STATİK VE MUKAVEMET AĞIRLIK MERKEZİ. Öğr.Gör. Gültekin BÜYÜKŞENGÜR. Çevre Mühendisliği

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "STATİK VE MUKAVEMET AĞIRLIK MERKEZİ. Öğr.Gör. Gültekin BÜYÜKŞENGÜR. Çevre Mühendisliği"

Transkript

1 STATİK VE MUKAVEMET AĞIRLIK MERKEZİ Öğr.Gör. Gültekin BÜYÜKŞENGÜR Çevre Mühendisliği

2 STATİK Ağırlık Merkezi Örnek Sorular 2

3 Değişmeyen madde miktarına kütle denir. Diğer bir anlamda cismin hacmini dolduran madde miktarıdır. Madde miktarı skaler bir büyüklüktür. Kuvvet uzayın her yerinde aynı değerdedir. Eşit kollu terazi ile ölçülür. SI birim sistemine göre birimi kilogramdır ve kg ile gösterilir. Birim kütleye etki eden yer çekimi kuvvetine yerin çekim alan şiddeti veya yer çekimi ivmesi denir ve g harfi ile ifade edilir. Cisimleri yerin merkezine doğru çeken bir yerçekimi kuvveti vardır. Bu kuvvet cismin kütlesiyle doğru orantılıdır. Bu çekim kuvvetine o cismin ağırlığı denir. Herhangi bir A cisminin diğer bir B cisminden daha ağır olması demek, A cismine etkiyen yerçekimi kuvvetinin, B cismine etkiyen yerçekimi kuvvetinden daha büyük olduğu anlamına gelir. Cismin ağırlığı m ise o cismin ağırlığı G = m. g bağıntısı ile bulunur. G : Cismin Ağırlığı (N) m : cismin kütlesi (kg) g : Yerçekimi İvmesi (m/s 2 ) 3

4 Nicelik Kütle Yerin Çekim Alan Şiddeti Ağırlık Sembol m g G Birim kg N/kg N Yeryüzünün çekim alan şiddeti vektörel bir büyüklük olduğundan ağırlıkta vektörel bir büyüklüktür. Çekim kuvveti cismin bulunduğu coğrafî enleme, yüksekliğe, gezegenlere göre değiştiğinden cismin ağırlığı da değişir. Bir başka deyişle bir cismin kütlesi değişmediği halde ağırlığı bulunduğu yüksekliğe ve enleme göre değişir. Ağırlık dinamometre ile ölçülür. 4

5 Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Şöyle ki, statikte çok küçük bir alana etki eden birbirlerine paralel yayılı kuvvetlerin toplamı, o alanın merkezinde tek bir tekil kuvvet olarak göz önüne alınabilmektedir. Buna örnek olarak bir cismin ağırlığı verilebilir. Cismin her bir küçük parçasının ağırlığı dünya merkezine doğru yönlenmiş olup, bunlar paralel kuvvetler oluştururlar. Bu yayılı kuvvetlerin toplamı cismin ağırlığıdır. Bu noktada akla gelen ilk soru Bu ağırlık kuvveti cismin hangi noktasında etkir? olmaktadır. Bu bölümde bu soruya yanıt aranacaktır, fakat önce iki önemli tanım verilerek işe başlanacaktır. Cismin ağırlığı: Dünyanın bir cisme uyguladığı yerçekimi kuvvetine o cismin ağırlığı denmektedir. Bu kuvvet, cismin üzerine yayılmış çok sayıda kuvvet ile gösterilir ve bunların bileşkesi de W olarak alınır. Bir cismin ağırlık merkezi: Cismin ağırlığı W nun, cismin her konumunda geçtiği C(x c,y c ) noktasına verilen addır. 5

6 6

7 Düzlem Alan ve Eğrilerin Ağırlık Merkezi Ağırlık merkezinin bilinmesi iki nedenden dolayı çok önemlidir. Önce ağırlık merkezinin bilinmesi meseleyi basitleştirir, çünkü bir cismin tüm ağırlığı, problemin koşullarını değiştirmeksizin ağırlık merkezine taşınabilir. Ayrıca ağırlık merkezinin bilinmesi denge koşullarının incelenmesini sağlar. y y O y 1 y 3 y 2 G 1 G 2 R G 3 0 x 1 x 2 x x 3 Ağırlık veya kütle merkezi koordinatlarının çıkarılması x 7

8 Düzlem Alan ve Eğrilerin Ağırlık Merkezi Yer tarafından bir cisim üzerine uygulanan yerçekimi kuvveti, cismin içerdiği her parçacığa etki eder. Cismin parçacıklarına etkiyen çekim kuvvetleri, paralel kuvvetler gibi düşünülebilir. Bu paralel kuvvetlerin bileşkesi cismin ağırlığını, uygulama noktası ise cismin ağırlık veya kütle merkezini verir. Bileşenlerin bir noktaya göre momentleri toplamı, bileşkenin aynı noktaya göre momentine eşittir. Bu teoreme göre aşağıdaki bağıntı yazılabilir. O noktasının apsisi için ise, yazılır. Rx = G 1 x 1 + G 2 x 2 + G 3 x 3 + x = G 1x 1 + G 2 x 2 + G 3 x 3 + R 8

9 Düzlem Alan ve Eğrilerin Ağırlık Merkezi Ağırlık merkezinin bilinmesi iki nedenden dolayı çok önemlidir. Önce ağırlık merkezinin bilinmesi meseleyi basitleştirir, çünkü bir cismin tüm ağırlığı, problemin koşullarını değiştirmeksizin ağırlık merkezine taşınabilir. Ayrıca ağırlık merkezinin bilinmesi denge koşullarının incelenmesini sağlar. y y O y 1 y 3 y 2 G 1 G 2 R G 3 0 x 1 x 2 x x 3 Ağırlık veya kütle merkezi koordinatlarının çıkarılması x 9

10 Düzlem Alan ve Eğrilerin Ağırlık Merkezi R bileşke kuvveti için R = G 1 + G 2 + G 3 + olduğundan x = G 1x 1 + G 2 x 2 + G 3 x 3 + R bulunur. Bu son formülde G 1 = m 1. g, G 2 = m 2. g, G 3 = m 3. g değerleri yerine konulduğunda Kütle Merkezi koordinatları (KM) apsisi için, x KM = m 1x 1 + m 2 x 2 + m 3 x 3 + m 1 + m 2 + m 3 + ordinatları için ise, bulunur. y KM = m 1y 1 + m 2 y 2 + m 3 y 3 + m 1 + m 2 + m

11 Aşağıdaki resimde verilen sistemin kütle merkezinin koordinatlarını bulunuz. y m 1 =4 kg 2 m m 2 =5 kg 4 m m 3 =11 kg x 11

12 Çözüm: x KM = m 1x 1 + m 2 x 2 + m 3 x 3 m 1 + m 2 + m 3 = = = 2, 2 m y KM = m 1y 1 + m 2 y 2 + m 3 y 3 m 1 + m 2 + m 3 = = 8 20 = 0, 4 m y m 1 =4 kg 2 m O(2,2;0,4) m 2 =5 kg 4 m m 3 =11 kg x Kütle merkezi O(2,2;0,4) noktasıdır. 12

13 Bazı Düzgün Geometrik Cisimlerin Ağırlık Merkezleri Kare, dikdörtgen, eşkenar dörtgen, paralelkenar ağırlık merkezleri köşelerinin kesiştiği noktalardır. b O a O a a/2 a/2 a/2 G Karenin Ağırlık Merkezi b/2 G Dikdörtgenin Ağırlık Merkezi 13

14 Bazı Düzgün Geometrik Cisimlerin Ağırlık Merkezleri L uzunluğundaki türdeş çubuğun ağırlık merkezi çubuğun tam orta noktasındadır. l l/2 G l uzunluğundaki Türdeş Çubuğun Ağırlık Merkezi 14

15 Bazı Düzgün Geometrik Cisimlerin Ağırlık Merkezleri Taban merkezlerini birleştiren doğrunun orta noktası silindirin ağırlık merkezidir. h O r h/2 G Silindirin Ağırlık Merkezi 15

16 Bazı Düzgün Geometrik Cisimlerin Ağırlık Merkezleri Çember, Daire ve Kürenin ağırlık merkezi şekillerinin geometrik merkezidir. O r O r r G G G Çember, Daire ve Kürenin Ağırlık Merkezi 16

17 Bazı Düzgün Geometrik Cisimlerin Ağırlık Merkezleri Kenarortaylarının kesiştiği nokta üçgenin ağırlık merkezidir. Bu nokta, yüksekliğin 3/1 inden geçer. Kenarortayların kesim noktası kenardan 1 birim, köşeden 2 birim uzunluğunda kesmektedir. O h a G Üçgenin Ağırlık Merkezi 17

18 Bazı Düzgün Geometrik Cisimlerin Ağırlık Merkezleri İki geometrik şekilli parçadan oluşan sistemin ağırlık merkezi, her bir parçanın ağırlık merkezlerini birleştiren doğru üzerinde bulunur. O 21 O O 1 G 21 G G 1 Farklı Şekillerin Ağırlık Merkezi 18

19 DÜZGÜN ŞEKİLLİ OLMAYAN CİSİMLERİN AĞIRLIK MERKEZLERİ İki boyutlu bir cismin ağırlık merkezi, şekildeki gibi iki değişik noktadan geçen yatay bir eksen etrafında serbestçe dönebilecek durumda, ayrı ayrı asarak her defasında, çekül doğrultularını işaretlemek suretiyle bulunabilir. İki çekül doğrultusunun kesim noktası (O) cismin ağırlık merkezidir. A B A O A A ( 1 ) B ( 2 ) 19

20 DÜZGÜN ŞEKİLLİ OLMAYAN CİSİMLERİN AĞIRLIK MERKEZLERİNE ÖRNEK Türdeş olmayan cisim, iplerle asıldığında Şekil I ve Şekil II deki gibi denge kaldığına göre, cismin ağırlık merkezi hangi noktadır? K K P L N N M P L M ŞEKİL - I ŞEKİL - II 20

21 DÜZGÜN ŞEKİLLİ OLMAYAN CİSİMLERİN AĞIRLIK MERKEZLERİNE ÖRNEK Türdeş olmayan cisim, iplerle asıldığında Şekil I ve Şekil II deki gibi denge kaldığına göre, cismin ağırlık merkezi hangi noktadır? K K P L N N M P L M ŞEKİL - I ŞEKİL - II 21

22 DÜZGÜN ŞEKİLLİ OLMAYAN CİSİMLERİN AĞIRLIK MERKEZLERİNE ÖRNEK Türdeş olmayan cisim, iplerle asıldığında Şekil I ve Şekil II deki gibi denge kaldığına göre, cismin ağırlık merkezi hangi noktadır? K K P L N N M P L M ŞEKİL - I ŞEKİL - II 22

23 ÖRNEK 2 Türdeş ve uzunlukları 200 cm olan iki metal çubuk şekildeki gibi T şeklinde birleştirilmiştir. Elde edilen cismin ağırlık merkezi birleşme noktasından kaç cm uzaktadır? A D B C 23

24 ÖRNEK 2 Çözüm : AB =200 cm ve CD =200 cm lik iki metal çubuğun T şeklinde birbirine sabitlenmesi ile AB çubuğunun ağırlık merkezi D, CD çubuğunun ağırlık merkezi O 1 dir. Sistemin ağırlık merkezi ise O 1 D nin orta noktası olan O noktasıdır. A O 1 O D B CO 1 = O 1 D =200/2=100 cm dir. Bu durumda cismin ağırlık merkezi birleşme noktasından OD =100/2=50 cm olarak bulunur. C 24

25 ÖRNEK 3 Kare şeklindeki türdeş kartonun 1 numaralı parçası kesilerek aşağıdaki gibi yapıştırılıyor. Yeni oluşan şeklin ağırlık merkezi neresidir?

26 ÖRNEK 3 Çözüm : Yeni şekli iki parçadan oluşmuş gibi düşünerek O birinci K da ikinci parçanın ağırlık merkezi olsun. OK doğru parçasının orta noktası cismin ağırlık merkezidir. O K G 1 =2br 1 R=4br G 2 =2br 26

27 ÖRNEK 4 Yarıçapları 4r ve 2r olan bitişik iki türdeş ahşap dairenin ağırlık merkezi K noktasından kaç r uzaktadır? K 4r 2r L 27

28 ÖRNEK 4 Çözüm : Levhalar iki boyutlu oldukları için ağırlıkları yerine alanları kullanılabilir. Levhaların alanları yarıçapları ile orantılı olduğu için G 1 =4 br ve G 2 =1 br alınabilir. K x 6r 6r-x L K ve L noktaları arasındaki uzaklık 6r dir. G 2.(6r-x)=G 1.x 2.(6r-x)=4x 12r=6x ise x=2r olarak bulunur. G 2 G 1 R 28

29 BİLEŞİK PLAK VE TELLER Ağırlık merkezi aranan cisim dikdörtgen, üçgen, daire ya da aşağıdaki tabloda sunulmuş olan diğer bazı iyi bilinen basit geometrilerin bir araya gelmesiyle oluşturulmuş olabilir. z W3 y W2 A2 A3 W1 O A1 t 29 x

30 BİLEŞİK PLAK VE TELLER Bu özel düzlemsel geometrilerin ağırlık merkezleri ile alanları ya da tel boyları sade bağıntılardır. Yukarıdaki örnekte olduğu gibi sabit t kalınlıkta homojen plak, bir dikdörtgen, bir üçgen ve bir yarım dairenin birleşimiyle oluşmuştur. Eğer bir cisim geometrik özellikleri bilinen şekillerden oluşuyorsa, kendisini oluşturan alt geometrilerin toplamı olarak düşünebiliriz. Cismin üstünde ayrıklaştırılan toplam bölge veya parça sayısına n dersek, integralleri sabit kalınlıkta olan, homojen, birleşik plaklar için, i=1 n x M = x i A i A y M = i=1 n y i A i A şeklinde toplamlar halinde yazılır. Burada, dir. A = n i=1 A i 30

31 BİLEŞİK PLAK VE TELLER Alttaki şekildeki gibi düzgün geometrili, sabit kesit alanlı, homojen bir tel basit alt parçalara ayrılabiliyorsa ağırlık merkezi x i L i x M = L y M = i=1 n y i L i L biçiminde toplamlara dönüşür. Cismin üstünde ayrıklaştırılan toplam bölge veya parça sayısına n ve (i=1,2,3,.,n) tel boyları ise, toplam tel boyu şeklinde yazılabilir. L = n i=1 i=1 n L i A L1 L i y x B D O L2 31 C

32 BİLEŞİK PLAK VE TELLER A O y x L2 B D O y M1(x1,y1) x M2(x2,y2) M(xM,yM) M3(x3,y3) C 32

33 ÖRNEK 5 Şekildeki gibi üç doğrusal parçadan oluşan homojen telin ağırlık merkezini, (x,y) koordinat takımını kullanarak bulunuz. Tel üzerindeki noktalar ile bunların koordinatları A(0,0), B(5,3), C(5, -8) ve D(14, -8) dir. y 3 A B 5 14 x -8 C D 33

34 ÖRNEK 5 Çözüm : Tel L i x M i y M i AB BC CD y x M L i y M L i 3 B A 5 14 x -8 C D 34

35 ÖRNEK 5 Çözüm : Tel L i x M i y M i x M L i y M L i x M = y M = i=1 3 AB 5,83 2,5 1,5 14,58 8,75 BC 11,00 5,0-2,5 55,00-27,50 CD 9,00 9,5-8,0 85,50-72,00 i=1 3 25,83 155,08-90,75 x M L i 3 = L i i=1 y M L i 3 = L i i=1 5,83 2,5 + 11, ,0 9,5 5, ,0 + 9,0 5,83 1,5 + 11,0 2,5 + 9,0 8,0 5, ,0 + 9,0 y B = 155,08 25,83 6,0 = 90,75 25,83 3,5 M(6,-3,5) x C 35 D

36 ÖRNEK 6 Şekildeki gibi sabit kalınlıklı homojen, düzlemsel plağın (taralı alanın) ağırlık merkezi M(x M, y M ) nin koordinatlarını (x,y) eksen takımında hesaplayınız. Plak boyutları t=1cm ve a=2,5 cm dir 36

37 ÖRNEK 6 Çözüm : Şekildeki gibi taralı düzlemsel alan parçalanarak eşdeğer alanlar sistemi kurulabilir. Dolu dikdörtgeni (1) ve ondan çıkartılacak küçük dikdörtgeni (2), üçgeni (3) diye numaralandıralım. Daha sonra tablo oluşturalım Alan A i x M i y M i x M A i y M A i

38 ÖRNEK 6 Çözüm : Şekildeki gibi taralı düzlemsel alan parçalanarak eşdeğer alanlar sistemi kurulabilir. Dolu dikdörtgeni (1) ve ondan çıkartılacak küçük dikdörtgeni (2), üçgeni (3) diye numaralandıralım. Daha sonra tablo oluşturalım Alan A i x M i y M i x M A i y M A i , , ,5 3,

39 ÖRNEK 6 Alan A i x M i y M i x M A i y M A i , , ,5 3, Son satırında bütün plak için ağırlık merkezinin koordinatlarının hesabında kullanılan toplam biçimindeki sonuçlar görülmektedir. Böylece düzlemsel alanın ağırlık merkezinin koordinatları; x M = y M = i=1 3 x M A i 3 = 80 = 2,5 cm A i 32 i=1 i=1 3 y M A i 3 = 144 = 4,5 cm A i 32 i=1 39

40 ÖRNEK 7 Şekildeki sabit kalınlıklı, düzlemsel, homojen plağın ağırlık merkezi M(x M, y M ), verilmiş olan (x,y) koordinat takımında bulunuz. Plak boyutları a=40cm, b=10cm, daire yarıçapları r=10cm ve dairesel deliğin merkezi A( 25,15) dir. Sonuçları çizelge yardımı ile hesaplayınız. (π = 3,14 ) 40

41 ÖRNEK 7 Çözüm : Boyutları a olan kareye ❶, üçgene ❷, daireye ❸, çeyrek daireye ❹ diyelim. Buna göre ; Alan A i x M i y M i x M A i y M A i

42 ÖRNEK 7 Çözüm : x M = y M = i=1 4 i=1 4 x M A i 4 = A i i=1 y M A i 4 = A i i= ,3 = 7,382 cm 1.807, ,3 = 17,839 cm 1.807,5 42

43 ÖRNEK 8 Şekilde görülen gölgeli bölgenin ağırlık merkezine ait M(x M, y M ) koordinatları, verilmiş olan (x,y) koordinat takımını kullanarak hesaplayınız. Çeyrek dairenin yarıçapı r=12cm, a=6 cm, b=12cm dir. İkizkenar dik üçgenin kısa kenarlar boyları a dır. Sonuçları çizelge yardımı ile hesaplayınız. (π = 3,14 ) 43

44 ÖRNEK 8 Çözüm : Yüksekliği r+2a=24cm, genişliği 2a+r+b=36cm olan dikdörtgene ❶, üçgene ❷, çeyrek daireye ❸ diyelim. Buna göre ; Alan A i x M i y M i x M A i y M A i

45 ÖRNEK 8 x M = i=1 3 x M A i 3 = 1422,72 A i 732,96 i=1 = 1,941 cm y M = i=1 3 y M A i 3 = 9540 = 13,016 cm A i 732,96 i=1 45

46 ÖRNEK 9 Şekilde sabit kalınlıklı, homojen, düzlemsel plağın ağırlık merkezi M(x M, y M ) verilmiş olan (x,y) koordinat takımını kullanarak hesaplayınız. Plak üstünde ikizkenar dik üçgen biçimli çentiğin kısa kenar boyutları a=3 cm olup, plak boyutları b=6cm ve c=9cm dir. Sonuçları çizelge yardımı ile hesaplayınız. 46

47 ÖRNEK 9 Şekilde görüldüğü gibi kenar boyutu 9 cm olan kare alanından, çentiği oluşturan dik ikizkenar üçgen alanı çıkararak çokgenin ağırlık merkezi hesaplanabilir. Alan A i x M i y M i x M A i y M A i ,5 4,5 364,5 364,5 2 4, , , ,5 x M = y M = i=1 2 2 i=1 A i i=1 2 x M A i 2 = 360 = 4,705 cm A i 76,5 y M A i 1 2 = 328,5 = 4,294 cm A i 76,5 i=1 2 47

48 PAPPUS-GULDINUS TEOREMLERİ Bu teorem 3 boyutlu dönel simetrik cisimlerin yüzey alanlarının ve hacimlerinin hesabında kullanılır. Teorem 1 : L uzunluğunda bir düzlemsel eğri kendini kesmeyen I-I ekseni etrafında dönerek bir yüzey meydana getirsin. Bu yüzeyin A alanı, L eğrisinin ağırlık merkezinin dönüş esnasında katettiği yol ile eğrinin L uzunluğunun çarpımına eşittir. Matematiksel olarak A = 2 П y L yazılır. Burada A Yüzeyin alanı y Ağırlık merkezinin eksene uzaklığı L Eğrinin boyu 48

49 PAPPUS-GULDINUS TEOREMLERİ Teorem 2 : Alanı A olan bir düzlemsel alan I-I ekseni etrafında döndürüldüğünde meydana gelen cismin hacmi, şeklin ağırlık merkezinin bu dönüş esnasında katettiği yolla, şeklin A alanının çarpımına eşittir. V = 2 П y A yazılır. Burada V Cismin hacmi y Ağırlık merkezinin eksene uzaklığı A Şeklin alanı 49

50 ÖRNEK - 10 Şekilde kenar boyutları a=6cm olan ve ekseninden c=10 cm kadar uzaklıkta duran bir kare görülmektedir. Bu karenin y ekseni etrafında bir tam dönüş yaptırılması sonucu oluşacak üç boyutlu cismin, yüzey alanını ve hacmini hesaplayınız. y O c a a x 50

51 ÖRNEK - 10 Çözüm : Karenin y-ekseni etrafında dönmesi sonucu ortaya çıkacak 3 boyutlu cismin yüzey alanı, karenin çevresi ile karenin ağırlık merkezinin kat ettiği mesafenin çarpımıdır. Buna göre; Karenin alanı : A = a 2 = 6x6 = 36cm 2 Karenin çevresi : L = 4a = 24cm Karenin ağırlık merkezi : x M = c + 1 a = = 13cm 2 olduğuna göre, şekildeki dönel cismin; Yüzey alanı : A S = 2 П x M L 1960cm 2 Hacmi : V = 2 П x M A 2941cm 3 51

52 ÖRNEK 11 AĞIRLIK MERKEZİ ÖRNEK SORULAR Şekildeki gibi sabit kalınlıklı ince levhanın ağırlık merkezini bulunuz. y 1 m 2 m x 1 m 2 m 3 m 52

53 ÖRNEK 11 AĞIRLIK MERKEZİ ÖRNEK SORULAR Parça A (m 2 ) x (metre) y (Metre) xa(metreküp) ya(metreküp) 1 ½(3)(3)=4, ,5 4,5 2 (3)(3)=9-1,5 1,5-13,5 13,5 3 -(2)(1)=-2-2, A = 11, 5 xa = 4 ya = y. G2 1,5m 1 m. G1 x 1,5m 1 m -3-. G3 y 2m 2,5m x 53

54 ÖRNEK 11 Parça A (m 2 ) x (metre) y (Metre) xa(metreküp) ya(metreküp) 1 ½(3)(3)=4, ,5 4,5 2 (3)(3)=9-1,5 1,5-13,5 13,5 3 -(2)(1)=-2-2, y A = 11, 5 xa = 4 ya = 14 1,5m -3-. G2 1,5m 1 m 1 m. G1 x x = xa A = 4 11,5 y = ya A = 14 11,5 = 0,348 metre = 1,22 metre. y G3 2m 2,5m x 54

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK VE MUKAVEMET 4. Ağırlık Merkezi. Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK VE MUKAVEMET 4. Ağırlık Merkezi Yrd. Doç. Dr. NURHAYAT DEĞİRMENCİ AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük

Detaylı

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta)

Karabük Üniversitesi, Mühendislik Fakültesi...www.IbrahimCayiroglu.com. STATİK (2. Hafta) AĞIRLIK MERKEZİ STATİK (2. Hafta) Ağırlık merkezi: Bir cismi oluşturan herbir parçaya etki eden yerçeki kuvvetlerinin bileşkesinin cismin üzerinden geçtiği noktaya Ağırlık Merkezi denir. Şekil. Ağırlık

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

STATİK AĞIRLIK MERKEZİ. 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler. 3.4 Integrasyon ile ağırlık merkezi hesabı

STATİK AĞIRLIK MERKEZİ. 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler. 3.4 Integrasyon ile ağırlık merkezi hesabı 1 STATİK AĞIRLIK MERKEZİ 3.1 İki Boyutlu Cisimler 3.2 Düzlem Eğriler 3.3 Bileşik Cisimler 3.4 Integrasyon ile ağırlık merkezi hesabı 3.5 Pappus-Guldinus Teoremi 3.6 Yayılı Yüke Eşdeğer Tekil Yük 3.7 Sıvı

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

2. Konum. Bir cismin başlangıç kabul edilen sabit bir noktaya olan uzaklığına konum denir.

2. Konum. Bir cismin başlangıç kabul edilen sabit bir noktaya olan uzaklığına konum denir. HAREKET Bir cismin zamanla çevresindeki diğer cisimlere göre yer değiştirmesine hareket denir. Hareket konumuzu daha iyi anlamamız için öğrenmemiz gereken diğer kavramlar: 1. Yörünge 2. Konum 3. Yer değiştirme

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 5 Ağırlık merkezi STATİK Bir cisim moleküllerden meydana gelir. Bu moleküllerin her birine yer çekimi kuvveti etki eder. Bu yer çekimi kuvvetlerinin cismi meydana getiren

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

UZAY KAVRAMI VE UZAYDA DOĞRULAR

UZAY KAVRAMI VE UZAYDA DOĞRULAR UZAY KAVRAMI VE UZAYDA DOĞRULAR Cisimlerin kapladığı yer ve içinde bulundukları mekan uzaydır. Doğruda sadece uzunluk, düzlemde uzunluk ve genişlik söz konusudur. Uzayda ise uzunluk ve genişliğin yanında

Detaylı

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER

BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER Yrd. Doç. Dr. Beytullah EREN Çevre Mühendisliği Bölümü BATMIŞ YÜZEYLERE GELEN HİDROSTATİK KUVVETLER Atatürk Barajı (Şanlıurfa) BATMIŞ YÜZEYLERE ETKİYEN KUVVETLER

Detaylı

Mekanik, Statik Denge

Mekanik, Statik Denge Mekanik, Statik Denge Mardin Artuklu Üniversitesi 2. Hafta-01.03.2012 İdris Bedirhanoğlu url : www.dicle.edu.tr/a/idrisb e-mail : idrisbed@gmail.com 0532 657 14 31 Statik **Statik; uzayda kuvvetler etkisi

Detaylı

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80.

TEST 1. ABCD bir dörtgen AF = FB DE = EC AD = BC D E C. ABC bir üçgen. m(abc) = 20. m(bcd) = 10. m(acd) = 50. m(afe) = 80. 11 ÖLÜM SİZİN İÇİN SÇTİLR LRİMİZ 1 80 0 bir dörtgen = = = m() = 80 m() = 0 Verilenlere göre, açısının ölçüsü kaç derecedir? 0 10 0 bir üçgen m() = 0 m() = 10 m() = 0 Yukarıda verilenlere göre, oranı kaçtır?

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLE 1. GİİŞ - Skalerler ve ektörler - Newton Kanunları 2. KUET SİSTEMLEİ - İki Boyutlu

Detaylı

Cismin Ağırlığı Düzlemsel Alanda Ağırlık Merkezi - İntegrasyon Yöntemi Örnekler Düzlemsel Eğride Ağırlık Merkezi - İntegrasyon Yöntemi

Cismin Ağırlığı Düzlemsel Alanda Ağırlık Merkezi - İntegrasyon Yöntemi Örnekler Düzlemsel Eğride Ağırlık Merkezi - İntegrasyon Yöntemi 4. 4. Cismin ğırlığı Düzlemsel landa ğırlık erkezi - İntegrasyon Yöntemi Düzlemsel Eğride ğırlık erkezi - İntegrasyon Yöntemi 4.3 Bileşik Plak ve Teller 4.4 Pappus Guldinus Teoremleri 4.5 Üç Boyutlu Cisimlerde

Detaylı

2014 LYS GEOMETRİ 3. A. parabolü ile. x 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır?

2014 LYS GEOMETRİ 3. A. parabolü ile. x 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır? 014 LYS GOMTRİ 1. y 1 1 y a 9 çemberinin üç noktada kesişmesi için a kaç olmalıdır? parabolü ile. O merkezli çeyrek çemberde O deltoid olduğuna göre, taralı alan kaç birim karedir? O. d:y a b doğrusu -ekseni

Detaylı

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme

Detaylı

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir.

Eğer piramidin tabanı düzgün çokgense bu tip piramitlere düzgün piramit denir. PİRAMİTLER Bir düzlemde kapalı bir bölge ile bu düzlemin dışında bir T noktası alalım. Kapalı bölgenin tüm noktalarının T noktası ile birleştirilmesi sonucunda oluşan cisme piramit denir. T noktası piramidin

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS 1 GMTRİ TSTİ 1. u testte sırasıyla Geometri (1 ) nalitik Geometri (3 30) ile ilgili 30 soru vardır.. evaplarınızı, cevap kâğıdının Geometri Testi için ayrılan kısmına işaretleyiniz. 1. bir üçgen =

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları. KUVVET SİSTEMLERİ - İki Boutlu

Detaylı

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK STATİK Ders Notları Kaynaklar: 1.Engineering Mechanics: Statics, 9e, Hibbeler, Prentice Hall 2.Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige 1. STATİĞE GİRİŞ 1.1 TANIMLAR

Detaylı

TORK VE DENGE 01 Torkun Tanımı ve Yönü

TORK VE DENGE 01 Torkun Tanımı ve Yönü TORK VE DENGE 01 Torkun Tanımı ve Yönü Kuvvetin döndürme etkisine tork ya da moment denir. Bir kuvvetin bir noktaya göre torku; kuvvet ile dönme noktasının kuvvete dik uzaklığının çarpımına eşittir. Moment

Detaylı

10. ÜNİTE HACİM VE SIVI ÖLÇÜLERİ, KATI CİSİMLERİN ALAN VE HACİMLERİ MESLEKİ UYGULAMALARI

10. ÜNİTE HACİM VE SIVI ÖLÇÜLERİ, KATI CİSİMLERİN ALAN VE HACİMLERİ MESLEKİ UYGULAMALARI 10. ÜNİTE HACİM VE SIVI ÖLÇÜLERİ, KATI CİSİMLERİN ALAN VE HACİMLERİ MESLEKİ UYGULAMALARI KONULAR HACİM VE HACİM ÖLÇÜLERİ KAVRAMI HACİM ÖLÇÜLERİ BİRİMLERİ 1. Metreküpün Katları As Katları 2. Birimlerin

Detaylı

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTLERİ Bu konular denge problemelerinden tamamen bağımsızdır. Alanların ağırlık merkezi ve atalet momenti ismi verilen geometrik

Detaylı

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ):

Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta ( ): Tanışma ve İletişim... Doç. Dr. Muhammet Cerit Öğretim Üyesi Makine Mühendisliği Bölümü (Mekanik Ana Bilim Dalı) Elektronik posta (e-mail): mcerit@sakarya.edu.tr Öğrenci Başarısı Değerlendirme... Öğrencinin

Detaylı

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği -Fizik I 2013-2014 Dönme Hareketinin Dinamiği Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 İçerik Vektörel Çarpım ve Tork Katı Cismin Yuvarlanma Hareketi Bir Parçacığın Açısal Momentumu Dönen Katı Cismin

Detaylı

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET A BASINÇ VE BASINÇ BİRİMLERİ (5 SAAT) Madde ve Özellikleri 2 Kütle 3 Eylemsizlik 4 Tanecikli Yapı 5 Hacim 6 Öz Kütle (Yoğunluk) 7 Ağırlık 8

Detaylı

1. BÖLÜM FİZİĞİN DOĞASI - VEKTÖRLER DENGE - MOMENT - AĞIRLIK MERKEZİ

1. BÖLÜM FİZİĞİN DOĞASI - VEKTÖRLER DENGE - MOMENT - AĞIRLIK MERKEZİ 1. BÖLÜM FİZİĞİN DĞASI - VEKÖRLER DENGE - MMEN - AĞIRLIK MERKEZİ FİZİĞİN DĞASI - VEKÖRLER - DENGE - MMEN - AĞIRLIK MERKEZİ SRULAR 1. I. ork (x) II. Güç (P) III. Açısal momentum (L) Yukarıdakilerden hangisi

Detaylı

G = mg bağıntısı ile bulunur.

G = mg bağıntısı ile bulunur. ATIŞLAR Havada serbest bırakılan cisimlerin aşağı doğru düşmesi etrafımızda her zaman gördüğümüz bir olaydır. Bu düşme hareketleri, cisimleri yerin merkezine doğru çeken bir kuvvetin varlığını gösterir.

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 2 Kuvvet Vektörleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö.Soyuçok. 2 Kuvvet Vektörleri Bu bölümde,

Detaylı

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır.

Manyetik Alanlar. Benzer bir durum hareketli yükler içinde geçerli olup bu yüklerin etrafını elektrik alana ek olarak bir manyetik alan sarmaktadır. Manyetik Alanlar Manyetik Alanlar Duran ya da hareket eden yüklü parçacığın etrafını bir elektrik alanın sardığı biliyoruz. Hatta elektrik alan konusunda şu sonuç oraya konulmuştur. Durgun bir deneme yükü

Detaylı

AĞIRLIK MERKEZİ. G G G G Kare levha dairesel levha çubuk silindir

AĞIRLIK MERKEZİ. G G G G Kare levha dairesel levha çubuk silindir AĞIRLIK MERKEZİ Bir cise etki eden yerçekii kuvvetine Ağırlık denir. Ağırlık vektörel bir büyüklüktür. Yere dik bir kuvvet olup uzantısı yerin erkezinden geçer. Cisin coğrafi konuuna ve yerden yüksekliğine

Detaylı

ATALET MOMENTİ. Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması.

ATALET MOMENTİ. Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması. ATALET MOMENTİ Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması. UYGULAMALAR Şekilde gösterilen çark büyük bir kesiciye bağlıdır. Çarkın kütlesi, kesici bıçağa

Detaylı

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi

TEST: 6. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi TEST: 6 5. 1. Verilenlere göre EF =? A) 1 B) 2 C) 3 D) 4 E) 5 A) 7 B) 8 C) 10 D) 11 E) 12 2. 6. x eksenini 5 te, y eksenini 7 de kesen doğrunun denklemi aşağıdakilerden hangisidir? A) 7x+5y=35 B) 7x-5y=35

Detaylı

DENİZLİ ANADOLU LİSESİ 2006 2007 ÖĞRETİM YILI FİZİK DERSİ DÖNEM ÖDEVİ

DENİZLİ ANADOLU LİSESİ 2006 2007 ÖĞRETİM YILI FİZİK DERSİ DÖNEM ÖDEVİ DENİZLİ ANADOLU LİSESİ 2006 2007 ÖĞRETİM YILI FİZİK DERSİ DÖNEM ÖDEVİ Öğrencinin: Adı Soyadı : Ekrem Selçuk OYMAK Numarası : 1215 Sınıfı : 10 Fen A Öğretmenin: Adı Soyadı : Fahrettin KALE Konu : KÜTLE

Detaylı

YGS GEOMETRİ DENEME 1

YGS GEOMETRİ DENEME 1 YGS GTİ 1 G 1) G ) şağıdaki adımlar takip edilerek geometrik çizim yapıl- bir üçgen mak isteniyor = = m() = 7 o = 9 cm, = 1 cm, m() = 90 olacak şekilde dik üçgeni çiziliyor = eşitliğini sağlayan Î [] noktası

Detaylı

3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması. 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile Çarpımı RİJİT CİSİMLER MEKANİĞİ

3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması. 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile Çarpımı RİJİT CİSİMLER MEKANİĞİ 1-STATİĞİN TEMEL İLKELERİ 1- BİRİMLER 2-TRİGONOMETRİ 3-VEKTÖRLER 3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması 3.3 Vektörlerin uç-uca eklenerek toplanması 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile

Detaylı

Doç.Dr. Cesim ATAŞ MEKANİK ŞEKİL DEĞİŞTİREN CİSİMLER MEKANİĞİ DİNAMİK

Doç.Dr. Cesim ATAŞ MEKANİK ŞEKİL DEĞİŞTİREN CİSİMLER MEKANİĞİ DİNAMİK STATİK (Ders Notları) Kaynak: Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige, Wiley Yardımcı Kaynak: Mühendislik Mekaniği: Statik, R.C Hibbeler & S.C. Fan, Literatür

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 4 Skaler: Fiziki büyüklükler SKALER BÜYÜKLÜK SEMBOLÜ BİRİMİ Kütle m Kilogram Hacim V m 3 Zaman t Saniye Sıcaklık T Kelvin Sadece sayısal değer ve birim verilerek ifade edilen

Detaylı

2. KUVVET SİSTEMLERİ 2.1 Giriş

2. KUVVET SİSTEMLERİ 2.1 Giriş 2. KUVVET SİSTEMLERİ 2.1 Giriş Kuvvet: Şiddet (P), doğrultu (θ) ve uygulama noktası (A) ile karakterize edilen ve bir cismin diğerine uyguladığı itme veya çekme olarak tanımlanabilir. Bu parametrelerden

Detaylı

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi Fizik-1 UYGULAMA-7 Katı bir cismin sabit bir eksen etrafında dönmesi 1) Bir tekerlek üzerinde bir noktanın açısal konumu olarak verilmektedir. a) t=0 ve t=3s için bu noktanın açısal konumunu, açısal hızını

Detaylı

a) Çıkarma işleminin; eksilen ile çıkanın ters işaretlisinin toplamı anlamına geldiğini kavrar.

a) Çıkarma işleminin; eksilen ile çıkanın ters işaretlisinin toplamı anlamına geldiğini kavrar. 7. SINIF KAZANIM VE AÇIKLAMALARI M.7.1. SAYILAR VE İŞLEMLER M.7.1.1. Tam Sayılarla Toplama, Çıkarma, Çarpma ve Bölme İşlemleri M.7.1.1.1. Tam sayılarla toplama ve çıkarma işlemlerini yapar; ilgili problemleri

Detaylı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı

11.1 11.2. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti. 11.3 Örnek Eylemsizlik Momenti. 11.4 Eylemsizlik Yarıçapı 11.1 11. Tanım Akışkanların Statiği (Hidrostatik) Örnekler Kaldırma Kuvveti 11.3 Örnek Eylemsizlik Momenti 11.4 Eylemsizlik Yarıçapı 11.5 Eksen Takımının Değiştirilmesi 11.6 Asal Eylemsizlik Momentleri

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

1995 ÖSS. 6. Toplamları 621 olan iki pozitif tamsayıdan büyüğü küçüğüne bölündüğünde bölüm 16, kalan ise 9 dur. Buna göre, büyük sayı kaçtır?

1995 ÖSS. 6. Toplamları 621 olan iki pozitif tamsayıdan büyüğü küçüğüne bölündüğünde bölüm 16, kalan ise 9 dur. Buna göre, büyük sayı kaçtır? 99 ÖSS.. 0, 0, 0,44. işleminin sonucu A) 0, B) 0,4 C) D) 4 E) 0 6. Toplamları 6 olan iki pozitif tamsayıdan büyüğü küçüğüne bölündüğünde bölüm 6, kalan ise 9 dur. Buna göre, büyük sayı A) 70 B) 7 C) 80

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1

3. Ünsal Tülbentçi Matematik Yarışması Mayıs 2014 8.Sınıf Sayfa 1 . Alanı 36 5 olan bir ABC ikizkenar üçgeninde ==2 ise bu üçgende B den AC ye inilen dikmenin ayağının C noktasına olan uzaklığı nedir? ) 2,8) 3) 3,2 ) 3,7 ) 4, 2. Ayrıt uzunlukları 4, 0 ve 4 5 olan dikdörtgenler

Detaylı

3. KUVVET SİSTEMLERİ

3. KUVVET SİSTEMLERİ 3. KUVVET SİSTEMLERİ F F W P P 3.1 KUVVET KAVRAMI VE ETKİLERİ Kuvvet, bir cisme etki eden yapısal yüklerdir. Kuvvet Şiddeti, yönü ve uygulama noktası olan vektörel bir büyüklüktür. Bir cismin üzerine uygulanan

Detaylı

KATI CİSİMLER DİK PRİZMALARIN ALAN VE HACİMLERİ 1. DİKDÖRTGENLER PRİZMASI. Uyarı PRİZMA. Üst taban. Ana doğru. Yanal. Yanal Alan. yüz. Yanal.

KATI CİSİMLER DİK PRİZMALARIN ALAN VE HACİMLERİ 1. DİKDÖRTGENLER PRİZMASI. Uyarı PRİZMA. Üst taban. Ana doğru. Yanal. Yanal Alan. yüz. Yanal. TI İSİM İZM İZM irbirine paralel iki düzlem içinde yer alan iki eş çokgensel bölgenin tüm noktalarının karşılıklı olarak birleştirilmesiyle elde edilen cisme İZM denir. İ İZMIN N V HİMİ Tüm dik rizmalarda

Detaylı

PİRAMİTLER ENFORMATİK BİLGİSAYAR DERSİ

PİRAMİTLER ENFORMATİK BİLGİSAYAR DERSİ 2011 PİRAMİTLER ENFORMATİK BİLGİSAYAR DERSİ 15.12.2011 ĠÇĠNDEKĠLER ÜNİTE HAKKINDA GENEL BİLGİ... 3 KONULAR... 4 PİRAMİTLER... 4 KARE PİRAMİT... 5 EŞKENAR ÜÇGEN PİRAMİT... 6 DÜZGÜN DÖRTYÜZLÜ... 6 DÜZGÜN

Detaylı

STATİĞİN TEMEL PRENSİPLERİ

STATİĞİN TEMEL PRENSİPLERİ 1.1. Temel Kavramlar ve Tanımlar Mühendislik mekaniği: Kuvvet etkisi altındaki cisimlerin denge veya hareket koşullarını inceleyen bilim dalı Genel olarak mühendislik mekaniği Sert (rijit) katı cisimlerin

Detaylı

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi MKM 308 Eşdeğer Noktasal Kütleler Teorisi Eşdeğer Noktasal Kütleler Teorisi Maddesel Nokta (Noktasal Kütleler) : Mekanikte her cisim zihnen maddesel noktalara ayrılabilir yani noktasal kütlelerden meydana

Detaylı

Kesit Tesirleri Tekil Kuvvetler

Kesit Tesirleri Tekil Kuvvetler Statik ve Mukavemet Kesit Tesirleri Tekil Kuvvetler B ÖĞR.GÖR.GÜLTEKİN BÜYÜKŞENGÜR Çevre Mühendisliği Mukavemet Şekil Değiştirebilen Cisimler Mekaniği Kesit Tesiri ve İşaret Kabulleri Kesit Tesiri Diyagramları

Detaylı

3-1 Koordinat Sistemleri Bir cismin konumunu tanımlamak için bir yönteme gereksinim duyarız. Bu konum tanımlaması koordinat kullanımı ile sağlanır.

3-1 Koordinat Sistemleri Bir cismin konumunu tanımlamak için bir yönteme gereksinim duyarız. Bu konum tanımlaması koordinat kullanımı ile sağlanır. Bölüm 3 VEKTÖRLER Bölüm 3: Vektörler Konu İçeriği Sunuş 3-1 Koordinat Sistemleri 3-2 Vektör ve Skaler nicelikler 3-3 Vektörlerin Bazı Özellikleri 3-4 Bir Vektörün Bileşenleri ve Birim Vektörler Sunuş Fizikte

Detaylı

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır?

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır? . f: R { 4} R, > ise ( ) 4 f =, ise 6 8. ( ) f = 6 + m + 4 eğrisinin dönüm noktasının ordinatı olduğuna göre, m kaçtır? ) 7 ) 8 ) 9 ) E) fonksiyonu aşağıdaki değerlerinin hangisinde süreksizdir? ) ) )

Detaylı

LYS 2016 GEOMETRİ ÇÖZÜMLERİ

LYS 2016 GEOMETRİ ÇÖZÜMLERİ LYS 016 GEOMETRİ ÇÖZÜMLERİ Dikdörtgenin içinde köşegeni çizerek alanı iki eşit parçaya ayırabiliriz. 7 / 36 BED üçgeni ile DEC üçgeninin alanlarının oranı, tabanları arasındaki orana eşittir. Buna göre;

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI GEOMETRİ TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI GEOMETRİ TESTİ İKKT! SRU KİTPÇIĞINIZIN TÜRÜNÜ LRK VP KÂĞIINIZ İŞRTLMYİ UNUTMYINIZ. MTMTİK SINVI GMTRİ TSTİ 1. u testte 30 soru vardır. 2. evaplarınızı, cevap kâğıdının Geometri Testi için ayrılan kısmına işaretleyiniz.

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 4 Kuvvet Sistemi Bileşkeleri Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 4. Kuvvet Sitemi Bileşkeleri

Detaylı

ĐŞ GÜÇ ENERJĐ. Zaman. 5. Uygulanan kuvvet cisme yol aldıramıyorsa iş yapılmaz. W = 0

ĐŞ GÜÇ ENERJĐ. Zaman. 5. Uygulanan kuvvet cisme yol aldıramıyorsa iş yapılmaz. W = 0 ĐŞ GÜÇ ENERJĐ Đş kelimesi, günlük hayatta çok kullanılan ve çok geniş kapsamlı bir kelimedir. Fiziksel anlamda işin tanımı tektir.. Yapılan iş, kuvvet ile kuvvetin etkisinde yapmış olduğu yerdeğiştirmenin

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 kışkan Statiğine Giriş kışkan statiği (hidrostatik, aerostatik), durgun haldeki akışkanlarla

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ

TEKNOLOJİNİN BİLİMSEL İLKELERİ TEKNOLOJİNİN BİLİMSEL İLKELERİ Öğr. Gör. Fatih KURTULUŞ 4.BÖLÜM: STATİK MOMENT - MOMENT (TORK) Moment (Tork): Kuvvetin döndürücü etkisidir. F 3 M ile gösterilir. Vektörel büyüklüktür. F 4 F 3. O. O F 4

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

Newton un II. yasası. Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır.

Newton un II. yasası. Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır. Newton un II. yasası Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır. Bir cisme F A, F B ve F C gibi çok sayıda kuvvet etkiyorsa, net kuvvet bunların

Detaylı

9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI

9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI 9. ÜNİTE ÜÇGENLER, ÇOKGENLER VE MESLEKÎ UYGULAMALARI KONULAR DİK ÜÇGENLERDE METRİK BAĞINTILAR 1. Pythagoras (Pisagor) Bağıntısı. Euclides (öklit) Bağıntısı 3. Pisagor ve öklit Bağıntıları ile İlgili Problemler

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

EKSTREMUM PROBLEMLERİ. Örnek: Çözüm: Örnek: Çözüm:

EKSTREMUM PROBLEMLERİ. Örnek: Çözüm: Örnek: Çözüm: EKSTREMUM PROBLEMLERİ Ekstremum Problemleri Bu tür problemlerde bir büyüklüğün (çokluğun alabileceği en büyük (maksimum değer ya da en küçük (minimum değer bulunmak istenir. İstenen çokluk bir değişkenin

Detaylı

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 7. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 7. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN SİDRE 000 ORTAOKULU 06-07 EĞİTİM-ÖĞRETİM YILI 7. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN ÜNİTE ÖĞRENME ALANI ALT ÖĞRENME ALANI Ders Saati 9.09.06/.09.06 Tam Sayılarla Çarpma ve Bölme i 7...

Detaylı

STATİK. Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -3-

STATİK. Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -3- 1 STATİK Prof. Dr. Akgün ALSARAN - Öğr. Gör. Fatih ALİBEYOĞLU -3- Moment KUVVET SİSTEMLERİ 2 Moment, bir kuvvetin bir nokta veya bir eksen etrafında oluşturduğu döndürme etkisinin ölçüsüdür. Momentin büyüklüğü

Detaylı

PİRAMİT, KONİ VE KÜRENİN ALANLARI

PİRAMİT, KONİ VE KÜRENİN ALANLARI PİRAMİT, KNİ VE KÜRENİN ALANLARI KAZANIMLAR Piramit kavramı Piramitin yüzey alanı Kesik piramitin yüzey alanı Düzgün dörtyüzlü kavramı Piramitin dönme simetri açısı Koni kavramı Koninin yüzey alanı Kesik

Detaylı

EMAT ÇALIŞMA SORULARI

EMAT ÇALIŞMA SORULARI EMAT ÇALIŞMA SORULARI 1) A = 4. ı x 2. ı y ı z ve B = ı x + 4. ı y 4. ı z vektörlerinin dik olduğunu gösteriniz. İki vektörün skaler çarpımlarının sıfır olması gerekir. A. B = 4.1 + ( 2). 4 + ( 1). ( 4)

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

Düzgün olmayan dairesel hareket

Düzgün olmayan dairesel hareket Düzgün olmayan dairesel hareket Dairesel harekette cisim üzerine etki eden net kuvvet merkeze doğru yönelmişse cismin hızı sabit kalır. Eğer net kuvvet merkeze doğru yönelmemişse, kuvvet teğetsel ve radyal

Detaylı

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır.

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır. Bölüm 5: Hareket Yasaları(Özet) Önceki bölümde hareketin temel kavramları olan yerdeğiştirme, hız ve ivme tanımlanmıştır. Bu bölümde ise hareketli cisimlerin farklı hareketlerine sebep olan etkilerin hareketi

Detaylı

Mekanik Deneyleri I ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Ertuğrul YÖRÜKOĞULLARI

Mekanik Deneyleri I ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Ertuğrul YÖRÜKOĞULLARI Mekanik Deneyleri I Yazar Prof.Dr. Ertuğrul YÖRÜKOĞULLARI ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; hareket, kuvvet ve kuvvetlerin bileşkesi, sürtünme kuvveti, Newton'un II. hareket yasası, serbest

Detaylı

YARIYIL İÇİ ÇALIŞMALARI SIRA KATKI YÜZDESİ Ara Sınav 1 60 Kısa Sınav 2 30 Ödev 1 10 Toplam 100 Finalin Başarıya Oranı 50 Yıliçinin Başarıya Oranı 50

YARIYIL İÇİ ÇALIŞMALARI SIRA KATKI YÜZDESİ Ara Sınav 1 60 Kısa Sınav 2 30 Ödev 1 10 Toplam 100 Finalin Başarıya Oranı 50 Yıliçinin Başarıya Oranı 50 YARIYIL İÇİ ÇALIŞMALARI SIRA KATKI YÜZDESİ Ara Sınav 1 60 Kısa Sınav 2 30 Ödev 1 10 Toplam 100 Finalin Başarıya Oranı 50 Yıliçinin Başarıya Oranı 50 Toplam 100 1 Mukavemet ve Statiğin Önemi 2 Statiğin

Detaylı

[ AN ] doğrusu açıortay olduğundan;

[ AN ] doğrusu açıortay olduğundan; . Bir havuzu bir musluk 6 saatte, başka bir musluk 8 saatte dolduruyor. Bu iki musluk kapalı iken, havuzun altında bulunan üçüncü bir musluk, dolu havuzu saatte boşaltabiliyor. Üç musluk birden açılırsa,boş

Detaylı

13. ÜNİTE KUVVET VE VEKTÖRLER

13. ÜNİTE KUVVET VE VEKTÖRLER 13. ÜNİTE KUVVET VE VEKTÖRLER KONULAR 1. VEKTÖR 2. Skaler Büyüklükler 3. Vektörel Büyüklükler 4. Vektörün Yönü 5. Vektörün Doğrultusu 6. Bir Vektörün Negatifi 7. Vektörlerin Toplanması 8. Uç Uca Ekleme

Detaylı

MEKANİZMA TEKNİĞİ (3. Hafta)

MEKANİZMA TEKNİĞİ (3. Hafta) MEKANİZMALARIN KİNEMATİK ANALİZİ Temel Kavramlar MEKANİZMA TEKNİĞİ (3. Hafta) Bir mekanizmanın Kinematik Analizinden bahsettiğimizde, onun üzerindeki tüm uzuvların yada istenilen herhangi bir noktanın

Detaylı

BASINÇ VE KALDIRMA KUVVETI. Sıvıların Kaldırma Kuvveti

BASINÇ VE KALDIRMA KUVVETI. Sıvıların Kaldırma Kuvveti BASINÇ VE KALDIRMA KUVVETI Sıvıların Kaldırma Kuvveti SIVILARIN KALDIRMA KUVVETİ (ARŞİMET PRENSİBİ) F K Sıvı içerisine batırılan bir cisim sıvı tarafından yukarı doğru itilir. Bu itme kuvvetine sıvıların

Detaylı

MATEMATÝK GEOMETRÝ DENEMELERÝ

MATEMATÝK GEOMETRÝ DENEMELERÝ NM 1 MTMTÝK OMTRÝ NMLRÝ 1. o o = 75 ve y = 5 olduğuna göre,. 3 + 8 = 0 sin( y)cos( + y) + sin( + y)cos( y) sin( y)sin( + y) cos( + y)cos( y) denkleminin kaç tane farklı reel kökü vardır? ifadesinin eşiti

Detaylı

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki

Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki Rijit cisim mekaniği, diyagramdan da görüldüğü üzere statik ve dinamik olarak ikiye ayrılır. Statik dengede bulunan cisimlerle, dinamik hareketteki cisimlerle uğraşır. Statik, kuvvet etkisi altında cisimlerin

Detaylı

VEKTÖRLER SORULAR 1.) 3.) 4.) 2.)

VEKTÖRLER SORULAR 1.) 3.) 4.) 2.) VETÖRER SORUR 1.) 3.) ynı düzlemde bulunan, ve vektörleri için verilen; I. = II. II = II III. = 2 Şekildeki aynı düzlemli vektörlerle tanımlanmış + + = D işleminin sonucunda elde edilen D vektörünün büyüklüğü

Detaylı

Fizik Dr. Murat Aydemir

Fizik Dr. Murat Aydemir Fizik-1 2017-2018 Dr. Murat Aydemir Ankara University, Physics Engineering, Bsc Durham University, Physics, PhD University of Oxford, Researcher, Post-Doc Ofis No: 35 Merkezi Derslikler Binasi murat.aydemir@erzurum.edu.tr

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI SORU 1. Köşeleri (1,4) (3,0) (7,2) noktaları olan ABC üçgeninin bir ikizkenar dik üçgen (İpucu:, ve vektörlerinden yararlanın) SORU 2. Bir ABC üçgeninin

Detaylı

Jeodezi

Jeodezi 1 Jeodezi 5 2 Jeodezik Eğri Elipsoid Üstünde Düşey Kesitler Elipsoid yüzünde P 1 noktasındaki normalle P 2 noktasından geçen düşey düzlem, P 2 deki yüzey normalini içermez ve aynı şekilde P 2 de yüzey

Detaylı

NLİTİK EMETRİ lan ve ğırlık Merkezi 5. ölüm Örnek 0 nalitik düzlemde üçgen [] açıorta [] // [] (6 0 (6 (6 (6 0 [H] [] [K] [] H = K = br K ile H üçgenl

NLİTİK EMETRİ lan ve ğırlık Merkezi 5. ölüm Örnek 0 nalitik düzlemde üçgen [] açıorta [] // [] (6 0 (6 (6 (6 0 [H] [] [K] [] H = K = br K ile H üçgenl NLİTİK EMETRİ lan ve ğırlık Merkezi 5. ölüm lan Örnek 0 nalitik düzlemde ( 0 c h b h a h c b ( 0 ( 0 a a h b h a b c h lan( = = = c Yukarıdaki verilenlere göre lan( kaç birimkaredir? 6 8 9 E c b Taban:

Detaylı

T.C. Ölçme, Seçme ve Yerleştirme Merkezi

T.C. Ölçme, Seçme ve Yerleştirme Merkezi T.C. Ölçme, Seçme ve Yerleştirme Merkezi LİSANS YERLEŞTİRME SINAVI-1 GEOMETRİ TESTİ 19 HAZİRAN 2016 PAZAR Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının veya bir kısmının

Detaylı

GEOMETR 7 ÜN TE V KÜRE

GEOMETR 7 ÜN TE V KÜRE ÜN TE V KÜRE 1. KÜRE a. Tan m b. Bir Kürenin Belirli Olmas c. Bir Küre ile Bir Düzlemin Ara Kesiti 2. KÜREN N ALANI 3. KÜREN N HACM 4. KÜREDE ÖZEL PARÇALAR a. Küre Kufla I. Tan m II. Küre Kufla n n Alan

Detaylı

HARRAN ÜNİVERSİTESİ 2016 YILI ZİRAAT FAKÜLTESİ FİNAL SINAVI SORU ÖRNEKLERİ

HARRAN ÜNİVERSİTESİ 2016 YILI ZİRAAT FAKÜLTESİ FİNAL SINAVI SORU ÖRNEKLERİ HARRAN ÜNİVERSİTESİ 016 YILI ZİRAAT FAKÜLTESİ FİNAL SINAVI SORU ÖRNEKLERİ Soru 1 - Bir tekerlek, 3.5 rad/ s ' lik sabit bir açısal ivmeyle dönüyor. t=0'da tekerleğin açısal hızı rad/s ise, (a) saniyede

Detaylı

OLİMPİK GEOMETRİ ALTIN NOKTA YAYINEVİ MATEMATİK OLİMPİYATLARINA HAZIRLIK ÖMER GÜRLÜ KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ

OLİMPİK GEOMETRİ ALTIN NOKTA YAYINEVİ MATEMATİK OLİMPİYATLARINA HAZIRLIK ÖMER GÜRLÜ KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ OLİMPİK GEOMETRİ MATEMATİK OLİMPİYATLARINA HAZIRLIK KONU ANLATIMLI - ÖRNEK ÇÖZÜMLÜ ÖMER GÜRLÜ ALTIN NOKTA YAYINEVİ İZMİR - 2014 İÇİNDEKİLER 1. TEMEL ÇİZİMLER... 7 2. ÜÇGENLER... 21 (Üçgende Açılar, Üçgende

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri

Bölüm 3: Vektörler. Kavrama Soruları. Konu İçeriği. Sunuş. 3-1 Koordinat Sistemleri ölüm 3: Vektörler Kavrama Soruları 1- Neden vektörlere ihtiyaç duyarız? - Vektör ve skaler arasındaki fark nedir? 3- Neden vektörel bölme işlemi yapılamaz? 4- π sayısı vektörel mi yoksa skaler bir nicelik

Detaylı

2 = t V A = t

2 = t V A = t İ.T.Ü. Mimarlık Fakültesi Yapı Statiği ve Betonarme Birimi 20 Mart 2008 Statik ve Mukavemet Dersi Yarıyıl İçi Sınavı 1.) P r c W b a Yarıçapı r = 30 cm, ağırlığı W = 4 t olan bir silindir şekilde gösterildiği

Detaylı

HAREKET HAREKET KUVVET İLİŞKİSİ

HAREKET HAREKET KUVVET İLİŞKİSİ HAREKET HAREKET KUVVET İLİŞKİSİ Sabit kabul edilen bir noktaya göre bir cismin konumundaki değişikliğe hareket denir. Bu sabit noktaya referans noktası denir. Fizikte hareket üçe ayrılır Ötelenme Hareketi:

Detaylı

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır.

PROF.DR. MURAT DEMİR AYDIN. ***Bu ders notları bir sonraki slaytta verilen kaynak kitaplardan alıntılar yapılarak hazırlanmıştır. PO.D. MUAT DEMİ AYDIN ***Bu ders notları bir sonraki slatta verilen kanak kitaplardan alıntılar apılarak hazırlanmıştır. Mühendisler için Vektör Mekaniği: STATİK.P. Beer, E.. Johnston Çeviri Editörü: Ömer

Detaylı

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ Bu bölümde, düzlemsel kinematik, veya bir rijit cismin düzlemsel hareketinin geometrisi incelenecektir. Bu inceleme, dişli, kam ve makinelerin yaptığı birçok işlemde

Detaylı

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT

ÜÇGENLER ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİTE 4. ÜNİT ÜÇGNLR ÜNİT. ÜNİT. ÜNİT. ÜNİT. ÜNİT ÜÇGNLRİN ŞLİĞİ Üçgende çılar 1. Kazanım : ir üçgenin iç açılarının ölçüleri toplamının 180, dış açılarının ölçüleri toplamının 0 olduğunu gösterir. İki Üçgenin şliği.

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 7 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 7 Kasım 1999 Saat: 21.50 Problem 7.1 (Ohanian, sayfa 271, problem 55) Bu problem boyunca roket

Detaylı

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ

EĞİTİM - ÖĞRETİM YILI 10. SINIF MATEMATİK DERSİ DESTEKLEME VE YETİŞTİRME KURSU KAZANIMLARI VE TESTLERİ EKİM 07-08 EĞİTİM - ÖĞRETİM YILI 0. SINIF MATEMATİK DERSİ 0... Olayların gerçekleşme sayısını toplama ve çarpma prensiplerini kullanarak hesaplar. 0... Sınırsız sayıda tekrarlayan nesnelerin dizilişlerini

Detaylı