Otomatik Kontrol I. Laplace Dönüşümü. Vasfi Emre Ömürlü

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Otomatik Kontrol I. Laplace Dönüşümü. Vasfi Emre Ömürlü"

Transkript

1 Oomaik Konrol I Laplace Dönüşümü Vafi Emre Ömürlü

2 Laplace Dönüşümü: Özellikleri eoremleri Kımî Keirlere Ayırma By Vafi Emre Ömürlü, Ph.D., 7

3 Laplace ranform I i advanageou o olve By uing, we can conver many common funcion ino Operaion like differeniaion and inegraion can be replaced by algebraic equaion. A linear differenial equaion can be ranformed ino an algebraic equaion. If he algebraic equaion in i olved for he dependen variable, hen he oluion of he differenial equaion may be found by ue of By Vafi Emre Ömürlü, Ph.D., 7

4 Laplace dönüşümünün avanajı Grafik ekniklerin kullanımına imkan verir Diferaniyel denklemlerin çözümünü kolaylaşırır By Vafi Emre Ömürlü, Ph.D., 7 4

5 Some dynamic yem and heir mahemaical repreenaion Auomaic conrol valve o adju he liquid level of he ank by conrolling he flap angle ϕ Valve o adju he flow rae beween ank q Dicharge valve h h Dicharge valve 4 By Vafi Emre Ömürlü, Ph.D., 7 5

6 Komplek Değişken Bir komplek ayı gerçek ve imajiner kıımlardan oluşur. Bu iki kıım değişken olduğundan komplek değişken imini alır. G komplek fonkiyonu gerçek ve imajiner kıımlardan oluşur, G x ve G y. Doğrual konrol iemlerinde komplek fonkiyonlara çokça ralarız ki bunlar cininden fonkiyonlardır. By Vafi Emre Ömürlü, Ph.D., 7 6

7 Euler` heorem coθ in θ coθ j in θ Since e x x x! x! x 4! 4... Euler heorem Alo By Vafi Emre Ömürlü, Ph.D., 7 7

8 er Laplace Dönüşümü anımı ve varlığı f L F er laplace dönüşümü de mevcuur ve L - ile göerilir. L { } f F f e d Genellikle Laplace dönüşümünün inegral fonkiyonu yerine daha bai yönemleri kullanırız. f fonkiyonunun laplace dönüşümü laplace inegrali yakınara mevcuur. Bu da ancak f fonkiyonu > için her onlu aralıka ürekli ie ve onuza giderken fonkiyon üel bir hal alıyora mümkündür. By Vafi Emre Ömürlü, Ph.D., 7 8

9 Bazı yaygın laplace dönüşümü örnekleri Baamak fonkiyonu ignal rengh ignal uni ep f A for for < imeec Yükekliği bir olan baamak fonkiyonuna birim baamak fonkiyonu denir. o da gerçekleşen birim baamak fonkiyonu - o ın fonkiyonu manaına - o ile göerilir. By Vafi Emre Ömürlü, Ph.D., 7 9

10 Bazı yaygın laplace dönüşümü örnekleri Üel fonkiyon f A e a for for < exp decay ignal rengh ignal uni imeec By Vafi Emre Ömürlü, Ph.D., 7

11 Bazı yaygın laplace dönüşüm örnekleri Rampa fonkiyonu f A L for for a { f } A e d A e d < ignal rengh ignal uni ramp imeec By Vafi Emre Ömürlü, Ph.D., 7

12 Bazı genel laplace dönüşümü örnekleri Sinü fonkiyonu f A in ω for for < recall Ain ω A j j j e ω ω e ine ignal rengh ignal uni imeec By Vafi Emre Ömürlü, Ph.D., 7

13 En çok kullanılan kullanacağımız dönüşümler f A A A A e n a A in a A co a A e A e b b in a co a F By Vafi Emre Ömürlü, Ph.D., 7

14 Sinyal şekilleri ignal rengh ignal uni A e A b co a A e a A e in a A co a A in a b A n A imeec By Vafi Emre Ömürlü, Ph.D., 7 4

15 Laplace dönüşümü özellikleri - üperpoziyon f α f β f α F β F Ölçekleme özelliği L{ α f } α F By Vafi Emre Ömürlü, Ph.D., 7 5

16 Laplace dönüşümü özelliği - gecikme By Vafi Emre Ömürlü, Ph.D., 7 6

17 Laplace dönüşümü özelliği - gecikme Suppoe f i delayed by λ>. he Laplae ranform of he funcion, L f λ e d { f } Define a new variable, - λ, and hen, d d, f for < f A L { } λ f λ e F λ λ By Vafi Emre Ömürlü, Ph.D., 7 7

18 By Vafi Emre Ömürlü, Ph.D., 7 8 Laplace dönüşümü özelliği ürev... n n n n n n n f f f f F f d d f d d f d d & L L L f fonkiyonun başlangıç şarı ve dfd fonkiyonun ürevinin başlangıç şarıdır. Meela, fonkiyon mekanik iemin konumunu veriyora, konum ve hız başlangıç şarları gibi.

19 By Vafi Emre Ömürlü, Ph.D., 7 9 Bazı laplace dönüşümü örnekleri Darbe fonkiyonu { }, e A e A A d e d e A d e A A f A A f for for A f > < < < L Burada, A ve abiir. Darbe fonkiyonu yükekliği A olan, da başlayan bir baamak fonkiyonu ve da negaif aynı şiddee bir baamak fonkiyonu ile birleşen bir oplam fonkiyon olarak düşünülebilir. A f

20 Bazı laplace dönüşümü örnekleri Darbe fonkiyonu f A, lim f L { f } lim d d A lim [ A e ] d d A for for e < < <, A > A Darbe fonkiyonun yükekliği A ve ürei olduğundan, bunun alındaki alan direk olarak A dır. a yaklaşığında, alan A olarak kalır. Şu da haırlanmalıdır ki darbe fonkiyonunun genliği alındaki alanla ölçülür. Darbe fonkiyonunun alındaki alan e eşi ie buna birim darbe fonkiyonu veya Dirak Dela fonkiyonu denir. By Vafi Emre Ömürlü, Ph.D., 7

21 Laplace dönüşümü eoremleri on değer eoremi lim f lim F Example: aşağıdaki iemin kalıcı hal değerini y bulunuz. Y lim y ± 44 pole: By Vafi Emre Ömürlü, Ph.D., 7

22 Laplace dönüşümü eoremleri ilk değer eoremi ve D kazanç f lim F 44 hould exi D Gain limg By Vafi Emre Ömürlü, Ph.D., 7

23 Kımî keirlere ayırma Neden ihiyaç duyuyoruz? F B A m deg ree. polynomial. wih. m. zi. roo m m b b... b n n a... an n h h deg ree. polynomial. wih. n. p. roo j m K m i n j called zero } z i p j { called pole Fonkiyonun -oramında paydaının köklerine bağlı olarak kımî keirlere ayırma üç ayrı şekilde yapılır.. Payda ayrık gerçek köklere ahipe,. paydada komplek kökler vara,. paydada ekrar eden kökler vara. By Vafi Emre Ömürlü, Ph.D., 7

24 By Vafi Emre Ömürlü, Ph.D., 7 4 Kımî keirlere ayırma ayrık kökler,... for p p p F n n p F p p n n n F p

25 By Vafi Emre Ömürlü, Ph.D., 7 5 Kımî keirlere ayırma ayrık komplek kökler {,,. f F F F uual a olve Bazı kökler komplek ie -,,,4,6,8, imeec ignal rengh ignal uni ep ine decay coine decay f

26 By Vafi Emre Ömürlü, Ph.D., 7 6 Kımî keirlere ayırma ekrar eden kökler [ ] [ ] [ ] [ ] e e f F F d d again differeniaing F d d d d F d d alo F F, Bazı kökler ekrar ediyora,,4,6,8, imeec ignal rengh ignal uni f e^- ^*e^-

27 Örnek: ank dinamiği Proee kullanıla ank dinamiği şöyle veriliyor: -h yi bulunuz -h nin 5 eki genliğini bulunuz By Vafi Emre Ömürlü, Ph.D., 7 7

28 Örnek: ank dinamiği H I II III IV By Vafi Emre Ömürlü, Ph.D., 7 8

29 Örnek: ank dinamiği By Vafi Emre Ömürlü, Ph.D., 7 9

30 Örnek: ank dinamiği H d d H By Vafi Emre Ömürlü, Ph.D., 7

31 Örnek: ank dinamiği h e h for only ^ Bu onuç adece girişi içindir, ama diğer cevaplar üperpoziyon ve ölçeklendirme özelliği kullanılarak elde edilebilir.,9,8,7,6,5,4,,,,,4,6,8 ime ec By Vafi Emre Ömürlü, Ph.D., 7

32 By Vafi Emre Ömürlü, Ph.D., 7 Örnek: ank dinamiği Overall yem repone i < < < < e e e e e e e e e for e h " " " ank heigh, h,5,,5,,5,,5,5,5 ime ec heigh m

33 Örnek: küle-önüm-yay iemi? Siem maemaik modeli m && x bx& kx f By Vafi Emre Ömürlü, Ph.D., 7

34 Örnek: dinamik iem cevabının laplace dönüşümü G? u < < < < aniye üren bir darbe fonkiyonu için yukarıdaki iemin cevabını bulunuz. By Vafi Emre Ömürlü, Ph.D., 7 4

35 Örnek: dinamik iem cevabının laplace dönüşümü Y Ι Repone of he Syem o a econd long pule Y Ι YΙΙ One-econd delayed of Y I. yem oupu,5,4,,, ime ec By Vafi Emre Ömürlü, Ph.D., 7 5

36 Ex- ime delay, < < u, < <, < < L { u }? By Vafi Emre Ömürlü, Ph.D., 7 6

37 Ex- L { } λ f λ e F λ λ λ λ U e e λ U e e By Vafi Emre Ömürlü, Ph.D., 7 7

38 Ex- Differenaion y y 9y 5 y y Find he Laplace ranform of hi equaion By Vafi Emre Ömürlü, Ph.D., 7 8

39 By Vafi Emre Ömürlü, Ph.D., 7 9 Ex-... n n n n n n n f f f f F f d d f f F f d d f F f d d & & L L L

40 HO Syem Repone Ex- L L {} {} y Y y y y Y y magniude L L {} y { 5} Y ime ec 5 5 Y Y By Vafi Emre Ömürlü, Ph.D., 7 4

41 Ex- F Diinc Pole 9 Find he Invere Laplace ranform of hi equaion By Vafi Emre Ömürlü, Ph.D., 7 4

42 Ex- F A B 9 9 n p n F p n A [ 9F ] 9 8 B [ F ] 8 By Vafi Emre Ömürlü, Ph.D., 7 4

43 HO Impule Repone 8 6 Ex- Ampliude 4 8 F f L { F } ime ec f e 9 e 8 8 By Vafi Emre Ömürlü, Ph.D., 7 4

44 HO Ex-4 Repeaed pole 5 F 5 Find he Invere Laplace ranform of hi equaion 5 A B F 5 5 By Vafi Emre Ömürlü, Ph.D., 7 44

45 Ex-4 6 [ 5F ] B F 5 A d d 5 F d d 5 d d By Vafi Emre Ömürlü, Ph.D., 7 45

46 Impule Repone Ex F 5 5 f L F 5 { } 6 6 f 5 e Ampliude ime ec By Vafi Emre Ömürlü, Ph.D., 7 46

47 Ex-5 LL M kg R6Necm K8Nm F N - Find y Y L F L m r k By Vafi Emre Ömürlü, Ph.D., 7 47

48 Ex-5 F F F F F e e e By Vafi Emre Ömürlü, Ph.D., 7 48

49 Y L F L m r k Y Y Ex-5 L L m r k F 6 8 ommon erm for every ub-inpu Y By Vafi Emre Ömürlü, Ph.D., 7 49

50 Ex-5 Y 6 d d Y d d [ 4Y ], [ 6Y ] 6, By Vafi Emre Ömürlü, Ph.D., 7 5

51 Ex-5 Y 9 6,5,56 6, y 9 6,5 e e 5 4,56 6,9 6 By Vafi Emre Ömürlü, Ph.D., 7 5

52 Ex-5 Overall yem repone: 5 I 9 6,5 e e 5 4,56 6, ,56 6,9 II 9 6,5 e e ,56 6,9 III 9 6,5 e e 5 5 4,56 6 6,9 IV 9 6,5 e e 6 By Vafi Emre Ömürlü, Ph.D., 7 5

53 Ex-5 Overall yem repone: < y F I y F III y F I II III y F I II III IV By Vafi Emre Ömürlü, Ph.D., 7 5

54 Ex-5 Final value eorem: lim f lim F 5 y 9 6,5 e e 5 4,56 6,9 5 lim y 9 Y 6 8 lim{ Y } 6 8 lim y lim Y { } 6 By Vafi Emre Ömürlü, Ph.D., 7 54

55 Ex-5 Iniial value eorem: f lim F 44 hould exi Y 6 8 y lim{ Y } 6 8 By Vafi Emre Ömürlü, Ph.D., 7 55

ESM406- Elektrik Enerji Sistemlerinin Kontrolü. 2. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü

ESM406- Elektrik Enerji Sistemlerinin Kontrolü. 2. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü ESM406- Elektrik Enerji Sitemlerinin Kontrolü. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü.. Hedefler Bu bölümün hedefleri:. Komplek değişkenlerin tanıtılmaı.. Laplace Tranformayonun tanıtılmaı..

Detaylı

>> pretty(f) s exp(10) 1/ s + 1 1/100 (s + 1) + 1 s

>> pretty(f) s exp(10) 1/ s + 1 1/100 (s + 1) + 1 s ELN5 OTOMATİK KONTROL MATLAB ÖRNEKLERİ - LAPLACE VE TERS LAPLACE DÖNÜŞÜMÜ UYGULAMALARI: Symbolic Math Toolbox içinde tanımlı olan laplace ve ilaplace komutları ile Laplace ve Ter Laplace dönüşümlerinin

Detaylı

Devreler II Ders Notları

Devreler II Ders Notları Devreler II Der Noları 3-4 LAPLACE DÖNÜŞÜMÜNÜN DURUM DENKLEMLERİNİN ÇÖZÜMÜNDE KULLANILMAI Doğrual zamanla değişmeyen bir devrenin analizi için oluşan durum denklemi abi kaayılı doğrual diferaniyel denklem

Detaylı

Deney-1 Analog Filtreler

Deney-1 Analog Filtreler Đleişim Siemleri ab. Noları Arş.Gör.Koray GÜRKAN kgurkan@ianbul.edu.r Deney- Analog Filreler Đleişim iemlerinde, örneğin FM bandında 00 MHz de yayın yapacak olan bir radyo vericiinde modülayon onraı oraya

Detaylı

Frekans Analiz Yöntemleri I Bode Eğrileri

Frekans Analiz Yöntemleri I Bode Eğrileri Frekan Analiz Yöntemleri I Bode Eğrileri Prof.Dr. Galip Canever 1 Frekan cevabı analizi 1930 ve 1940 lı yıllarda Nyquit ve Bode tarafından geliştirilmiştir ve 1948 de Evan tarafından geliştirilen kök yer

Detaylı

Bölüm 2: Bir Boyutta Hareket

Bölüm 2: Bir Boyutta Hareket Bölüm : Bir Boyua Hareke Kavrama Soruları 1- Harekeli bir cimin yer değişirmei ile aldığı yol aynımıdır? - Hız ile üra araındaki fark nedir? 3- Oralama ve ani hız araındaki fark nedir? 4- Ne zaman oralama

Detaylı

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri Korol Siemleri Taarımı Siem Modellerii Zama Cevabı ve Performa Krierleri Prof.Dr. Galip Caever Korol Siemleri Taarımı Prof.Dr.Galip Caever Kapalı dögü iemi oluşurulmaıda öce iem modelide geçici rejim cevabıı

Detaylı

LAPLACE DÖNÜŞÜMÜNÜN DEVRE ANALİZİNE UYGULANMASI

LAPLACE DÖNÜŞÜMÜNÜN DEVRE ANALİZİNE UYGULANMASI LAPLACE DÖNÜŞÜMÜNÜN DERE ANALİZİNE UYGULANMAS ÖĞRENME HEDEFLERİ Laplace ile devre çözümleri Laplace dönüşümünün kullanışlılığını göerme Devre Elemanı Mdelleri Devrelerin Laplace düzlemine dönüşürülmei

Detaylı

Kontrol Sistemleri. Kontrolcüler. Yrd. Doç. Dr. Aytaç GÖREN

Kontrol Sistemleri. Kontrolcüler. Yrd. Doç. Dr. Aytaç GÖREN ontrol Sitemleri ontrolcüler Doğrual Sitemlerin Sınıflandırılmaı: Birinci Mertebeden Gecikmeli BMG Sitemler: x a T 1 x a t x e t Son değer teoremi : x x x adr adr adr lim xa 0 lim 0 T 1 t T t 2T t 3T t

Detaylı

Otomatik Kontrol I. Dinamik Sistemlerin Matematik Modellenmesi. Yard.Doç.Dr. Vasfi Emre Ömürlü

Otomatik Kontrol I. Dinamik Sistemlerin Matematik Modellenmesi. Yard.Doç.Dr. Vasfi Emre Ömürlü Otomatik Kontrol I Dinamik Sistemlerin Matematik Modellenmesi Yard.Doç.Dr. Vasfi Emre Ömürlü Mekanik Sistemlerin Modellenmesi Elektriksel Sistemlerin Modellenmesi Örnekler 2 3 Giriş Karmaşık sistemlerin

Detaylı

Otomatik Kontrol I. P(oransal)I(integral)D(türevsel) kontrol. Dr. Vasfi Emre Ömürlü

Otomatik Kontrol I. P(oransal)I(integral)D(türevsel) kontrol. Dr. Vasfi Emre Ömürlü Oomk onrol I PornlInegrlDürevel konrol Dr Vf Emre Ömürlü PID konrol memğ Doğru kım mooru üzernde uygulm By Vf Emre Ömürlü, PhD, 005 PID konrol ullnım kolylığı dolyııyl endürde çoğunlukl kullnılmkdır Ornl

Detaylı

Bölüm 7 - Kök- Yer Eğrisi Teknikleri

Bölüm 7 - Kök- Yer Eğrisi Teknikleri Bölüm 7 - Kök- Yer Eğrii Teknikleri Kök yer eğrii tekniği kararlı ve geçici hal cevabı analizinde kullanılmaktadır. Bu grafikel teknik kontrol iteminin performan niteliklerini tanımlamamıza yardımcı olur.

Detaylı

Table 1. Reservoir/Well/Fluid Data Reservoir Thickness, h, Well radius, r w,, 0.328 ft Fluid viscosity, μ, 0.8 cp Formation volume factor, B o,

Table 1. Reservoir/Well/Fluid Data Reservoir Thickness, h, Well radius, r w,, 0.328 ft Fluid viscosity, μ, 0.8 cp Formation volume factor, B o, M. Onur 10.04.2008 PET467E-Analysis of Well Pressure Tess 2008 Spring/İTÜ HW No. 6/SOLUTIONS Due dae: 17.04.2008 Subjec: Analysis of a drawdown es for reservoir limi esing. Table 1 presens relevan daa

Detaylı

Ders #10. Otomatik Kontrol. Sürekli Hal Hataları. Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr.

Ders #10. Otomatik Kontrol. Sürekli Hal Hataları. Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr. Der #0 Otomatik ontrol Sürekli Hal Hataları Prof.Dr.alip Canever Prof.Dr.alip Canever Denetim Sitemlerinin analiz ve taarımında üç kritere odaklanılır:. eçici Rejim Cevabı. ararlılık 3. Sürekli Hal ararlı

Detaylı

Ders #9. Otomatik Kontrol. Kararlılık (Stability) Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr.

Ders #9. Otomatik Kontrol. Kararlılık (Stability) Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr. Der #9 Otomatik Kontrol Kararlılık (Stability) 1 Kararlılık, geçici rejim cevabı ve ürekli hal hataı gibi kontrol taarımcıının üç temel unurundan en önemli olanıdır. Lineer zamanla değişmeyen itemlerin

Detaylı

H09 Doğrusal kontrol sistemlerinin kararlılık analizi. Yrd. Doç. Dr. Aytaç Gören

H09 Doğrusal kontrol sistemlerinin kararlılık analizi. Yrd. Doç. Dr. Aytaç Gören H09 Doğrual kontrol itemlerinin kararlılık analizi MAK 306 - Der Kapamı H01 İçerik ve Otomatik kontrol kavramı H0 Otomatik kontrol kavramı ve devreler H03 Kontrol devrelerinde geri belemenin önemi H04

Detaylı

ESM 406 Elektrik Enerji Sistemlerinin Kontrolü 4. TRANSFER FONKSİYONU VE BLOK DİYAGRAM İNDİRGEME

ESM 406 Elektrik Enerji Sistemlerinin Kontrolü 4. TRANSFER FONKSİYONU VE BLOK DİYAGRAM İNDİRGEME . TRNSFER FONKSİYONU VE BLOK DİYRM İNDİREME. Hedefler Bu bölümün amacı;. Tranfer fonkiyonu ile blok diyagramları araındaki ilişki incelemek,. Fizikel itemlerin blok diyagramlarını elde etmek, 3. Blok diyagramlarının

Detaylı

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri Korol Siemleri Taarımı Siem Modellerii Zama Cevabı ve Performa Krierleri Korol Siemleri Taarımı Öğreim Görevlii : Der Yeri ve Zamaı : A-0 Perşembe 7-0pm Ofi : E-Blok E-mail : gorgu@yildiz.edu.r Daışma

Detaylı

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin Otomatik Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Hazırlayan: Dr. Nurdan Bilgin Kapalı Çevrim Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Tüm uygulamalar için aşağıdaki

Detaylı

Otomatik Kontrol. Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri. Prof.Dr.Galip Cansever. Ders #6-8. Otomatik Kontrol

Otomatik Kontrol. Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri. Prof.Dr.Galip Cansever. Ders #6-8. Otomatik Kontrol Der #6-8 Oomaik Korol Siem Modellerii Zama Cevabı ve Performa Krierleri Prof.Dr.Galip Caever Oomaik Korol Prof.Dr.Galip Caever Kapalı dögü iemi oluşurulmaıda öce iem modelide geçici rejim cevabıı aalizi

Detaylı

SİNYALLER ve SİSTEMLER

SİNYALLER ve SİSTEMLER SİNYALLER ve SİSTEMLER 1. Sinyallerin Sınıflandırılması 1.1 Sürekli Zamanlı ve Ayrık Zamanlı Sinyaller 1.2 Analog ve Sayısal Sinyaller Herhangi bir (a,b) reel sayı aralığında bir x(t) sinyali sonsuz değer

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Jounal of Engineeing and Naual Sciences Mühendislik ve Fen Bilimlei Degisi Sigma 5/4 ENERGY DECAY FOR KIRCHHOFF EQUATION Müge MEYVACI Mima Sinan Güzel Sanala Ünivesiesi, Fen-Edebiya Fakülesi, Maemaik Bölümü,Beşikaş-İSTANBUL

Detaylı

Deney 1 : Ayrık Sinyaller

Deney 1 : Ayrık Sinyaller İŞARET İŞLEME ve UYGULAMALARI Deney : Ayrık Sinyaller Deney : Ayrık Sinyaller. Ayrık Sinüzoidaller 2. Periyodik Ayrık Sinyaller i. Fourier Serilerinin Önemli Özellikleri 3. Peryodik Olmayan Sonlu uzunluklu

Detaylı

DİNAMİK PARTİ BÜYÜKLÜĞÜ PROBLEMLERİNİN ÇÖZÜMÜNDE YENİ BİR YAKLAŞIM: MİNİMUM MALİYET ALGORİTMASI. Cevriye GENCER *

DİNAMİK PARTİ BÜYÜKLÜĞÜ PROBLEMLERİNİN ÇÖZÜMÜNDE YENİ BİR YAKLAŞIM: MİNİMUM MALİYET ALGORİTMASI. Cevriye GENCER * C.Gencer, Kara Harp Okulu Dergii, 7(1997), 15-28 DİNAMİK PARTİ BÜYÜKLÜĞÜ PROBLEMLERİNİN ÇÖZÜMÜNDE YENİ BİR YAKLAŞIM: MİNİMUM MALİYET ALGORİTMASI Cevriye GENCER * Bu çalışmada, ek aşamalı, ek ürünlü kapaieiz,

Detaylı

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür. ÖZDEĞER VE ÖZVEKTÖRLER A n n tipinde bir matris olsun. AX = λx (1.1) olmak üzere n 1 tipinde bileşenleri sıfırdan farklı bir X matrisi için λ sayıları için bu denklemi sağlayan bileşenleri sıfırdan farklı

Detaylı

problem 111) s+1=0 koku nedir s=-1 s+5=0 koku nedir s=-5

problem 111) s+1=0 koku nedir s=-1 s+5=0 koku nedir s=-5 problem ) +=0 koku nedir =- +5=0 koku nedir =-5-5=0 koku nedir =+5 -------------------------- -------------------------- problem ) +=0, ifirdan onuza kadar degiire kok nail degiir. +=0 kokleri 0 0 - -

Detaylı

SİSTEM DİNAMİĞİ VE KONTROL

SİSTEM DİNAMİĞİ VE KONTROL ABANT İZZET BAYSA ÜNİVERSİTESİ MÜHENDİSİK MİMARIK FAKÜTESİ MAKİNE MÜHENDİSİĞİ BÖÜMÜ SİSTEM DİNAMİĞİ VE KONTRO. aplac Dönüşümli Yd. Doç. D. Tuan ŞİŞMAN - BOU . APACE DÖNÜŞÜMERİ.. Giiş Doğual dianiyl dnklmlin

Detaylı

H03 Kontrol devrelerinde geri beslemenin önemi. Yrd. Doç. Dr. Aytaç Gören

H03 Kontrol devrelerinde geri beslemenin önemi. Yrd. Doç. Dr. Aytaç Gören H03 ontrol devrelerinde geri belemenin önemi Yrd. Doç. Dr. Aytaç ören MA 3026 - Der apamı H0 İçerik ve Otomatik kontrol kavramı H02 Otomatik kontrol kavramı ve devreler H03 ontrol devrelerinde geri belemenin

Detaylı

AĞ KONTROL SİSTEMLERİNİN GENELLEŞTİRİLMİŞ MATEMATİKSEL MODELİNİN ÇIKARTILMASI VE AĞ GECİKMESİ ÜZERİNE BİR İNCELEME

AĞ KONTROL SİSTEMLERİNİN GENELLEŞTİRİLMİŞ MATEMATİKSEL MODELİNİN ÇIKARTILMASI VE AĞ GECİKMESİ ÜZERİNE BİR İNCELEME Ğ KONTROL SİSTEMLERİNİN GENELLEŞTİRİLMİŞ MTEMTİKSEL MODELİNİN ÇIKRTILMSI VE Ğ GEİKMESİ ÜZERİNE İR İNELEME H. Hüeyin SYN*, emal YILMZ*, Nrein DOĞN** * Gazi Üniveriei Teknik Eğiim Fakülei Elekrik Eğiimi

Detaylı

WEEK 11 CME323 NUMERIC ANALYSIS. Lect. Yasin ORTAKCI.

WEEK 11 CME323 NUMERIC ANALYSIS. Lect. Yasin ORTAKCI. WEEK 11 CME323 NUMERIC ANALYSIS Lect. Yasin ORTAKCI yasinortakci@karabuk.edu.tr 2 INTERPOLATION Introduction A census of the population of the United States is taken every 10 years. The following table

Detaylı

SÜREKLİ, KARIŞTIRMALI POLİMERİZASYON REAKTÖRÜNÜN BENZETİMİ VE KONTROLÜ

SÜREKLİ, KARIŞTIRMALI POLİMERİZASYON REAKTÖRÜNÜN BENZETİMİ VE KONTROLÜ SÜREKLİ, KARIŞTIRMALI POLİMERİZASYON REAKTÖRÜNÜN BENZETİMİ VE KONTROLÜ Gülay ÖZKAN 1 İlkay ÇALIŞKAN 2 1,2 Kimya Mühendisliği Bölümü Mühendislik Fakülesi Ankara Üniversiesi, 06100, Beşevler, Ankara 1 e-posa:

Detaylı

1 Lineer Diferansiyel Denklem Sistemleri

1 Lineer Diferansiyel Denklem Sistemleri Outline İçindekiler 1 Lineer Diferansiyel Denklem Sistemleri 1 1.1 Lineer sistem türleri (iki bilinmeyenli iki denklem)................. 1 2 Normal Formda lineer denklem sistemleri (İki bilinmeyenli iki

Detaylı

ÇOK FAZLI DEVRELER EBE-212, Ö.F.BAY 1

ÇOK FAZLI DEVRELER EBE-212, Ö.F.BAY 1 ÇOK FAL DERELER EBE-212, Ö.F.BAY 1 Üç Fazlı Devreler EBE-212, Ö.F.BAY 2 Eğer gerilim kaynaklarının genlikleri aynı ve aralarında 12 faz farkı var ise böyle bir kaynağa dengeli üç fazlı gerilim kaynağı

Detaylı

Otomatik Kontrol. Fiziksel Sistemlerin Modellenmesi. Prof.Dr.Galip Cansever. Elektriksel Sistemeler Mekaniksel Sistemler. Ders #4

Otomatik Kontrol. Fiziksel Sistemlerin Modellenmesi. Prof.Dr.Galip Cansever. Elektriksel Sistemeler Mekaniksel Sistemler. Ders #4 Der #4 Otomatik Kontrol Fizikel Sitemlerin Modellenmei Elektrikel Sitemeler Mekanikel Sitemler 6 February 007 Otomatik Kontrol Kontrol itemlerinin analizinde ve taarımında en önemli noktalardan bir tanei

Detaylı

DENEY 5: FREKANS MODÜLASYONU

DENEY 5: FREKANS MODÜLASYONU DENEY 5: FREKANS MODÜLASYONU AMAÇ: Malab da rekans modülasyonunun uygulanması ve inelenmesi. ÖN HAZIRLIK 1. TEMEL TANIMLAR Frekans Modülasyonu: Taşıyıı genliğinin sabi uulduğu ve aşıyıı rekansının bildiri

Detaylı

Dijital Kontrol Sistemleri Prof.Dr. Ayhan Özdemir. Dengede bulunan kütle-yay sistemine uygulanan kuvvetin zamana göre değişimi aşağıda verilmiştir.

Dijital Kontrol Sistemleri Prof.Dr. Ayhan Özdemir. Dengede bulunan kütle-yay sistemine uygulanan kuvvetin zamana göre değişimi aşağıda verilmiştir. Dengede bulunan kütle-yay sistemine uygulanan kuvvetin zamana göre değişimi aşağıda verilmiştir. u(t):kuvvet u(t) F yay F sönm Yay k:yay sabiti m kütle Sönümlirici b:ösnümlirme sabiti y(t):konum 1 1 3

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK SORU 1: Aşağıdaki grafik, bir okuldaki spor yarışmasına katılan öğrencilerin yaşa göre dağılışını göstermektedir. Öğrenci sayısı 5 3 9 10 1 14 Yaş 1.1: Yukarıdaki

Detaylı

ö ğ ğ ğ ö ö ö ö ç ö çö ç ö ö ö ğ ç ö ç ğ ğ ö ğ ö ç ğ ö ğ ç ğ ğ ç ğ Ö ğ ğ ç ç ö ç ğ ö ğ ç ö ğ ç ç ö ö ğ ç ğ ğ ö ğ ç ğ ğ ö ç ö ç ö ö ğ ö ç Ş Ü ğ Ü ö Ö Ş ğ Ş Ü ö ğ ö ğ ö ö Ü ö «Ç ğ ö ğ ç ğ ğ ğ çö ç ğ ö ğ

Detaylı

Ğ Ğ Ğ Ç Ç Ç Ş ç Ş Ü ö çö ö ö Ç ö ç ç ç ö ö ç ç ç ö Ç Ç ç Ç Ç Ç Ç ç ç ç Ç Ö Ç ç Ç ç ç ç ö ç ö ö Ç ç ö ö ö ö ç ö Ş Ş Ü Ü ç ö ö Ö ö ö ö çö ç Ğ ö ç Ğ ö Ü Ü ç ö ö Ö Ç Ç ç Ç Ç ç Ç Ö ö ö ç Ş Ç ç ö Ö Ş Ş Ü Ü ç

Detaylı

Ğ İ Ç Ü Ö Ö ö Ü ö ç İ ö ç ç ğ ç «Ü İ ğ İ Ü Ü İ İ İ ğ Ü Ü İ İ ğ ç ç ğ ğ ö ö Ç Ö İ ö İ ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ ğ ğ ç ğ ö ğ ğ ğ ç ğ ğ ğ ğ ö ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ

Detaylı

ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II DENEY 3 TEK BESLEMELİ İŞLEMSEL KUVVETLENDİRİCİLER

ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II DENEY 3 TEK BESLEMELİ İŞLEMSEL KUVVETLENDİRİCİLER T.. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN ELEKTRONİK DEVRELER LABORATUVARI II DENEY TEK BESLEMELİ İŞLEMSEL KUVVETLENDİRİİLER Deneyi Yapanlar Grubu Numara

Detaylı

IE 303T Sistem Benzetimi

IE 303T Sistem Benzetimi IE 303T Sistem Benzetimi 1 L E C T U R E 5 : O L A S I L I K T E K R A R 2 Review of the Last Lecture Random Variables Beklenen Değer ve Varyans Moment Kesikli Dağılımlar Bernoulli Dağılımı Binom Dağılımı

Detaylı

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu

Otomatik Kontrol (Doğrusal sistemlerde Kararlılık Kriterleri) - Ders sorumlusu: Doç.Dr.HilmiKuşçu ROOT-LOCUS TEKNİĞİ Lineer kontrol sistemlerinde en önemli kontrollerden biri belirli bir sistem parametresi değişirken karakteristik denklem köklerinin nasıl bir yörünge izlediğinin araştırılmasıdır. Kapalı

Detaylı

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II T.. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN ELEKTRONİK DEVRELER LABORATUVARI II DENEY : TEK BESLEMELİ İŞLEMSEL KUVVETLENDİRİİLER DENEY GRUBU :... DENEYİ YAPANLAR

Detaylı

LYS - 1 MATEMATÝK TESTÝ

LYS - 1 MATEMATÝK TESTÝ LYS - 1 MATEMATÝK TESTÝ DÝKKAT : 1. Bu ese oplam 50 soru vardýr.. Cevaplamaa isediðiniz sorudan baþlaabilirsiniz.. Cevaplarýnýzý, cevap kaðýdýnýn Maemaik Tesi için arýlan kýsmýna iþareleiniz.. Safalar

Detaylı

BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK. İlhan AYDIN

BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK. İlhan AYDIN BMÜ-421 Benzetim ve Modelleme MATLAB SIMULINK İlhan AYDIN SIMULINK ORTAMI Simulink bize karmaşık sistemleri tasarlama ve simülasyon yapma olanağı vermektedir. Mühendislik sistemlerinde simülasyonun önemi

Detaylı

Kök Yer Eğrileri ile Tasarım

Kök Yer Eğrileri ile Tasarım Kök Yer Eğrileri ile Taarım Prof.Dr. Galip Canever Kök Yer Eğriinden Kazanç ın Belirlenmei Kök yer eğrii K nın pozitif değerleri için denkleminin muhtemel köklerini göteren eğridir. KG ( ) Taarımın amacı

Detaylı

Do not open the exam until you are told that you may begin.

Do not open the exam until you are told that you may begin. OKAN ÜNİVERSİTESİ MÜHENDİSLİK-MİMARLIK FAKÜLTESİ MÜHENDİSLİK TEMEL BİLİMLERİ BÖLÜMÜ 2015.11.10 MAT461 Fonksiyonel Analiz I Arasınav N. Course Adi: Soyadi: Öğrenc i No: İmza: Ö R N E K T İ R S A M P L E

Detaylı

DİNAMİK DEVRELERİN FREKANS DOMENİNDE İNCELENMESİ, FREKANS KARAKTERİSTİKLERİ VE BODE DİYAGRAMLARI

DİNAMİK DEVRELERİN FREKANS DOMENİNDE İNCELENMESİ, FREKANS KARAKTERİSTİKLERİ VE BODE DİYAGRAMLARI DENEY NO: 9 DİNAMİK DEVRELERİN FREKANS DOMENİNDE İNCELENMESİ, FREKANS KARAKTERİSTİKLERİ VE BODE DİYAGRAMLARI Deneyin Amacı: Lineer-zamanla değişmeyen -kapılı devrelerin Genlik-Frekan ve Faz-Frekan karakteritiklerinin

Detaylı

PASTERNAK ZEMİNİNE OTURAN TIMOSHENKO KİRİŞİNİN DEĞİŞKEN HIZLI VE ŞİDDETİ ZAMANLA ARTAN TEKİL YÜK ALTINDA DİNAMİK DAVRANIŞININ İNCELENMESİ

PASTERNAK ZEMİNİNE OTURAN TIMOSHENKO KİRİŞİNİN DEĞİŞKEN HIZLI VE ŞİDDETİ ZAMANLA ARTAN TEKİL YÜK ALTINDA DİNAMİK DAVRANIŞININ İNCELENMESİ PASTERNAK ZEMİNİNE OTURAN TIMOSHENKO KİRİŞİNİN DEĞİŞKEN HIZLI VE ŞİDDETİ ZAMANLA ARTAN TEKİL YÜK ALTINDA DİNAMİK DAVRANIŞININ İNCELENMESİ Oan ÇELİK*, İbrahim BAKIRTAŞ* *İtanbul Teknik Üniveritei, İnşaat

Detaylı

PRATİK TASARIM METODLARIYLA DÜŞÜRÜCÜ TİP DA-DA DÖNÜŞTÜRÜCÜNÜN GELİŞTİRİLMESİ The Development of DC-DC Buck Converter with Practical Design Methods

PRATİK TASARIM METODLARIYLA DÜŞÜRÜCÜ TİP DA-DA DÖNÜŞTÜRÜCÜNÜN GELİŞTİRİLMESİ The Development of DC-DC Buck Converter with Practical Design Methods PRAİK ASARIM MEODLARIYLA DÜŞÜRÜCÜ İP DÖNÜŞÜRÜCÜNÜN GELİŞİRİLMESİ he Developmen of DC-DC Buck Converer wih Pracical Design Mehods Emre CEBECİ, Yusuf YAŞA Yıldız eknik Üniversiesi Elekrik Mühendisliği Bölümü

Detaylı

Matlab & Simulink MATLAB SIMULINK

Matlab & Simulink MATLAB SIMULINK Matlab & Simulink MATLAB SIMULINK Simulink Oturumunu Başlatma SIMULINK icon üzerine tıkla Veya Matlab komut satırında simulink Yaz Simulink Kütüphanesi Yeni model iconu oluşturma Arama penceresi Model

Detaylı

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri. Hazırlayan: Dr. Nurdan Bilgin Otomatik Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Hazırlayan: Dr. Nurdan Bilgin Kapalı Çevrim Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Tüm uygulamalar için aşağıdaki

Detaylı

r r r F İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine kuvvetini göstermektedir. Parçacık A noktasından

r r r F İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine kuvvetini göstermektedir. Parçacık A noktasından İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine etkiyenf r kuvvetini göstermektedir. Parçacık A noktasından r r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve d r A dan A ne

Detaylı

LYS MATEMATİK DENEME - 1

LYS MATEMATİK DENEME - 1 LYS MATEMATİK DENEME - BU SORULAR FİNAL EĞİTİM KURUMLARI TARAFINDAN SAĞLANMIŞTIR. İZİNSİZ KOPYALANMASI VE ÇOĞALTILMASI YASAKTIR, YAPILDIĞI TAKDİRDE CEZAİ İŞLEM UYGULANACAKTIR. LYS MATEMATİK TESTİ. Bu testte

Detaylı

GEMO DS207. Genel Özellikler: İLERİ / GERİ SAYICI

GEMO DS207. Genel Özellikler: İLERİ / GERİ SAYICI DS07 İLERİ / GERİ SAYICI Genel Özellikler: x ane, çift etli, çift kontaklı, ileri/geri ayıcı Faz farklı giriş ile ileri/geri ayma Şifre korumalı Seçilebilir ayma frekanı 0.00 ile 9. 999 araında eçilebilen

Detaylı

GEFRAN PID KONTROL CİHAZLARI

GEFRAN PID KONTROL CİHAZLARI GEFRAN PID KONTROL CİHAZLARI GENEL KONTROL YÖNTEMLERİ: ON - OFF (AÇIK-KAPALI) KONTROL SİSTEMLERİ: Bu eknik en basi konrol ekniğidir. Ölçülen değer (), se değerinin () üzerinde olduğunda çıkış sinyali açılır,

Detaylı

Eğitim Öğretim Yılı Güz Dönemi Diferansiyel Denklemler Çalışma Soruları

Eğitim Öğretim Yılı Güz Dönemi Diferansiyel Denklemler Çalışma Soruları 0 0 Eğiim Öğreim Yılı Güz Dönemi Diferansiel Denklemler Çalışma Soruları 0/0/0 ) 3 8 diferansiel denklemini çözünüz. ) a) d d ( ) diferansiel denklemini çözünüz. b) 3 5 diferansiel denklemini çözünüz.

Detaylı

24.05.2010. Birim Kök Testleri. Zaman Serisi Modelleri: Birim Kök Testleri, Eşbütünleşme, Hata Düzeltme Modelleri

24.05.2010. Birim Kök Testleri. Zaman Serisi Modelleri: Birim Kök Testleri, Eşbütünleşme, Hata Düzeltme Modelleri Yıldız Teknik Üniversiesi İkisa Bölümü Ekonomeri II Ders Noları Ders Kiabı: J.M. Wooldridge, Inroducory Economerics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Zaman Serisi Modelleri: Birim Kök

Detaylı

OTOMATİK KONTROL SİSTEMLERİ DOĞRUSAL (LİNEER) GERİ BESLEMELİ SİSTEMLERİN KARARLILIĞI

OTOMATİK KONTROL SİSTEMLERİ DOĞRUSAL (LİNEER) GERİ BESLEMELİ SİSTEMLERİN KARARLILIĞI OOMAİ ONROL SİSEMLERİ DOĞRUSAL LİNEER GERİ BESLEMELİ SİSEMLERİN ARARLILIĞI ararlılık Denetim Sitemlerinden; ararlılık Hızlı cevap Az veya ıfır hata Minimum aşım gibi kriterleri ağlamaı beklenir. ararlılık;

Detaylı

ÇOKLU ALT SİSTEMLERİN SADELEŞTİRİLMESİ

ÇOKLU ALT SİSTEMLERİN SADELEŞTİRİLMESİ 73 BÖLÜM 5 ÇOKLU ALT SİSTEMLERİN SADELEŞTİRİLMESİ 5. Blok Diyagramları Blok diyagramları genellikle frekan domenindeki analizlerde kullanılır. Şekil 5. de çoklu alt-itemlerde kullanılan blok diyagramları

Detaylı

Birim Kök Testleri. Random Walk. Bir stokastiksürecin birim kök içerip içermediğini nasıl anlarız? Hatırlarsak aşağıdaki AR(1) sürecinde

Birim Kök Testleri. Random Walk. Bir stokastiksürecin birim kök içerip içermediğini nasıl anlarız? Hatırlarsak aşağıdaki AR(1) sürecinde Yıldız Teknik Üniversiesi İkisa Bölümü Ekonomeri II Ders Noları Ders Kiabı: J.M. Wooldridge, Inroducory Economerics A Modern Approach, 2nd. ed., 02, Thomson Learning. Zaman Serisi Modelleri: Birim Kök

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

Analog Alçak Geçiren Filtre Karakteristikleri

Analog Alçak Geçiren Filtre Karakteristikleri Analog Alçak Geçiren Filtre Karakteristikleri Analog alçak geçiren bir filtrenin genlik yanıtı H a (jω) aşağıda gösterildiği gibi verilebilir. Ω p : Geçirme bandı kenar frekansı Ω s : Söndürme bandı kenar

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

Kontrol Sistemleri Tasarımı

Kontrol Sistemleri Tasarımı Kontrol Sitemleri Taarımı Kök Yer Eğrii ile Kontrolcü Taarımı Prof. Dr. Bülent E. Platin Kontrol Sitemlerinde Taarım İterleri Zaman Yanıtı Özellik Kararlılık Kalıcı Rejim Yanıtı Geçici rejim Yanıtı Kapalı

Detaylı

U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN3102 OTOMATİK KONTROL Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı

U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN3102 OTOMATİK KONTROL Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı U.Ü. Mühendislik Mimarlık Fakültesi Elektronik Mühendisliği Bölümü ELN30 OTOMATİK KONTROL 00 Bahar Dönemi Yıliçi Sınavı Cevap Anahtarı Sınav Süresi 90 dakikadır. Sınava Giren Öğrencinin AdıSoyadı :. Prof.Dr.

Detaylı

WEEK 4 BLM323 NUMERIC ANALYSIS. Okt. Yasin ORTAKCI.

WEEK 4 BLM323 NUMERIC ANALYSIS. Okt. Yasin ORTAKCI. WEEK 4 BLM33 NUMERIC ANALYSIS Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 NONLINEAR EQUATION SYSTEM Two or more degree polinomial

Detaylı

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Ball and Beam Deneyi.../../205 ) Giriş Bu deneyde amaç kök yerleştirme (Pole placement) yöntemi ile top ve çubuk (ball

Detaylı

Online teknik sayfa UE43-3MF2A3 UE43-3MF GÜVENLIK RÖLELERI

Online teknik sayfa UE43-3MF2A3 UE43-3MF GÜVENLIK RÖLELERI Online teknik sayfa UE43-3MF2A3 UE43-3MF A B C D E F Resimler farklı olabilir Sipariş bilgileri Tip Stok no. UE43-3MF2A3 6024901 Diğer cihaz modelleri ve aksesuar www.sick.com/ue43-3mf H I J K L M N O

Detaylı

ELE401/ /17 GÜZ ÖDEV 2 - ÇÖZÜMLER

ELE401/ /17 GÜZ ÖDEV 2 - ÇÖZÜMLER ELE40/50 06/7 GÜZ ÖDEV - ÇÖZÜMLER -) Lyapunov kararlılığı için = 0, V( ) = 0 0, V( ) > 0 biçiminde bir Lyapunov fonksiyonu 0, V( ) 0 eşitsizliğini sağlanmalıdır. Asimptotik kararlılık için 0, V( ) < 0

Detaylı

İşaret ve Sistemler. Ders 1: Giriş

İşaret ve Sistemler. Ders 1: Giriş İşaret ve Sistemler Ders 1: Giriş Ders 1 Genel Bakış Haberleşme sistemlerinde temel kavramlar İşaretin tanımı ve çeşitleri Spektral Analiz Fazörlerin frekans düzleminde gösterilmesi. Periyodik işaretlerin

Detaylı

FIRTINA SERİSİ MATEMATİK SORU BANKASI 5

FIRTINA SERİSİ MATEMATİK SORU BANKASI 5 FIRTINA SERİSİ MATEMATİK SORU BANKASI MOBİLPCTABLET İNDİR Bu yayının basım, yayım ve satış hakları fotokopion.com ve site sahiplerine aittir. Bütün hakları saklıdır. Hangi amaçla olursa olsun, yayınların

Detaylı

Zaman Serisi Modelleri: Birim Kök Testleri, Eşbütünleşme, Hata Düzeltme Modelleri

Zaman Serisi Modelleri: Birim Kök Testleri, Eşbütünleşme, Hata Düzeltme Modelleri Yıldız Teknik Üniversiesi İkisa Bölümü Ekonomeri II Ders Noları Ders Kiabı: J.M. Wooldridge, InroducoryEconomericsA Modern Approach, 2nd. ed., 2002, Thomson Learning. Zaman Serisi Modelleri: Birim Kök

Detaylı

Online teknik sayfa UE43-3AR3D2 UE43-3AR GÜVENLIK RÖLELERI

Online teknik sayfa UE43-3AR3D2 UE43-3AR GÜVENLIK RÖLELERI Online teknik sayfa UE43-3AR3D2 UE43-3AR A B C D E F Resimler farklı olabilir Ayrıntılı teknik bilgiler Sipariş bilgileri Tip Stok no. UE43-3AR3D2 6034568 Diğer cihaz modelleri ve aksesuar www.sick.com/ue43-3ar

Detaylı

Otomatik Kontrol. Blok Diyagramlar ve İşaret Akış Diyagramları. Prof.Dr.Galip Cansever. Ders #3. 26 February 2007 Otomatik Kontrol

Otomatik Kontrol. Blok Diyagramlar ve İşaret Akış Diyagramları. Prof.Dr.Galip Cansever. Ders #3. 26 February 2007 Otomatik Kontrol Der # Otomatik Kontrol Blok Diyagramlar ve İşaret Akış Diyagramları ProfDralip Canever 6 February 007 Otomatik Kontrol ProfDralip Canever Karmaşık itemler bir çok alt itemin bir araya gelmeiyle oluşmuştur

Detaylı

İÇİNDEKİLER. 1. DÖNEL YÜZEYLER a Üreteç Eğrisi Parametrik Değilse b Üreteç Eğrisi Parametrik Olarak Verilmişse... 4

İÇİNDEKİLER. 1. DÖNEL YÜZEYLER a Üreteç Eğrisi Parametrik Değilse b Üreteç Eğrisi Parametrik Olarak Verilmişse... 4 İÇİNDEKİLER 1. DÖNEL YÜZEYLER... 1 1.a Üreeç Eğrisi Paramerik Değilse... 1 1.b Üreeç Eğrisi Paramerik Olarak Verilmişse.... DÖNEL YÜZEYLERLE İLGİLİ ÖRNEKLER... 5.a α f,,0 Eğrisinin Dönel Yüzeyleri... 5.b

Detaylı

Sistemin derecesi, sistemin karakteristik denkleminin en sade halinde (çarpansız) paydadaki s nin en yüksek derecesidir.

Sistemin derecesi, sistemin karakteristik denkleminin en sade halinde (çarpansız) paydadaki s nin en yüksek derecesidir. 43 BÖLÜM 3 ZAMAN CEVABI Sitemi derecei, itemi karakteritik deklemii e ade halide (çarpaız) paydadaki i e yükek dereceidir. Bir Trafer Fokiyouu Kutupları Trafer fokiyou G() N()/N() şeklide ifade edilire,

Detaylı

Kesirli Türevde Son Gelişmeler

Kesirli Türevde Son Gelişmeler Kesirli Türevde Son Gelişmeler Kübra DEĞERLİ Yrd.Doç.Dr. Işım Genç DEMİRİZ Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü 6-9 Eylül, 217 Kesirli Türevin Ortaya Çıkışı Gama ve Beta Fonksiyonları Bazı

Detaylı

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH

OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH OTOMATİK KONTROL SİSTEMLERİ İŞARET AKIŞ DİYAGRAMLARI SIGNAL FLOW GRAPH İŞARET AKIŞ DİYAGRAMLARI İşaret akış diyagramları blok diyagramlara bir alternatiftir. Fonksiyonel bloklar, işaretler, toplama noktaları

Detaylı

2.3 Ötelemeli Mekanik Sistemlerin Transfer Fonksiyonları

2.3 Ötelemeli Mekanik Sistemlerin Transfer Fonksiyonları Bölü : Frekn-doeninde Modellee yf 4. Öteleeli Meknik Sitelerin rnfer Fonkiyonlrı Meknik itelerin dvrnışlrı kütle, yy ve vikoz ürtüne ile odelleneilir. ütle ve yy, elektrik devrelerindeki kondntör ve endüktör

Detaylı

e e ex α := e α α +1,

e e ex α := e α α +1, s t a n b u l K ü l t ü r Ü n i v e r s i t e s i Matematik - Bilgisayar Bölümü MC 886 ntegral Denklemler... Yßliçi Sßnavß CEVAPLAR Talimatlar: Sßnav süresi 9 dakikadßr. lk dakika sßnav salonunu terk etmeyiniz.

Detaylı

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever Ders #2 Otomatik Kontrol Laplas Dönüşümü Prof.Dr.Galip Cansever Pierre-Simon Laplace, 1749-1827 Matematiçi ve Astronomdur. http://www-history.mcs.st-andrews.ac.uk/biographies/laplace.html LAPLAS DÖNÜŞÜMÜ

Detaylı

Online teknik sayfa UE48-2OS3D2 UE48-2OS GÜVENLIK RÖLESI

Online teknik sayfa UE48-2OS3D2 UE48-2OS GÜVENLIK RÖLESI Online teknik sayfa UE48-2OS3D2 UE48-2OS A B C D E F Resimler farklı olabilir Sipariş bilgileri Tip Stok no. UE48-2OS3D2 6024916 Diğer cihaz modelleri ve aksesuar www.sick.com/ue48-2os H I J K L M N O

Detaylı

EEM 452 Sayısal Kontrol Sistemleri /

EEM 452 Sayısal Kontrol Sistemleri / EEM 452 Sayısal Kontrol Sistemleri / Yrd. Doç. Dr. Rıfat HACIOĞLU Bahar 2016 257 4010-1625, hacirif@beun.edu.tr EEM452 Sayısal Kontrol Sistemleri (3+0+3) Zamanda Ayrık Sistemlerine Giriş. Sinyal değiştirme,

Detaylı

Online teknik sayfa UE48-3OS2D2 UE48-3OS GÜVENLIK RÖLELERI

Online teknik sayfa UE48-3OS2D2 UE48-3OS GÜVENLIK RÖLELERI Online teknik sayfa UE48-3OS2D2 UE48-3OS A B C D E F Resimler farklı olabilir Sipariş bilgileri Tip Stok no. UE48-3OS2D2 6025089 Diğer cihaz modelleri ve aksesuar www.sick.com/ue48-3os H I J K L M N O

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

2 Boyutlu Kompozit Levhada Hooke Bağıntıları (Hooke s Laws on the 2 dimensional composite lamina)

2 Boyutlu Kompozit Levhada Hooke Bağıntıları (Hooke s Laws on the 2 dimensional composite lamina) Boutlu Kompozit Levhada Hooke Bağıntıları Genelde kompozit levhanın 1,,3 doğrultularında elatik mekanik özellikleri deneel vea teorik olarak belirlenir. Generall the elatic propertie along to the 1, and

Detaylı

Ç A L I Ş M A N O T L A R I. Haberleşme Teknolojileri Dr.Aşkın Demirkol İşaret tipleri

Ç A L I Ş M A N O T L A R I. Haberleşme Teknolojileri Dr.Aşkın Demirkol İşaret tipleri İşare ipleri Bu bölümde emel işare ipleri bulundukları kaegori ve sınıflarına göre model ve işlevleriyle ele alınacakır. Analog ve Dijial İşareler Analog işarelerle, sürekli-zaman işareleri daima karışırılır.

Detaylı

BÖLÜM 4 TEK SERBESTLİK DERECELİ SİSTEMLERİN HARMONİK OLARAK ZORLANMIŞ TİTREŞİMİ

BÖLÜM 4 TEK SERBESTLİK DERECELİ SİSTEMLERİN HARMONİK OLARAK ZORLANMIŞ TİTREŞİMİ BÖLÜM 4 TEK SERBESTLİK DERECELİ SİSTEMLERİN HARMONİK OLARAK ZORLANMIŞ TİTREŞİMİ Kaynaklar: S.S. Rao, Mechanical Vibrations, Pearson, Zeki Kıral Ders notları Mekanik veya yapısal sistemlere dışarıdan bir

Detaylı

RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU

RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU Amaçlar: a) Korunumlu kuvvetlerin potansiyel enerjisinin hesabı. b) Enerjinin korunumu prensibinin uygulanması. ENERJİNİN KORUNUMU Enerjinin korunumu

Detaylı

İnönü Bulvarı No:27, 06490, Bahçelievler / Ankara-Türkiye hasan.tiryaki@euas.gov.tr, mehmet.bulut@euas.gov.tr. ikocaarslan@kku.edu.

İnönü Bulvarı No:27, 06490, Bahçelievler / Ankara-Türkiye hasan.tiryaki@euas.gov.tr, mehmet.bulut@euas.gov.tr. ikocaarslan@kku.edu. Termik Sanralların Konrol Sisemlerinde Teknolojik Gelişmeler ve Verimlilik Technologic Developmens on Conrol Sysems of Thermal Power Plans and Efficiency Hasan TİRYAKİ 1, Mehme BULUT 2, İlhan KOCAARSLAN

Detaylı

ÇĐFT SARKAÇ SĐSTEMĐNĐN KAYAN KĐPLĐ KONTROLÜ

ÇĐFT SARKAÇ SĐSTEMĐNĐN KAYAN KĐPLĐ KONTROLÜ ÇĐFT SARKAÇ SĐSTEMĐNĐN KAYAN KĐPLĐ KONTROLÜ Yuuf ALTUN Metin DEMĐRTAŞ 2 Elektrik Elektronik Mühendiliği Bölümü Mühendilik Mimarlık Fakültei Balıkeir Üniveritei, 45, Cağış, Balıkeir e-pota: altuny@balikeir.edu.tr

Detaylı

Cebir Notları. Karmaşık sayılar TEST I. Gökhan DEMĐR, 2006

Cebir Notları. Karmaşık sayılar TEST I. Gökhan DEMĐR,  2006 MC Karmaşık saılar www.matematikclub.cm, 006 Cebir Ntları Gökhan DEMĐR, gdemir@ah.cm.tr TEST I. i 897 + i 975 + i 997 i 995 tplamının snucu i B) i C) i D) i E) 5i 8. Z = i nin kutupsal biçimi (cs0 + isin0)

Detaylı

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri

Otomatik Kontrol. Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Otomatik Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri H a z ı r l aya n : D r. N u r d a n B i l g i n Kapalı Çevrim Kontrol Kapalı Çevrim Kontrol Sistemin Genel Gereklilikleri Bir önceki

Detaylı

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI DEVRE VE SİSTEM ANALİZİ 01.1.015 ÇALIŞMA SORULARI 1. Aşağıda verilen devrede anahtar uzun süre konumunda kalmış ve t=0 anında a) v 5 ( geriliminin tam çözümünü diferansiyel denklemlerden faydalanarak bulunuz.

Detaylı

Örnek...3 : β θ. Örnek...1 : Örnek...2 : KARMAŞIK SAYILAR 4. w i. = n z { i=0,1,2,...,(n 1) } Adım 1. Adım 2. Adım 3

Örnek...3 : β θ. Örnek...1 : Örnek...2 : KARMAŞIK SAYILAR 4. w i. = n z { i=0,1,2,...,(n 1) } Adım 1. Adım 2. Adım 3 KARMAŞIK SAYININ ORJİN ETRAFINDA DÖNDÜRÜLMESİ z = a + bi karmaşık sayısını, uzunluğunu değiştirmeden orijin etrafında pozitif yönde β kadar döndürülmesiyle elde edilen yeni karm aşık sa yı w olsun. İm

Detaylı

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu) BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga

Detaylı