cm Buna göre CEB üçgeninin

Detaylı

2011 YGS MATEMATİK Soruları

2011 YGS MATEMATİK Soruları 0 YGS MTEMTİK Soruları. + + ) 8 ) 0 ) 6 ) E). a = 6 b = ( a)b olduğuna göre, ifadesinin değeri kaçtır? ) ) 6 ) 9 ) 8 E). (.0 ) ) 0, ) 0, ) 0, ) E) 6. x = y = 8 z = 6 olduğuna göre, aşağıdaki sıralamalardan

Detaylı

TEST. Düzgün Çokgenler. 4. Bir iç açısı 140 olan düzgün çokgenin iç açılar 5. A B. 2. Bir dış açısı Çevresi. toplamı kaç derecedir?

TEST. Düzgün Çokgenler. 4. Bir iç açısı 140 olan düzgün çokgenin iç açılar 5. A B. 2. Bir dış açısı Çevresi. toplamı kaç derecedir? üzgün Çokgenler 7. Sınıf Matematik Soru ankası S 49 1. 4. ir iç açısı 140 olan düzgün çokgenin iç açılar toplamı kaç derecedir? ) 70 ) 900 ) 1080 ) 160 Şekilde verilen düzgün çokgenine göre, I., köşesine

Detaylı

YARDIRMALI MATEMATİK TÜREV FASİKÜLÜ

YARDIRMALI MATEMATİK TÜREV FASİKÜLÜ YRIRMLI MTEMTİK TÜREV FSİKÜLÜ Maksimum-Minimum Problemleri MESUT ERİYES MKSİMUM - MİNİMUM PROLEMLERİ Maksimum ve minimum problemlerini çözmek için şu kurallar ugulanır; 1) Maksimum a da minimum olması

Detaylı

1981 ÖSS olduğuna göre, aşağıdakilerden c hangisi kesinlikle doğrudur? A) a>0 B) c<0 C) a+c=0 D) a 0 E) c>0 A) 12 B) 2 9 C) 10 D) 5 E) 11

1981 ÖSS olduğuna göre, aşağıdakilerden c hangisi kesinlikle doğrudur? A) a>0 B) c<0 C) a+c=0 D) a 0 E) c>0 A) 12 B) 2 9 C) 10 D) 5 E) 11 98 ÖSS. >0 olmak koşulu ile 2+, 3+, 4+ sayıları bir dik üçgenin kenar uzunluklarını göstermektedir. Bu üçgenin hipotenüs uzunluğu kaç birimdir? A) 2 B) 2 9 C) 0 D) 5 E) 2a c 6. 0 olduğuna göre, aşağıdakilerden

Detaylı

TEST. Çemberde Açılar. 1. Yandaki. 4. Yandaki saat şekildeki. 2. Yandaki O merkezli. 5. Yandaki O merkezli. 6. Yandaki. O merkezli çemberde %

TEST. Çemberde Açılar. 1. Yandaki. 4. Yandaki saat şekildeki. 2. Yandaki O merkezli. 5. Yandaki O merkezli. 6. Yandaki. O merkezli çemberde % Çemberde çılar 7. Sınıf Matematik Soru ankası 58. Yandaki merkezli s ( ) = 50c 4. Yandaki saat şekildeki gibi 04.00 ı gösterdiğinde akrep ile yelkovan arasında oluşan x açısı kaç derecedir? ' olduğuna

Detaylı

5. ÜNİTE AÇILAR, ÜÇGENLER VE MESLEKİ UYGULAMALARI

5. ÜNİTE AÇILAR, ÜÇGENLER VE MESLEKİ UYGULAMALARI 5. ÜNİTE ÇILR, ÜÇGENLER VE MESLEKİ UYGULMLRI açılar KONULR 1. çı, çı Türleri ve Mesleki Uygulamaları 2. Tümler ve ütünler çılar ÜÇGENLER 1. Üçgene it Temel ilgiler 2. Üçgen Türleri 3. Üçgenin Yardımcı

Detaylı

7. f(x) = 2sinx cos2x fonksiyonunun. π x 3 2 A) y = 9. f(x) = 1 2 x2 3x + 4 eğrisinin hangi noktadaki teğetinin D) ( 10 3, 4 9 ) E) ( 2 3, 56

7. f(x) = 2sinx cos2x fonksiyonunun. π x 3 2 A) y = 9. f(x) = 1 2 x2 3x + 4 eğrisinin hangi noktadaki teğetinin D) ( 10 3, 4 9 ) E) ( 2 3, 56 , 006 MC Cebir Notları Gökhan DEMĐR, gdemir@ahoo.com.tr Türev TEST I 7. f() = sin cos fonksionunun. f()= sin( + )cos( ) için f'() nin eşiti nedir? A) B) C) 0 D) E) için erel minimum değeri nedir? A) B)

Detaylı

AÇILAR / TEST-1. B, C, E doğrusal = 50 E C. A, B, L doğrusal = 100 = 30 = 40 C 60 D

AÇILAR / TEST-1. B, C, E doğrusal = 50 E C. A, B, L doğrusal = 100 = 30 = 40 C 60 D ÇIR / TST-1 P = [P] m( P ) = //,, doğrusal m( ) = 30 // m( ) m( ) = = 30 d3 // d3 // d4 m( ) = Verilenlere göre, + + ) 250 ) 260 ) 270 ) 280 ) 300 Verilenlere göre, m( ) ) 25 ) 30 ) 35 ) 40 ) 50 10 Verilenlere

Detaylı

6. ABCD dikdörtgeninde

6. ABCD dikdörtgeninde Çokgenler ve örtgenler Test uharrem Şahin. enar sayısı ile köşegen sayısı toplamı olan düzgün çokgenin bir dış açısı kaç derecedir? ) ) 0 ) ) 0 ). Şekilde dikdörtgeninin içindeki P noktasının üç köşeye

Detaylı

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme

Detaylı

[ AN ] doğrusu açıortay olduğundan;

[ AN ] doğrusu açıortay olduğundan; . Bir havuzu bir musluk 6 saatte, başka bir musluk 8 saatte dolduruyor. Bu iki musluk kapalı iken, havuzun altında bulunan üçüncü bir musluk, dolu havuzu saatte boşaltabiliyor. Üç musluk birden açılırsa,boş

Detaylı

KARMAŞIK SAYILAR Test -1

KARMAŞIK SAYILAR Test -1 KARMAŞIK SAYILAR Test -. i olmak üere, i olduğuna göre, Re() kaçtır? B) C) 0 D) E). i olmak üere, 00 0 06 i i i işleminin sonucu aşağıdakilerden hangisine i B) i C) i + D) E) i. i olmak üere, i olduğuna

Detaylı

Öğrenci Seçme Sınavı (Öss) / 19 Nisan Matematik Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 19 Nisan Matematik Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) / 9 Nisan 99 Matematik Soruları ve Çözümleri. Üç basamaklı bir sayının iki basamaklı bir sayıyla çarpımı en az kaç basamaklı bir sayı olur? A) B) C) D) 6 E) 7 Çözüm I. Yol basamaklı

Detaylı

ç Ğ İ Ş İ Ş Ç Ç Ğ Ü ç Ş Ş Ç Ğ Ü İ ç ç Ğ İ Ğ Ö Ö Ğ Ü Ş İ ç Ğ » İ «İ Ç Ğ Ş Ö İ Ü İ Ş Ş» Ğ Ğ Ğ İ İ « İ Ş İç Ö»» Ğ Ş İ İ ç Ğ ç « Ü ğ ğ ğ ğ ğ Ü ğ ğ ğ ğ ğ ç ğ ç ğ Ş ç ğ ğ ç ç ç İ İ ğ ğ ğ ğ ğ ğ ç ğ ğ ç ç ğ ğ

Detaylı

EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ.

EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ. DERS : GEOMETRİ KONU : ÜÇGEN EVVET ARKADAŞLAR HOŞGELDİNİZ BU DERSİMİZDE ÜÇGENLER VE ÖZELLİKLERİNE GÖZ ATACAĞIZ. AMAN SIKILMAYIN NOT BİRAZ UZUN DA :-) Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

DİK ÜÇGEN. şekilde, m(a) = 90. [BC] kenarı hipotenüs. [AB] ve [AC] kenarları. dik kenarlardır. P İSAGOR BAĞINTISI

DİK ÜÇGEN. şekilde, m(a) = 90. [BC] kenarı hipotenüs. [AB] ve [AC] kenarları. dik kenarlardır. P İSAGOR BAĞINTISI DİK ÜÇGEN Bir açısının ölçüsü 90 olan üçgene dik üçgen denir. Dik üçgende 90 nin karşısındaki kenara hipotenüs, diğer kenarlara dik kenar adı verilir. Hipotenüs üçgenin daima en uzun kenarıdır. şekilde,

Detaylı

ÜÇGENDE AÇILAR. Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir.

ÜÇGENDE AÇILAR. Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir. ÜÇGENDE AÇILAR Doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimine üçgen denir. AB] [AC] [BC] = ABC dir. Burada; A, B, C noktaları üçgenin köşeleri, [AB], [AC], [BC] doğru parçaları

Detaylı

TEST: 1. Şekilde verilenlere göre x kaç derecedir? Şekilde verilenlere göre x kaç derecedir? A) 100 B) 110 C) 120 D) 130 E) 140

TEST: 1. Şekilde verilenlere göre x kaç derecedir? Şekilde verilenlere göre x kaç derecedir? A) 100 B) 110 C) 120 D) 130 E) 140 TEST: 1 1. 4. A) 20 B) 30 C) 40 D) 50 E) 60 A) 100 B) 110 C) 120 D) 130 E) 140 2. 5. A) 100 B) 110 C) 120 D) 130 E) 140 A) 96 B) 112 C) 121 D) 128 E) 134 3. 6. A) 40 B) 50 C) 60 D) 70 E) 80 A) 40 B) 50

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI GEOMETRİ TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI GEOMETRİ TESTİ İKKT! SRU KİTPÇIĞINIZIN TÜRÜNÜ LRK VP KÂĞIINIZ İŞRTLMYİ UNUTMYINIZ. MTMTİK SINVI GMTRİ TSTİ 1. u testte 30 soru vardır. 2. evaplarınızı, cevap kâğıdının Geometri Testi için ayrılan kısmına işaretleyiniz.

Detaylı

2000 ÖSS Soruları 2,3 0, ,1 işleminin sonucu kaçtır? 13 E) 11 A) 2 B) 3 C) 4 D) 5 E) 6 O O 2. 3

2000 ÖSS Soruları 2,3 0, ,1 işleminin sonucu kaçtır? 13 E) 11 A) 2 B) 3 C) 4 D) 5 E) 6 O O 2. 3 . 2, 0,2 2, + 0, işleminin sonucu 5. Rakamları birbirinden farklı olan üç basamaklı KM sayısı ve 5 ile kalansız bölünebiliyor. una göre, K kaç farklı değer alabilir? 2 ) 4 ) ) 2 ) ) ) 2 ) ) 4 ) 5 ) 6 2.

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

MEB Ölçme, Değerlendirme ve Sınav Hizmetleri Genel Müdürlüğü MATEMATİK TESTİ ,4 işleminin sonucu kaçtır?

MEB Ölçme, Değerlendirme ve Sınav Hizmetleri Genel Müdürlüğü MATEMATİK TESTİ ,4 işleminin sonucu kaçtır? Ölçme, eğerlendirme ve Sınav Hizmetleri Genel Müdürlüğü MTEMTİ TESTİ. 2 5 20 + 25 işleminin sonucu kaçtır? ) 5 ) 6 5 ) 2 5 ) 27 5. 5 5, işleminin sonucu kaçtır? 9 ) ) 8 ) 6 ) 5 2. 2 Şekilde, verilen modeller

Detaylı

12.SINIF A VE B GRUBU MATEMATİK-GEOMETRİ DERSİ KURS KONULARI VE TESTLERİ

12.SINIF A VE B GRUBU MATEMATİK-GEOMETRİ DERSİ KURS KONULARI VE TESTLERİ .SINIF A VE B GRUBU MATEMATİK-GEOMETRİ DERSİ KURS KONULARI VE TESTLERİ A-TEST SAYILAR- TEMEL KAVRAMLAR A-TEST SAYILAR- POLİNOMLAR B-TEST POLİNOMLAR- PARALEL DOĞRULARDA VE ÜÇGENDE AÇILAR A- B TEST PARALEL

Detaylı

Öğrenci Seçme Sınavı (Öss) / 18 Nisan Matematik Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 18 Nisan Matematik Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) / 8 Nisan 99 Matematik Soruları ve Çözümleri. Bir sayının inin fazlası, aynı sayıya eşittir. Bu sayı kaçtır? A) B) 0 C) D) 0 E) Çözüm Sayı olsun.. + +. Bir sınıftaki toplam öğrenci

Detaylı

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1

ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1 ASAL SAYILAR - TAM BÖLENLER - FAKTÖRİYEL Test -1 1. ve y aralarında asal iki doğal sayıdır. 7 y 11 olduğuna göre, y farkı 5. 364 sayısının en büyük asal böleni A) 3 B) 7 C) 11 D) 13 E) 17 A) B) 3 C) 4

Detaylı

8. SINIF. Soru 1. Soru 2. Soru 3. = 4 ve a+c = 39 eşitlikleri veriliyor. Bu verilenlere göre a kaçtır? Soru 4

8. SINIF. Soru 1. Soru 2. Soru 3. = 4 ve a+c = 39 eşitlikleri veriliyor. Bu verilenlere göre a kaçtır? Soru 4 8. SINIF Soru 1 0,2012 sayısı aşağıdaki aralıkların hangisinde yer alır? A ) (0, 1 10 ) B ) ( 1 10, 1 5 ) C ) (1 5, 1 4 ) D ) ( 1 4, 1 3 ) E ) ( 1 3, 1 2 ) Soru 2 8+ 7 = 8,070 eşitliği verildiğine göre

Detaylı

SBS MATEMATİK DENEME SINAVI

SBS MATEMATİK DENEME SINAVI SS MTEMTİK DENEME SINVI 8. SINIF SS MTEMTİK DENEME SINVI. 4.. Güneş ile yut gezegeni arasındaki uzaklık 80000000 km dir. una göre bu uzaklığın bilimsel gösterimi aşağıdakilerden hangisidir? ),8.0 9 km

Detaylı

1990 ÖYS. 1. si 13 olan si kaçtır? A) 91 B) 84 C) 72 D) 60 E) 52 A) 65 B) 63 C) 56 D) 54 E) 45

1990 ÖYS. 1. si 13 olan si kaçtır? A) 91 B) 84 C) 72 D) 60 E) 52 A) 65 B) 63 C) 56 D) 54 E) 45 990 ÖYS. si olan si kaçtır? A) 9 B) 8 C) D) 60 E) 5. Ağırlıkça %0 si şeker olan 0 kg lık un-şeker karışımına 8 kg daha un eklendiğine göre, yeni şeker (kg) karışımın oranı kaçtır? un (kg) A) B) C) D) E)

Detaylı

NLİTİK EMETRİ lan ve ğırlık Merkezi 5. ölüm Örnek 0 nalitik düzlemde üçgen [] açıorta [] // [] (6 0 (6 (6 (6 0 [H] [] [K] [] H = K = br K ile H üçgenl

NLİTİK EMETRİ lan ve ğırlık Merkezi 5. ölüm Örnek 0 nalitik düzlemde üçgen [] açıorta [] // [] (6 0 (6 (6 (6 0 [H] [] [K] [] H = K = br K ile H üçgenl NLİTİK EMETRİ lan ve ğırlık Merkezi 5. ölüm lan Örnek 0 nalitik düzlemde ( 0 c h b h a h c b ( 0 ( 0 a a h b h a b c h lan( = = = c Yukarıdaki verilenlere göre lan( kaç birimkaredir? 6 8 9 E c b Taban:

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ 1. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için

Detaylı

ÜÇGEN VE KENARLARI ARASINDA BAĞINTILAR

ÜÇGEN VE KENARLARI ARASINDA BAĞINTILAR ÜÇGEN VE KENARLARI ARASINDA BAĞINTILAR 1. Bir üçgende ölçüsü büyük olan açının karşısındaki kenar uzunluğu, ölçüsü küçük olan açının karşısındaki kenar uzunluğundan daha büyüktür. ABC üçgeninde m(a) >

Detaylı

LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI

LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI LYS GNL KTILIMLI TÜRKİY GNLİ NLİN NM SINVI GMTRİ (M-TM) 1. u testte Geometri ile ilgili 30 soru vardır.. evaplarınızı, cevap kâğıdının Geometri Testi için arılan kısmına işaretleiniz. 3. u test için süreniz

Detaylı

Öğrenci Seçme Sınavı (Öss) / 18 Haziran Matematik II Soruları ve Çözümleri. = 1 olur.

Öğrenci Seçme Sınavı (Öss) / 18 Haziran Matematik II Soruları ve Çözümleri. = 1 olur. Öğrenci Seçme Sınavı (Öss) / 8 Haziran 6 Matematik II Soruları ve Çözümleri x, x. f(x) x ise fonksiyonu için,, x olduğuna göre, a b kaçtır? lim + x f ( x) a ve lim x f ( x) b A) B) C) D) E) Çözüm x x için

Detaylı

MATEMATÝK GEOMETRÝ DENEMELERÝ

MATEMATÝK GEOMETRÝ DENEMELERÝ NM 1 MTMTÝK OMTRÝ NMLRÝ 1. o o = 75 ve y = 5 olduğuna göre,. 3 + 8 = 0 sin( y)cos( + y) + sin( + y)cos( y) sin( y)sin( + y) cos( + y)cos( y) denkleminin kaç tane farklı reel kökü vardır? ifadesinin eşiti

Detaylı

FRAKTAL KONU ÖZETİ VE ETKİNLİKLERİ * 2,4,6,8,10...

FRAKTAL KONU ÖZETİ VE ETKİNLİKLERİ * 2,4,6,8,10... FRAKTAL KONU ÖZETİ VE ETKİNLİKLERİ ÖRÜNTÜLER Belirli bir kurala göre devam eden şekil veya sayı dizilimleridir. *,4,6,8,10... Yukarıdaki dizilim ikişer ikişer artarak devam eden bir örüntüdür. 1.adım.adım

Detaylı

Ö.S.S MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ

Ö.S.S MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ Ö.S.S. 7 MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ. Karmaşık sayılar kümesi üzerinde * işlemi, Z * Z Z + Z + Z Z biçiminde tanımlanıyor. Buna göre, ( i) * (+i) işleminin sonucu nedir? A) + 8i B) - 8i C) 8 + i

Detaylı

AOB : [OA başlangıç kenarı, [OB bitim kenarı ( Negatif yön: Saat ibresinin dönme yönü) BOA : [OB başlangıç kenarı, [OA bitim kenarı

AOB : [OA başlangıç kenarı, [OB bitim kenarı ( Negatif yön: Saat ibresinin dönme yönü) BOA : [OB başlangıç kenarı, [OA bitim kenarı TRİGONOMETRİ Trigonometri, üçgenin kenar uzunlukları ve açıları arasındaki ilişkileri inceler. Öncelikle konumuzun en önemli öğesi olan açı kavramını ve özelliklerini gözden geçirelim. AÇI: Başlangıç noktaları

Detaylı

ÖZEL SERVERGAZİ LİSELERİ

ÖZEL SERVERGAZİ LİSELERİ S R İ M Y ÖZL SRVRGZİ LİSLRİ VI. İ L K Ö Ğ R T İ M OKU L L R I R S I MT M Tİ K YRIŞMSI ÇIKLMLR u sınav çoktan seçmeli 5 ve klasik sorudan oluşmaktadır. Sınav süresi 50 dakikadır. Tavsiye edilen süre (5*=05

Detaylı

arşılıklı kenar uzunlukları ve açılarının ölçüleri birbirine eşit olan çokgenlere eş çokgenler denir şlik sembolü dir m () m () 3 cm m () m () m(g) m(h) m() m() 4 2 cm GH H 3 cm G 4 2 cm GH H G Yukarıdaki

Detaylı

KATI CİSİMLER DİK PRİZMALARIN ALAN VE HACİMLERİ 1. DİKDÖRTGENLER PRİZMASI. Uyarı PRİZMA. Üst taban. Ana doğru. Yanal. Yanal Alan. yüz. Yanal.

KATI CİSİMLER DİK PRİZMALARIN ALAN VE HACİMLERİ 1. DİKDÖRTGENLER PRİZMASI. Uyarı PRİZMA. Üst taban. Ana doğru. Yanal. Yanal Alan. yüz. Yanal. TI İSİM İZM İZM irbirine paralel iki düzlem içinde yer alan iki eş çokgensel bölgenin tüm noktalarının karşılıklı olarak birleştirilmesiyle elde edilen cisme İZM denir. İ İZMIN N V HİMİ Tüm dik rizmalarda

Detaylı

Sayısal öğrencisi olan Ali nin bir hafta sonu çözdüğü

Sayısal öğrencisi olan Ali nin bir hafta sonu çözdüğü 13. ( n + 3 )! ( n + )! ( n + 1 )! = 3. 3. 5. 7 15. b olduğuna göre, n kaçtır? 3 6 9 a c d ) 1 ) 3 ) 4 ) 6 ) 8 16 14. V 3 V V 1 Yukarıda verilen düzgün altıgen şeklindeki pistin noktasından belirtilen

Detaylı

TEMEL MATEMATİK TESTİ

TEMEL MATEMATİK TESTİ TEMEL MTEMTİK TESTİ 1. u testte 0 soru vardır.. evaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. 010 YGS / MT 1. 0, 0,0 0,. + 1 ) 1 7 0 ) 1 + 1 1.. ( a+ 1) ( a )

Detaylı

ÖZEL EGE LİSESİ 11. MATEMATİK YARIŞMASI 9. SINIF ELEME SINAVI TEST SORULARI 3. (abc) üç basamaklı, (bc) iki basamaklı doğal sayılardır.

ÖZEL EGE LİSESİ 11. MATEMATİK YARIŞMASI 9. SINIF ELEME SINAVI TEST SORULARI 3. (abc) üç basamaklı, (bc) iki basamaklı doğal sayılardır. . A = {,,,4,5,6 } kümesinin boş olmayan bütün alt kümelerindeki en küçük elemanların aritmetik ortalaması kaçtır? 6 7 8 9 40 A) B) C) D) E) 9 0 0 ÖZEL EGE LİSESİ. MATEMATİK YARIŞMASI. (abc) üç basamaklı,

Detaylı

1983 ÖSS. 6. x.y çarpımında her çarpana 2 eklenirse çarpım ne kadar büyür? işleminin sonucu nedir? A) x+y+2 B) 2(x+y+2) C) x+y D) 2 E) 4

1983 ÖSS. 6. x.y çarpımında her çarpana 2 eklenirse çarpım ne kadar büyür? işleminin sonucu nedir? A) x+y+2 B) 2(x+y+2) C) x+y D) 2 E) 4 198 ÖSS 1. 0,1 0,01 0,04 0,0 0, işleminin sonucu nedir? A) 4 B) 7 C) 15 D) E) 41 6..y çarpımında er çarpana eklenirse çarpım ne kadar üyür? A) +y+ B) (+y+) C) +y D) E) 4. 0,5 11 1, 44 işleminin sonucu

Detaylı

YGS GEOMETRİ DENEME 1

YGS GEOMETRİ DENEME 1 YGS GTİ 1 G 1) G ) şağıdaki adımlar takip edilerek geometrik çizim yapıl- bir üçgen mak isteniyor = = m() = 7 o = 9 cm, = 1 cm, m() = 90 olacak şekilde dik üçgeni çiziliyor = eşitliğini sağlayan Î [] noktası

Detaylı

Öğrenci Seçme Sınavı (Öss) / 15 Nisan Matematik Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 15 Nisan Matematik Soruları ve Çözümleri Öğrenci Seçme Sınavı (Öss) / 5 Nisan 990 Matematik Soruları ve Çözümleri. 0,0703.(0,3 0,) işleminin sonucu kaçtır? A) 0,00703 B) 0,0703 C) 0,703 D) 0,0703 E) 0,00703 Çözüm 0,0703.(0,3 0,) 0,0703.0, 0,00703.

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS 1 GMTRİ TSTİ 1. u testte sırasıyla Geometri (1 ) nalitik Geometri (3 30) ile ilgili 30 soru vardır.. evaplarınızı, cevap kâğıdının Geometri Testi için ayrılan kısmına işaretleyiniz. 1. bir üçgen =

Detaylı

GEOMETRİ TESTİ LYS 1 / GEOMETRİ. ABC bir eşkenar üçgen. G, ABC üçgeninin ağırlık AB = 3 CD

GEOMETRİ TESTİ LYS 1 / GEOMETRİ. ABC bir eşkenar üçgen. G, ABC üçgeninin ağırlık AB = 3 CD LYS 1 / OMTRİ OMTRİ TSTİ 1. u testte 0 soru vardır. 2. u testin cevaplanması için tavsiye olunan süre 60 dakikadır. 1.. bir eşkenar üçgen 1 4 2 5, üçgeninin ağırlık merkezi = x irim karelere bölünmüş düzlemde

Detaylı

SERĠMYA 2011 - IX. ULUSAL ĠLKÖĞRETĠM MATEMATĠK OLĠMPĠYATI. 9. Ulusal. serimya. İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI.

SERĠMYA 2011 - IX. ULUSAL ĠLKÖĞRETĠM MATEMATĠK OLĠMPĠYATI. 9. Ulusal. serimya. İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI. Sayfa1 9. Ulusal serimya İLKÖĞRETİM 7. Ve 8. SINIFLAR ARASI MATEMATİK YARIŞMASI 2011 Sayfa2 1. Bir ABCD konveks dörtgeninde AD 10 cm ise AB CB? m( Dˆ ) 90, ( ˆ) 150 0 0 m C ve m Aˆ m Bˆ ( ) ( ) olarak

Detaylı

Yıldız Teknik Üniversitesi İnşaat Fakültesi Harita Mühendisliği Bölümü TOPOGRAFYA (HRT3351) Yrd. Doç. Dr. Ercenk ATA

Yıldız Teknik Üniversitesi İnşaat Fakültesi Harita Mühendisliği Bölümü TOPOGRAFYA (HRT3351) Yrd. Doç. Dr. Ercenk ATA Yıldız Teknik Üniversitesi İnşaat Fakültesi Harita Mühendisliği Bölümü Ölçek Haritadaki uzunluğun, gerçek uzunluğa oranıdır. 1. Sayısal Ölçek: 1/2000-1: 2000 2. Çizgisel Ölçek: TOPOGRAFYA DERSİNE GİRİŞ

Detaylı

İlkokulu - 3/ Sınıfı *** Matematik *** Geometrik şekiller - 3

İlkokulu - 3/ Sınıfı *** Matematik *** Geometrik şekiller - 3 İlkokulu - 3/ Sınıfı *** Matematik *** Geometrik şekiller - 3 Adım Soyadım : Okul Numaram:. S ü l e y m a n O C A K S ü l e y m a n O C A K S O ü l C e y A m a K n İlkokulu - 3/ Sınıfı *** Matematik ***

Detaylı

1) BU TESTTE TEMEL MATEMATİK VE GEOMETRİ OLMAK ÜZERE, TOPLAM 40 ADET SORU VARDIR. 2) BU TESTİN CEVAPLANMASI İÇİN TAVSİYE EDİLEN SÜRE 40 DAKİKADIR.

1) BU TESTTE TEMEL MATEMATİK VE GEOMETRİ OLMAK ÜZERE, TOPLAM 40 ADET SORU VARDIR. 2) BU TESTİN CEVAPLANMASI İÇİN TAVSİYE EDİLEN SÜRE 40 DAKİKADIR. ) U ESE EEL Eİ VE GEOERİ OL ÜERE, OPL 40 DE SORU VRDIR. ) U ESİN CEVPLNSI İÇİN VSİYE EDİLEN SÜRE 40 DİDIR. ) -(3-x)+4-x=3x+ denkleminin çözüm aşağıdakilerden hangisidir? ) {} ) {} C) {-} D) {0} E) {-,0}

Detaylı

Ü«

Ü« İ İ İ Ş İ Ç İŞ İ İ İİ İ ş ş Ü« Ş çö Ü Ü ş ç ş ş ş ş ş Ü İ ç İş ş Ş ş İ Ş ğ Ö Ç ş Ö İ İŞ ş İş ş ç Ü ş ş ç ğ ş ç ç ş ş ç ş ş ç ş ğ ç ç ç ş ş ş ç ş ş ş ç ş ş ç ş ş ş ğ ş ş ş ğ ğ ğ ş ç ş ş ğ ğ Ş Ç ç ç ğ ş

Detaylı

Temel Matematik Testi - 1

Temel Matematik Testi - 1 Test kodunu sitemizde kullanarak sonucunuzu öğrenebilir, soruların video çözümlerini izleyebilirsiniz. Test Kodu: 00. u testte 0 soru vardır.. Tavsiye edilen süre 0 dakikadır. Temel Matematik Testi -.

Detaylı

11. SINIF 1. DÖNEM 1. YAZILI

11. SINIF 1. DÖNEM 1. YAZILI . SINIF SOYADI : MATEMATİK. DÖNEM. YAZILI DENEME. Aşağıdaki ifadelerden kaç tanesi önermedir? I. Cuma sinemaya gidelim. II. Bugün hava çok güzel. III. Beşiktaş ilk futbol takımıdır. IV. = 00. A) 0 B) C)

Detaylı

SERİMYA II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

SERİMYA II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI SERİMYA - 4 II. MATEMATİK YARIŞMASI I. AŞAMA SORULARI. 4? 4 4. A B denkleminde A ve B birbirinden farklı pozitif tam sayılar olduğuna göre, A + B toplamı kaçtır? işleminin sonucu kaçtır? A) 6 B) 8 C) D)

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

LYS MATEMATİK DENEME - 1

LYS MATEMATİK DENEME - 1 LYS MATEMATİK DENEME - BU SORULAR FİNAL EĞİTİM KURUMLARI TARAFINDAN SAĞLANMIŞTIR. İZİNSİZ KOPYALANMASI VE ÇOĞALTILMASI YASAKTIR, YAPILDIĞI TAKDİRDE CEZAİ İŞLEM UYGULANACAKTIR. LYS MATEMATİK TESTİ. Bu testte

Detaylı

2002 ÖSS Soruları. 5. a, b, c, d pozitif tam sayılar ve 123,4 0, ,234 12,34. işleminin sonucu kaçtır?

2002 ÖSS Soruları. 5. a, b, c, d pozitif tam sayılar ve 123,4 0, ,234 12,34. işleminin sonucu kaçtır? 00 ÖSS Soruları 3,4.,34 0, 34,34 işleminin sonucu kaçtır? ) 0 ) 0, ) 9,9 ) 0, E),. a, b, c, d pozitif tam sayılar ve a 7 a 4 : = c, : = d b 0 b 4 olduğuna göre, c + d nin alabileceği en küçük değer kaçtır?

Detaylı

ÖZEL YUNUS GÜNER FEN ve ANADOLU LĐSESĐ MATEMATĐK OLĐMPĐYATI TAKIM SEÇME SINAVI

ÖZEL YUNUS GÜNER FEN ve ANADOLU LĐSESĐ MATEMATĐK OLĐMPĐYATI TAKIM SEÇME SINAVI ÖZEL YUNUS GÜNER FEN ve NDOLU LĐSESĐ MTEMTĐK OLĐMPĐYTI TKIM SEÇME SINVI Süre: 90 dakika ÖĞRENĐNĐN DI SOYDI: SINVL ĐLGĐLĐ UYRILR: u sınav çoktan seçmeli 32 sorudan oluşmaktadır. Her sorunun sadece bir doğru

Detaylı

Trigonometrik Dönüşümlerin Fiziksel Yorumu

Trigonometrik Dönüşümlerin Fiziksel Yorumu S a y f a 1 Trigonometrik Dönüşümlerin Fiziksel Yorumu Giriş Çoğumuz, trigonometrik dönüşüm formüllerini aklımızda tutmakta güçlük çekiyoruz. Ancak her şeyin bir kolay yolu var. Trigonometrik dönüşüm formüllerini

Detaylı

1998 ÖYS. orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı kaçtır? 1. Üç basamaklı bir x doğal sayısının 7

1998 ÖYS. orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı kaçtır? 1. Üç basamaklı bir x doğal sayısının 7 998 ÖYS. Üç basamaklı bir doğal sayısının 7 katı, iki basamaklı bir y doğal sayısına eşittir. Buna göre, y doğal sayısı en az kaç olabilir? orantılı olacaktır. Bu iki kardeşten büyük olanın bugünkü yaşı

Detaylı

TEMEL MATEMATİK. 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz.

TEMEL MATEMATİK. 1. Bu testte 40 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz. TEMEL MTEMTİK. u testte 0 soru vardır.. evaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına işaretleyiniz.. ir satranç tahtasındaki 6 kareye den 6 e kadar olan doğal sayılar yazılıyor.

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) MTEMTİK TESTİ (Mat )... u testte srasla, Matematik ( ) Geometri ( 0) ile ilgili 0 soru vardr.. evaplarnz, cevap kâğdnn Matematik Testi için arlan ksmna işaretleiniz. f, 0 ise =, = 0 ise fonksionu için,

Detaylı

5. SINIF A)8 B)8,1 C)8,2 D)8,3 E)8,4

5. SINIF A)8 B)8,1 C)8,2 D)8,3 E)8,4 5. SINIF Soru 1 9, 0, 7, 4 rakamları kullanılarak elde edilen, rakamları birbirinden farklı dört basamaklı, en büyük çift doğal sayı ile en küçük çift doğal sayının farkı kaçtır? A)4950 B)4560 C)4260 D)4205

Detaylı

Açıların Özellikleri ve Ölçü Birimleri

Açıların Özellikleri ve Ölçü Birimleri çıların Özellikleri ve Ölçü irimleri 1. ÜNİT ÇIRIN ÖZİRİ V ÖÇÜ İRİRİ çı; aynı başlangıç noktasından çıkan iki ışının oluşturduğu geometrik şekildir. [O ve [O ışınlarına açının kenarları denir. O noktası

Detaylı

4 BÖLÜNEBÝLME KURALLARI ve BÖLME ÝÞLEMÝ

4 BÖLÜNEBÝLME KURALLARI ve BÖLME ÝÞLEMÝ ÖLÜNÝLM KURLLRI ve ÖLM ÝÞLMÝ YGS MTMTÝK. Rakamları farklı beş basamaklı 8y doğal sayısı 3 ile tam bölünebildiğine göre, + y toplamı kaç farklı değer alabilir?(). ltı basamaklı y tek doğal sayısının hem

Detaylı

olmak üzere C noktasının A noktasına uzaklığı ile AB nin orta dikmesine olan uzaklığının oranının α değerinden bağımsız olduğunu gösteriniz.

olmak üzere C noktasının A noktasına uzaklığı ile AB nin orta dikmesine olan uzaklığının oranının α değerinden bağımsız olduğunu gösteriniz. GOMTRİ 05/0/0. bir üçgen m() =, m() = 90 +, = 5 br, = 7 br, olduğuna göre = x kaç br dir? 5 m 9 0 m 9 0 5 90+ 7 x Çözüm: den ye çıkılan dikmenin doğrusunu kestiği nokta olsun. bir dik üçgen ve bir ikizkenar

Detaylı

SERİMYA 2003 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI

SERİMYA 2003 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI SERİMYA 00 I. MATEMATİK YARIŞMASI I. AŞAMA SORULARI. + + 5 0 + + + 0 40 toplamının sonucu kaçtır? A) 5 B) C) D) E) + 4. a,b,c Z olmak üzere, a + b + c 7 = 6 ise, a.b.c kaçtır? A) 6 B) 8 C) D) 6 E) 8 y.

Detaylı

TRİGONOMETRİK DENKLEMLER

TRİGONOMETRİK DENKLEMLER TRİGONOMETRİK DENKLEMLER Daha önceden Sin + Cos = 1 ifadesinin R için gerçekleştiğini biliyoruz. Bu tür eşitliklere Özdeşlik adını verdiğimizi biliyorsunuz. Fakat ; Sin = 0 ve tan = 0 gibi eşitlikler R

Detaylı

ÖZEL EGE LİSESİ 10. MATEMATİK YARIŞMASI 7. SINIF TEST SORULARI

ÖZEL EGE LİSESİ 10. MATEMATİK YARIŞMASI 7. SINIF TEST SORULARI 4. + :. 4 7 7 7 =? + : 6 4. x, y, z, a, b, c Z olmak üzere x+a = y+b = z+c= - bağıntısı vardır. x,y,z sayılarının aritmetik ortalaması olduğuna göre, a, b, c sayılarının aritmetik ortalaması kaçtır? A)

Detaylı

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI SORU 1. Köşeleri (1,4) (3,0) (7,2) noktaları olan ABC üçgeninin bir ikizkenar dik üçgen (İpucu:, ve vektörlerinden yararlanın) SORU 2. Bir ABC üçgeninin

Detaylı

TÜREVİN GEOMETRİK YORUMU

TÜREVİN GEOMETRİK YORUMU TÜREVİN GEOMETRİK YORUMU f :R R, =f ( fonksionuna düzlemde A karşılık gelen f( +h eğri anda ki =f( P gibi olsun. f( Eğrinin P(,f( noktasındaki teğetlerini +h araştıralım. Bunun için P(,f( noktasının sağıda

Detaylı

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14.

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14. 1. Ünite: Polinomlar Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Polinomlarda Bölme, Bölüm ve Kalan Bulma 1 1 1 1 1 1 1 1 1

Detaylı

Genel Yetenek - Matematik KAMU PERSONELİ SEÇME SINAVI KPSS. GENEL KÜLTÜR ve GENEL YETENEK

Genel Yetenek - Matematik KAMU PERSONELİ SEÇME SINAVI KPSS. GENEL KÜLTÜR ve GENEL YETENEK 1 KAMU PERSONELİ SEÇME SINAVI KPSS GENEL KÜLTÜR ve GENEL YETENEK KPSS Sınavına hazırlık dosyalarımız son 3 yılda yapılan sınavlarda çıkmış sorular baz alınarak hazırlanmıştır. İtinalı çalışmalarımıza rağmen

Detaylı