KİMYASAL ANALİZ KALİTATİF ANALİZ (NİTEL) (NİCEL) KANTİTATİF ANALİZ

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "KİMYASAL ANALİZ KALİTATİF ANALİZ (NİTEL) (NİCEL) KANTİTATİF ANALİZ"

Transkript

1 KİMYASAL ANALİZ KALİTATİF ANALİZ (NİTEL) KANTİTATİF ANALİZ (NİCEL) KANTİTATİF ANALİZ Bir numunedeki element veya bileşiğin bağıl miktarını belirlemek için yapılan analizlere denir. 1

2 ANALİTİK ANALİTİK VERİLERİN VERİLERİN İSTATİSTİKSEL DEĞERLENDİRİLMESİ VE HATALAR İSTATİSTİKSEL DEĞERLENDİRİLMESİ VE HATALAR İstatistiksel Değerlendirmede Kullanılan İfadeler Ortalama Aritmetik ortalama = Averaj = Tayinlerde elde edilen bir seri sonucun toplanıp tayin sayısına (n) bölünmesiyle bulunan değerdir. = 363, , ,9 / 3 = 362,9 mg 2

3 Orta değer (Ortanca, Medyan) Tayin sayısı tek olan serilerde en ortada bulunan değerdir (büyüklük sırasına göre) Tayin sayısı çift olan serilerde en ortadaki iki değerin aritmetik ortalamasıdır Örnek 1: Yukarıdaki seride : Örnek 2: 362.0, 362.9, 363.9, rakamlarından oluşan bir seride ise /2 = tür. Doğruluk Derecesi (Accuracy) Sonucun gerçek değere yakınlık derecesidir. Hesaplanabilmesi için gerçek değerin bilinmesi gerekir. 3

4 Doğruluk Derecesi (Accuracy) Doğruluk derecesini ifade eden kavram HATA dır. Mutlak hata Bağıl hata Mutlak hata: Ölçülen değer ile gerçek değerin farkıdır. Bağıl hata: Mutlak hatanın gerçek değere oranının yüzde veya binde ifadesidir. 4

5 Örnek: Gerçek değer: mg Ölçülen değer: mg Mutlak hata = = 0.5 mg Bağıl hata = 0.5 = % * Birden fazla ölçüm yapılmışsa bulunan değerlerin ortalaması alınır ve ortalama hata hesaplanır. Ortalama Hata: Hesaplanan ortalama ile gerçek değer arasındaki farktır. Örnek: x 1 = 242.9; x 2 = 244.2; x 3 = 243.8; D = ise = / 3 = Ortalama hata = = 0.2 5

6 Bağıl Ortalama Hata (RME): Ortalama hatanın gerçek değere oranının 100 veya 1000 ile çarpımıdır. Bağıl ortalama hata= (0.2 / 243.4) x 100 = 0.08 Deneysel Verilerde Hata Çeşitleri 1) Rastgele veya Belirsiz Hatalar 2) Sistematik veya Belirli Hatalar *Aletsel *Yöntemsel *Kişisel 3) Kaba Hatalar Sistematik aletsel hatalar genellikle bulunur ve kalibrasyon ile düzeltilir Kişisel hataların çoğu, dikkat ve disiplinle en aza indirilebilir. 6

7 Doğruluk derecesini artırma yöntemleri : *Sonuca düzeltme miktarı uygulamak. *Şahit deney (boş deneme) yapmak. *Kontrol tayini yapmak (bilinen örnekle çalışmak). *Analiz koşullarını değiştirmek. *Örneği birbaşka yöntemle tayin etmek. Kesinlik derecesi (Precision) Sonuçların birbirine yakınlık derecesidir. Gerçek değerin bilinmemesi halinde sonuçların değerlendirilmesinde kullanılır. 7

8 Kesinlik derecesi (Precision) Kesinlik derecesini bildiren kavramlar: *Ortalamadan sapma *Ortalamadan averaj sapma *Ortalamadan bağıl averaj sapma *Alan *Standart sapma *Bağıl standart sapma *Varyans *Ortalama değerin standart hatası 8

9 Tayin No: Sonuçlar Ortalamadan sapma =242.9 Ortalamadan averaj sapma: x / n = / 3 = 0.7 Ortalamadan bağılaverajsapma= (averaj sapma / ) x 100 = (0.7 / 242.9) x 100 = 0.29 ( %0.3) Alan : Bir serideki en büyük değer ile en küçük değer arasındaki sayısal farktır. Alan = R = = 1.9 Standart sapma : Değişmekatsayısıdır. (N 1) = serbestlik derecesi 9

10 Örnek: x x x = x 2 = 1.82 N 1= 3 1=2 s = 1.82 / 2 = Bağıl (relatif) standart sapma (RSD): S rel = (s / )x 100 S rel = (0.954 / 242.9) x 100 = (% 0.39) Varyans : s 2 = (0.954) 2 = 0.91 Ortalama değerin standart hatası :S x =s/ n S x = / 3 =

11 Doğruluk ve kesinlik derecesinin karşılaştırılması Bir seri analizde; doğruluk derecesi ancak gerçek değer biliniyorsa, kesinlik derecesi ise her zaman hesaplanabilir. Doğruluk derecesi gerçek değere yakınlığı, kesinlik derecesi bulunan sonuçların birbirlerine yakınlığını gösterir. Doğruluk derecesi Doğruluk derecesi Doğruluk derecesi Kesinlik derecesi Kesinlik derecesi Kesinlik derecesi Bir analiz sonucunun doğru olması için hem doğruluk derecesinin hem de kesinlik derecesinin yüksek olması gerekir. 11

12 Belirsiz hatalarındağılışı Belirsiz hataların normal dağılım eğrisi = Normal hata eğrisi = Gauss eğrisi Eğrinin en yüksek noktasındaki değer, sapması sıfırolandeğer, yani aritmetik ortalamadır. 12

13 Orta noktasının sol tarafı ( ) sapmaları, sağ tarafı (+) sapmaları gösterir. Negatif sapmalar Pozitif sapmalar Gerçek ortalamadan az miktardaki sapmaların sayısı, çok miktardaki sapmaların sayısından daha çoktur. Aynı büyüklükteki (+) ve ( ) sapmalara aynı sayıda rastlanır(eğri simetriktir). 13

14 Belirsiz (nedeni belli olmayan) hata ne kadar fazla ise eğri o kadarbasık ve geniş olur. GÜVEN SINIRLARI İstatistiksel olarak gerçek değeri belirli bir olasılık derecesinde bulabileceğimiz aralıktır. Güven sınırları : X ± t. s n t = sayısal değeri olasılık derecesine ve tayin sayısına bağlı bir faktördür. n

15 Örnek: = 4.29 s = n=6ise %80ve%99olasılıkiçingüvensınırları %80 için = %99 için = 1.48 x ± = x ± = Örnek: Kükürt içeren bir örneğin analizinde alınan sonuçlar : % kükürt = ; ; ; dur. Bu yöntemin % 95 olasılık düzeyindeki güven sınırı ne kadardır? X = = (0.004) 2+ (0.002) 2+ (0.001) 2+ (0.003) 2 s = =

16 t = 3.18 (n 1=3 ve %95 olasılık düzeyi için değer) Güven sınırı= X t. s 3.18 x ± = ± n 4 = = Anlamı : arasındaki değerlerin oluşturduğu sonuçlar serisinde, %95 olasılıkla, gerçek değererastlanır. BAZI SONUÇLARIN HESABA KATILMAMASI 1. Yöntem: Gdeğerinin bulunması Farklı sonuç; x 1, büyüklük sırasına göre diğer sonuçlar ; x 2,x 3,... x n ise; 2 1 n=3 7 : G 1 = x - x x x 1 =kritikdeğer n - x 1 n=8 13 : 2 1 G 2 = x - x x (n -1) - x 1 x 2 = en küçük değer n 14 : 3 1 G 3 = x - x x (n -2) - x 1 x n = en büyük değer Bulunan G değeri ilgili cetvellerdeki G değeri (G kritik ) ile karşılaştırılır. G>G kritik ise o değer hesaba katılmaz. 16

17 BAZI SONUÇLARIN HESABA KATILMAMASI 2. Yöntem: Q değerinin bulunması Q = x 1 - x alan x= x 1 eenyakın sonuç Bulunan Q değeri ilgili cetvellerdeki Q değeri (Q kritik ) ile karşılaştırılır. Q>Q kritik ise o değer hesaba katılmaz. Örnek: * n= GYönteminegöre: n=3 7 n=5içing kritik = G = = > olduğu için değeri hesaplara katılmaz. QYönteminegöre: x 1 Q = - x Q = = alan n=5için Q kritik = (%95 olasılık düzeyinde) > olduğu için değeri hesaplara katılmaz. 17

18 GEREKLİ HANE SAYISI Bir ölçmenin veya analizin sonucundaki hane sayısının o sonucun tayinindeki kesinlik derecesine uygun olması gerekir. Analiz sonucunun bildirilmesi : Gram = virgülden sonra 4 haneli Miligram = virgülden sonra 1 haneli % = virgülden sonra 2 haneli 18

Analitik Kimya. (Metalurji ve Malzeme Mühendisliği)

Analitik Kimya. (Metalurji ve Malzeme Mühendisliği) Analitik Kimya (Metalurji ve Malzeme Mühendisliği) 1. Analitik Kimya Maddenin bileşenlerinin belirlenmesi (teşhisi), bileşenlerinin ayrılması veya bileşenlerinin bağıl miktarlarının tayiniyle ilgilenir.

Detaylı

Çözüm: Çözüm: Çözüm: Elektrik Ölçme Ders Notları-Ş.Kuşdoğan&E.Kandemir Beşer 16

Çözüm: Çözüm: Çözüm: Elektrik Ölçme Ders Notları-Ş.Kuşdoğan&E.Kandemir Beşer 16 Soru: Elimizde 0.5 sınıfından 500V luk bir voltmetre ile 1.5 sınıfından 120V luk bir voltmetre bulunmaktadır. Değeri 1V olan bir gerilimi hangi ölçü aleti ile ölçmek daha doğru olur? Neden? Soru: Bir direncin

Detaylı

ALETLİ ANALİZ YÖNTEMLERİ

ALETLİ ANALİZ YÖNTEMLERİ ALETLİ ANALİZ YÖNTEMLERİ Analiz Çeşitleri ve Temel Kavramlar Yrd. Doç. Dr. Gökçe MEREY Analiz Nitel (Kalitatif) Analiz: Bir örnekte hangi bileşen ve/veya bileşenlerin (atom, iyon, molekül) olduğunun tayinine

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı DENEY 0 Bölüm 1 - Ölçme ve Hata Hesabı Amaç: Ölçüm metodu ve cihazına bağlı hata ve belirsizlikleri anlamak, fiziksel bir niceliği ölçüp hata ve belirsizlikleri tespit etmek, nedenlerini açıklamak. Genel

Detaylı

Deneysel Verilerin Değerlendirilmesi

Deneysel Verilerin Değerlendirilmesi Deneysel Verilerin Değerlendirilmesi Ölçme-Birimler-Anlamlı Rakamlar Ölçme: Bir nesnenin bazı özelliklerini (kütle, uzunluk vs..) standart olarak belirlenmiş birimlere göre belirlenmesi işlemidir (ölçüm,

Detaylı

2009-02-ANALİTİK VERİLERİN

2009-02-ANALİTİK VERİLERİN ANALİTİK VERİLERİN Prof. Dr. Mustafa DEMİR 1 Analitik kimyacıların laboratuarlarda elde ettikleri sonuçların ne oranda doğru olabileceği bazı yöntemlerle tahmin edilebilir. Analizcinin elde ettiği sonuç

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

ANALİTİK YÖNTEMLERİN DEĞERLENDİRİLMESİ. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2004

ANALİTİK YÖNTEMLERİN DEĞERLENDİRİLMESİ. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2004 ANALİTİK YÖNTEMLERİN DEĞERLENDİRİLMESİ Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2004 1 Laboratuvarlarda yararlanılan analiz yöntemleri performans kalitelerine göre üç sınıfta toplanabilir: -Kesin yöntemler

Detaylı

ANALİTİK ÖLÇÜM YÖNTEMLERİNİN LABORATUVARA KURULMASI İLE İLGİLİ HESAPLAMALAR. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

ANALİTİK ÖLÇÜM YÖNTEMLERİNİN LABORATUVARA KURULMASI İLE İLGİLİ HESAPLAMALAR. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 ANALİTİK ÖLÇÜM YÖNTEMLERİNİN LABORATUVARA KURULMASI İLE İLGİLİ HESAPLAMALAR Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Yöntem Seçiminde Göz Önünde Bulundurulacak Özellikler 1 *Yönteme ilişkin

Detaylı

Ölçme Teknikleri Temel Kavramlar:

Ölçme Teknikleri Temel Kavramlar: Deney yapmak bir bakıma ölçüm yapmaktır. Ölçme bilimine metroloji denir. Ölçmek yani bir büyüklüğü sayısal olarak belirlemek büyüklüğün değerini standarlaştırılmış aynı cinsten bir başka büyüklükle karşılaştırmak

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

Görev çubuğu. Ana ölçek. Şekil 1.1: Verniyeli kumpas

Görev çubuğu. Ana ölçek. Şekil 1.1: Verniyeli kumpas Deney No : M0 Deney Adı : ÖLÇME VE HATA HESABI Deneyin Amacı : Bazı uzunluk ölçü aletlerini tanımak ve ölçme hataları hakkında ön bilgiler elde etmektir. Teorik Bilgi : VERNİYELİ KUMPAS Uzunluk ölçümü

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

2 Hata Hesabı. Hata Nedir? Mutlak Hata. Bağıl Hata

2 Hata Hesabı. Hata Nedir? Mutlak Hata. Bağıl Hata Hata Hesabı Hata Nedir? Herhangi bir fiziksel büyüklüğün ölçülen değeri ile gerçek değeri arasındaki farka hata denir. Ölçülen bir fiziksel büyüklüğün sayısal değeri, yapılan deneysel hatalardan dolayı

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

İÇİNDEKİLER BÖLÜM 1 KAVRAMLAR VE YÖNTEMBİLİM

İÇİNDEKİLER BÖLÜM 1 KAVRAMLAR VE YÖNTEMBİLİM İÇİNDEKİLER BÖLÜM 1 KAVRAMLAR VE YÖNTEMBİLİM I. İSTATİSTİK KAVRAMI ve TANIMI... 1 A. İSTATİSTİK KAVRAMI... 1 B. İSTATİSTİĞİN TANIMI... 2 C. İSTATİSTİĞİN TARİHÇESİ... 2 D. GÜNÜMÜZDE İSTATİSTİK VE ÖNEMİ...

Detaylı

Erciyes Dağı. Rakım??? Tıbbi Laboratuvarlarda Ölçüm Belirsizliği

Erciyes Dağı. Rakım??? Tıbbi Laboratuvarlarda Ölçüm Belirsizliği Erciyes Dağı. Rakım??? 3916 m?????? Tıbbi Laboratuvarlarda Ölçüm Belirsizliği DOÇ. DR. CEVAT YAZICI ERCİYES ÜNİVERSİTESİ TIP FAKÜLTESİ BİYOKİMYA A. D. SUNUM PLANI Laboratuvar branşlarının işlevi ve değişimler

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder.

Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Yayılma Ölçütleri Merkezi eğilim ölçüleri ile bir frekans dağılımının merkezi belirlenirken; yayılma ölçüleri ile değişkenliği veya yayılma düzeyini tespit eder. Bir başka ifade ile, bir veri setinin,

Detaylı

ÖLÇME DEĞERLENDİRME ÜNİTE BAŞLIKLARI

ÖLÇME DEĞERLENDİRME ÜNİTE BAŞLIKLARI ÖLÇME DEĞERLENDİRME ÜNİTE BAŞLIKLARI 1. TEMEL KAVRAMLAR 2. ÖLÇMEDE HATA (GÜVENİRLİK GEÇERLİK) 3. İSTATİSTİK 1. TEMEL KAVRAMLAR Ölçme, Ölçüm, Ölçme Kuralı, Ölçüt, Değerlendirme. Ölçme Türleri: Doğrudan,

Detaylı

Yöntemin Geçerliliği (Validasyon)

Yöntemin Geçerliliği (Validasyon) VALİDASYON Prof. Dr. A. Olcay Sağırlı Yöntemin Geçerliliği (Validasyon) Geçerlilik, (Validasyon) cihazın, metodun veya ölçüm prosedürünün belirlenen amaçlara uygunluğunun objektif olarak test edilerek

Detaylı

Tekrarlanabilirlik. Sapma, Tekrarlanabilirlik, Tekrar yapılabilirlik, Kararlılık, Doğrusallık. Sapma

Tekrarlanabilirlik. Sapma, Tekrarlanabilirlik, Tekrar yapılabilirlik, Kararlılık, Doğrusallık. Sapma ÖLÇÜM SİSTEMİ ANALİZİ (MEASUREMENT SYSTEM ANALYSIS - MSA) Ölçüm Sistemi Varyansının Türleri Ölçüm sistemi hataları beş grupta ele alınır. Sapma Sapma, Tekrarlanabilirlik, Tekrar yapılabilirlik, Kararlılık,

Detaylı

VERİ SETİNE GENEL BAKIŞ

VERİ SETİNE GENEL BAKIŞ VERİ SETİNE GENEL BAKIŞ Outlier : Veri setinde normal olmayan değerler olarak tanımlanır. Ders: Kantitatif Yöntemler 1 VERİ SETİNE GENEL BAKIŞ Veri setinden değerlendirme başlamadan çıkarılabilir. Yazım

Detaylı

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma

Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal. değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma 2 13.1 Normal Dağılımın Standartlaştırılması Gerçek uygulamalarda, standart normal olmayan sürekli bir rassal değişken, sıfırdan farklı bir ortalama ve birden farklı standart sapma değerleriyle normal

Detaylı

Su Ürünlerinde Temel İstatistik. Ders 1: Temel Kavramlar

Su Ürünlerinde Temel İstatistik. Ders 1: Temel Kavramlar Su Ürünlerinde Temel İstatistik Ders 1: Temel Kavramlar Ben kimim? Yalçın İŞLER Yardımcı Doçent Doktor İ.K.Ç.Ü. Biyomedikal Mühendisliği Bölümü http://me.islerya.com islerya@yahoo.com Cep telefonumdan

Detaylı

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Merkezi Eğilim Ölçüleri Merkezi eğilim ölçüsü, bir veri setindeki merkezi, yada tipik, tek bir değeri ifade eder. Nicel veriler için, reel sayı çizgisindeki

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık - I Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kes1rim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmak7r. ü Bu anlamda, anakütleden çekilen

Detaylı

Sürekli Rastsal Değişkenler

Sürekli Rastsal Değişkenler Sürekli Rastsal Değişkenler Normal Dağılım: Giriş Normal Dağılım: Tamamen ortalaması ve standart sapması ile tanımlanan bir rastsal değişken, X, için oluşturulan sürekli olasılık dağılımına normal dağılım

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir Bilimsel Araştırma Yöntemleri Prof. Dr. Şener Büyüköztürk Doç. Dr. Ebru Kılıç Çakmak Yrd. Doç. Dr. Özcan Erkan Akgün Doç. Dr. Şirin Karadeniz Dr. Funda Demirel Örnekleme Yöntemleri Evren Evren, araştırma

Detaylı

BÖLÜM 9 NORMAL DAĞILIM

BÖLÜM 9 NORMAL DAĞILIM 1 BÖLÜM 9 NORMAL DAĞILIM Normal dağılım; 'normal dağılım eğrisi (normaly distribution curve)' ile kavramlaştırılan hipotetik bir evren dağılımıdır. 'Gauss dağılımı' ya da 'Gauss eğrisi' olarak da bilinen

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

Merkezi Yığılma ve Dağılım Ölçüleri

Merkezi Yığılma ve Dağılım Ölçüleri 1.11.013 Merkezi Yığılma ve Dağılım Ölçüleri 4.-5. hafta Merkezi eğilim ölçüleri, belli bir özelliğe ya da değişkene ilişkin ölçme sonuçlarının, hangi değer etrafında toplandığını gösteren ve veri grubunu

Detaylı

DERS 3 ÖLÇÜ HATALARI Kaynak: İ.ASRİ

DERS 3 ÖLÇÜ HATALARI Kaynak: İ.ASRİ Ölçme Bilgisi DERS 3 ÖLÇÜ HATALARI Kaynak: İ.ASRİ Çizim Hassasiyeti Haritaların çiziminde veya haritadan bilgi almada ne kadar itina gösterilirse gösterilsin kaçınılmayacak bir hata vardır. Buna çizim

Detaylı

Fiz 1011 Ders 1. Fizik ve Ölçme. Ölçme Temel Kavramlar. Uzunluk Kütle Zaman. Birim Sistemleri. Boyut Analizi.

Fiz 1011 Ders 1. Fizik ve Ölçme. Ölçme Temel Kavramlar. Uzunluk Kütle Zaman. Birim Sistemleri. Boyut Analizi. Fiz 1011 Ders 1 Fizik ve Ölçme Ölçme Temel Kavramlar Uzunluk Kütle Zaman Birim Sistemleri Boyut Analizi http://kisi.deu.edu.tr/mehmet.tarakci/ Ölçme Nedir? Fiziksel bir büyüklüğü ölçmek, birim olarak seçilen

Detaylı

Bir Normal Dağılım Ortalaması İçin Testler

Bir Normal Dağılım Ortalaması İçin Testler Bir Normal Dağılım Ortalaması İçin Testler İÇERİK o Giriş ovaryansı Bilinen Bir Normal Dağılım Ortalaması İçin Hipotez Testler P-değerleri: II. Çeşit hata ve Örnekleme Büyüklüğü Seçimi Örnekleme Büyüklüğü

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

TİTCK/ DESTEK VE LABORATUVAR HİZMETLERİ BAŞKAN YARDIMCILIĞI/ ANALİZ VE KONTROL LABORATUVAR DAİRESİ BAŞKANLIĞI ÖLÇÜM BELİRSİZLİĞİ PROSEDÜRÜ PR15/KYB

TİTCK/ DESTEK VE LABORATUVAR HİZMETLERİ BAŞKAN YARDIMCILIĞI/ ANALİZ VE KONTROL LABORATUVAR DAİRESİ BAŞKANLIĞI ÖLÇÜM BELİRSİZLİĞİ PROSEDÜRÜ PR15/KYB TİTCK/ DESTEK VE LABORATUVAR HİZMETLERİ BAŞKAN YARDIMCILIĞI/ ANALİZ VE KONTROL LABORATUVAR DAİRESİ BAŞKANLIĞI PR15/KYB Sayfa No: 1/17 1. AMAÇ VE KAPSAM Bu prosedürün amacı, Daire Başkanlığı, TS EN ISO/IEC

Detaylı

BÖLÜM 13 HİPOTEZ TESTİ

BÖLÜM 13 HİPOTEZ TESTİ 1 BÖLÜM 13 HİPOTEZ TESTİ Bilimsel yöntem aşamalarıyla tanımlanmış sistematik bir bilgi üretme biçimidir. Bilimsel yöntemin aşamaları aşağıdaki gibi sıralanabilmektedir (Karasar, 2012): 1. Bir problemin

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

Ölçme ve Değerlendirme

Ölçme ve Değerlendirme Ölçme ve Değerlendirme Z Puanı T Puanı Yrd. Doç. Dr. Yetkin Utku KAMUK Standart Puan Herhangi bir ölçüm sonucunda elde edilen ve farklı birimlere sahip ham puanların, standart bir dağılım haline dönüştürülmesi

Detaylı

MATE211 BİYOİSTATİSTİK

MATE211 BİYOİSTATİSTİK MATE211 BİYOİSTATİSTİK ÇALIŞMA SORULARININ ÇÖZÜM VE CEVAPLARI Yapılan bir araştırmada, 136 erişkin kişinin kanlarındaki kolesterol düzeyleri gr/dl cinsinden aşağıda verilmiştir: 180 230 190 186 220 191

Detaylı

MADEN TETKİK ARAMA GENEL MÜDÜRLÜĞÜ HİDROJEOKİMYA LABORATUVA- RINDA BAZI ANALİTİK YÖNTEMLERİN İSTATİSTİKSEL DEĞERLENDİRİLMESİ

MADEN TETKİK ARAMA GENEL MÜDÜRLÜĞÜ HİDROJEOKİMYA LABORATUVA- RINDA BAZI ANALİTİK YÖNTEMLERİN İSTATİSTİKSEL DEĞERLENDİRİLMESİ MADEN TETKİK ARAMA GENEL MÜDÜRLÜĞÜ HİDROJEOKİMYA LABORATUVA- RINDA BAZI ANALİTİK YÖNTEMLERİN İSTATİSTİKSEL DEĞERLENDİRİLMESİ A Gülay ATAMAN*; Süheyla TUNCER*: Ersin ŞEN*; Muzaffer SÖNMEZ*; Vedat ÖZTÜRK*

Detaylı

NAT Yöntem onayı. Dr. A. Arzu Sayıner Dokuz Eylül Üniversitesi Tıp Fakültesi Tıbbi Mikrobiyoloji AD

NAT Yöntem onayı. Dr. A. Arzu Sayıner Dokuz Eylül Üniversitesi Tıp Fakültesi Tıbbi Mikrobiyoloji AD NAT Yöntem onayı Dr. A. Arzu Sayıner Dokuz Eylül Üniversitesi Tıp Fakültesi Tıbbi Mikrobiyoloji AD Yöntem onayı (minimum) Doğruluk Ticari test (Verifikasyon) Tekrarlanabilirlik (intra-,inter-assay) Doğrusallık

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI

LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI LAÜ FEN EDEBĐYAT FAKÜLTESĐ PSĐKOLOJĐ BÖLÜMÜ PSK 106 ĐSTATĐSTĐK YÖNTEMLER I 2015-2016 BAHAR DÖNEMĐ BÜTÜNLEME SINAVI SORULARI Tarih/Saat/Yer: 24.06.16/11:00-12:30/AS010 Instructor: Prof. Dr. Hüseyin Oğuz

Detaylı

İstatistiksel Yorumlama

İstatistiksel Yorumlama İstatistiksel Yorumlama Amaç, popülasyon hakkında yorumlamalar yapmaktadır. Populasyon Parametre Karar Vermek Örnek İstatistik Tahmin 1 Tahmin Olaylar hakkında tahminlerde bulunmak ve karar vermek zorundayız

Detaylı

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ ÖRNEKLEME TEORİSİ 1 Bir popülasyonu istatistiksel açıdan incelemek ve işlemler yapabilmek için popülasyon içerisinden seçilen örneklemlerden yararlandığımızı söylemiştik. Peki popülasyonun istatistiksel

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 2- HATA VE HATA KAYNAKLARI Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ Bir denklemin veya problemin çözümünde kullanılan sayısal yöntem belli bir giriş verisini işleme tabi tutarak sayısal

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU Örnek: Aşağıda 100 yetişkine ilişkin kolesterol değerlerini sınıflandırılarak aritmetik ortalamasını bulunuz (sınıf aralığını 20 alınız). 2 x A fb C 229.5 n 40 20 100 221.5 3 Örnek:.

Detaylı

KANTİTATİF ANALİTİK KİMYA PRATİKLERİ

KANTİTATİF ANALİTİK KİMYA PRATİKLERİ KANTİTATİF ANALİTİK KİMYA PRATİKLERİ Kantitatif analiz yöntemleri, maddenin miktar tayinlerine dayalı analiz yöntemleridir. Günümüzde miktar tayinine yönelik birçok yöntem bilinmektedir. Pratik çalışmalarda

Detaylı

TANIMLAR. Dr. Neriman AYDIN. Adnan Menderes Üniversitesi Tıp Fakültesi Tıbbi Mikrobiyoloji Anabilim Dalı

TANIMLAR. Dr. Neriman AYDIN. Adnan Menderes Üniversitesi Tıp Fakültesi Tıbbi Mikrobiyoloji Anabilim Dalı TANIMLAR Dr. Neriman AYDIN Adnan Menderes Üniversitesi Tıp Fakültesi Tıbbi Mikrobiyoloji Anabilim Dalı In-vitro tanı Sürekli doğru sonuç Amaca uygun Zamanında Uygun maliyet In-vitro tanı elemanları Kitler

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma...

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma... İçindekiler İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii BÖLÜM 1 Ölçme, İstatistik ve Araştırma...1 Ölçme Nedir?... 3 Ölçme Süreci... 3 Değişkenler

Detaylı

Analitik Kalite Güvence: Minimum gereksinimler

Analitik Kalite Güvence: Minimum gereksinimler Analitik Kalite Güvence: Minimum gereksinimler Dr. Hamide Z Şenyuva 16 17 Ekim 2007, Bursa İçerik Giriş- Analitik Kalite Güvence neden önemli? Formal Kalite Güvence Sistemleri Metot validasyonu İç Kalite

Detaylı

TİTCK/ DESTEK VE LABORATUVAR HİZMETLERİ BAŞKAN YARDIMCILIĞI/ ANALİZ VE KONTROL LABORATUVAR DAİRESİ BAŞKANLIĞI KALİTE KONTROL PROSEDÜRÜ PR17/KYB

TİTCK/ DESTEK VE LABORATUVAR HİZMETLERİ BAŞKAN YARDIMCILIĞI/ ANALİZ VE KONTROL LABORATUVAR DAİRESİ BAŞKANLIĞI KALİTE KONTROL PROSEDÜRÜ PR17/KYB TİTCK/ DESTEK VE LABORATUVAR HİZMETLERİ BAŞKAN YARDIMCILIĞI/ ANALİZ VE KONTROL LABORATUVAR DAİRESİ BAŞKANLIĞI PR17/KYB Sayfa No: 1/6 1. AMAÇ ve KAPSAM Bu prosedürün amacı, Daire Başkanlığında deney hizmetleri

Detaylı

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3

BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 KİTABIN İÇİNDEKİLER BÖLÜM-1.BİLİM NEDİR? Tanımı...1 Bilimselliğin Ölçütleri...2 Bilimin İşlevleri...3 BÖLÜM-2.BİLİMSEL ARAŞTIRMA Belgesel Araştırmalar...7 Görgül Araştırmalar Tarama Tipi Araştırma...8

Detaylı

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER

NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER NORMAL DAĞILIM VE ÖNEMLİLİK TESTLERİ İLE İLGİLİ PROBLEMLER A) Normal Dağılım ile İlgili Sorular Sayfa /4 Hamileler ile ilgili bir araştırmada, bu grubun hemoglobin değerlerinin normal dağılım gösterdiği

Detaylı

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( )

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( ) İKİ DEĞİŞKENLİ OLASILIK Rassal bir deneme yapılmakta ve farklı iki olay ile ilgilenilmektedir. A 1, A 2,,A i olayları bağdaşmaz ve bütünü kapsayıcıdır. B 1, B 2,,B j olayları bağdaşmaz ve bütünü kapsayıcıdır.

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Örnek Senaryo İmplant üreten İMPLANTDENT

Detaylı

FİNANSAL MODELLER. Yrd. Doç. Dr. Fazıl GÖKGÖZ. Tel: 595 13 37 fgokgoz@politics.ankara.edu.tr. Y. Doç. Dr. Fazıl GÖKGÖZ. Risk ve Getiri: Temel Konular

FİNANSAL MODELLER. Yrd. Doç. Dr. Fazıl GÖKGÖZ. Tel: 595 13 37 fgokgoz@politics.ankara.edu.tr. Y. Doç. Dr. Fazıl GÖKGÖZ. Risk ve Getiri: Temel Konular FİNANSAL MODELLER Yrd. Doç. Dr. Fazıl GÖKGÖZ Tel: 595 13 37 fgokgoz@politics.ankara.edu.tr Risk ve Getiri: Temel Konular Temel getiri konsepti Temel risk konsepti Bireysel risk Portföy (piyasa) riski Risk

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

Kimyasal analiz : bir örnekteki bileşenleri v bileşenlerin konsantrasyonların bulmak için yapılan işlemi genel adıdır.

Kimyasal analiz : bir örnekteki bileşenleri v bileşenlerin konsantrasyonların bulmak için yapılan işlemi genel adıdır. Analitik Kimya Kimyanın, maddelerin hangi bileşenlerden ve bileşenlerin hangi oranlarda (bağıl miktarlarda) olduğunu inceleyen dalı Analitik Kimya olarak isimlendirilir. bir ürünün istenen kalitede olup

Detaylı

ÖLÇÜM BELİRSİZLİĞİNİN HESAPLANMASI PROSEDÜRÜ

ÖLÇÜM BELİRSİZLİĞİNİN HESAPLANMASI PROSEDÜRÜ Doküman No: P.LAB.5.4.6.01 Rev.No/Tarih : 00/- Yayın Tarihi: 08.07.2011 Sayfa: 1 / 1 1.0. AMAÇ VE KAPSAM Çevre Analizleri Laboratuarında TS EN ISO/IEC 17025:2005 Deney ve Kalibrasyon Laboratuarlarının

Detaylı

T.C. AVRASYA ÜNİVERSİTESİ BAĞIL NOT DEĞERLENDİRME SİSTEMİ YÖNERGESİ

T.C. AVRASYA ÜNİVERSİTESİ BAĞIL NOT DEĞERLENDİRME SİSTEMİ YÖNERGESİ T.C. AVRASYA ÜNİVERSİTESİ BAĞIL NOT DEĞERLENDİRME SİSTEMİ YÖNERGESİ Amaç MADDE 1 (1) Bu Yönergenin amacı, Avrasya Üniversitesi bünyesindeki önlisans ve lisans programlarındaki ölçme ve değerlendirmeye

Detaylı

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH ORTALAMA ÖLÇÜLERİ Ünite 6 Öğr. Gör. Ali Onur CERRAH Araştırma sonucunda elde edilen nitelik değişkenler hakkında tablo ve grafikle bilgi sahibi olunurken, sayısal değişkenler hakkında bilgi sahibi olmanın

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08 1. Tanımlanan ana kütleden rassal seçilen örneklemlerden hesaplanan istatistikler yardımı ile ilgili ana kütle parametrelerinin değerini araştırma sürecine ne ad verilir? A) İstatistiksel hata B) İstatistiksel

Detaylı

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama

Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri. Giriş Veri kümesi. Ortalamalar iki grupta incelenir. A. Duyarlı olan ortalama. B. Duyarlı olmayan ortalama GM-220 MÜH. ÇALIŞ. İSTATİSTİKSEL YÖNTEMLER Bölüm 3 Merkezi Konum (Eğilim) Ölçüleri Yrd. Doç. Dr. Safa KARAMAN 1 2 Giriş Veri kümesi Verileri betimlemenin ve özetlemenin bir diğer yolu da verilerin bir

Detaylı

Ölçme Sonuçları Üzerinde İstatistiksel İşlemler

Ölçme Sonuçları Üzerinde İstatistiksel İşlemler Ölçme Sonuçları Üzerinde İstatistiksel İşlemler Bir grup birey veya nesnenin belli bir özelliğe sahip olup olmadığı ya da belli bir özelliğe ne derece sahip olduğunu belirlemek amacı ile ölçme işlemi yapılır.

Detaylı

χ 2 Testi Mühendislikte İstatistik Yöntemler Bağımsızlık Testi Homojenlik Testi Uygunluk Testi

χ 2 Testi Mühendislikte İstatistik Yöntemler Bağımsızlık Testi Homojenlik Testi Uygunluk Testi χ Testi Mühendislikte İstatistik Yöntemler χ Testi Bağımsızlık Testi Homojenlik Testi Uygunluk Testi χ Testi Sayısal olmayan değişkenler arasındaki ilişkinin testi (Bağımsızlık) Farklı örnek kütlelerin

Detaylı

IİSTATIİSTIİK. Mustafa Sezer PEHLI VAN

IİSTATIİSTIİK. Mustafa Sezer PEHLI VAN IİSTATIİSTIİK Mustafa Sezer PEHLI VAN İstatistik nedir? İstatistik, veri anlamına gelir, İstatistik, sayılarla uğraşan bir bilim dalıdır, İstatistik, eksik bilgiler kullanarak doğru sonuçlara ulaştıran

Detaylı

Okut. Yüksel YURTAY. İletişim : (264) Sayısal Analiz. Giriş.

Okut. Yüksel YURTAY. İletişim :  (264) Sayısal Analiz. Giriş. Okut. Yüksel YURTAY İletişim : Sayısal Analiz yyurtay@sakarya.edu.tr www.cs.sakarya.edu.tr/yyurtay (264) 295 58 99 Giriş 1 Amaç : Mühendislik problemlerinin bilgisayar ortamında çözümünü mümkün kılacak

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

MAK 309 Ölçme Tekniği ve Değerlendirme. Temel Kavramlar

MAK 309 Ölçme Tekniği ve Değerlendirme. Temel Kavramlar MAK 309 Ölçme Tekniği ve Değerlendirme Temel Kavramlar Ölçme nedir? Ölçme bilinmeyen bir niceliği, bilinen bir nicelikle karşılaştırarak değerlendirme işlemidir. Odanın sıcaklığı kaç derece? Ölçme yaparken...

Detaylı

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar TEMEL İSTATİSTİK BİLGİSİ İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar İstatistiksel Verileri Tasnif Etme Verileri daha anlamlı hale getirmek amacıyla

Detaylı

009 BS 400- İstatistik sonılannın cevaplanmasında gerekli olabilecek tablolar ve formüller bu kitapçığın sonunda verilmiştir. 1. şağıdakilerden hangisi doğal birimdir? l TV alıcısı Bl Trafik kazası CL

Detaylı

ĐSTATĐSTĐK. Okan ERYĐĞĐT

ĐSTATĐSTĐK. Okan ERYĐĞĐT ĐSTATĐSTĐK Okan ERYĐĞĐT Araştırmacı, istatistik yöntemlere daha işin başında başvurmalıdır, sonunda değil..! A. Bradford Hill, 1930 ĐSTATĐSTĐĞĐN AMAÇLARI Bilimsel araştırmalarda, araştırmacıya kullanılabilir

Detaylı

Hipotez Testleri. Mühendislikte İstatistik Yöntemler

Hipotez Testleri. Mühendislikte İstatistik Yöntemler Hipotez Testleri Mühendislikte İstatistik Yöntemler Hipotez Testleri Parametrik Testler ( z ve t testleri) Parametrik Olmayan Testler (χ 2 Testi) Hipotez Testleri Ana Kütle β( µ, σ ) Örnek Kütle b ( µ

Detaylı

MOL KAVRAMI I. ÖRNEK 2

MOL KAVRAMI I.  ÖRNEK 2 MOL KAVRAMI I Maddelerin taneciklerden oluştuğunu biliyoruz. Bu taneciklere atom, molekül ya da iyon denir. Atom : Kimyasal yöntemlerle daha basit taneciklere ayrılmayan ve elementlerin yapıtaşı olan taneciklere

Detaylı

OLASILIK ve İSTATİSTİK Hipotez Testleri

OLASILIK ve İSTATİSTİK Hipotez Testleri OLASILIK ve İSTATİSTİK Hipotez Testleri Yrd.Doç.Dr. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü Hipotezler ve Testler Hipotez, kitleye(yığına) ait

Detaylı

TOPRAKTA PH TAYİNİ YETERLİLİK TESTİ RAPORU TÜBİTAK ULUSAL METROLOJİ ENSTİTÜSÜ REFERANS MALZEMELERI LABORATUVARI. Rapor No: KAR-G3RM-400.2014.

TOPRAKTA PH TAYİNİ YETERLİLİK TESTİ RAPORU TÜBİTAK ULUSAL METROLOJİ ENSTİTÜSÜ REFERANS MALZEMELERI LABORATUVARI. Rapor No: KAR-G3RM-400.2014. TOPRAKTA PH TAYİNİ YETERLİLİK TESTİ RAPORU TÜBİTAK ULUSAL METROLOJİ ENSTİTÜSÜ REFERANS MALZEMELERI LABORATUVARI Rapor No: KAR-G3RM-400.2014.02 Koordinatör: Dr. Fatma AKÇADAĞ 24 Aralık 2014 Gebze/KOCAELİ

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Bilim, Sanayi ve Teknoloji Bakanlığından;

Bilim, Sanayi ve Teknoloji Bakanlığından; Bilim, Sanayi ve Teknoloji Bakanlığından; NOMİNAL DOLUM MİKTARI 10 KG/L İLE 50KG/L ARASINDA OLAN HAZIR AMBALAJLI MAMULLERİN AĞIRLIK VE HACİM ESASINA GÖRE NET MİKTAR TESPİTİNE DAİR YÖNETMELİK TASLAĞI BİRİNCİ

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

ÖLÇMELERDEKİ KARARSIZLIKLAR, CİHAZLARIN DUYARLIĞI VE TAYİN SINIRLARI Enstrümantal Analiz

ÖLÇMELERDEKİ KARARSIZLIKLAR, CİHAZLARIN DUYARLIĞI VE TAYİN SINIRLARI Enstrümantal Analiz 1 ÖLÇMELERDEKİ KARARSIZLIKLAR, CİHAZLARIN DUYARLIĞI VE TAYİN SINIRLARI Enstrümantal Analiz 1. Ölçmelerdeki Kararsızlıklar 1.1. Kesinlik ve Doğruluk 1.2. Hata Tipleri 1.3. Belirsiz Hataların Dağılımı 1.4.

Detaylı

MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI

MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI MATE 211 BİYOİSTATİSTİK İKİ FARKIN ÖNEMLİLİK TESTİ VE İKİ EŞ ARASINDAKİ FARKIN ÖNEMLİLİK TEST SORULARI 1. Doğum sırasının çocuğun zeka düzeyini etkileyip etkilemediğini araştıran bir araştırmacı çocuklar

Detaylı

doğrudur? Veya test, sağlıklı dediği zaman hangi olasılıkla doğrudur? Bu soruların yanıtları

doğrudur? Veya test, sağlıklı dediği zaman hangi olasılıkla doğrudur? Bu soruların yanıtları DÖNEM III HALK SAĞLIĞI-ADLİ TIP-BİYOİSTATİSTİK-TIP TARİHİ VE ETİK Ders Kurulu Başkanı : Prof. Dr. Günay SAKA TANI TESTLERİ (30.04.2014 Çrş. Y. ÇELİK) Duyarlılık (Sensitivity) ve Belirleyicilik (Specificity)

Detaylı

Ölçme Araçlarında Bulunması Gereken Nitelikler. Geçerlik. Geçerlik Türleri. Geçerlik. Kapsam Geçerliği

Ölçme Araçlarında Bulunması Gereken Nitelikler. Geçerlik. Geçerlik Türleri. Geçerlik. Kapsam Geçerliği BÖLÜM 3 Ölçme Araçlarında Bulunması Gereken Nitelikler Yrd. Doç. Dr. Çetin ERDOĞAN cetinerdogan@gmail.com Ölçme Araçlarında Bulunması Gereken Nitelikler Geçerlik Güvenirlik Kullanışlılık Geçerlik Geçerlik,

Detaylı

BAĞIL DEĞERLENDİRME SİSTEMİ

BAĞIL DEĞERLENDİRME SİSTEMİ 1.1. Bağıl Değerlendirme Sistemi (BDS) BAĞIL DEĞERLENDİRME SİSTEMİ Her bir öğrencinin, aynı dersi takip eden öğrencilerin oluşturduğu ana kütle içerisinde yer alan diğer öğrencilerin başarı düzeylerine

Detaylı

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can

SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER. Abdullah Can SPSS E GİRİŞ SPSS TE TEMEL İŞLEMLER SPSS in üzerinde işlem yapılabilecek iki ana ekran görünümü vardır. DATA VIEW (VERİ görünümü) VARIABLE VIEW (DEĞİŞKEN görünümü) 1 DATA VIEW (VERİ görünümü) İstatistiksel

Detaylı

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir?

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir? İSTATİSTİK Bir sonuç çıkarmak ya da çözüme ulaşabilmek için gözlem, deney, araştırma gibi yöntemlerle toplanan bilgiye veri adı verilir. Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin

Detaylı