CEB RSEL TOPOLOJ. Ders Notlar

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "CEB RSEL TOPOLOJ. Ders Notlar"

Transkript

1 CEB RSEL TOPOLOJ Prof. Dr. smet KARACA Ders Notlar

2 çindekiler 1 HOMEOMORF ZM 2 2 DENT F KASYON UZAYLAR 11 3 BÖLÜM UZAYLARI 17 4 HOMOTOP 24 5 TEMEL GRUPLAR 32 6 ÖRTÜLÜ UZAYLAR 37 7 ÇEMBER N TEMEL GRUBU 42 8 DEL NM DÜZLEM N TEMEL GRUBU 47 9 S n ' N TEMEL GRUBU YÜZEYLER N TEMEL GRUBU AYNI HOMOTOP T P NE SAH P UZAYLAR S MPLEKSLER SIMPLICIAL KOMPLEKSLER 67 1

3 Bölüm 1 HOMEOMORF ZM Tanm X ve Y birer topolojik uzay olmak üzere f : X Y bijektif olsun. E er f ve f nin tersi f 1 sürekli ise f fonksiyonuna homeomorzm denir. E er f : X Y fonksiyonu homeomorzm ise X uzay Y uzayna homeomorktir denir ve X Y ile gösterilir. Örnek [a, b] [c, d] oldu unu gösteriniz. Çözüm: f : [a, b] [c, d] x f(x) = c + d c (x a) b a ile tanmlansn. f homeomorzmadr. i) f bijektiftir: x 1, x 2 [a, b] için f(x 1 ) = f(x 2 ) c + d c b a (x 1 a) = c + d c b a (x 2 a) x 1 = x 2 Böylece f bire birdir. y [c, d] için f(x) = y olacak ³ekilde x [a, b] vardr: f(x) = y c + d c a (x a) = y x = a + (y c)b b a d c Dolaysyla f örtendir. Sonuç olarak f bijektiftir. [a, b] 2

4 ii) f ve f 1 süreklidir: 1.Yol: f(x) = c+ d c b a (x a), f 1 (x) = a+ b a (x c) fonksiyonlar, x birim fonksiyonunun sabit bir fonksiyonla çkarlmas, toplanmas, çkarlmas d c ve çarpmlar ³eklinde yazlabildi inden bu fonksiyonlar süreklidirler. 2.Yol: f : ([a, b], τ [a,b] ) ([c, d], τ [c,d] ) süreklidir V τ [c,d] için f 1 (V ) τ [a,b] (e, q) τ d olmak üzere (e, q) [a, b] τ [a,b] = (e, q) [a, b] = [a, q) (k, l) τ d olmak üzere (k, l) [c, d] τ [c,d] = (k, l) [c, d] = [c, l) (k, l) τ [c,d] için; f 1 (k) = a + b c d c f 1 (l) = a + b c d c a < e ve q < b e < a ve b < q e < a < q < b (e, b] a < e < b < q e, q < a veya b < e, q. c < k ve l < d k < c ve d < l k < c < l < d (k, d] c < k < d < l k, l < c veya d < k, l. (k c); c < k < d oldu undan k c d c < 1 a < f 1 (k) < b (l c) c < l < d oldu undan l c d c < 1 a < f 1 (l) < b. f 1 ((k, l)) = (e, q) τ [a,b], a < e < q < b [c, d] τ [c,d] için; f 1 (c) = a, f 1 (d) = b f 1 ([c, d]) = [a, b] τ [a,b] [c, l) τ [c,d] için; f 1 (c) = a, f 1 (l) = a + b a (l c), k < c < l < d d c oldu undan l c d c < 1 a < f 1 (l) < b f 1 ([c, l)) = [a, q) τ [a,b] 3

5 (k, d] τ [c,d] için; f 1 (d) = b, f 1 (k) = a + b c (k c), c < k < d < l d c oldu undan k c d c < 1 a < f 1 (l) < b f 1 ((k, d]) = (e, b] τ [a,b] fsüreklidir. Benzer ³ekilde f 1 'in süreklili i de gösterilebilir. Sonuç olarak f homeomorzmadr. Örnek f : ( 1, 1) R x f(x) = Çözüm: i) f bijektiftir: x 1, x 2 ( 1, 1) için x 1 x 2 homeomorzma mdr? Böylece f bire birdir. f(x 1 ) = f(x 2 ) x 1 1 x 2 1 = x 2 1 x 2 2 x 1 = x 2 y R için f(x) = y olacak ³ekilde x ( 1, 1) vardr: f(x) = y Böylece f örtendir. ii) f ve f 1 süreklidir: x 1 x = y 2 yx2 + x y = 0 x = y 2 2y τ ( 1,1) = ( 1, 1) (a, b) = ( 1, 1) a < 1 < 1 < b (a, b) 1 < a < b < 1 ( 1, b) a < 1 < b < 1 (a, 1) 1 < a < 1 < b a, b < 1 1 < a, b f 1 (x) = (a, b) τ d için f 1 ((a, b)) τ ( 1,1)? { x 2 2x x 0 0 x = 0 f 1 (a) = a 2. 2a 4

6 Örnek S 1 = {(x, y) R 2 x 2 + y 2 = 1} ve K = {(x, y) R 2 x + y = 1} olsun. S 1 K oldu unu gösteriniz. Çözüm: f : S 1 K (x, y) f(x, y) = ekil 1.1: Çember kareye homeomorftur ( ) x, y x + y x + y x x 1 = x + y ve y 1 = y ise, bu durumda x + y x y x + y = x + y + x + y = x 2 +2 x y + y 2 = ( x + y )2 = 1 ( x + y ) 2 ( x + y ) 2 O halde x 1 ve y 1 noktalar karenin üzerindedir. i) Her (x 1, y 1 ) = (x 2, y 2 ) S 1 için ( x 1 f(x 1, y 1 ) = x 1 + y 1, y ) 1 x 2 = Big( x 1 + y 1 x 2 + y 2, y ) 2 = x 2 + y 2 f(x 2, y 2 ) Böylece f iyi tanmldr. ( ii) Her x 1 x 1 + y 1, y 1 x 1 + y 1 ) (, x 2 x 2 + y 2, y 2 x 2 + y 2 ) K için x 1 x 1 + y 1 = x 2 x 2 + y 2 x 1 = x 2 y 1 x 1 + y 1 = y 2 x 2 + y 2 y 1 = y 2 Böylece f bire birdir. 5

7 iii) Her (k, t) K için f(x, y) = (k, t) olacak ³ekilde (x, y) S 1 vardr: ( x f(x, y) = x + y, y ) x = (k, t) k = x + y x + y t = y x + y k 2 x 2 = ( x + y ), y 2 2 t2 = olmak üzere ( x + y ) 2 k 2 + t 2 = x2 + y 2 ( x + y ) 1 2 ( x + y ) = 2 k2 + t 2 x + y = S 1. Böylece f örtendir. { 1 x = k2 + t 2 y = k k 2 +t 2 t k 2 +t 2 iv) f ve f 1 : K S 1 ( süreklidir. ) (x, y) f 1 (x, y) = x, y x 2 +y 2 x 2 +y 2 (, x 2 +y 2 k = 1 k2 + t, t ) 2 k2 + t 2 Lemma ) Homeomorf iki fonksiyonun bile³kesi yine homeomorftur. 2) Homeomorf fonksiyonun tersi de homeomorftur. 3) Birim dönü³üm 1 : (X, τ 1 ) (X, τ 2 ) homeomorf τ 1 = τ 2. spat: 1) X Y, Y Z X Z: f : X Y, g : Y Z homeomorf olsun. g f : X Z homeomorzmadr. Çünkü; f ve g bijektif ise g f de bijektif, f ve g sürekli ise g f de süreklidir. 2) X Y Y X: f : X Y homeomorzma olsun. O halde f bijektif ve sürekli, f 1 de süreklidir. f 1 : Y X sürekli, örten, (f 1 ) 1 = f sürekli, f oldu undan f 1 de homeomorzmadr. Y X 3)( :) 1 X : (X, τ 1 ) (X, τ 2 ) homeomorzm, V τ 2 olsun. 1 1 X (V ) = V açktr; çünkü homeomorzm vardr. Bu durumda V τ 1. O halde τ 2 τ 1...(1) U τ 1 olsun. 1 X (U) = (1 1 X ) 1 = U τ 2 ; çünkü 1 X homeomorzmdir ve bu sebeple 1 1 X süreklidir. Bu durumda τ 1 τ 2...(2) (1) ve (2)den τ 1 = τ 2. ( :) τ 1 = τ 2 olsun. Yansma özelli inden dolay 1 X : (X, τ 1 ) (X, τ 2 ) 6

8 homeomorzmdir. Sonuç Homeomorzma ba nts bir denklik ba ntsdr. Önerme f : X Y homeomorzma, A X olsun. (i) A, X de kapal f(a), Y de kapal (ii) f(a) = [f(a)] (iii) f(a ) = [f(a)] spat: (i)( :) Teorem: f homeomorzma f kapal sürekli fonksiyondur. A X kapal olsun. O halde f kapal sürekli fonksiyon oldu undan f(a), Y de kapaldr. ( :) Teorem: f : X Y sürekli ise K K Y için f 1 (K) K X dir. f homeomorzma oldu undan f 1 sürekli fonksiyondur. f(a) Y kapal olsun. O halde f 1 sürekli oldu undan f 1 (f(a)), X de kapaldr. f 1 (f(a)) = A oldu undan A X de kapaldr. (ii) f(a) = [f(a)] f(a) [f(a)](?) [f(a)] f(a)(?) [f(a)] f(a) A X için A A f(a) f(a) f(a) f(a) f kapal fonksiyon oldu undan A K X için f(a) K Y dir. O halde f(a) = f(a) dr. [f(a)] f(a) f(a) f(a) Y uzaynda f(a) y kapsayan kapal küme K olsun. Yani f(a) K olsun. Bu durumda A f 1 (f(a)) f 1 (K ), f 1 sürekli oldu undan f 1 (K ) kapaldr. O halde; A, A y kapsayan en küçük kapal küme oldu undan A A f 1 (K ) dür. f(a) f(f 1 (K )) K ve seçilen K kapals f(a) seçilebilece inden f(a) f(a) dr. (iii) f(a ) = [f(a)] f(a ) [f(a)] [f(a)] f(a ) f(a ) [f(a)] A X için A A dr. O halde f(a ) f(a) dr. f(a) Y nin kapsad 7

9 en büyük açk küme [f(a)] oldu undan; f(a ) [f(a)] olmak zorundadr. [f(a)] f(a ) Bu ³kkn ispat al³trma olarak okuyucuya braklm³tr. Teorem X kompakt, Y Hausdor ve f : X Y sürekli, bijektif fonksiyon olsun. O zaman f homeomorzmadr. spat: f 1 in sürekli oldu unu göstermemiz gereklidir. Yani f nin kapal veya açk dönü³üm oldu unu göstermeliyiz. C, X te kapal olsun. X kompakt oldu undan C de kompakttr. (Kompakt uzaylarn kapal alt uzaylar da kompakttr.) f(c), Y de kompakttr. (Kompakt uzayn sürekli dönü³üm altnda görüntüsü kompakt oldu undan Y de kompakttr.) f(c), Y de kapaldr. (Hausdor uzayn kompakt alt uzay kapaldr.) 8

10 ALI TIRMALAR 1) Herhangi iki a, b R(a < b) saylar için [0, 1) [a, b) (0, 1] (a, b] oldu unu gösteriniz. 2) [0, 1) [0, ) ve (0, 1) (0, ) oldu unu gösteriniz. 3) f : ( 1, 1) R homeomorzma mdr? Açklaynz. x f(x) = x 1 x 2 4) Reel do runun herhangi iki açk aral homeomorftur. Gösteriniz. 5) S herhangi bir topolojik uzay ise, bu takdirde h : ( 1, 1) S ve j : R S sürekli dönü³ümleri arasnda bire bir e³leme vardr; ve h 1 : S ( 1, 1) ve j 1 : S R sürekli dönü³ümleri arasnda bire bir e³leme vardr. spatlaynz. 6) f : S T bir homeomorzm ve g : T U bir homeomorzm ise, bu takdirde g f : S U bir homeomorzmdir. spatlaynz. 7) A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, R, S, T, U, V, W, Y, Z olmak üzere alfabenin elemanlarndan hangileri birbirine homeomorftur? 8) 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rakamlarnn hangileri birbirine homeomorftur? 9) S = {1, 2} kümesi üzerinde discrete topoloji ve T = {1, 2} kümesi üzerinde indiscrete topoloji tanmlanm³ olsun. g : T S bir bijeksiyon ise S ve T homeomorf mudur? 10) S 1 = {(x 1, x 2 ) R 2 x x 2 2 = 1} ve T = {x 1, x 2 ) R 2 x 1 + x 2 = 1} kümeleri verilsin. S 1 T oldu unu gösteriniz. 11) S 1 in [0, 1] kapal aral na homeomorf olmad n gösteriniz. 12) V = (0, 1] (2, 3] (4, 5]... ve f : V V x x (0, 1] 2 x 1 f(x) = x (2, 3] 2 x 2 di er durumlarda 9

11 ile tanmlansn. f bir homeomorzm midir? 10

12 Bölüm 2 DENT F KASYON UZAYLAR (X, τ) bir topolojik uzay, Y herhangi bir küme ve p : X Y örten bir fonksiyon olsun. τ = {V Y p 1 (V ) τ} kolleksiyonunun Y üzerinde bir topoloji oldu unu iddia ediyoruz: t 1 ) p 1 ( ) = τ τ, p 1 (Y ) = X τ Y τ t 2 ) {V i } i I τ i I p 1 (V i ) τ i I p 1 (V i ) τ p 1 ( V i ) τ V i τ i I i I t 3 ) U, V τ p 1 (U), p 1 (V ) τ p 1 (U) p 1 (V ) τ p 1 (U V ) τ U V τ Tanm Y üzerinde olu³turulan τ topolojisine identikasyon topolojisi denir. (Y, τ ) topolojik uzayna (X, τ) uzaynn identikasyon uzay, p : (X, τ) (Y, τ ) dönü³ümüne identikasyon dönü³ümü denir. Önerme V Y, Y de açktr p 1 (V ), X de açktr p : X Y identikasyon dönü³ümüdür. Not Bu önerme mevcut ise p : X Y identikasyon dönü³ümdür. ( :) yönü süreklili i belirtir. ( :) yönü baz kitaplarda açklk ile denk tutulur fakat bu genelde do ru de- ildir. 11

13 Örnek X = {1, 2, 3}, τ = {X,, {1}, {1, 2}, {1, 3}}, Y = {a, b} olsun. p : X Y 1 p(1) = a 2 p(2) = b 3 p(3) = a dönü³ümü örtendir. Bu dönü³üm sürekli midir? p üzerindeki topolojiyi belirleyiniz. Çözüm: τ = {, Y, {a}} alalm. p bu topoloji üzerinde identikasyon dönü³ümdür. p sürekli dönü³ümdür. p 1 ( ) = τ p 1 (Y ) = X τ p 1 ({a}) = {1, 3} τ Örnek C [0, 1] olmak üzere χ C : [0, 1] [0, 1] dönü³ümü { 1 t C t χ C (t) = 0 t / C ile tanmlansn. χ C identikasyon dönü³üm müdür? Çözüm: C [0, 1] olsun. τ S, R üzerindeki standart topoloji olmak üzere τ [0,1] = {[0, 1] V V τ S }. C, C = [0, 1] Q alalm. τ = {, {0, 1}} seçilirse (kümeyi {0, 1} [0, 1] seçti) χ 1 C ( ) =, χ 1 C ({0, 1}) = [0, 1] τ [0,1] oldu undan χ C süreklidir. χ C ([0, 1] V ) = χ C ([0, 1] (a, b)) = {0, 1} a = 0,b = 1 a, b < 0 a, b > 1 (a, b) 0 < a < b < 1 O halde χ C açktr. Sonuç olarak χ C identikasyon dönü³ümdür. Teorem p : X Y örten ve sürekli fonksiyon olsun. E er p dönü³ümü açk ya da kapal dönü³üm ise p identikasyon dönü³ümdür. spat: p : X Y örten, sürekli ve açk dönü³üm olsun. p identikasyon dönü³üm : V Y, Y de açk p 1 (V ), X de açk? ( :) p sürekli oldu undan a³ikardr. ( :) p 1 (V ), X de açk olsun. p açk dönü³üm oldu undan p(p 1 (V )), Y de açktr. p örten dönü³üm oldu undan p(p 1 (V )) = V dir. O halde V, Y de açktr. 12

14 Örnek p : R S 1 R 2 t p(t) = e 2πit = (cos 2πt, sin 2πt) Çözüm: p örtendir: y = (y 1, y 2 ) S 1 için f(t) = y (cos 2πt, sin 2πt) = (y 1, y 2 ) t = 1 2π arctan y 1 R y 2 p süreklidir: p 1 (t) = cos 2πt sürekli, p 2 (t) = sin 2πt sürekli p = (p 1 (t), p 2 (t)) süreklidir. p hem açk hem de kapal dönü³ümdür. Bu ispat okuyucuya braklm- ³tr. Sonuç olarak Teorem gere ince p identikasyon dönü³ümdür. Örnek π 1 : R R R (x, y) π 1 (x, y) = x Çözüm: π 1 örtendir: z R için π 1 (x, y) = z x = z, y R olacak ³ekilde (x, y) R R π 1 süreklidir: V R açk için π 1 1 (V ) = V R R R de açk π 1 açktr: W = U V R R açk için π 1 (W ) = U, R de açk O halde π 1 identikasyon dönü³ümdür. Fakat π 1 kapal dönü³üm de ildir. K = {(x, y) R 2 y = 1 x }, R2 de kapal iken, π 1 (K) = (, 0) (0, ) R de kapal de ildir. Teorem Y topolojik uzay, X topolojik uzaynn identikasyon uzay ve Z topolojik uzay Y uzaynn identikasyon uzay olsun. O zaman Z, X in identikasyon uzaydr. spat: p : X Y, q : Y Z identikasyon dönü³ümü olsun. k : X Z identikasyon dönü³ümdür ( V Z de açk k 1 (V ) X de açk) önermesini kullanaca z (Önerme 2.0.2). ( :) V, Z de açk olsun. k = q p : X Z dir. k 1 (V ) = (q p) 1 (V ) = p 1 (q 1 (V )) 13

15 q identikasyon dönü³üm oldu undan q 1 (V ), Y de açktr. p identikasyon dönü³üm oldu undan p 1 (q 1 (V )), X de açktr. k 1 (V ), Xde açktr. ( :) k 1 (V ), Xde açk olsun. k 1 (V ) = p 1 (q 1 (V )) açk olmas için q 1 (V ) nin açk olmas gerekmektedir. q identikasyon dönü³üm oldu undan V Z de açktr. Teorem p : X Y identikasyon dönü³üm olsun. Herhangi bir Z uzay için; k : Y Z süreklidir k p : X Z süreklidir. spat: ( :) k ve p sürekli oldu undan k p : X Z süreklidir. ( :) k p : X Z sürekli olsun. V Z açk için k 1 (V ), Y de açk mdr? (k p) 1 (V ), k p sürekli oldu undan, Xde açktr. (k p) 1 (V ) = p 1 (k 1 (V ))in Xde açk olmas için k 1 (V )nin Y de açk olmas gerekmektedir. Çünkü p identikasyon dönü³ümdür. Teorem p : X Y identikasyon dönü³üm olsun. g : X Z a³a daki özelli e sahip sürekli fonksiyon olsun: x, x X için p(x) = p(x ) g(x) = g(x ). vardr. O zaman h p = g olacak ³ekilde bir tek h : Y Z sürekli fonksiyonu spat: h : Y Z y h(y) = g(p 1 (y)) olsun. h iyi tanml, sürekli ve örtendir. Sonuç p : X Y, q : X Z identikasyon dönü³üm ise Y Zdir. spat: h : Y Z olsun. 1) h bijektif mi? k : Z Y olsun. k h = 1 Y h, 1 1 ve h k = 1 Z h, örten oldu unu göstemeliyiz. X q = h p ve p = k q göz önüne alalm. q p Z k Y 14

16 (h k) q = h (k q) = h p = q = 1 Z q h örten (k h) p = k (h p) = k q = p = 1 Y p h, 1 1 h bijektif 2) kinci teoremden q = h p sürekli h sürekli 3) kinci teoremden p = h 1 q sürekli h 1 sürekli 15

17 ALI TIRMALAR 1) X = {a, b, c, d}, τ X = {, X, a, a, b, b, c, d, b}, Y = {0, 1} olmak üzere f : X Y f(a) = f(c) = 0, f(b) = f(d) = 1 dönü³ümünü sürekli klan, Y üzerindeki en geni³ topolojiyi bulunuz. 2) a) Açk dönü³üm olmayan bir identikasyon dönü³ümü örne i bulunuz. b) Kapal dönü³üm olmayan bir identikasyon dönü³ümü örne i bulunuz. 16

18 Bölüm 3 BÖLÜM UZAYLARI Tanm X bir küme ve R, X üzerinde bir denklik ba nts olsun. X/R bir bölüm kümesidir. q R : X X/R bölüm dönü³ümü kanonik dönü³ümdür. (Her zaman örten olan dönü³ümlere kanonik dönü³üm ya da do al dönü³üm denir.) X/R = [x] R = {z X xrz} (X, τ) bir topolojik uzay olsun. q R : X X/R bölüm dönü³ümünü sürekli klan Y üzerindeki en geni³ topoloji τ = {V X/R : q 1 R (V ) τ} dr ve bu topolojiye bölüm topolojisi denir. (X/R, τ ) identikasyon uzayna da (X, τ) nun bölüm uzay denir. Örnek I = [0, 1], xry x = y = 0 veya 1 olsun. dönü³ümü bölüm dönü³ümüdür. identikasyon dönü³ümdür. q R : [0, 1] [0, 1]/R x q R (x) = [x] R p : [0, 1] S 1 t p(t) = e 2iπt Sonuç2.0.1'den yararlanarak [0, 1]/R S 1 oldu unu söyleyebiliriz. olsun. p : [0, 1]/R S 1 [x] R p([x] R ) = p(x) = e 2iπx 17

19 i) p, bijektif dönü³ümdür: p([x] R ) = p([y] R ) e 2iπx = e 2iπy cos 2πx = cos 2πy sin 2πx = sin 2πy x = y + k, k = 0, 1 x y [x] R = [y] R p, örten: p ve q örten oldu undan p = p q 1 R ii) p sürekli p = p q R sürekli (Teorem 2.0.4) iii) p 1 sürekli q R = p 1 p sürekli (Teorem 2.0.4) Örnek A³a daki gibi verilen identikasyon dönü³ümdür. identikasyon dönü³ümdür. p : I I I S 1 (s, t) p(s, t) = (s, e 2iπt ) örtendir. q : I I I I/R (s, t) q(s, t) = p(s, t) = (s, e 2iπt ) f b a k e d c p k f=e a=c b=d h l g h=g ekil 3.1: Silindir I I/R I S 1 dir. dönü³ümü homeomorzmadr. p : I I/R I S 1 [s, t] R p([s, t] R ) = p(s, t) = (s, e 2iπt ) 18

20 Örnek p : I I S 1 S 1 (s, t) (e 2πis, e 2πit ) q : I I I I/R (s, t) q(s, t) = [(s, t)] R p : I I/R S 1 S 1 [s, t] R p([s, t] R ) = p(s, t) homeomorzmadr. Örnek Mobius eridi: M b yönlendirilemeyen manifolddur. p : I I I I/, (0, s) (1, 1 s) ekil 3.2: Mobius eridi 19

21 Örnek Projektif Düzlem: Topun merkezinden geçecek ³ekilde topun yüzeyine batrlan ³i³ler projektif düzlemdir. p : S 2 S 2 /, x S 2 : x x ekil 3.3: Reel Projektif Düzlem 20

22 Örnek Klein i³esi: K b yönlendirilemeyen manifolddur. p : I I I I/, (0, t) (1, t), (s, 0) (1 s, 1) ekil 3.4: Klein i³esi 21

23 Bir Topolojik Uzayn Süspansiyonu: Tanm X topolojik uzay ve I = [0, 1] olmak üzere; X I X I/X {0, 1} = ΣX bölüm uzayna X in süspansiyonu denir. Örnek X = S 1 alnrsa; S 1 I/S 1 {0, 1} = S 2 dir. Yani çemberin süspansiyonu küredir. ΣS 1 = S 2 ΣS n 1 = S n Tanm f : X Y sürekli verilsin. X I Y/ : x f(x) olmak üzere f dönü³ümüne silindir dönü³ümü denir. Örnek X I = S 1 I alnrsa; silindir dönü³ümü elde edilir. 22

24 ALI TIRMALAR 1), bir X topolojik uzay üzerinde denklik ba nts ve R = {(x, y) X X x y} olsun. π : X X/ do al dönü³üm olsun. Bu durumda; a) X/, H-uzay ise R X Xin kapal oldu unu gösteriniz. b) R X X kapal ve π : X X/ açk dönü³üm ise X/ nn H-uzay oldu unu gösteriniz. c) R X X açk ise, ix : X {x} X y i X (y) = (x, y) dönü³ümü X ile {x} X uzaylarn homeomorf klyor olmak üzere X/ üzerindeki bölüm topolojisinin discret oldu unu gösteriniz. 2) π 1 : R 2 R (x, y) π 1 (x, y) = x izdü³üm fonksiyonu verilsin. a) X = (0 R) (R 0) R 2 alt uzay ve g = π 1 X olsun. g nin kapal bir dönü³üm oldu unu fakat açk olmad n gösteriniz. b) Y = (R + R) (R 0) R 2 alt uzay ve h = π 1 /Y olsun. h n kapal bir dönü³üm olmad n ancak bölüm dönü³ümü oldu unu gösteriniz. 3) g : R 2 R + = [0, ) (x, y) g(x, y) = x 2 + y 2 biçiminde tanmlanan g dönü³ümünün bölüm dönü³ümü oldu unu gösteriniz. 4) g : R 2 R (x, y) g(x, y) = x + y 2 biçiminde tanmlanan g dönü³ümünün bölüm dönü³ümü oldu unu gösteriniz. 5) p : X Y bir sürekli dönü³üm olsun. p f = 1 Y olacak ³ekilde sürekli bir f : Y X dönü³ümü mevcutsa, p bir bölüm dönü³ümüdür. Gösteriniz. 6) Retraksiyonun bir bölüm dönü³ümü oldu unu gösteriniz. 7) π 1 : R R R birinci koordinat üzerine izdü³üm fonksiyonu olsun. R R nin A alt uzay ³u ³ekilde tanmlansn: A = {x y x 0 ya da y = 0}. q : A R, π 1 in kstlan³ olsun. q nun bir bölüm dönü³ümü oldu unu, fakat açk dönü³üm olmad n gösteriniz. 23

25 Bölüm 4 HOMOTOP Tanm X, Y iki topolojik uzay, f, g : X Y sürekli iki dönü³üm ve I = [0, 1] olsun. x X için H(x, 0) = f(x) ve H(x, 1) = g(x) olacak ³ekilde bir H : X I Y sürekli dönü³ümü varsa f dönü³ümü g dönü³ümüne homotoptur ve H ye homotopi dönü³ümü denir. Tanm x 0,x 1 X noktalar için f(0) = x 0 ve f(1) = x 1 olacak ³ekilde bir f : I X sürekli dönü³üm varsa, f ye x 0 dan x 1 e giden bir yol denir. Örnek A³a daki dönü³ümler birer yoldur: f : I S 1 t f(t) = (cos 2πt, sin 2πt) g : I R 2 t g(t) = (t, t 2 ) h : I R 2 t h(t) = (cos 2πt, 2 sin 2πt) Tanm f, g : I X, ba³langç noktalar f(0) = g(0) = x 0 ve biti³ noktalar f(1)=g(1) = x 1 olan iki yol olsun. H(s, 0) = f(s), H(s, 1) = g(s), H(0, t) = x 0 ve H(1, t) = x 1 olacak ³ekilde bir H : I I X sürekli dönü³ümü varsa f ve g ye yol homotopik dönü³ümler denir ve f p g ile gösterilir. 24

26 Lemma p ve ba ntlar birer denklik ba ntsdr. spat: ba ntsnn denklik ba nts oldu unu gösterelim. 1. ba nts yansmaldr: f : X Y sürekli dönü³üm olsun. O zaman; H : X I Y, H(x,t)=f(x) dönü³ümü de süreklidir. Ayrca H(x, 0) = f(x) ve H(x, 1) = f(x) ko³ullar sa lanr. Buradan f f dir. 2. ba nts simetriktir: f g olsun. O zaman; H(x, 0) = f(x), H(x, 1) = g(x) olacak ³ekilde H : X I Y sürekli dönü³ümü vardr. F : X I Y, F (x, t) = H(x, 1 t) sürekli dönü³ümünü tanmlayalm. F (x, 0) = H(x, 1) = g(x) ve F (x, 1) = H(x, 0) = f(x) sa land için ve H sürekli oldu undan F de süreklidir ve g f dir. 3. ba nts geçi³melidir: h, g, f : X Y sürekli dönü³ümler olsunlar. f g ve g h olsun. O zaman H(x, 0) = f(x), H(x, 1) = g(x) olacak ³ekilde H : X I Y sürekli dönü³ümü ve G(x, 0) = g(x), G(x, 1) = h(x) olacak ³ekilde G : X I Y sürekli dönü³ümü vardr. { H(x, 2t), 0 t 1/2 K : X I Y, K(x, t) = G(x, 2t 1), 1/2 t 1 sürekli dönü³ümünü tanmlayalm. K(x, 0) = H(x, 0) = f(x) ve K(x, 1) = G(x, 1) = h(x) ³artlar sa lanr. Ayrca H ve G sürekli oldu u için Pasting Lemma dan K dönü³ümü de süreklidir. Böylece f h dir. 25

27 Örnek f, g : X R 2 Bunlar homotop dönü³ümler midir? sürekli dönü³ümlerini göz önüne alalm. Çözüm: H : X I R 2,t I olmak üzere H(x, t) = (1 t).f(x) + t.g(x) dönü³ümlerini göz önüne alalm. R 2 de sürekli dönü³ümlerin toplam ve çarpm sürekli oldu undan H süreklidir ve H(x, 0) = f(x), H(x, 1) = g(x) ³artlarn sa lar. Buna göre f g dir. Tanm X de f(1) = g(0) özellikli iki yol f, g : I X olsun. f ile g arasndaki i³lemini ³u ³ekilde tanmlarz: { f(2s), 0 t 1/2 (f g)(s) = g(2s 1), 1/2 t 1 f dönü³ümünün homotopi snfn [f] ile gösteririz. [f g] = [f] [g] dir. Teorem i³lemi a³a daki özellikleri sa lar: 1. i³lemi, yol homotopi snar üzerinde iyi tanmldr. 2. i³leminin birle³me özelli i vardr: ([f] [g]) [h] = [f] ([g] [h]). 3. i³leminde birim eleman vardr fakat tek de ildir: e x0, e x1 : I X sabit yol ve f : I X,f(0) = x 0, f(1) = x 1 özellikli bir yol olsun. [f] = [f] [e x1 ], [e x0 ] [f] = [f]. 4. i³lemine göre bir [f] elemannn ters elemanlar vardr: [e x0 ] = [f] [ f ] [ ], f [f] = [ex1 ]. Ayrca i³lemi bu özellikleri sa lad ndan yol homotopi snar üzerinde gruboid yaps olu³turur. spat: 1. f 1 g 1 ve f 2 g 2 olsun. Bu durumda f 1 f 2 g 1 g 2 : f 1 g 1 oldu undan H(x, 0) = f 1 (x), H(x, 1) = g 1 (x) ko³ullarn sa layan bir sürekli H : I I X dönü³ümü vardr. f 2 g 2 oldu undan G(x, 0) = f 2 (x), G(x, 1) = g 2 ko³ullarn sa layan bir sürekli G : I I X dönü³ümü vardr. 26

28 O halde f 1 f 2 g 1 g 2 oldu unu göstermek için F (x, 0) = f 1 f 2, F (x, 1) = g 1 g 2 ko³ullarn sa layan bir F : I I X sürekli dönü³ümü bulmalyz. H ve G dönü³ümlerinden yararlanarak F dönü³ümünü olu³turalm. H(2x, t) x [0, 1 F (x, t) = 2 ] G(2x 1, t) x [ 1 2, 1] Tanmlad mz F dönü³ümü pasting lemma ve H ve G dönü³ümlerinin süreklili inden dolay süreklidir. stenilen ko³ullar da sa lad ndan dolay i³lemi yol homotopi dönü³ümleri üzerinde iyi tanmldr. 2. [f] ([g] [h]) = ([f] [g]) [h] oldu unu göstermeliyiz. Bu durumda f (g h) (f g) h oldu unu göstermeliyiz. f( 4s t + 1 ) s [0, t ] H : I I X, H(s, t) = g(4s t 1) s [ t + 1 4, t ] h( 4s t 2 ) s [ t t 4, 1] ³eklinde tanmlad mz dönü³üm f, h, g sürekli oldu undan ve pasting lemmadan dolay süreklidir. f(4s) s [0, 1/4] H(s, 0) = g(4s 1) s [1/4, 1/2], H(s, 0) = (f g) h(s) h(2s 1) s [1/2, 1] f(2s) s [0, 1/2] H(s, 1) = g(4s 2) s [1/2, 3/4], H(s, 1) = f (g h)(s) h(4s 3) s [3/4, 1] O halde f (g h) p (f g) h dir. Yani i³leminin birle³me özelli i vardr. 3. [f] = [f] [e x1 ] f p f e x1? 27

29 f( 2s H : I I X, H(s, t) = 2 t ) s [0, 2 t 2 ] x 1 s [ 2 t 2, 1] H dönü³ümü pasting lemma ve f ile sabit dönü³ümün süreklili inden dolay süreklidir ve H(s, 0) = f(s), H(s, 1) = f e x1 oldu undan [f] = [f] [e x1 ] dir. Benzer ³ekilde di er birim elemann varl da gösterilebilir. 4. [f] [f] = [e x0 ] f f p e x0? 28

30 f : I X, f(t) = f(1 t) ³eklinde tanmldr. H : I I X, H(s, t) = { f(2ts) s [0, 1/2] f(2t(1 s)) s [1/2, 1] ³eklinde tanmlad mz H dönü³ümü f sürekli oldu undan süreklidir ve H(s, 0) = f(0) = e x0 ve H(s, 1) = f f(s) oldu undan [f] [f] = [e x0 ] dir. Benzer ³ekilde di er ters eleman da gösterilebilir. Lemma f, f : X Y ve g, g : Y Z sürekli dönü³ümler ve f f ve g g olsun. O halde g f g f dür. spat: f f oldu undan F : X I Y sürekli dönü³ümü F (x, 0) = f(x), F (x, 1) = f (x) ko³ullarn sa lar. g g oldu undan H : Y I Z sürekli dönü³ümü H(x, 0) = g(x), H(x, 1) = g (x) ko³ullarn sa lar. g f g f oldu unu göstermek için ba ntsnn denklik ba nts oldu undan yararlanaca z. g f g f ve g f g f oldu unu gösterirsek g f g f oldu unu göstermi³ oluruz. 29

31 g X I F Y Z G : X I Z, G(x, t) = g F (x, t) ³eklinde tanmlanan dönü³üm F ve g sürekli oldu undan süreklidir. G(x, 0) = g F (x, 0) = g f(x) ve G(x, 1) = g F (x, 1) = g f (x) oldu undan g f g f dir. X I f 1 Y I G Z G (f 1) : X I Z sürekli dönü³ümü G (f 1)(x, 0) = g f (x) ve G (f 1)(x, 1) = g f (x) ko³ullarn da sa lad ndan g f g f dir. O halde g f g f dir. 30

32 ALI TIRMALAR 1)h, h : X Y homotopik ve k, k : Y Z homotopik ise, k h ve k h homotopiktir. Gösteriniz. 2) Bir X uzaynn birim dönü³ümü, sabit dönü³üme homotop ise, X uzayna büzülebilirdir denir. a) I = [0, 1] ve R nin büzülebilir oldu unu gösteriniz. b) Büzülebilir uzaylar yol ba lantldr. Gösteriniz. 3) X, R n de konveks bir küme olsun. X de ayn uç noktalara sahip iki yolun yol homotop oldu unu gösteriniz. 4) X den Y ye dönü³ümlerin homotopi snarnn kümesi [X, Y ] olsun. a) I = [0, 1] [X, I] tek elemanldr. Gösteriniz. b) Y yol ba lantl ise [I, Y ] tek elemanldr. Gösteriniz. 31

33 Bölüm 5 TEMEL GRUPLAR Tanm X topolojik uzay ve x 0 X olsun. x 0 da ba³layp x 0 da sona eren X deki yollara kapal yol (loop) denir. x 0 tabanl kapal yollarn homotopi snf i³lemi altnda bir grup te³kil eder. Bu gruba temel grup ya da 1. homotopi grubu denir. Örnek X = R olmak üzere X in temel grubu nedir? Çözüm: f, x 0 da kapal yol olsun. π 1 (R, x 0 ) = {[g] : g f, f, g : I Xf(0) = g(0) = x 0, f(1) = g(1) = x 1 } H : I I : R, H(s, t) = (1 t).f(s) + t.e x0 (s) sürekli dönü³ümünü tanmlayalm. g = e x0 alnrsa π 1 (R, x 0 ) = {[e 0 ]} = {0} a³ikar gruptur. Örnek X konveks uzay olsun. π 1 (X, x 0 ) = {[e x0 ]}. Örnek X=D 2 (Disk) olsun. π 1 (X, x 0 )={[e x0 ]}. Örnek X = { } olsun. π 1 (X, x 0 )={[e x0 ]}. Örnek X=[0, 1] olsun. π 1 (X, x 0 )={[e x0 ]}. Tanm α, X topolojik uzaynda x 0 dan x 1 e giden bir yol olsun. ³eklinde dönü³üm tanmlansn. α : π 1 (X, x 0 ) π 1 (X, x 1 ) [f] α([f]) = [α] [f] [α] 32

34 i) α iyi tanmldr. ii) α homomorzmdir. iii) α bijektiftir. spat: i) α iyi tanmldr: [f] = [g] α([f]) = α([g])? [f] = [g] f p g α f p α g α f α p α g α [α] [f] [α] p [α] [g] [α] α([f]) = α([g]) ii) α homomorzmdir: α([f] [g]) = α([f]) α([g])? [f] [g] = [f g] oldu unu biliyoruz. α([f] [g]) = α([f g]) = [ᾱ] [f g] [α] = [ᾱ] [f] [g] [α] = [ᾱ] [f] [α] [ᾱ] [g] [α] = α([f]) α([g]) Böylece α homomorzmadr. iii) α bijektiftir: β : π 1 (X, x 1 ) π 1 (X, x 0 ) [h] β([h]) = [ β] [h] [β] ³eklinde tanmlansn. β : I X, her t I için β(t) = α(1 t) = α(t) alalm. Bu durumda β([h]) = [α] [h] [α]. A³a daki iki durum mevcut ise α bijektiftir: β α = 1 π1 (X,x 0 ) α injektif α β = 1 π1 (X,x 1 ) α surjektif 33

35 β α([f]) = β( α[f]) = β([α] [f] [α]) = β([α f α]) = [α] [α] [f] [α] [α] Böylece α injektiftir. = [e x0 ] [f] [e x0 ] = [f] [e x0 ] = [f] = 1 π1 (X,x 0 ) α β([g]) = α( β[g]) = α([ β g β]) = [ᾱ β g β α] = [e g e] = [g] = 1 π1 (X,x 1 )([g]) Dolaysyla α surjektiftir. Sonuç olarak α bir izomorzmdir. Bu durumda a³a daki teoremi elde ederiz; Teorem α : π 1 (X, x 0 ) π 1 (X, x 1 ) izomorzmdir. Sonuç X yol ba lantl uzay ve x 0, x 1 X olsun. O zaman π 1 (X, x 0 ) = π 1 (X, x 1 ). Tanm X topolojik uzay ve yol ba lantl olsun. π 1 (X, x 0 ) = {e x0 } ise X e basit ba lantl uzay denir. Örnek R basit ba lantldr; çünkü R yol ba lantldr ve π 1 (R, r 0 ) = {e r0 } dr. Örnek D 2 basit ba lantldr; çünkü D 2 yol ba lantldr ve π 1 (D 2, d 0 ) = {e d0 } dr. Örnek { } basit ba lantldr; çünkü { } yol ba lantldr ve π 1 ({ }, ) = {e } dr. Lemma Basit ba lantl X uzaynda ba³langç ve biti³ noktalar ayn olan iki yol, yol homotoptur. spat: α ve β, x 0 dan x 1 e giden iki yol olsun. α p β? α β, X uzaynn x 0 noktasnda bir looptur. X uzay basit ba lantl oldu undan π 1 (X, x 0 ) = {e x0 } dir. [α β] = [e x0 ] α β p e x0 α p α e x1 [α] = [β]. p α β β p (α β) β p e x0 β p β α p β 34

36 Tanm h : (X, x 0 ) (Y, y 0 ) bir sürekli dönü³üm olsun. f : I X, x 0 bazl bir loop ise, bu durumda h f, Y de y 0 bazl bir looptur. Tanm h : (X, x 0 ) (Y, y 0 ) bir sürekli dönü³üm olsun. h : π 1 (X, x 0 ) π 1 (Y, y 0 ) [f] h ([f]) = [h f] ³eklinde tanmlanan dönü³üme h tarafndan olu³turulan homomorzma ya da indirgenmi³ homomorzma denir. h dönü³ümü iyi tanmldr: [f] = [g] f p g h f p h g h ([f]) = h ([g]) h homomorzmdir: h ([f] [g]) = [h (f g)] = [h f] [h g] = h ([f]) h ([g]) Teorem h : (X, x 0 ) (Y, y 0 ) ve k : (Y, y 0 ) (Z, z 0 ) iki sürekli dönü³üm olsun. 1) (k h) = k h 2) 1 X : X, x 0 ) (X, x 0 ) birim dönü³üm ise, (1 X ) birim homomor- zmdir. spat: 1) h : (X, x 0 ) (Y, y 0 ) ve k : (Y, y 0 ) (Z, z 0 ) iki sürekli dönü³üm olsun. Bu iki dönü³ümün üretti i indirgenmi³ homomorzmler h : π 1 (X, x 0 ) π 1 (Y, y 0 ) ve k : π 1 (Y, y 0 ) π 1 (Z, z 0 ) dir. [f] π 1 (X, x 0 ) herhangi bir loop olsun. (k h) ([f]) = [(k h) f] = [k h f] (i) k h ([f]) = k (h f) = [k (h f)] = [k h f] (ii) (i) ve (ii)den istenen e³itlik elde edilir. 2) (1 X ) ([f]) = [1 X f] = [f] oldu undan (1 X ) birim homomorzmdir. Sonuç h : (X, x 0 ) (Y, y 0 ) bir homeomorzm ise, h nin indirgedi i homomorzm h : π 1 (X, x 0 ) π 1 (Y, y 0 ) izomorzmdir. spat: h : (X, x 0 ) (Y, y 0 ) bir homeomorzm olsun. O zaman k h = 1 X ve h k = 1 Y olacak ³ekilde k : (Y, y 0 ) (X, x 0 ) sürekli dönü³ümu vardr. Teoremden (h k) = 1 Y h k = (1 Y ) h surjektif (k h) = (1 X ) k h = (1 X ) h injektif O halde h bijektif homomorzm oldu undan izomorzmdir. 35

37 ALI TIRMALAR 1) A X ve r : X A bir retraksiyon olsun. Verilen bir a 0 A için r : π 1 (X, x 0 ) π 1 (A, a 0 ) dönü³ümünün surjektif oldu unu gösteriniz. [ pucu: j : A X kapsama dönü³ümünü göz önüne alnz.] 36

38 Bölüm 6 ÖRTÜLÜ UZAYLAR Tanm p : E B örten, sürekli bir dönü³üm ve U B de açk olsun. A³a daki özellikler mevcut ise, B nin U aç p tarafndan düzgün örtülüyor denir: i) p 1 (U) = α I V α, (α β için V α V β, V α E açk ) ii) Her α için p Vα : V α U bir homeomorzmdir. (p ye yerel homeomorfizm denir.) Not Bir dönü³üm homeomorzm ise yerel homeomorzmdir, fakat tersi genelde do ru de ildir. Tanm p : E B örten ve sürekli bir dönü³üm olsun. B uzayna ait her noktann U açk kom³ulu u p tarafndan düzgün örtülüyorsa, p ye örtülü dönü³üm ve E ye de B nin örtü uzay denir. Örnek A³a daki ³ekilde tanmlanan dönü³ümü, örtülü dönü³ümdür. p : R S 1 t p(t) = e 2πit = (cos2πt, sin2πt) Çözüm: p nin identikasyon dönü³ümü oldu unu biliyoruz. O halde p örten ve süreklidir. imdi S 1 in düzgün örtülü olup olmad n inceleyelim: i) b S 1 için α β iken V α V β = olmak üzere p 1 (U) = α I V α? 37

39 p 1 ((1, 0)) = Z dir. (1, 0) noktasnn bir U kom³ulu unu alalm. (1, 0) U S 1 de açk olsun. V α = (α 1, α + 1 ) alalm. α Z olmak üzere α β iken 4 4 V α V β = oldu undan ve V α lar p 1 (U) yu örttü ünden, p 1 (U) = α Z V α dr. ii) p Vα : V α U homeomorzm midir? V α = (α 1, α + 1 ) R de açk olmak üzere 4 4 p örten oldu undan p Vα da örtendir. t 1 t 2 olmak üzere t 1, t 2 V α için cos2πt 1 cos2πt 2 sin2πt 1 sin2πt 2 p Vα (t 1 ) p Vα (t 2 ) oldu undan p Vα bire birdir. p sürekli oldu undan p Vα süreklidir. (p Vα ) 1 : U V α süreklidir, çünkü p Vα açk dönü³ümdür. O halde p örtülü dönü³ümdür. Örnek Her homeomorzm bir örtülü dönü³ümdür. Çözüm: p : X Y bir homeomorzm olsun. Bu durumda p örten ve süreklidir. i) Süreklilikten dolay U Y açk için p 1 (U) = V X açktr. ii) p homeomorzm oldu undan p Vα homeomorzmdir. O halde inceledi imiz p homeomorzmi örtülü dönü³ümdür. Örnek X birim dönü³ümü bir örtülü dönü³ümdür. Çözüm: x x ile tanmlanan 1 X : X X birim dönü³üm oldu undan örtenlik ve süreklilik mevcuttur. i) U = V α alrssak p 1 (U) = U = V α dr. ii) p U : U U homeomorzmdir. O halde 1 X örtülü dönü³ümdür. Örnek E = X {0, 1, 2, 3,...} ve B = X olmak üzere p : E B örtülü dönü³ümdür. 38

40 Çözüm: x X için (x, 0) X {0, 1, 2, 3,...} öyle ki p(x, 0) = x oldu undan p örtendir. U B = X de açk olsun.p 1 (U) = U Z + E açk oldu undan p süreklidir. i) p 1 (U) = α Z +U α ayrk birle³imine e³ittir. ii) p Vα : V α U; p Vα : U α U homeomorzmdir. O halde p örtülü dönü³ümdür. Örnek p : S 2 RP 2, p(z) = [z] ile tanmlanan bölüm dönü³ümü örtülü dönü³ümdür. Örnek p : R + de ildir. S 1, p(t) = (cos2πt, sin2πt) örtülü dönü³üm Tanm p : E B bir dönü³üm ve f : X B bir sürekli dönü³üm olsun. p f = f olacak ³ekilde f : X E dönü³ümu varsa, f ya f nin yükseltilmi³i (liftingi) denir. Örnek p ve f dönü³ümleri p : R S 1 t p(t) = (cos2πt, sin2πt) f : [0, 1] S 1 t f(t) = (cosπt, sinπt) olarak tanmland nda f : [0, 1] R, t f(t) = t 2 dönü³ümü f nin yükseltilmi³idir. p f(t) = p( f(t)) = p( t ) = (cosπt, sinπt) = f(t) 2 Örnek p ve g dönü³ümleri p : R S 1 t p(t) = (cos2πt, sin2πt) g : [0, 1] S 1 t g(t) = (cosπt, sinπt) olarak tanmland nda g : [0, 1] R, t g(t) = t 2 dönü³ümü g nin yükseltilmi³idir. ile tanmlanan f ile tanmlanan g p g(t) = p( g(t)) = p( t ) = (cosπt, sinπt) = g(t) 2 39

41 Örnek p ve h dönü³ümleri p : R S 1 t p(t) = (cos2πt, sin2πt) h : [0, 1] S 1 t h(t) = (cos4πt, sin4πt) olarak tanmland nda h : [0, 1] R, t h(t) = 2t ile tanmlanan h dönü³ümü h nin yükseltilmi³idir. p h(t) = p( h(t)) = p(2t) = (cos4πt, sin4πt) = h(t) Lemma p : (E, e 0 ) (B, b 0 ) örtülü dönü³üm olsun. B uzaynda b 0 noktasnda ba³layan f : [0, 1] B yolunun, E uzaynda e 0 noktasnda ba³layan bir tek f : [0, 1] E yükseltilmi³i vardr. Lemma p : (E, e 0 ) (B, b 0 ) örtülü dönü³üm olsun. F : I I B, F (0, 0) = b 0 özellikli sürekli bir dönü³üm olsun. O zaman F (0, 0) = e 0 olacak ³ekilde F nin bir tek F : I I E yükseltilmi³i vardr. Ayrca F homotopi dönü³ümu ise, F da homotopi dönü³ümudur. Teorem p : (E, e 0 ) (B, b 0 ) örtülü dönü³üm; f ve g B uzayna b 0 dan b 1 e giden iki yol; f ve g srasyla f ve g nin yükseltilmi³leri ve ba³langç noktalar f(0) = e0 = g(0) olsun. f yolu g yoluna homotop ise, f yolu g yoluna homotoptur. 40

42 ALI TIRMALAR 1) p : S 1 S 1 örtülü dönü³ümdür. Gösteriniz. z z n 2) p : E B ve p : E B örtülü dönü³ümler ise, p p : E E B B örtülü dönü³ümdür. Gösteriniz. 3) p : E B örtülü dönü³üm ve B ba lantl olsun. Bir b 0 B için p 1 (b 0 ) k elemanl ise, b B için p 1 (b) k elemanldr. Gösteriniz. 4) p : E B örtülü dönü³üm, B ba lantl ve yerel ba lantl olsun. C, Enin bir bile³eni ise p C : C B örtülü dönü³ümdür. Gösteriniz. 5) B basit ba lantl ve E yol ba lantl olmak üzere p : E B örtülü dönü³üm ise, p bir homeomorzmadr. Gösteriniz. 6) p : R S 1 örtülü dönü³üm ve f : X S 1 bir dönü³üm olsun. f nullhomotop ise, f nin yükseltilmi³inin var oldu unu gösteriniz. 7) p : E B bir örtülü dönü³üm olsun. α(1) = β(0) olmak üzere α : I B ve β : I B, B de sürekli iki yol olsun. α(1) = β(0) olmak üzere α ve β srasyla α ve β nn yükseltilmi³i olsun. α β, α β nn yükseltilmi³idir. Gösteriniz. 8) B 2, R 2 de birim disk olmak üzere B 2 den S 1 e tanml bir retraksiyon dönü³ümünün var olmad n gösteriniz. 9) p : E B bir örtülü dönü³üm, p(e 0 ) = b 0 ve E yol ba lantl olsun. p : (π 1 )(E, e 0 ) π 1 (B, b 0 ) injektiftir. Gösteriniz. 41

43 Bölüm 7 ÇEMBER N TEMEL GRUBU Tanm p : E B bir dönü³üm ve f : X B sürekli dönü³üm olsun. f in yükseltilmi³i a³a daki diyagram de i³meli klan bir f : X B sürekli dönü³ümdür. X ef f p f = f E p B Örnek A³a daki gibi tanmlanan p : R S 1 ; f : [0, 1] S 1 t p(t) = (cos(2πt), sin(2πt)) t f(t) = (cos(πt), sin(πt)) dönü³ümleri sürekli olmak üzere p f = f olacak ³ekilde f mevcut mudur? Çözüm: f nin yükseltilmi³i olsun. Bu durumda f : [0, 1] R t f(t) = t 2 (p f)(t) = p( f(t)) = p( t ) = (cos(πt), sin(πt)) = f(t) 2 Örnek A³a daki gibi tanmlanan q : [0, 1] S 1 ; p : R S 1 t q(t) = (cos(πt), sin(πt)) t p(t) = (cos(2πt), sin(2πt)) dönü³ümleri sürekli olmak üzere q nin yükseltilmi³i var mdr? 42

44 Çözüm: ile dönü³ümü tanmlayalm. Bu durumda oldu undan q, q nun yükseltilmi³idir. q : [0, 1] R t q(t) = t 2 (p q)(t) = (cos(πt), sin(πt)) = q(t) Lemma Lifting Lemma: p : E B örtülü dönü³üm ve f(e 0 ) = b 0 olsun. b 0 da ba³layan f : [0, 1] B yolunun e 0 da ba³layan bir tek f : [0, 1] E yükseltilmi³ dönü³ümü vardr. Lemma Covering Homotopy Lemma: p : E B örtülü dönü³üm ve f(e 0 ) = b 0 olsun.f (0, 0) = b 0 olacak ³ekilde F : I I B sürekli dönü³ümü varsa F (0, 0) = e 0 olacak ³ekilde F : I I E sürekli dönü³ümü vardr. E er F homotopi dönü³ümü ise F de homotopi dönü³ümüdür. Teorem p : E B örtülü dönü³üm, p(e 0 ) = b 0 ; f, g b 0 dan b i ye giden B de iki yol ve f, g (ba³langç noktalar e 0 ) f ve g nin yükseltilmi³i olsun: f, g ye yol homotop ise f da g ya yol homotoptur. spat: f ve g yollar arasndaki homotopi dönü³ümü F : I I B, F (0, 0) = b 0 olsun. F (0, 0) = e 0 olacak ³ekilde bir F : I I E yükseltilmi³i vardr. Lemmann ikinci ksmndan F : I I B homotop dönü³üm oldu undan F : I I E homotop dönü³ümdür. F ({0} I) = e 0 F ({1} I) = e 1 F (0, t) = e0 F (1, t) = e1 F /I {0} = F (s, 0): e 0 noktasnda ba³layan E de bir yoldur. F (s, 0) = f(s) F /I {1} = F (s, 1): e 0 da ba³layan E de bir yol. F (s, 1) = g(s) 43

45 O halde f g SONUÇ: p : E B örtülü dönü³üm ise p 0 : π 1 (E, e 0 ) π 1 (B, b 0 ) monomorzmadr. p ([ f]) = p ([ g]) p f = p g [ f] = [ g] f = g f g [ f] = [ g] Teorem p : E B bir örtülü dönü³üm ve p(e 0 ) = b 0 olsun. E er E yol ba lantl ise, bu takdirde φ : π 1 (B, b 0 ) π 1 (E, e 0 ) örtendir. E er E basit ba lantl ise, bu durumda φ bijektiftir. spat: E yol ba lantl ise, verilen bir e 1 p 1 (b 0 ) için E de e 0 dan e 1 e bir f yolu vardr. Bu durumda f = p f, B nin b 0 noktasnda bir looptur, ve tanmdan φ([f]) = e 1. E nin basit ba lantl oldu unu kabul edelim. [f] ve [g], φ([f]) = φ([g]) olacak ³ekilde π 1 (B, b 0 ) nin iki eleman olsun. f ve g, E de e0 da ba³layan srasyla f ve g nin yükseltilmi³leri oldu undan, f(1) = g(1) dir. E basit ba lantl oldu undan, E de f ve g arasnda bir F yol homotopi dönü³ümü vardr. Buna göre p F, B de f ve g arasnda bir yol homotopi dönü³ümüdür. Teorem π 1 (S 1, b 0 ) = (Z, +) spat: p : R S 1, f : R S 1 ve f : R R, f nin yükseltilmi³i olmak üzere φ izomorzmadr: 1) φ iyi tanmldr: φ : π 1 (S 1, b 0 ) (Z, +) [f] φ([f]) = n = f(1) [f] = [g] f g f g f(1) g(1) φ([f]) = φ([g]) 2) φ homomorzmadr: f ve g π 1 (S, b 0 ) da birer loop ve yükseltilmi³leri f ve g olsun. f(1) = n, g(1) = m 44

46 { h(s) = f(2s), s [0, 1/2] n + g(2s 1), s [1/2, 1] p : R S 1 t p(t) = (cos(2πt), sin(2πt)) periyodik dönü³ümdür. { p p h(s) = p(h(s)) = f(2s), s [0, 1/2] p(n + g(2s 1)), s [1/2, 1] { p f(2s), s [0, 1/2] = = p g(2s 1), s [1/2, 1] O halde h, f g nin yükseltilmi³idir. Böylece φ homomorzmadr. φ([f g]) = h(1) = n + m = φ([f]) + φ([g]). { f(2s), s [0, 1/2] g(2s 1), s [1/2, 1] 3) φ, 1 1 dir: φ([f]) = φ([g]) = n [f]? [g] f ve g srasyla f ve g nin yükseltilmi³i olsun. f(0) = 0, g(0) = 0, f(1) = n, g(1) = m olsun. R basit ba lantl oldu undan f g, F : I I R F = p F : I I B, F = p F f ve g dönü³ümleri arasnda homotopi dönü³ümleridir. 4) φ örtendir: n p 1 (b 0 ) olsun. p f p g f g [f] = [g] p : R S 1 t p(t) = (cos 2πt, sin 2πt) f : [0, 1] R f(0) = 0, f(1) = 1 f : [0, 1] S 1 t f(t) = p f O halde φ örtendir. f(0) = p f(0) = p(0) = b 0, f(1) = p f(1) = p(n) = b 0 45

47 Teorem p : E B bir örtülü dönü³üm ve p(e 0 ) = b 0 olsun. (a) p : π 1 (E, e 0 ) π 1 (B, b 0 ) homomorzmi bir monomorzmdir. (b) H = p (π 1 (E, e 0 )) olsun. φ yükseltilmi³ dönü³ümü, H n sa yan kümelerinin kolleksiyonundan p 1 (b 0 ) a bir Φ : π 1 (B, b 0 )/H p 1 (b 0 ) injektif dönü³ümünü üretir. E er E yol ba lantl ise, bu dönü³üm bijektiftir. (c) f, B de b 0 bazl bir loop ise, [f] H olmas için gerek ve yeter ³art f nin E de e 0 bazl bir loopa yükseltilmesidir. spat: a) h, E de e 0 bazl bir loop ve p ([ h]) birim eleman olsun. F, p h ile sabit loop arasnda bir yol homotopi olsun. F, F (0, 0) = e0 olacak ³ekilde F nin E ye yükseltilmi³i ise, bu takdirde F h ile e 0 daki sabit loop arasnda bir yol homotopidir. b) B de f ve g looplar verilsin, f ve g da srasyla f ve g nin e0 da ba³layan E ye yükseltilmi³leri olsun. Bu durumda φ([f]) = f(1) ve φ([g]) = g(1). φ([f]) = φ([g]) olmas için gerek ve yeter ³artn [f] H [g] oldu unu gösterelim. lk olarak [f] H [g] oldu unu kabul edelim. Bu takdirde E de e 0 bazl bir loop için h = p h olmak üzere [f] = [h g] dir. h g çarpm tanmldr ve h g nin yükseltilmi³idir. [f] = [h g] oldu undan, e 0 da ba³layan f ve h g yükseltilmi³leri E nin ayn noktasnda bitmelidirler. Bu takdirde f ve g, E nin ayn noktasnda sona erdiklerinden φ([f]) = φ([g]). imdi φ([f]) = φ([g]) oldu unu kabul edelim. Bu takdirde f ve g, E nin ayn noktasnda sona erer. f ile g nn tersinin çarpm tanmldr ve E de e0 bazl h loopudur. Buradan [ h g] = [ f]dir. F, E deki h g ve f arasndaki bir yol homotopi ise, h = p h olmak üzere p F B de h g ve f arasna bir yol homotopidir. Böylece [f] H [g] dir. E yol ba lantl ise, bu takdirde φ örten oldu undan Φ de örtendir. c) Φ nin injektif olmas ³u anlama gelir: φ([f]) = φ([g]) olmas için gerek ve yeter ³art [f] H [g] olmasdr. g bir sabit loop iken bu sonucu uygularsak, φ([f]) = e 0 olmas için gerek ve yeter ³artn [f] H oldu unu görürüz. Ancak f nin yükseltilmi³i e 0 da ba³layp e 0 da bitiyorsa φ([f]) = e 0 dr. Bu da ispat tamamlar. Tanm E basit ba lantl uzay ve p : (E, e 0 ) (B, b 0 ) örtülü dönü³üm ise E ye B nin evrensel örtülü uzay denir. Lemma B yol ba lantl ve lokal yol ba lantl uzay ve p : E B örtülü dönü³üm olsun. E 0, E nin bir yol bile³eni ise, bu takdirde p nin kstlan³ olan p 0 : E 0 B de örtülü dönü³ümdür. 46

48 Bölüm 8 DEL NM DÜZLEM N TEMEL GRUBU Teorem x 0 S 1 ve J : (S 1, x 0 ) (R 2 {0}, x 0 ) kapsama dönü³ümü, izomorzmasn üretir. spat: J : π 1 (S 1, x 0 ) π 1 (R 2 {0}, x 0 r : R 2 {0} S 1 x r(x) = x x ile tanmlanan sürekli dönü³ümü alalm. r : π 1 (R 2 {0}, x 0 ) π 1 (S 1, x 0 ) ve J : π 1 (S 1, x 0 ) π 1 (R 2 {0}, x 0 ) olmak üzere r J = 1 π1 (S 1,x 0 ) ve J r = 1 π1 (R 2 {0},x 0 ) dr. (S 1, x 0 ) J (R 2 {0}, x 0 ) r (S 1, x 0 ) O halde r J = 1 (S 1,x 0 ) dr. (r J) = (1 (S 1,x 0 )) ve r J = 1 π1 (S 1,x 0 ). (J r )([f]) = J (r ([f])) = J (r f) = [J r f] π 1 (R 2 {0}, x 0 ) g = J r f : I R 2 {0} s g(s) = f(s) f(s) 47

49 x 0 da bir loop olsun. f p g dir: F : I I R 2 {0} (s, t) F (s, t) = t f(s) + (1 t)f(s) f(s) 1. f, R 2 {0} da loop oldu undan g da R 2 {0} da looptur. 2. f sürekli oldu undan F süreklidir. 3. F (s, 0) = f(s), F (s, 1) = g(s) 4. F (0, t) = x 0, F (1, t) = x 0 F (s, t) = 0 olursa R 2 {0} a ait olamaz. O halde ve f(s) 0 olmaldr. t f(s) + (1 t) 0 Teorem x 0 S n 1 (n 2), J : (S n 1, x 0 ) (R 2 {0}, x 0 ) kapsama dönü³ümü, izomorzmasn üretir. J : π 1 (S n 1, x 0 ) π 1 (R 2 {0}, x 0 ) π 1 (R 2 {0}, x 0 ) = π 1 (S n 1, x 0 ) = (Z, +) Tanm A, X in alt uzay ve i : A X kapsama dönü³ümü olsun. r i = 1 A olacak ³ekilde bir r : X A sürekli dönü³ümü varsa A ya X in bir retrakt denir ve r ye retraksiyon denir. Tanm A, X in alt uzay olsun. x X için H(x, 0) = x ve H(x, 1) A, a A ve t I için H(a, t) = a olacak ³ekilde bir H : I I X sürekli dönü³üm varsa A ya X in güçlü deformasyon retrakt denir. Örnek S 1, R 2 {0} n kuvvetli deformasyon retraktdr. H : R 2 {0} I R 2 {0} (x, t) H(x, t) = t x + (1 t)x x x R 2 {0} için H(x, 0) = x, H(x, 1) = x x S1 a S 1 a ve t I için H(a, t) = t +(1 t)a = a a }{{} Teorem A, X in kuvvetli deformasyon retrakt ve a 0 A olsun. J : (A, a 0 ) (X, a 0 ) kapsama dönü³ümü J : π 1 (A, a 0 ) π 1 (X, a 0 ) izomorzmasn üretir. 48 1

50 Örnek R 2 den iki nokta çkarrsak ne olur? π 1 (R 2, x 0 ) = π 1 (S 1 S 1, x 0 ) =? 49

51 Bölüm 9 S n ' N TEMEL GRUBU Teorem "Van-Kampen" Teoremi U ve V, X de U V yol ba lantl, ve x 0 U V olacak ³ekilde bir açk olmak üzere X = U V olsun. i : (U, x 0 ) (X, x 0 ) ve j : (V, x 0 ) (X, x 0 ) kapsama dönü³ümleri, sfr homomorzmalar yani; i : π 1 (U, x 0 ) π 1 (X, x 0 ), j : π 1 (V, x 0 ) π 1 (X, x 0 ) [f] i ([f]) = 0 [g] j ([g]) = 0 homomorzmalarn üretiyorsa, π 1 (X, x 0 ) = {0} dr. Örnek X = S 2, U = S 2 {p}, V = S 2 {q}; U ve V, X te açk kümelerdir. i : (S 2 {p}, x 0 ) (S 2, x 0 ), j : (S 2 {q}, x 0 ) (S 2, x 0 ) dönü³ümlar olsun. x 0 U V = S 2 {p, q} olmak üzere i : π 1 (S 2 {p}, x 0 ) π 1 (S 2, x 0 ) j : π 1 (S 2 {q}, x 0 ) π 1 (S 2, x 0 ) dönü³ümlar sfr homomorzmadr. Çünkü; S 2 {p} = R 2 π 1 (S 2 {p}, x 0 ) = π 1 (R 2, x 0 ) = {0} S 2 {q} = R 2 π 1 (S 2 {q}, x 0 ) = π 1 (R 2, x 0 ) = {0} Van-Kampen teoreminden π 1 (S 2, x 0 ) = {0} dr. Teorem S 2 basit ba lantl uzaydr. spat: 1) π 1 (S 2, x 0 ) = {0} (Örnek 'dan) 2)S 2 yol ba lantl mdr? Yani f : I S 2 sürekli dönü³üm var m? f : I g R 3 {0} h S 2, f = h g : I S 2 50

52 x x t h g(t) = g(t) x g(t) sürekli dönü³üm vardr. Yani S 2 yol ba lantldr. O halde (1) ve (2)den S 2 basit ba lantl uzaydr. Sonuç ) R n {0} (n > 2) basit ba lantldr. 2) R n (n > 2) R 2 ye homeomorf de ildir. spat: 1) R n {0} = S n 1 ve S n 1 basit ba lantl oldu undan R n {0} basit ba lantldr. 2) Varsayalm ki R n, R 2 ye homeomorf olsun. R n {0} = S n 1 π 1 (R n {0}, x 0 ) = π 1 (S n 1, x 0 ) = {0} R 2 {0} = S 1 π 1 (R 2 {0}, x 0 ) = π 1 (S 1, x 0 ) = Z π 1 (R n {0}, x 0 ) π 1 (R 2 {0}, x 0 ) oldu undan varsaymmz yanl³tr. 51

53 Bölüm 10 YÜZEYLER N TEMEL GRUBU Tanm X Hausdor, saylabilir baz olan bir topolojik uzay olsun. E er Xe ait her noktann kom³ulu u R 2 nin açk alt kümesine homeomorf oluyorsa, Xe yüzey denir. Teorem π 1 (X Y, x 0 y 0 ) = π 1 (X, x 0 ) π 1 (Y, y 0 ) spat: p 1 : X Y X ve p 2 : X Y Y izdü³üm dönü³ümleri olsun. φ : π 1 (X Y, x 0 y 0 ) π 1 (X, x 0 ) π 1 (Y, y 0 ) [h] φ([h]) = ([p 1 h]), ([p 2 h]) ile tanmlansn. 1) φ homomorzma ve iyi tanmldr. 2) φ 1 1: φ([h]) = ([e x0 ], [e y0 ]) olsun. h e (x0,y 0 )? ([p 1 h], [p 2 h]) = ([e x0 ], [e y0 ]) [p 1 h] = [e x0 ] [p 2 h] = [e y0 ] p 1 h e x0 p 2 h e y0 h e x0 h e y0 h (e x0, e y0 ) = e (x0,y 0 ) 3) φ örtendir: g : I X, x 0 da bir loop; f : I Y, y 0 da bir loop olsun. h : I X Y t h(t) = (g(t), f(t)) x 0 y 0 da bir looptur. Üstelik φ([h]) = ([g], [f])dir. [g] π 1 (X, x 0 ), [f] π 1 (Y, y 0 ). Bu durum φnin örtenli ini getirir. Sonuç π 1 (T, z 0 ) = Z Z. spat: T = S 1 S 1 π 1 (T, z 0 ) = π 1 (S 1 S 1, x 0 y 0 ) = π 1 (S 1, x 0 ) π 1 (S 1, y 0 ) = Z Z. 52

54 Bölüm 11 AYNI HOMOTOP T P NE SAH P UZAYLAR Tanm f : X Y sürekli dönü³üm olsun. g f 1 X ve f g 1 Y olacak ³ekilde g : Y X sürekli dönü³ümü varsa X ve Y ayn homotopine sahiptir denir ve ile gösterilir. Teorem ba nts bir denklik ba ntsdr. spat: 1. (Yansma) X X 1 : X X birim dönü³üm olsun. 1 1 = 1 = ve 1 1 = 1 = olacak ³ekilde 1 : X X vardr. X X 2. (Simetri) X Y = Y X X Y = g f 1 X ve f g 1 Y olacak ³ekilde g : Y X sürekli dönü³üm vardr. h : Y X sürekli dönü³üm olsun. k h 1 Y ve h k 1 X olacak ³ekilde k : X Y sürekli dönü³ümü var mdr.? h = g ve k = f alrsak Y X gerçeklenir. 3. (Geçi³me) X Y ve Y Z = X Z X Y = g f 1 X ve f g 1 Y olacak ³ekilde g : Y X sürekli dönü³üm vardr. Y Z = h k 1 Y ve k h 1 Z olacak 53

55 ³ekilde k : Z Y sürekli dönü³üm vardr. k, g, f, h dönü³ümleri sürekli oldu u için k f = m : X Z ve g h = n : Z X sürekli dönü³ümlerini m n 1 Z ve n m 1 X olacak ³ekilde tanmlayabiliriz. (k f) (g h) = k (f g) h = (k 1 Y ) h 1 Z ve (g h) (k f) = g (h k) f = (g 1 Y ) f 1 X oldu undan X Z dir. O halde yukarda tanmlanan ba nts bir denklik ba ntsdr. Örnek h : X Y homeomorzma ise X ve Y ayn homotopi tipine sahiptir. h bir homeomorzma ise h k = 1 Y ve k h = 1 X olacak ³ekilde k : Y X bir sürekli dönü³üm mevcuttur. h k = 1 Y = h k 1 Y ve k h = 1 X = k h 1 X 2. X R'nin konveks alt kümesi olsun.x ile { } (tek noktal uzay) ayn homotopi tipine sahiptir. h : X { } sürekli dönü³ümünü ele alalm (h sabit dönü³üm oldu u için süreklidir.)k : { } X sürekli dönü³ümü tanmlayalm: k{ } = { } olsun. Buradan h k : { } X { },h k = 1 { } = h k 1 { }. k h 1 X nasl tanmlarz? H : X I X sürekli dönü³ümünü X konveks oldu u için ³u ³ekilde tanmlyabiliriz: H(x, t) = (1 t).(k h)(x) + t.1 X (x) 3. S 1 ile R 2 {0} ayn homotopi tipine sahiptir. h : R 2 {0} S 1, h(x) = x sürekli dönü³ümünü tanmlayalm. x k : S 1 R 2 {0}, k(x) = x kapsama dönü³ümünü ele alalm. (Kapsama dönü³ümü süreklidir.) k h 1 R 2 ve h k 1 S 1 oldu unu gösterelim. S 1 k R 2 {0} h S 1 H : R 2 {0} I R 2 {0}, H(x, t) = (1 t).x + t. x tanmlarsak k h 1 R 2 h k 1 S 1 dir. x dönü³ümünü oldu unu kolayca görebiliriz. Benzer ³ekilde Teorem X ve Y yol ba lantl olsun. X ve Y ayn homotopi tipine sahip ise bu uzaylarn temel gruplar izomorftur. Yani π 1 (X, x 0 ) π 1 (Y, y 0 ). 54

56 spat: X ve Y uzaylar yol ba lantl ve ayn homotopi tipine sahip olsun. g : X Y sürekli ve f, Y de kapal yol olsun. g h 1 Y ve h g 1 X olacak ³ekilde h : Y X sürekli dönü³ümü vardr. g : π 1 (X, x 0 ) π 1 (Y, y 0 ) h : π 1 (Y, y 0 ) π 1 (X, x 0 ) g h ([f]) = g ([h f]) = [g h f] = [1 Y f] = [f] g h ([f]) = 1 Π1 (Y,y 0 )([f]) O halde g birebirdir. (g h) : π 1 (Y, y 0 ) π 1 (Y, y 0 ) (h g) [f] = [h (g k)] = [1 X k] = [k] h g ([k]) = 1 Π1 (X,x 0 )([k]) h nn sa tersi vardr dolaysyla h örtendir. Tanm X (birim dönü³üm) sabit dönü³üme homotop ise X'e büzülebilir uzay denir. Teorem Bir uzayn büzülebilir olmas için gerek ve yeter ³art bu uzayn { } tek noktal uzay ile ayn homotopi tipine sahip olmasdr. 2. Büzülebilir uzay basit ba lantldr. 3. De er kümesi büzülebilir olan iki dönü³üm homotoptur. 4. X büzülebilir ise 1 X sabit dönü³ümüne homotoptur. spat: 1. ( :) X büzülebilir uzay olsun.g : X { } Sabit dönü³ümümüz C = g : X { } birim dönü³ümümüz 1 = h : { } X olsun. Buradan g h = 1 { } ve h g 1 X ( :) X ve { } ayn homotopi tipine sahip olsun. g : X { } sürekli dönü³ümumuz olsun. Hipotezden öyle bir h : { } X sürekli dönü³ümumuz vardr ki h g 1 X ve g h { }. h g(x) = h(x) = c sabit ve h g 1 X oldu u için X büzülebilirdir. 55

57 56

58 Bölüm 12 S MPLEKSLER Tanm A bir küme olsun. x, y A, t [0, 1] için (1 t)x+ty A oluyorsa A'ya konveks küme denir. Tanm A, Euclid uzaynn bir alt kümesi olsun. farkl x, y A için x ve y tarafndan olu³turulan do ru A'da bulunuyorsa A' ya ane alt küme denir. Not: 1. Ane alt kümeler konvekstir. 2. Bo³ küme ve tek noktal kümeler ane kümelerdir. Teorem {x j } j J, R n 'e aitkonveks (ane) alt kümeler ailesi olsun. o zaman j J x j konveks alt uzaydr. spat: x, y j J X j (x y)olsun. j J için x, y x j 'dir. j J için x j ler konveks alt küme oldu undan; j J için (1 t)x + ty X j 'dir. O halde (1 t)x + ty j J 'dir. Tanm X, R n 'in bir alt kümesi olsun. X'i içeren R n 'e ait tüm konveks kümelerin arakesitine X'in konveks hull'u denir. Tanm p 0, p 1,..., p m, R n 'de noktalar olsun. p 0,..., p m noktalarnn ane kombinasyonu ³eklinde tanmlanr. x = t 0 p 0 + t 1 p t m p m ; t i = 1 i=1 57

59 p 0, p 1,..., p m noktalarnn konveks kombinasyonu an kombinasyonudur öyleki t i 0, i = 0,... m'dir. t 0 p 0 + t 1 p t m p m ; t i = 1 ve t i 0, i = 0,..., m i=1 Örnek x, y noktalarnn konveks kombinasyonu an kombinasyonu (1 t)x + ty, t [0, 1] dir. Teorem p 0, p 1,..., p m, R n 'de noktalar olsun. p 0,..., p m noktalar tarafndan gerilen [p 0,..., p m ] konveks küme, p 0,..., p m noktalarnn konveks kombinasyonlarn kümesidir. spat: S,tüm konveks kombinasyonlarn kümesi olsun. S = [p 0, p 1,..., p m ]? (i)[p 0, p 1,..., p m ] S? S'nin p 0,..., p m noktalarn içeren konveks küme oldu unu göstermemiz yeterli olacaktr. t j = 1 ve di eleri için t j = 0 olsun. Bu durumda; t 0 p t j p j + + t m p m ; t i = 1, t i 0, i = 0,..., m j için p j S α = a i p i, β = b i p i S olsun.(a i, b i 0; a i = 1; b i = 1) (1 t)α + tβ S (1 t)α + tβ = (1 t) a i p i + t b i p i = ((1 t)a i + tb i )p i S (1 t)a i +tb i = (1 t) i=1 } b i = 1, (1 t)a i +tb i 0 (1 t)α+tβ S 58

Soru Toplam Puanlama Alnan Puan

Soru Toplam Puanlama Alnan Puan 26.11.2013 No: Ad-Soyad: mza: Soru 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Toplam Puanlama 15 15 15 15 15 15 15 15 15 15 105 Alnan Puan 405024142006.1 CEB RSEL TOPOLOJ ARASINAVI CEVAP ANAHTARI SORULARI (ÖRGÜN Ö

Detaylı

Soru Toplam Puanlama Alnan Puan

Soru Toplam Puanlama Alnan Puan ..04 No: Ad-Soyad: mza: Soru.. 3. 4. 5. 6. 7. 8. Toplam Puanlama 0 0 0 5 0 0 0 0 00 Alnan Puan 04043006. CEB RSEL TOPOLOJ ARASINAVI CEVAP ANAHTARI ( K NC Ö RET M) Not: Süre 90 Dakika. stedi iniz 7 soruyu

Detaylı

KOMB NATOR K TOPOLOJ L SANS DERS NOTLARI Prof. Dr. smet KARACA

KOMB NATOR K TOPOLOJ L SANS DERS NOTLARI Prof. Dr. smet KARACA KOMB NATOR K TOPOLOJ L SANS DERS NOTLARI 2010 Prof. Dr. smet KARACA çindekiler 1 S MPLEKSLER 3 1.1 Ane Uzaylar........................... 3 1.2 Simpleksler Kompleksi...................... 12 2 HOMOTOP

Detaylı

CEB RSEL TOPOLOJ I L SANSÜSTÜ DERS NOTLARI Prof. Dr. smet KARACA

CEB RSEL TOPOLOJ I L SANSÜSTÜ DERS NOTLARI Prof. Dr. smet KARACA CEBRSEL TOPOLOJ I LSANSÜSTÜ DERS NOTLARI 2010 Prof. Dr. smet KARACA çindekiler 1 GR 3 2 TEMEL TOPOLOJK KAVRAMLAR 7 2.1 HOMOTOP........................... 7 2.2 KONVEKSLK, BÜZÜLEBLRLK VE KONLER...... 14

Detaylı

Çarpm ve Bölüm Uzaylar

Çarpm ve Bölüm Uzaylar 1 Ksm I Çarpm ve Bölüm Uzaylar ÇARPIM UZAYLARI 1 ÇARPIM TOPOLOJ S 2 KARMA P R O B E M L E R 1. A ile B, srasyla, (X, T )X ile (Y, S ) topolojik uzaylarnn birer alt-kümesi olsunlar. (a) (A B) = A B (b)

Detaylı

f 1 (H ) T f 1 (H ) = T

f 1 (H ) T f 1 (H ) = T Bölüm 15 TIKIZLIK 15.1 TIKIZ UZAYLAR 15.1.1 Problemler 1. Her sonlu topolojik uzay tkzdr. 2. Ayrk bir topolojik uzayn tkz olmas için gerekli ve yeterli ko³ul sonlu olmasdr. 3. Ayn bir küme üzerinde S T

Detaylı

f( F) f(f) K = K F f 1 f( F) f 1 (K) = F F f 1 (S ) = [f 1 (S)] f(x) S V

f( F) f(f) K = K F f 1 f( F) f 1 (K) = F F f 1 (S ) = [f 1 (S)] f(x) S V Bölüm 6 SÜREKL FONKS YONLAR 6.1 YEREL SÜREKL L K Tanm 6.1.1. (X, T ) ve (Y, S) topolojik uzaylar ile f : X Y fonksiyonu verilsin. E er f(x 0 ) ö esinin her V kom³ulu una kar³lk f(u) V olacak ³ekilde x

Detaylı

S = {T Y, X S T T, S S} (9.1)

S = {T Y, X S T T, S S} (9.1) Bölüm 9 ÇARPIM UZAYLARI 9.1 ÇARPIM TOPOLOJ S Bo³ olmayan kümelerden olu³an bo³ olmayan bir ailenin kartezyen çarpmnn da bo³ olmad n, Seçme Aksiyomu [13],[20], [8] ile kabul ediyoruz. imdi verilen aileye

Detaylı

(i) (0,2], (ii) (0,1], (iii) [1,2), (iv) (1,2]

(i) (0,2], (ii) (0,1], (iii) [1,2), (iv) (1,2] Bölüm 5 KOM ULUKLAR 5.1 KOM ULUKLAR Tanm 5.1.1. (X, T ) bir topolojik uzay ve A ile N kümeleri X uzaynn iki alt-kümesi olsun. E er A T N olacak ³ekilde her hangi bir T T varsa, N kümesine A nn bir kom³ulu

Detaylı

x = [x] = [x] β = {y (x,y) β} (8.5) X = {x x X}. x,y X [(x = y) (x y = )]. b(b [x]) b [y] [x] [y] (8.8)

x = [x] = [x] β = {y (x,y) β} (8.5) X = {x x X}. x,y X [(x = y) (x y = )]. b(b [x]) b [y] [x] [y] (8.8) Bölüm 8 DENKL K BA INTILARI 8.1 DENKL K BA INTISI 8.1.1 E³itlik Kavramnn Genelle³mesi Matematikte ve ba³ka bilim dallarnda, birbirlerine e³it olmayan, ama e³itli e benzer niteliklere sahip nesnelerle sk

Detaylı

TOPOLOJ TEST A. 1. A³a dakilerden hangisi topoloji tanmlama yöntemi de ildir?

TOPOLOJ TEST A. 1. A³a dakilerden hangisi topoloji tanmlama yöntemi de ildir? 1 TOPOLOJ TEST A 1. A³a dakilerden hangisi topoloji tanmlama yöntemi de ildir? (a) Açk kümeleri belirleme (b) Kapal kümeleri belirleme (c) Alt-kümeleri belirleme (d) Kaplamlar belirleme (e) çlemleri belirleme

Detaylı

TOPOLOJ TEST B. (d) Dizinin limiti yoktur; y lma noktas yoktur. 4. Dizisel süreklilik hangi uzaylarda süreklili e denktir?

TOPOLOJ TEST B. (d) Dizinin limiti yoktur; y lma noktas yoktur. 4. Dizisel süreklilik hangi uzaylarda süreklili e denktir? 1 TOPOLOJ TEST B 1. {( 1) n 1 n : n > 0} dizisi için a³a dakilerden hangisi do rudur? (a) Dizinin limiti 1 ve +1 dir; y lma noktas 1 ve +1 dir. (b) Dizinin limiti 1 ve +1 dir; y lma noktas yoktur. (c)

Detaylı

TOPOLOJ SORULARI. Ksm I. 1 Topological Notions. 1. Her açk aralk salt topolojiye göre R uzaynda açktr. Gösteriniz.

TOPOLOJ SORULARI. Ksm I. 1 Topological Notions. 1. Her açk aralk salt topolojiye göre R uzaynda açktr. Gösteriniz. 1 Ksm I TOPOLOJ SORULARI 1 Topological Notions 1. Her açk aralk salt topolojiye göre R uzaynda açktr. Gösteriniz. 2. n Z olmak üzere (n, n + 1) aralklarnn bile³imi açktr. Gösteriniz. 3. {0} = ( 1 n, 1

Detaylı

TOPOLOGY TEST A³a dakilerden hangisi bir süzgeç de ildir? 3. A³a dakilerden hangisi a³kn bir süzgeç de ildir?

TOPOLOGY TEST A³a dakilerden hangisi bir süzgeç de ildir? 3. A³a dakilerden hangisi a³kn bir süzgeç de ildir? 1 TOPOLOGY TEST 02 1. S ailesi X kümesi üzerinde bir süzgeç ise, a³a dakilerden hangisi sa lanmaz? (a) / S (b) * S (c) X S (d) A, B S A B S (e) (V S ) (V W ) W S 2. A³a dakilerden hangisi bir süzgeç de

Detaylı

A = i I{B i : B i S} A = x A{B x A : B x S}

A = i I{B i : B i S} A = x A{B x A : B x S} Bölüm 4 TOPOLOJ TABANI 4.1 TOPOLOJ TABANI Tanm 4.1.1. Bir S P(X) ailesi verilsin. S ye ait kümelerin her hangi bir bile³imine e³it olan bütün kümelerin olu³turdu u aileye S nin üretti i (do urdu u) aile

Detaylı

Soru Toplam Puanlama Alınan Puan

Soru Toplam Puanlama Alınan Puan 18.11.2013 No: Ad-Soyad: İmza: Soru 1. 2. 3. 4. 5. 6. 7. 8. Toplam Puanlama 20 20 20 20 20 20 20 20 100 Alınan Puan 405024142006.1 CEBİRSEL TOPOLOJİ ARASINAVI CEVAP ANAHTARI (ÖRGÜN ÖĞRETİM) Not: Süre 90

Detaylı

ARA SINAV II. (1) (x k ) k N, R n içinde yaknsak ve limiti x olan bir dizi olsun. {x} = oldu unu gösteriniz.

ARA SINAV II. (1) (x k ) k N, R n içinde yaknsak ve limiti x olan bir dizi olsun. {x} = oldu unu gösteriniz. MC 411/ANAL Z IV ARA SINAV II ÇÖZÜMLER 1 x k k N, R n içinde yaknsak iti x olan bir dizi olsun. {x} = {x m m k} k=1 Çözüm. Her k N için A k := {x m m k} olsun. x k k N dizisinin iti x oldu undan, A k =

Detaylı

BÖLÜM 1. Matematiksel ndüksiyon Prensibi

BÖLÜM 1. Matematiksel ndüksiyon Prensibi BÖLÜM 1 Matematiksel ndüksiyon Prensibi Matematiksel indüksiyon prensibini kullanarak a³a daki e³it(siz)liklerin her n N için gerçeklendi ini ispatlaynz. 1. 1 2 + 2 2 + 3 2 + + n 2 = n(n+1)(2n+1) 6 2.

Detaylı

18.702 Cebir II 2008 Bahar

18.702 Cebir II 2008 Bahar MIT Açk Ders Malzemeleri http://ocw.mit.edu 18.702 Cebir II 2008 Bahar Bu materyallerden alnt yapmak veya Kullanm artlar hakknda bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

A = i IA i = i I A = A = i IA i = {x α((α I) (x A α ))} (7.7) A = (α,β I) (α β) A α A β = (7.8) A A

A = i IA i = i I A = A = i IA i = {x α((α I) (x A α ))} (7.7) A = (α,β I) (α β) A α A β = (7.8) A A Bölüm 7 KÜME A LELER 7.1 DAMGALANMI KÜMELER E er inceledi imiz kümelerin says, alfabenin harerinden daha çok de ilse, onlara,b,...,w gibi harerle temsil edebiliriz. E er elimizde albenin harerinden daha

Detaylı

19.8. PROBLEMLER 0.1 PROBLEMLER 0.1. PROBLEMLER a herhangi bir nicelik says ise

19.8. PROBLEMLER 0.1 PROBLEMLER 0.1. PROBLEMLER a herhangi bir nicelik says ise 0.1. PROBLEMLER 1 19.8. PROBLEMLER // 0.1 PROBLEMLER // 1. a herhangi bir nicelik says ise (i) a + 0 = a, a0 = 0, a 0 = 1 oldu unu gösteriniz. A³a daki kümelerin e³güçlülü ünden nicelik saylar için istenen

Detaylı

CEB RSEL TOPOLOJ II. Prof. Dr. smet KARACA. Yüksek Lisans Ders Notlar

CEB RSEL TOPOLOJ II. Prof. Dr. smet KARACA. Yüksek Lisans Ders Notlar CEBRSEL TOPOLOJ II Prof. Dr. smet KARACA Yüksek Lisans Ders Notlar çindekiler 1 SNGÜLER KOMPLEKS VE HOMOLOJ 2 1.1 Eilenberg-Steenrod Aksiyomlar.............. 9 1.2 Hurewicz Teoremi.......................

Detaylı

B A. A = B [(A B) (B A)] (2)

B A. A = B [(A B) (B A)] (2) Bölüm 5 KÜMELER CEB R Do a olaylarnn ya da sosyal olaylarn açklanmas için, bazan, matematiksel modelleme yaplr. Bunu yapmak demek, incelenecek olaya etki eden etmenleri içine alan matematiksel formülleri

Detaylı

KATEGOR TEOR S. Yüksek Lisans Ders Notlar Prof. Dr. smet KARACA

KATEGOR TEOR S. Yüksek Lisans Ders Notlar Prof. Dr. smet KARACA KATEGOR TEORS Yüksek Lisans Ders Notlar 2010 Prof. Dr. smet KARACA 1 çindekiler 1 KATEGORLER 5 1.1 Somut Kategori.......................... 8 1.2 Soyut Kategori.......................... 11 1.3 Di er Kategori

Detaylı

2. Topolojik Uzaylarda Ba¼glant l l k Ba¼glant l Topolojik Uzaylar. Tan m (X; ) topolojik uzay n n her biri boş kümeden farkl olan ayr k

2. Topolojik Uzaylarda Ba¼glant l l k Ba¼glant l Topolojik Uzaylar. Tan m (X; ) topolojik uzay n n her biri boş kümeden farkl olan ayr k 2. Topolojik Uzaylarda Ba¼glant l l k 2.1. Ba¼glant l Topolojik Uzaylar Tan m 2.1.1. (X; ) topolojik uzay n n her biri boş kümeden farkl olan ayr k iki aç ktan oluşan bir örtüsü yok ise, (X; ) topolojik

Detaylı

BÖLÜM 1. stanbul Kültür Üniversitesi. Fonksiyonlar - Özellikleri ve Limit Kavram. ³eklinde tanmlanan fonksiyona Dirichlet fonksiyonu ad verilir.

BÖLÜM 1. stanbul Kültür Üniversitesi. Fonksiyonlar - Özellikleri ve Limit Kavram. ³eklinde tanmlanan fonksiyona Dirichlet fonksiyonu ad verilir. BÖLÜM 1 0, Q 1. f() = 1, R/Q, Fonksiyonlar - Özellikleri ve Limit Kavram ³eklinde tanmlanan fonksiyona Dirichlet fonksiyonu ad verilir. Buna göre a³a da verilen tanm bölgeleri altnda görüntü cümlelerini

Detaylı

P = {x A (y A y x) f(y) x} (22.6) M p = {m A m p f(p) m} (22.8)

P = {x A (y A y x) f(y) x} (22.6) M p = {m A m p f(p) m} (22.8) Bölüm 22 SEÇME AKS YOMU SEÇME AKS YOMU VE E DE ERLER 22.1 G R Bir X kümesi dü³ünelim. Bu küme ya bo³tur ya de ildir. De ilse, X kümesine ait bir ö e seçilebilir. imdi ba³ka bir Y kümesi daha dü³ünelim.

Detaylı

IV. DERS D FERENS YELLENEB L R MAN FOLDLAR

IV. DERS D FERENS YELLENEB L R MAN FOLDLAR Bölüm 1 IV. DERS D FERENS YELLENEB L R MAN FOLDLAR Bir öceki bölümde bir yüzeyi oktalar yeterice küçük kom³uluklaryla ilgileebildik. Bu prosesi soyut realizasyou içi, souçta bizi diferesiyelleebilir maifold

Detaylı

Ksm I. Simgeler ve Terimler

Ksm I. Simgeler ve Terimler Ksm I Simgeler ve Terimler 1 Bölüm 1 S MGELER ve TER MLER 1.1 KÜMELER CEB R 1.2 FONKS YON 1.3 DENKL K BA INTISI 1.4 SIRALAMA BA INTILARI 1.5 SEÇME AKS YOMU SEÇME AKS YOMU ve E DE ERLER 3 4 BÖLÜM 1. S

Detaylı

Ders 2: RP 1 ve RP 2 - Reel izdüşümsel doğru ve

Ders 2: RP 1 ve RP 2 - Reel izdüşümsel doğru ve Ders 2: RP 1 ve RP 2 - Reel izdüşümsel doğru ve düzlem Geçen ders doğrusal cebir aracılığıyla izdüşümsel geometri için bir model kurduk. Şimdi bu modeli daha somut bir şekle sokalım, F = R durumunda kurduğumuz

Detaylı

GEOMETR K TOPOLOJ. Ders Notlar

GEOMETR K TOPOLOJ. Ders Notlar GEOMETR K TOPOLOJ Prof. Dr. smet KARACA Ders Notlar çindekiler 1 MAN FOLDLAR 4 1.1 Manifold.............................. 4 1.2 Diferensiyellenebilir Yaplar................... 5 1.3 Diferensiyellenebilir

Detaylı

(sf) F C = [(s,f) sf] x [0,1] = (sf)(x) = sf(x)

(sf) F C = [(s,f) sf] x [0,1] = (sf)(x) = sf(x) Bölüm 13 MATEMAT KSEL YAPILAR 13.1 YAPI KAVRAMI Ça da³ Matematik kümeleri, kümeler üzerindeki yaplar, yaplar arasndaki dönü³ümleri inceler. Buraya dek ö e, küme, i³lem, fonksiyon kavramlarn kullandk. Bunlar

Detaylı

SOYUT MATEMAT K DERS NOTLARI. Yrd. Doç. Dr. Hüseyin B LG Ç

SOYUT MATEMAT K DERS NOTLARI. Yrd. Doç. Dr. Hüseyin B LG Ç SOYUT MATEMAT K DERS NOTLARI Yrd. Doç. Dr. Hüseyin B LG Ç Kahramanmara³ Sütçü mam Üniversitesi FenEdebiyat Fakültesi Matematik Bölümü Eylül 2010 çindekiler 1 Önermeler ve spat Yöntemleri 1 2 Kümeler 13

Detaylı

0 = ρ(x,x) ρ(x,y)+ρ(y,x) = 2ρ(x,y) 0, x = y δ(x,y) = κ(z 1,z 2 ) = z 1 z 2, (z 1,z 2 C) (17.27)

0 = ρ(x,x) ρ(x,y)+ρ(y,x) = 2ρ(x,y) 0, x = y δ(x,y) = κ(z 1,z 2 ) = z 1 z 2, (z 1,z 2 C) (17.27) 230 BÖLÜM 17. METR K UZAYLAR 17.2 METR K METR K UZAY KAVRAMI Normlanm³ bir uzay, her³eyden önce bir vektör uzaydr, yani (X, ) normlanm³ bir uzay ise, X kümesi üzerinde bir vektör uzay yaps vardr. Oysa,

Detaylı

ÜZER NDE TANIMLI HER NORM-SINIRLI OPERATÖRÜN REGÜLER OLDU U BANACH ÖRGÜLER YÜKSEK L SANS TEZ. Nazl DO AN

ÜZER NDE TANIMLI HER NORM-SINIRLI OPERATÖRÜN REGÜLER OLDU U BANACH ÖRGÜLER YÜKSEK L SANS TEZ. Nazl DO AN STANBUL KÜLTÜR ÜN VERS TES FEN B L MLER ENST TÜSÜ ÜZER NDE TANIMLI HER NORM-SINIRLI OPERATÖRÜN REGÜLER OLDU U BANACH ÖRGÜLER YÜKSEK L SANS TEZ Nazl DO AN 1109041005 Anabilim Dal: Matematik-Bilgisayar Program:

Detaylı

SOYUT CEB R DERS NOTLARI

SOYUT CEB R DERS NOTLARI SOYUT CEB R DERS NOTLARI Yrd. Doç. Dr. Hüseyin B LG Ç Kahramanmara³ Sütçü mam Üniversitesi Fen-Edebiyat Fakültesi Matematik Bölümü A ustos 2012 e-posta: h_bilgic@yahoo.com çindekiler 1 Grup Tanm ve Temel

Detaylı

CEBİR DERS NOTLARI Yrd. Doç. Dr. Yıldıray ÇELİK

CEBİR DERS NOTLARI Yrd. Doç. Dr. Yıldıray ÇELİK CEBİR DERS NOTLARI Yrd. Doç. Dr. Yıldıray ÇELİK Karadeniz Teknik Üniversitesi Fen Fakültesi Matematik Bölümü çindekiler 1 Gruplar Teorisi 1 2 Altgruplar, Kosetler ve Lagrange Teoremi 15 3 Normal Altgruplar

Detaylı

Türevlenebilir Manifoldlara Giri³

Türevlenebilir Manifoldlara Giri³ Türevlenebilir Manifoldlara Giri³ Yldray Ozan Orta Do u Teknik Üniversitesi Matematik Bölümü 7 Temmuz 2016 Sevgili anne ve babamn hatrasna Duydu umu unuturum. Gördü ümü hatrlarm. Yapt m anlarm. -Konfüçyüs

Detaylı

1.3. Normal Uzaylar. Bu bölümde; regülerlikten daha kuvvetli bir ay rma aksiyomu tan mlanarak. baz temel özellikleri incelenecektir.

1.3. Normal Uzaylar. Bu bölümde; regülerlikten daha kuvvetli bir ay rma aksiyomu tan mlanarak. baz temel özellikleri incelenecektir. 1.3. Normal Uzaylar Bu bölümde; regülerlikten daha kuvvetli bir ay rma aksiyomu tan mlanarak baz temel özellikleri incelenecektir. Tan m 1.3.1. (X; ) bir Hausdor uzay olsun. E¼ger, 8F; K 2 F; F \ K = ;

Detaylı

XIV. Ulusal Antalya Matematk Olmpyat Brnc A³ama Snav Sorular -2009

XIV. Ulusal Antalya Matematk Olmpyat Brnc A³ama Snav Sorular -2009 XIV. Ulusal ntalya Matematk Olmpyat rnc ³ama Snav Sorular -009 c www.sbelian.wordpress.com sbelianwordpress@gmail.com Soru 1. dar açl üçgeninde m() = 45 'dir. 'dan 'ye indirilmi³ dikmenin aya E ve 'den

Detaylı

Cebir II 2008 Bahar

Cebir II 2008 Bahar MIT Açk Ders Malzemeleri http://ocw.mit.edu 18.702 Cebir II 2008 Bahar Bu materyallerden alnt yapmak veya Kullanm artlar hakknda bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

SOYUT CEB R DERS NOTLARI

SOYUT CEB R DERS NOTLARI SOYUT CEB R DERS NOTLARI Yrd. Doç. Dr. Hüseyin B LG Ç Kahramanmara³ Sütçü mam Üniversitesi Fen-Edebiyat Fakültesi Matematik Bölümü Mart 2013 e-posta: h_bilgic@yahoo.com çindekiler 1 Grup Tanm ve Temel

Detaylı

1.4 Tam Metrik Uzay ve Tamlaması

1.4 Tam Metrik Uzay ve Tamlaması 1.4. Tam Metrik Uzay ve Tamlaması 15 1.4 Tam Metrik Uzay ve Tamlaması Öncelikle şunu not edelim: (X, d) bir metrik uzay, (x n ), X de bir dizi ve x X ise lim n d(x n, x) = 0 = lim n,m d(x n, x m ) = 0

Detaylı

Soyut Matematik Test A

Soyut Matematik Test A 1 Soyut Matematik Test A 1. A³a dakilerden hangisi do rudur? (a) * A B C(C B) A C) (b) A B C(C B) A C) (c) A B C(B C) A C) (d) A B C(B C) A C) (e) A B C(B C) (A C) 2. Her hangi bir A kümeler ailesi üzerinde

Detaylı

MC 311/ANAL Z III ARA SINAV I ÇÖZÜMLER

MC 311/ANAL Z III ARA SINAV I ÇÖZÜMLER MC 311/ANAL Z III ARA SINAV I ÇÖZÜMLER (1) A³a daki her bir önermenin do ru mu yanl³ m oldu unu belirleyiniz. Do ruysa, gerekçe gösteriniz; yanl³sa, bir kar³-örnek veriniz. (a) (a n ) n N dizisi yaknsak

Detaylı

II. DERS R 3 te E R LER ve VEKTÖR ALANLARI

II. DERS R 3 te E R LER ve VEKTÖR ALANLARI Bölüm II. DERS R 3 te E R LER ve VEKTÖR ALANLARI Bu kesimde R 3 e ri kavram tanmlanacak ve geometrik özellikleri tart³lacaktr.. D FERENS YELLENEB L R E R VE PARAMETR K TEMS L I notasyonu ile R nin a

Detaylı

Türevlenebilir Manifoldlara Giri³

Türevlenebilir Manifoldlara Giri³ Türevlenebilir Manifoldlara Giri³ Yldray Ozan Orta Do u Teknik Üniversitesi Matematik Bölümü 2 Temmuz 2015 Sevgili anne ve babamn hatrasna Duydu umu unuturum. Gördü ümü hatrlarm. Yapt m anlarm. -Konfüçyüs

Detaylı

Soyut Matematik Test 01

Soyut Matematik Test 01 1 Soyut Matematik Test 01 1. A³a dakilerden hangisi do rudur? (a) * A B C(C B) A C) (b) A B C(C B) A C) (c) A B C(B C) A C) (d) A B C(B C) A C) (e) A B C(B C) (A C) 2. A³a dakilerden hangisi do rudur?

Detaylı

Soyut Matematik Test B

Soyut Matematik Test B 1 Soyut Matematik Test B 1. Hangisi tümel (tam, linear) sralama ba ntsdr? (a) Yansmal, antisimetrik, geçi³ken ve örgün olan ba ntdr. (b) Yansmal, simetrik, geçi³ken ve örgün olan ba ntdr. (c) Yansmaz,

Detaylı

ÖABT Soyut Matematik KONU TESTİ Önermeler ve İspat Yöntemleri

ÖABT Soyut Matematik KONU TESTİ Önermeler ve İspat Yöntemleri ÖABT Soyut Matematik KONU TESTİ Önermeler ve İspat Yöntemleri ÇÖZÜMLER p q r q q p r q q. p r q q p r 5. p q q r r r, p q q r, r p, q q r q, q p q. p q p q p q p q p q q p p 6. p p q p p q p q p p p q

Detaylı

GEOMETR K TOPOLOJ. Ders Notlar

GEOMETR K TOPOLOJ. Ders Notlar GEOMETR K TOPOLOJ Prof. Dr. smet KARACA Ders Notlar çindekiler 1 EUCLID UZAYINDA DÜZGÜN (SMOOTH) FONKS YON- LAR 5 1.1 R n de Tanjant(Te et) Vektörleri................. 9 1.2 Yönlü Türev............................

Detaylı

CHAPTER 1. Vektörler

CHAPTER 1. Vektörler iv CHAPTER 1 Vektörler Vektör kavram, ziksel kavram olarak ortaya çkm³ olsa da matematiksel sistemlerin temel kavram olmu³tur. Gerçekten vektör kavramn geli³imi matematikçilerden çok zikçiler ve kimyaclar

Detaylı

DO U ÜN VERS TES 9.Liseleraras Matematik Yar³mas Sorular. (n + 1) n n n + 1 = n(n + 1)

DO U ÜN VERS TES 9.Liseleraras Matematik Yar³mas Sorular. (n + 1) n n n + 1 = n(n + 1) DO U ÜN VERS TES 9.Liseleraras Matematik Yar³mas Sorular 1 1) a n = (n + 1) n + n n + 1 olmak üzere, a 1 + a + a 3 +... + a 99 toplamn bulunuz. 9 evap: 10 a n = (n + 1) n n n + 1 n(n + 1) n (n + 1) oldu

Detaylı

T. C. NÖNÜ ÜN VERS TES FEN B L MLER ENST TÜSÜ

T. C. NÖNÜ ÜN VERS TES FEN B L MLER ENST TÜSÜ T. C. NÖNÜ ÜN VERS TES FEN B L MLER ENST TÜSÜ Ç FT D Z LER N I-YAKINSAKLI I ÜZER NE Erdinç DÜNDAR DOKTORA TEZ MATEMAT K ANAB L M DALI MALATYA 2010 Tezin Ba³l : Çift Dizilerin I-Yaknsakl Üzerine Tezi Hazrlayan

Detaylı

HOMOLOJİ CEBİRE GİRİŞ ARA SINAV CEVAP ANAHTARI

HOMOLOJİ CEBİRE GİRİŞ ARA SINAV CEVAP ANAHTARI 12.04.2011 HOMOLOJİ CEBİRE GİRİŞ ARA SINAV CEVAP ANAHTARI 1. f : A B modül homomorfizması, i : Ker f A kapsama homomorfizması ve p : B B/Im f doğal epimorfizma olmak üzere 0 Ker f A B B/Im f 0 dizisinin

Detaylı

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b Bölüm 1 Temel Kavramlar Bu bölümde bağıntı ve fonksiyon gibi bazı temel kavramlar üzerinde durulacak, tamsayıların bazı özellikleri ele alınacaktır. Bu çalışma boyunca kullanılacak bazı kümelerin gösterimleri

Detaylı

2. SİMETRİK GRUPLAR. Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir.

2. SİMETRİK GRUPLAR. Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir. 2. SİMETRİK GRUPLAR Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir. Tanım 2.2. X boş olmayan bir küme olsun. S X ile X den X e tüm birebir örten fonksiyonlar

Detaylı

1. Metrik Uzaylar ve Topolojisi

1. Metrik Uzaylar ve Topolojisi 1. Metrik Uzaylar ve Topolojisi Euclidean R uzayının tabanının B = {(a, b) : a, b R} olduğunu biliyoruz. Demek ki bu uzayda belirleyiçi unsur açık aralıklar. Her açık aralık (a, b) için, olmak üzere, d

Detaylı

1.4. KISMİ SIRALAMA VE DENKLİK BAĞINTILARI

1.4. KISMİ SIRALAMA VE DENKLİK BAĞINTILARI Reel sayılar kümesinin "küçük ya da eşit", bağıntısı ile sıralanmış olduğunu biliyoruz. Bu bağıntı herhangi bir X kümesine aşağıdaki şekilde genelleştirilebilir. Bir X kümesi üzerinde aşağıdaki yansıma,

Detaylı

ç- çe Tasarmlar Birdal eno lu ükrü Acta³ eno lu & Acta³ statistiksel Deney Tasarm Giri³ ki A³amal ç- çe Üç A³amal ç- çe l A³amal ç- çe

ç- çe Tasarmlar Birdal eno lu ükrü Acta³ eno lu & Acta³ statistiksel Deney Tasarm Giri³ ki A³amal ç- çe Üç A³amal ç- çe l A³amal ç- çe lar Birdal eno lu ükrü çindekiler 1 2 3 4 5 A³amal tasarmlar (hierarchical designs) olarak da bilinen iç-içe tasarmlarda (nested designs), ³u ana kadar gördü ümüz tasarmlardan farkl olarak iki veya ikiden

Detaylı

zomorzma Teoremleri Teorem 5.1 (1. zomorzma Teoremi) f : G H örten bir homomorzma olsun. O zaman G/ Çek(f) = H dr.

zomorzma Teoremleri Teorem 5.1 (1. zomorzma Teoremi) f : G H örten bir homomorzma olsun. O zaman G/ Çek(f) = H dr. 5 zomorzma Teoremleri G bir grup olsun. Bir N G için f : G G/N homomorzmasnn varl n göstermi³tik. Acaba bunun tersi de do ru mudur? Yani; G ve H birer grup olmak üzere G/N = H olacak ³ekilde bir N G normal

Detaylı

Içindekiler. Karşk Örnekler 87. TÜBITAK SORULARI (Fonksiyonlar) 55 ULUSAL ANTALYA MATEMATIK OLIMPIYATI SORULARI 64

Içindekiler. Karşk Örnekler 87. TÜBITAK SORULARI (Fonksiyonlar) 55 ULUSAL ANTALYA MATEMATIK OLIMPIYATI SORULARI 64 Içindekiler BIRINCI BÖLÜM Fonksiyonlar Bagnt 11 Fonksiyon 12 Fonksiyonel Denklemlere Giriş 14 Fonksiyonun Gragi 17 Fonksiyon Çeşitleri 18 Bir Fonksiyonun Tersi 20 Bileşke Fonksiyon 23 Tek ve Çift Fonksiyon

Detaylı

için Örnek 7.1. simetri grubunu göz önüne alalım. Şu halde dür. Şimdi kalan sınıflarını göz önüne alalım. Eğer ve olarak alırsak işlemini kullanarak

için Örnek 7.1. simetri grubunu göz önüne alalım. Şu halde dür. Şimdi kalan sınıflarını göz önüne alalım. Eğer ve olarak alırsak işlemini kullanarak 7. Bölüm Grupları olmak üzere grubunu nasıl inşa ettiğimizi hatırlayalım. grubunun alt grubu grubu tüm olacak şekilde tüm sınıflardan oluşmuştur. Sınıfların toplamını ile, yani ile tanımlamıştık. Şimdi

Detaylı

; k = 1; 2; ::: a (k)

; k = 1; 2; ::: a (k) Analiz III Ara S nav 2 Kas m 2 x k = ; 2 ; :::; ; k = ; 2; ::: olmak üzere (x k ) R dizisi veriliyor. ; dizi ise (x k ) dizisi de yak nsak olur. Ispatlay n z. 2 ; :::; 2 A; B R olsun. A B ise A B olur

Detaylı

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.

(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir. BĞANTI - FONKSİYON 1. Sıralı İkili : (a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.! (x 1,x 2, x 3,x 4,...x n ) : sıralı n li denir. Örnek, (a,b,c) : sıralı

Detaylı

L SANS YERLE T RME SINAVI 1

L SANS YERLE T RME SINAVI 1 LSANS YERLETRME SINAVI MATEMATK TEST SORU KTAPÇII 9 HAZRAN 00. ( )( + ) + ( )( ) = 0 eitliini salayan gerçel saylarnn toplam kaçtr?. ( )( ) < 0 eitsizliinin gerçel saylardaki çözüm kümesi aadaki açk aralklarn

Detaylı

MIT Açık Ders Malzemeleri Kompleks Değişkenli Fonksiyonlar 2008 Güz

MIT Açık Ders Malzemeleri Kompleks Değişkenli Fonksiyonlar 2008 Güz MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.112 Kompleks Değişkenli Fonksiyonlar 2008 Güz Bu materyallerden alıntı yapmak ya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms http://tuba.acikders.org.tr

Detaylı

T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ

T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ DERS: CEBİRDEN SEÇME KONULAR KONU: KARDİNAL SAYILAR ÖĞRETİM GÖREVLİLERİ: PROF.DR. NEŞET AYDIN AR.GÖR. DİDEM YEŞİL HAZIRLAYANLAR: DİRENCAN DAĞDEVİREN ELFİYE ESEN

Detaylı

Modül Teori. Modüller. Prof. Dr. Neşet AYDIN. [01/07] Mart Prof. Dr. Neşet AYDIN (ÇOMÜ - Matematik Bölümü) Modül Teori [01/07] Mart / 50

Modül Teori. Modüller. Prof. Dr. Neşet AYDIN. [01/07] Mart Prof. Dr. Neşet AYDIN (ÇOMÜ - Matematik Bölümü) Modül Teori [01/07] Mart / 50 Modül Teori Modüller Prof. Dr. Neşet AYDIN ÇOMÜ - Matematik Bölümü [01/07] Mart 2012 Prof. Dr. Neşet AYDIN (ÇOMÜ - Matematik Bölümü) Modül Teori [01/07] Mart 2012 1 / 50 Giriş M bir toplamsal değişmeli

Detaylı

A; e A; A kümelerini tan mlay n z. (x) = fb 2 B : x 2 Bg

A; e A; A kümelerini tan mlay n z. (x) = fb 2 B : x 2 Bg Genel Topolojiye Giriş I Ara S nav Sorular 30 Kas m 2010 1 (X; T ) bir topolojik uzay ve A X olsun. 2 (a) Ikinci say labilir topolojik uzay ne demektir? Tan mlay n z. A; e A; A ve @A kümelerini tan mlay

Detaylı

Leyla Bugay Doktora Nisan, 2011

Leyla Bugay Doktora Nisan, 2011 ltanguler@cu.edu.tr Çukurova Üniversitesi, Matematik Bölümü Doktora 2010913070 Nisan, 2011 Yarıgrup Teorisi Nedir? Yarıgrup teorisi cebirin en temel dallarından biridir. Yarıgrup terimi ilk olarak 1904

Detaylı

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE ÖZEL EGE LİSESİ GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE HAZIRLAYAN ÖĞRENCİ: Berk KORKUT DANIŞMAN ÖĞRETMEN: Gizem GÜNEL İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI 3.33 2. GİRİŞ... 3 3. YÖNTEM 3 4.

Detaylı

SÜREKLİLİK. 9.1 Süreklilik ve Süreksizlik Kavramları

SÜREKLİLİK. 9.1 Süreklilik ve Süreksizlik Kavramları SÜREKLİLİK Bu bölümde süreklilik kavramı, süreksizlik, sürekli fonksiyonların özellikleri ile buna ilişkin teoremler örnekler ve grafiklerle açıklanmaktadır. 9.1 Süreklilik ve Süreksizlik Kavramları Tanım

Detaylı

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR

8. HOMOMORFİZMALAR VE İZOMORFİZMALAR 8. HOMOMORFİZMALAR VE İZOMORFİZMALAR Şimdiye kadar bir gruptan diğer bir gruba tanımlı olan fonksiyonlarla ilgilenmedik. Bu bölüme aşağıdaki tanımla başlayalım. Tanım 8.1: ve iki grup ve f : G H bir fonksiyon

Detaylı

ndrgemel Dzler Ders Notlar

ndrgemel Dzler Ders Notlar ndrgemel Dzler Ders Notlar c wwww.sbelian.wordpress.com Bu ders notunda diziler konusunun bir alt konusu olan First Order Recursions ve Second Order Recursions konular anlatlm³ ve bu konularla alakal örnekler

Detaylı

iv ÇINDEKILER 4 Açk Önermeler ÖNERME FONKS YONLARI Evrensel Belirteç Varlk Belirtec

iv ÇINDEKILER 4 Açk Önermeler ÖNERME FONKS YONLARI Evrensel Belirteç Varlk Belirtec çindekiler Önsöz................................. ix 1 MANTIK ve MATEMAT K 1 1.1 ÇA LARI A AN MATEMAT K.................. 1 1.1.1 Mantk tarihine ksa bir bak³................ 1 1.1.2 Matematiksel Mantk....................

Detaylı

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x Çalışma Soruları. Aşağıdaki denklemleri çözünüz: a) 7x = 4x + b) x 7x = x 4 c) x 4 x + = 0. Aşağıdaki eşitsizliklerin çözüm kümelerini belirleyiniz ve aralıklar cinsinden ifade ediniz: a) 4x > 9 b) x 4

Detaylı

Grup Homomorfizmaları ve

Grup Homomorfizmaları ve Bölüm 7 Grup Homomorfizmaları ve İzomorfizmalar Bu bölümde verilen gruplar arasında grup işlemlerini koruyan fonksiyonları ele alacağız. Bu fonksiyonlar yardımıyla verilen grupların cebirsel yapılarının

Detaylı

İRTİBATLI LIE GRUPLARININ ESAS GRUPLARININ DEMETİ ÜZERİNE M. ÇİTİL

İRTİBATLI LIE GRUPLARININ ESAS GRUPLARININ DEMETİ ÜZERİNE M. ÇİTİL İRTİBATLI LIE GRUPLARININ ESAS GRUPLARININ DEMETİ ÜZERİNE M. ÇİTİL Özet Çalışmamızda ilk olarak, irtibatlı bir Lie grubu üzerinde esas grupların demeti bilinen tekniklerle oluşturulmuştur. Daha sonra elde

Detaylı

Fath Ünverstes Matematk Olmpyatlar

Fath Ünverstes Matematk Olmpyatlar Fath Ünverstes Matematk Olmpyatlar - 007 www.sbelian.wordpress.com Fatih Üniversitesi Matematik Bölümü tarafndan ilki düzenlenen Liseleraras Matematik Olimpiyat'nn ilk snav 0 Ekim 007 tarihinde üniversite

Detaylı

1 BAĞINTILAR VE FONKSİYONLAR

1 BAĞINTILAR VE FONKSİYONLAR 1 BAĞINTILAR VE FONKSİYONLAR Bu bölümde ilk olarak Matematikte çok önemli bir yere sahip olan Bağıntı kavramnı verip daha sonra ise Fonksiyon tanımı verip genel özelliklerini inceleyeceğiz. Tanım 1 A B

Detaylı

ANT TÜREV VE NTEGRAL HESAPLAMA YÖNTEMLER

ANT TÜREV VE NTEGRAL HESAPLAMA YÖNTEMLER ANT TÜREV VE NTEGRAL HESAPLAMA YÖNTEMLER 1 TEMEL YÖNTEM VE DE KEN DE T RME Bir kapal aralkta tanmlanm³ olan f ve F fonksiyonlar için e er bu aralkta F () f() ko³ulu sa lanyorsa F fonksiyonu, f fonksiyonunun

Detaylı

NEUTROSOPHIC TOPOLOJİK UZAYLARDA SÜREKLİLİK GÜLŞAH KAYA

NEUTROSOPHIC TOPOLOJİK UZAYLARDA SÜREKLİLİK GÜLŞAH KAYA T.C. ORDU ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ NEUTROSOPHIC TOPOLOJİK UZAYLARDA SÜREKLİLİK GÜLŞAH KAYA YÜKSEK LİSANS TEZİ ORDU 2017 ÖZET NEUTROSOPHIC TOPOLOJİK UZAYLARDA SÜREKLİLİK Gülşah KAYA Ordu Üniversitesi

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI A R, a A ve f de A da tanımlı bir fonksiyon olsun. Eğer f(x) f(a) lim x a x a limiti veya x=a+h koymakla elde edilen f(a+h) f(a) lim h 0 h Bu türev f (a), df dx limiti varsa f fonksiyonu

Detaylı

POL NOMLAR. Polinomlar

POL NOMLAR. Polinomlar POL NOMLAR ÜN TE 1. ÜN TE 1. ÜN TE 1. ÜN TE 1. ÜN T POL NOMLAR Polinomlar 1. Kazan m: Gerçek kat say l ve tek de i kenli polinom kavram n örneklerle aç klar, polinomun derecesini, ba kat say s n, sabit

Detaylı

6 Devirli Kodlar. 6.1 Temel Tan mlar

6 Devirli Kodlar. 6.1 Temel Tan mlar 6 Devirli Kodlar 6.1 Temel Tan mlar Tan m S F n q için e¼ger (a 0 ; a 1 ; : : : ; a n 1 ) 2 S iken (a n 1 ; a 1 ; : : : ; a n 2 ) 2 S oluyorsa S kümesine devirli denir. E¼ger bir C do¼grusal kodu devirli

Detaylı

BİR SAYININ ÖZÜ VE DÖRT İŞLEM

BİR SAYININ ÖZÜ VE DÖRT İŞLEM ÖZEL EGE LİSESİ BİR SAYININ ÖZÜ VE DÖRT İŞLEM HAZIRLAYAN ÖĞRENCİ: Sıla Avar DANIŞMAN ÖĞRETMEN: Gizem Günel İZMİR 2012 İÇİNDEKİLER 1. PROJENİN AMACI.. 3 2. GİRİŞ... 3 3. YÖNTEM. 3 4. ÖN BİLGİLER... 3 5.

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) MTEMTİ TESTİ (Mat ). u testte srasyla, Matematik ( ) Geometri ( 0) ile ilgili 0 soru vardr.. evaplarnz, cevap kâğdnn Matematik Testi için ayrlan ksmna işaretleyiniz.. armaşk saylar kümesi üzerinde işlemi,

Detaylı

KPSS MATEMATÝK. SOYUT CEBÝR ( Genel Tekrar Testi-1) N tam sayılar kümesinde i N için, A = 1 i,i 1

KPSS MATEMATÝK. SOYUT CEBÝR ( Genel Tekrar Testi-1) N tam sayılar kümesinde i N için, A = 1 i,i 1 SOYUT CEBÝR ( Genel Tekrar Testi-1) 1. A = { k k Z, < k 4 } 4. N tam sayılar kümesinde i N için, k 1 B = { k Z, 1 k < 1 } k 1 A = 1 i,i 1 i ( ] kümeleri verildiğine göre, aşağıdakilerden hangisi doğrudur?

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

kili ve Çoklu Kar³la³trmalar

kili ve Çoklu Kar³la³trmalar kili ve Çoklu Kar³la³trmalar Birdal eno lu ükrü Acta³ çindekiler 1 Giri³ 2 3 4 5 6 7 Bu bölümde, (2.1) modelinde, H 0 : µ 1 = µ 2 = = µ a = µ (1) ³eklinde ifade edilen sfr hipotezinin reddedilmesi durumunda,

Detaylı

Alıştırmalara yanıtlar

Alıştırmalara yanıtlar Alıştırmalara yanıtlar Alıştırma 7. Derste tanımlanan yama kürenin yalnızca {z S 2 : z > 0} kısmını parametrize etmekte. Yapmamız gereken şey bütün küreyi böyle yamalarla örtmek. Önce ϕ : D 2 S 2, (x 1,

Detaylı

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x Çalışma Soruları. Aşağıdaki denklemleri çözünüz: 7x = 4x + b) x 7x = x 4 c) x 4 x + = 0. Aşağıdaki eşitsizliklerin çözüm kümelerini belirleyiniz ve aralıklar cinsinden ifade ediniz: 4x > 9 b) x 4 < - c)

Detaylı

NÜMER IK ANAL IZ. Nuri ÖZALP FONKS IYONLARA YAKLAŞIM. Bilimsel Hesaplama Matemati¼gi

NÜMER IK ANAL IZ. Nuri ÖZALP FONKS IYONLARA YAKLAŞIM. Bilimsel Hesaplama Matemati¼gi NÜMER IK ANAL IZ Bilimsel Hesaplama Matemati¼gi Nuri ÖZALP FONKS IYONLARA YAKLAŞIM Nuri ÖZALP (Ankara Üni.) NÜMER IK ANAL IZ BÖLÜM 4 7! FONKS IYONLARA YAKLAŞIM 1 / 21 1 Polinom Interpolasyonu Newton Formu

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 4 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

f fonksiyonuna bir üç değişkenli fonksiyon adı verilir. Daha çok değişkenli fonksiyonlar benzer şekilde tanımlanır.

f fonksiyonuna bir üç değişkenli fonksiyon adı verilir. Daha çok değişkenli fonksiyonlar benzer şekilde tanımlanır. Çok Değişkenli Fonksiyonlar Tanım 1. D düzlemin bir bölgesi, f de D nin her bir (x, y) noktasına bir f(x, y) reel sayısı karşılık getiren bir fonksiyon ise f fonksiyonuna bir iki değişkenli fonksiyon adı

Detaylı

ab H bulunur. Şu halde önceki önermenin i) koşulu da sağlanır ve H G bulunur.

ab H bulunur. Şu halde önceki önermenin i) koşulu da sağlanır ve H G bulunur. 3.ALT GRUPLAR HG, Tanım 3.. (G, ) bir grup ve nin boş olmayan bir alt kümesi olsun. Eğer (H, ) bir grup ise H ye G nin bir alt grubu denir ve H G ile gösterilir. Not 3.. a)(h, ), (G, ) grubunun alt grubu

Detaylı

e e ex α := e α α +1,

e e ex α := e α α +1, s t a n b u l K ü l t ü r Ü n i v e r s i t e s i Matematik - Bilgisayar Bölümü MC 886 ntegral Denklemler... Yßliçi Sßnavß CEVAPLAR Talimatlar: Sßnav süresi 9 dakikadßr. lk dakika sßnav salonunu terk etmeyiniz.

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

ANKARA ÜNĐVERSĐTESĐ FEN BĐLĐMLERĐ ENSTĐTÜSÜ YÜKSEK LĐSANS TEZĐ DUAL DÖNÜŞÜMLER VE GEOMETRĐK UYGULAMALARI. Gülsüm BĐÇER MATEMATĐK ANABĐLĐM DALI

ANKARA ÜNĐVERSĐTESĐ FEN BĐLĐMLERĐ ENSTĐTÜSÜ YÜKSEK LĐSANS TEZĐ DUAL DÖNÜŞÜMLER VE GEOMETRĐK UYGULAMALARI. Gülsüm BĐÇER MATEMATĐK ANABĐLĐM DALI ANKARA ÜNĐVERSĐTESĐ FEN BĐLĐMLERĐ ENSTĐTÜSÜ YÜKSEK LĐSANS TEZĐ DUAL DÖNÜŞÜMLER VE GEOMETRĐK UYGULAMALARI Gülsüm BĐÇER MATEMATĐK ANABĐLĐM DALI ANKARA 011 Her hakkı saklıdır ÖZET Yüksek Lisans Tezi DUAL

Detaylı