DUAL KUATERNİYONLAR ÜZERİNDE SİMPLEKTİK GEOMETRİ E. ATA

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "DUAL KUATERNİYONLAR ÜZERİNDE SİMPLEKTİK GEOMETRİ E. ATA"

Transkript

1 DÜ Fe Blmle Esttüsü Degs Dual Kuateyola 6. Sayı (Em l004) Üzede Smlet Geomet DUAL KUATERNİYONLAR ÜZERİNDE SİMLEKTİK GEOMETRİ E. ATA Özet Bu maalede dual uateyola üzede smlet gu, smlet etö uzayı e smlet çama elee dual smlet matsle celemşt. Ayıca bm dual üe üzede smlet yaı elee bu üe b heme heme Hemtye mafold olduğu gösteld. Aaa Üestes, Fe Faültes, Matemat Bölümü, 0600 Tadoğa /ANKARA.Gş. Smlet Mafold Taım... M dfeesyelleebl -boyutlu eel b mafold olsu. B Ω Ω ( M ) ç aşağıda özellle sağlaıyosa Ω ya M üzede b smlet fom, ( M, Ω) lse de b smlet mafold de. ) d Ω 0 ( Ω fomu aalıdı ) ) He m M otasıda T M (m) tajat uzayı üzede x TM (m) olma üzee he y T (m) ç Ω ( x, y) 0 x 0 özellğ) M m dı. (o-degeeate Bu duumda he m M otasıda T M (m) b smlet uzay olu. Böylece boy M ç ya çft olma zoudadı. Taım... ( M, Ω) e ( M, Ω ) smlet mafold olsu. F : M M dfeesyelleebl döüşümü ç F Ω Ω se F ye b smlet döüşüm de. Buada F, F e döüşümüdü. Aahta Kelmele: Dual smlet döüşüm, Dual smlet gu, Dual smlet mats, Dual uateyola, Hemtye mafold, Komles yaı, Reel uateyola, Smlet döüşüm, Smlet gu, Smlet mats.

2 DÜ Fe Blmle Esttüsü Degs Dual Kuateyola 6. Sayı (Em l004) Üzede Smlet Geomet Eğe F smlet döüşümü beb e öte se F ye b smletomofzm de. M üzede tüm smletomofzmle cümles S (M ) le göstel. Taım..3. M dfeesyelleebl eel b mafold olsu. x M otasıda tajat uzay T M (x) olma üzee J : TM ( x) TM ( x) lee edomofzm ç j I se j ye M üzede b heme heme omles yaı de. Buada I, özdeşl döüşümüdü. Üzede böyle b omles yaı buludua M mafoldua se heme heme omles mafold de. Taım..4. Heme heme j omles yaısıa sah b heme heme omles mafold M olsu. M üzede b g Rema metğ ç ( j( x), j( y) ) g( x, y) g, x, y χ( M ) se g ye M üzede b Hemtye met de. Üzede b Hemtye met buludua heme heme M omles mafoldua b heme heme Hemtye mafold de... Reel Kuateyola Taım... B eel uateyo q d + ae + be + ce3, a, b, c, d IR bçmde fade edl. Buada ) e e e3 ) e e e e e3, e e3 e3 e e, e3 e e e3 e d. B eel uateyou, sala ısmı s q d e etöel ısmı q ae + be + ce3 olma üzee ısma ayıablz. Böylece q eel q s q + şelde yazılabl. uateyou q Tüm eel uateyolaı cümles IR le gösteelm. Bu cümle tolama e salala çama şlemyle blte eel sayıla csm üzede b etö uzayı, uateyo çaımı le de bml e bleşml b hala yaısıa saht. [].3. Dual Kuateyola Taım.3.. q d + ae + be + ce3 e q d + a e + b e + c e3 eel uateyo olma üzee b dual uateyo

3 DÜ Fe Blmle Esttüsü Degs Dual Kuateyola 6. Sayı (Em l004) Üzede Smlet Geomet ε 0, q + ε q, ε IR şelde taımlaı. Ayıca dual uateyou, D d + ε d, A a + ε a, B b + ε b, C c + ε c olma üzee D + Ae + Be + Ce3 şelde de yazablz. Buada D, A, B, C dual sayılaı u dual bleşeled. B dual uateyou, sala ısmı S D e etöel ısmı V Ae + Be + Ce3 olma üzee ısma ayıablz. Böylece dual uateyou S + V bçmde de yazılabl. B dual uateyou sala ısmı b dual sayı, etöel ısmı b dual etödü. Tüm dual uateyolaı cümles le gösteeceğz. Bu cümle tolama e salala çama şlemyle blte eel sayıla csm üzede b etö uzayı, uateyo çaımı le de bml e bleşml b hala yaısıa saht.[] Şmd dual uateyola halası üzede temel bazı şlemle eelm. S + V, S + V ç Eştl; S S e V V se dı. Çama; olu. Hehag K es S S V, V + S D + Ae + Be + Ce3 D + Be K ( Ae + Ce) N, omu şelde taımlaı. V + S V + V V ç u eşleğ D + A + B C e N +. Dual Smlet Gu... ç dual uateyola halası olma üzee { ( q, q,..., q ): q, } cümles taımlayalım. Bu cümle, üzede tolama 3

4 DÜ Fe Blmle Esttüsü Degs Dual Kuateyola 6. Sayı (Em l004) Üzede Smlet Geomet : (, ) + ( q, q,..., q ); q, K e sala çama, : (, ) ( q +, q +,..., q ) ( q, q,..., q ) şlemleyle blte dual uateyola halası üzede b modül yaısıa saht. Bu yaı le blte elemalaıa be dual etö dyeceğz.. Dual Smlet Vetö Uzayı Taım..., : (, ), ( q, q,..., q ); q, (,,..., );, K( q ) şelde taımlı döüşüme üzede b dual smlet çama de. Buada K ( q ), q dual uateyou eşleğd. Dual smlet çama aşağıda özelle sağla. ) +,,,,,, + ), +, +, ) ),. q, q, q. q, K( q), Taım... Üzede dual smlet çama taımlı ola etö uzayıa dual smlet etö uzayı de. 4

5 DÜ Fe Blmle Esttüsü Degs Dual Kuateyola 6. Sayı (Em l004) Üzede Smlet Geomet Taım..3. b smlet etö uzayı olsu. lee döüşümü eştlğ sağlaıyosa σ ya σ σ :, ç σ ( ), σ ( ), üzede b dual smlet döüşüm de. Öeme... : b dual smlet döüşüm olsu. Bu duumda σ, beb e öted. İsat. σ lee b döüşüm olduğuda he olduğuu göstemelyz. olduğuda yazablz. Özel olaa olu. ( ) 0 ç σ ( ) 0 0, ç σ b dual smlet döüşüm σ ( ), σ ( ), alısa σ ( ), σ ( ), σ olsu. Bu duumda 0, 0 elde edl. O halde σ bebd. σ ı taım e değe uzaylaı ayı olduğuda ötelğ açıtı. Buada σ dual smlet döüşümü b lee edomofzm olu. üzede b dual smlet döüşüm se σ ı tes Öeme... σ, ola σ döüşümü de üzede b dual smlet döüşümdü. İsat. σ leelğ açıtı. Bz buada ç çaımı ouduğuu gösteelm., ç σ ( ), σ ( ) σ σ ( ), σ d. Buada ( ) ( σ ( ) ), olu. Ayıca σ b smlet döüşüm olduğuda σ ( ), σ ( ), 5

6 DÜ Fe Blmle Esttüsü Degs Dual Kuateyola 6. Sayı (Em l004) Üzede Smlet Geomet dı. O halde elde edl bu bze göste. ( σ ( ) ), σ ( σ ( ) ) σ ( ), σ ( ) σ σ üzede b dual smlet döüşüm olduğuu Souç olaa dual smlet döüşümle cümles bleşe şleme göe b gu oluştuu. Bu guba dual smlet gu de e S (, ) le göstel. Buada S, σ σ :,, ç σ ( ), σ ( ), olu. ( ) { } Teoem... σ üzede stadat baz { e, e,..., } e olma üzee bm dual etö se σ ( e ) olaca şelde b : dual smlet döüşümü adı. İsat. {,,..., } cümles hehag b otoomal bazı olma üzee σ yı σ ( e ), olaca şelde taımlasa b lee edomofzm olu. Buada σ ( e ), σ ( e ), δ e, e elde edl bu bze σ ı b dual smlet döüşüm olduğuu göste. Teoem... σ, üzede b dual smlet döüşüm olsu. Eğe σ ya aşılı gele mats [ ] q e se [ K ) ] T [ δ ] ( dı. İsat. etö uzayıı stadat bazı e ( δ, δ,..., δ ) { e, e,..., } olsu. Bu duumda σ ( e ) e jq e σ ( e ) j yazablz. σ b dual smlet döüşüm olduğuda j e q j j olma üzee 6

7 DÜ Fe Blmle Esttüsü Degs Dual Kuateyola 6. Sayı (Em l004) Üzede Smlet Geomet j j, s e q j j, s K( q σ ( e ), σ ( e ), j j, s s e q T [ K( q )] [ q ] [ δ ] e q j s K( q s s ) e, e s, e q, q s ) q j s j δ e, e e, e e, e e, e elde edl. Ayıca [ ] T [ K( ) ] [ δ ] olma üzee D + Ae + Be + Ce3, j olsu. S D e V Ae + Be + Ce3 S + V şelde yazablz. T K( ) S V K( ) S V olu. Buada K( e, j buluu., ç [ ] [ ] T [ )] [ δ ] [ S V ] [ S + V ] [ δ ] D + A + B + C [ S S + V, V S V + S V V V ] 0 ( j) Taım..4. Dual smlet döüşümle gubuu zomof ola matsle gubua dual smlet matsle gubu de. Matsle bu gubuu da ye S () le gösteeceğz. O halde T { [ K( ) ] I } S ( ). 7

8 DÜ Fe Blmle Esttüsü Degs Dual Kuateyola 6. Sayı (Em l004) Üzede Smlet Geomet olu. Özel olaa ç S ( ) N bm dual uateyolaı cümles elde edez. { } 3. Bm Dual Küe Üzede Smlet Yaı 3 M mafoldu olaa S { x x (,0) } cümles, ya - modül de bm dual üey alalım. Bm dual üeye üzede b otasıda teğet ola etöle, üe bu otasıda tajat uzayıı oluştuula. S üzede stadat smlet fom ç e dış çaımla yadımıyla taımlaı. Ya Ω: χ ( M ) χ( M ) C ( M, ) olma üzee he M ç Ω : TM ( ) TM ( ) ( A, B ) Ω ( A, B ), A B det(, A, B) döüşümüü bleee e altee olduğu açıtı. No-dejeee özellğe sah olduğuu gösteelm. A TM ( ) ç B TM ( ) olma üzee Ω ( A, B) 0 olsu. Ω ( A, B) 0, A B A B 0, A 0 0 B T M ( ) olu. O halde Ω o-dejeee özellğe saht. Ayıca Ω fomu dual üe üzede c deecede b fom olduğuda aalıdı. Ya d Ω 0 dı. Souç olaa Ω b smlet fom e ( M,Ω) ls b smlet mafold olu. 3 Eğe dual bm olaa ε 0 alıısa IR de S ües üzede smlet fom elde edl. Şmd se bm dual üe heme heme omles yaıya e buada da b j, g heme heme Hemtye yaıya sah olduğuu gösteelm. ( ) 3 üzede ç çaım bm dual üe üzede doğal b g met tesö alaı e. 8

9 DÜ Fe Blmle Esttüsü Degs Dual Kuateyola 6. Sayı (Em l004) Üzede Smlet Geomet S ç T ( ) tajat uzayı, doğal olaa e otogoal ola S ü alt uzayı le zomof yaılabl. j T ( ) T : SK S K ( ) Y j ( Y ) Y döüşümü taımlayalım. Bu b lee edomofzmd. Ayıca j ( Y ) j j ( Y ) j ( ) ( Y ) ( Y ), Y, Y Y, se j I olu. O halde j eşlemes j I olaca şelde b j tesö alaı taımlaı. Bu se j S üzede b omles yaı olduğuu göste. Dğe taafta g j Y, j Z g Y, Z ; Y, Z T ( ( ) ( ) ) olduğuda bm dual üe b ( g) Y 3 j, heme heme Hemtye yaısıa saht. Buada bm dual üe b heme heme Hemtye mafold olu. 9

10 DÜ Fe Blmle Esttüsü Degs Dual Kuateyola 6. Sayı (Em l004) Üzede Smlet Geomet KAYNAKÇA [] Hacısalhoğlu, H.H., Haeet Geomets e Kuateyola Teos, Gaz Üestes, Bası Yayı Y.O. Basıme, 983 [] Claude,C., Theoy of Le Gous, ceto Uesty ess, 946 [3] Yao, Ketao ad Ko, Masaho ; Stuctues o Mafolds, Wold Scetfc ublshg, 984 [4] Wad, J.., uateos ad Cayley Numbes, Kluwe Academc ublshes,

REEL ANALĐZ UYGULAMALARI

REEL ANALĐZ UYGULAMALARI www.uukcevik.com REE NĐZ UYGUMRI Sou : (, Α, µ ) ölçü uzayı olsu. = N, Α= ( N ) ve µ ( E) olduğuu östeiiz. N üzeide alması içi eek ve yete koşul < di. Gösteiiz. µ oksiyouu veile taımıı uyulayalım; µ (

Detaylı

ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK

ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK ÖABT ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK DENEME SINAVI ÇÖZÜMLERİ ÖĞRETMENLİK ALAN BİLGİSİ DENEME SINAVI / çözümlei. DENEME. Veile öemelede yalız III kesi olaak doğudu. Bu edele doğu cevap seçeeği B di..

Detaylı

ŞANS DEĞİŞKENLERİNİN BEKLENEN DEĞER VE MOMENTLERİ

ŞANS DEĞİŞKENLERİNİN BEKLENEN DEĞER VE MOMENTLERİ BÖLÜ 3 ŞANS DĞİŞKNLRİNİN BKLNN DĞR ONTLRİ atematsel belet avamı şas oyulaıda doğmuştu. yalı bçmyle, b oyucuu azaableceğ mta le azama olasılığıı çapımıdı. Sözgelm büyü ödülü 4800TL olduğu b çelşte 0.000

Detaylı

Aritmetik Fonksiyonlar

Aritmetik Fonksiyonlar BÖÜM V Aiteti osiyola Taı 5. Taı üesi oğal sayıla ola, : N C, şeliei osiyolaa aiteti osiyola ei., içi.. oşuluu sağlaya aiteti osiyolaa ise çaısal osiyola ei. Öe He N içi, ve 3 0 şelie taılaa osiyola bie

Detaylı

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ CEBİRSEL RICCATI DENKLEMLERİNİN NÜMERİK ÇÖZÜMLERİ A.BURCU ÖZYURT SERİM

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ CEBİRSEL RICCATI DENKLEMLERİNİN NÜMERİK ÇÖZÜMLERİ A.BURCU ÖZYURT SERİM TC YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ CEBİRSEL RICCATI DENKLEMLERİNİN NÜMERİK ÇÖZÜMLERİ ABURCU ÖZYURT SERİM DOKTORA TEZİ MATEMATİK ANABİLİM DALI DANIŞMAN PROF DR MUSTAFA BAYRAM İSTANBUL,

Detaylı

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE

ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE AADOLU ÜİVERSİTESİ BİLİ VE TEKOLOJİ DERİSİ AADOLU UIVERSITY JOURAL OF SCIECE AD TECHOLOY Clt/Vol.:5-Sayı/o: : 53-58 (4) ARAŞTIRA AKALESİ/RESEARCH ARTICLE O-HAI (ROSEBLOO-TSFASA) ETRİĞİE ÖRE LİEER KODLARI

Detaylı

ÖZET Yüse Lisas Tezi İSTTİSTİKSEL LİMİT NOKTLRI Filiz KOCBIYIK aa Üivesitesi Fe Bilimlei Estitüsü Matemati abilim Dalı Daışma: Pof. D. Ciha Oha Bu tez

ÖZET Yüse Lisas Tezi İSTTİSTİKSEL LİMİT NOKTLRI Filiz KOCBIYIK aa Üivesitesi Fe Bilimlei Estitüsü Matemati abilim Dalı Daışma: Pof. D. Ciha Oha Bu tez NKR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSNS TEZİ İSTTİSTİKSEL LİMİT NOKTLRI Filiz KOCBIYIK MTEMTİK NBİLİM DLI NKR 2005 He haı salıdı ÖZET Yüse Lisas Tezi İSTTİSTİKSEL LİMİT NOKTLRI Filiz KOCBIYIK

Detaylı

FZM450 Elektro-Optik. 7.Hafta. Fresnel Eşitlikleri

FZM450 Elektro-Optik. 7.Hafta. Fresnel Eşitlikleri FZM45 leko-ok 7.Hafa Feel şlkle 28 HSaı 1 7. Hafa De İçeğ Feel şlkle Yaıma Kıılma lekomayek dalgaı dalga özellkle kullaaak ışığı faklı kıılma de ah yüzeydek davaışı celeecek 28 HSaı 2 Feel şlkle-1 Şekldek

Detaylı

Faiz oranının rastlantı değişkeni olması durumunda tam hayat ve dönem sigortaları

Faiz oranının rastlantı değişkeni olması durumunda tam hayat ve dönem sigortaları wwwsascleog İsasçle Degs 009-8 İsasçle Degs Fa oaıı aslaı değşe olması duumuda am haya ve döem sgoalaı sa Saıcı Haceee Üveses Fe Faüles İsas Bölümü eelago@haceeeedu Cea dem Haceee Üveses Fe Faüles üeya

Detaylı

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER Bölüm 5 Olasılık ve Olasılık Dağılışlaı Doç.D. Suat ŞAHİNLE Olasılık ve Olasılık Dağılışlaı Olasılık: Eşit saşla meydaa gele tae olayda A taesi A olayı olsu. Bu duumda A olayıı meydaa gelme olasılığı;

Detaylı

V vektörleri V nin bir bazı ise : { P 0, P 1,..,P n } nokta (n+1)-lisine A afin uzayının bir afin çatısı denir. Λ xyz açısının ölçüsü

V vektörleri V nin bir bazı ise : { P 0, P 1,..,P n } nokta (n+1)-lisine A afin uzayının bir afin çatısı denir. Λ xyz açısının ölçüsü DİFRANSİYL GOMTRİ Taım (Af Uzay): A Φ V de K csm üzerde br vektör uzayı olsu. Aşağıdak öermeler doğrulaya f:axav foksyou varsa A ya V le brleştrlmş af uzay der..,q,r A ç f(,q)+f(q,r)=f(,r). A ve V ç f(,q)

Detaylı

RADYAL EPİTÜREVLERİN BAZI ÖZELLİKLERİ ÜZERİNE BİR ARAŞTIRMA

RADYAL EPİTÜREVLERİN BAZI ÖZELLİKLERİ ÜZERİNE BİR ARAŞTIRMA ISSN:306-3 e-joual of New Wold Scieces Academ 009 Volume: 4 Numbe: 4 Aticle Numbe: 3A006 PHSIAL SIENES eceived: abua 009 Accepted: Septembe 009 Seies : 3A ISSN : 308-7304 009 www.ewwsa.com Goca İceoğlu

Detaylı

Hiperbolik ve Küresel Uzaylarda Bir Simetrik Dörtyüzlünün Hacmi Üzerine. Abstract. Özet

Hiperbolik ve Küresel Uzaylarda Bir Simetrik Dörtyüzlünün Hacmi Üzerine. Abstract. Özet Hiperboli Küresel Uzaylarda Bir Simetri Dörtyüzlüü Hacmi Üzerie Bai KARLIĞA arliaga@gazi.edu.tr Gazi Üirsitesi Fe Edebiyat Faültesi atemati Bölümü 06500 Aara T.oullar/Aara urat SAVAŞ msavas@gazi.edu.tr

Detaylı

8. f( x) 9. Almanca ve İngilizce dillerinden en az birini bilenlerin

8. f( x) 9. Almanca ve İngilizce dillerinden en az birini bilenlerin . MAEMAİK çapıldığıda, çapım olu? 6 ifadesi aşağıdakilede hagisi ile ) 6 + ifadesie eşit ) D) 6 + 8. f( ) ile taımlı f foksiouu e geiş taım kümesi aşağıdaki sg( ) lede hagisidi? 6,@ ) 6,@ ) ^, h, ^, +

Detaylı

Optoelektronik Ara Sınav-Çözümler

Optoelektronik Ara Sınav-Çözümler Optelektk Aa Sıav-Çöümle s (.57 ) Su : Dğusal laak kutuplamış ışık ç elektk ala 5 π + t + ( + ) 5 velmekted. uada ala gelğ ˆ ˆ se bu ışık dalgasıı, a) aetk alaı (vektöel) ç b fade tüet ( pua) b) Otamı

Detaylı

BULANIK SAYI DİZİLERİ VE İSTATİSTİKSEL YAKINSAKLIĞI

BULANIK SAYI DİZİLERİ VE İSTATİSTİKSEL YAKINSAKLIĞI T.C. FIRAT ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ BULANIK SAYI DİZİLERİ VE İSTATİSTİKSEL YAKINSAKLIĞI Muammed ÇINAR TEZ YÖNETİCİSİ Pof. D. Miail ET YÜKSEK LİSANS TEZİ MATEMATİK ANABİLİM DALI ELAZIĞ-2007

Detaylı

AKM 202. Akõşkanlar Mekaniği. Ders Notları. 2.Bölüm. Temel Kavramlar. Gemi İnşaatõ ve Deniz Bilimleri Fakültesi. Hazõrlayan

AKM 202. Akõşkanlar Mekaniği. Ders Notları. 2.Bölüm. Temel Kavramlar. Gemi İnşaatõ ve Deniz Bilimleri Fakültesi. Hazõrlayan KM 0 õşala Meağ Des Notlaı ölüm Temel Kavamla İTÜ Gem İşaatõ ve De lmle Faültes Haõlaa Yd Doç D Şafa Nu Etü Oda No:47 Tel: 85 68 e-posta: etu@tuedut DERS NOTLRI TEMEL KRMLR KM 0 KIŞKNLR MEKNİĞİ Süel Otam

Detaylı

Fresnel Denklemleri. 2008 HSarı 1

Fresnel Denklemleri. 2008 HSarı 1 Feel Deklemle 8 HSaı 1 De İçeğ Aa Yüzeyde Mawell Deklemle Feel şlkle Yaıma Kıılma 8 HSaı Kayak(la Oc ugee Hech, Alfed Zajac Addo-Weley,199 Kuaum leko-diamğ (KDİ, Rchad Feyma, (Çev. Ömü Akyuz, NAR Yayılaı,

Detaylı

Tümevarım ve Özyineleme

Tümevarım ve Özyineleme Tümevaım ve Özyieleme CSC-59 Ayı Yapıla Kostati Busch - LSU Tümevaım Tümevaım ço ullaışlı bi ispat teiğidi. Bilgisaya bilimleide, tümevaım algoitmalaıı özellileii aıtlama içi ullaılı. Tümevaım ve öz yieleme

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

TÜMEVARIM DİZİ - SERİ

TÜMEVARIM DİZİ - SERİ 99 A = {, N } ve P() öemes vels. Eğe :. P() doğu,. A ç P() doğu e P(+) öemes de doğu se; P() öemes A ç doğudu. TOPLAM SEMBOLÜ R ve N olm üzee;... dı. c c. c c b b < m < ç m m p p p 0 F F F F F F F F A

Detaylı

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI FİBONACCİ SAYILARI VE ÜÇGENSEL GRAFLAR

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI FİBONACCİ SAYILARI VE ÜÇGENSEL GRAFLAR T.C. BALIKESİR ÜNİVERSİTESİ EN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI İBONACCİ SAYILARI VE ÜÇGENSEL GRALAR YÜKSEK LİSANS TEZİ HURİYE KORKMAZ BALIKESİR, OCAK - 06 T.C. BALIKESİR ÜNİVERSİTESİ EN BİLİMLERİ

Detaylı

4. DEVİRLİ ALT GRUPLAR

4. DEVİRLİ ALT GRUPLAR 4. DEVİRLİ ALT GRUPLAR Tım 4.1. M, bi G gubuu bi lt kümei olu. M yi kpy, G i bütü lt guplıı keitie M i üettiği (doğuduğu) lt gup dei ve M ile göteili. M i elemlı d M gubuu üeteçlei (doğuylı) dei. Öeme

Detaylı

YENİ BİR BORÇ ÖDEME MODELİ A NEW LOAN AMORTIZATION MODEL

YENİ BİR BORÇ ÖDEME MODELİ A NEW LOAN AMORTIZATION MODEL Süleyma Demel Üvestes Sosyal Blmle Esttüsü DegsYıl: 203/, Sayı:7 Joal of Süleyma Demel Uvesty Isttte of Socal ScecesYea: 203/, Nme:7 YENİ Bİ BOÇ ÖDEME MODELİ ÖZET Allah EOĞLU Bakala taafıa e çok kllaıla

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir.

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir. Bölüm 2 Matrsler aım 2.1 F br csm, m, brer doğal sayı olsu. a F ( 1,.., m; j 1,..., ) olmak üzere, a11... a1 fadese m satır sütuda oluşa (veya m tpde) br F matrs der. am 1... a m Böyle br matrs daha sade

Detaylı

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK MÜHENDİSLİĞİ PROGRAMI

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK MÜHENDİSLİĞİ PROGRAMI İSTANBUL TEKNİK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK MÜHENDİSLİĞİ PROGRAMI ADİ TÜREVLİ DİFERANSİYEL DENKLEMLERİN BAŞLANGIÇ DEĞER PROBLEMLERİNİN CHEBYSHEV POLİNOMLARI İLE ÇÖZÜMÜ BİTİRME ÖDEVİ Sema

Detaylı

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz;

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz; Öre A. Bezer pe 40 güç ayağıı dayama süreler aşağıda gbdr. Geşlelmş reas ablosu oluşuruuz;, 4,7 3, 3,4 3,3 3, 3,9 4, 3,4 4, 3,8 3,7 3,6 3,8 3,7 3,0,,6 3, 3,,6,9 3, 3,0 3,3 4,3 3, 4, 4,6 3, 3,3 4,4 3,9,9

Detaylı

TG 2 ÖABT ORTAÖĞRETİM MATEMATİK

TG 2 ÖABT ORTAÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT ORTAÖĞRETİM MATEMATİK Bu testlei he hakkı saklıdı. Hagi amaçla olusa olsu, testlei tamamıı veya bi kısmıı

Detaylı

v = ise v ye spacelike vektör,

v = ise v ye spacelike vektör, D.P.Ü. Fe Bilimleri Estitüsü 1. ayı Mayıs 6 emi-pozitif Ortogoal Matrisler içi Alteratif İi Yötem WO ALERNAIVE MEHOD FOR EMI-POIIVE OROGONAL MARICE B. BÜKCÜ* *Gaziosmapaşa Üiversitesi, Fe-Edebiyat Faültesi,

Detaylı

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit Karadez Te Üverstes Blgsayar Mühedslğ Bölümü 5-6 Güz Yarıyılı Sayısal Çözümleme Ara Sıav Soruları Tarh: Kasım 5 Perşembe Süre: daa. f ( ( + a e fosyouu sabt otası olmadığı bldğe göre, a 'ı alableceğ e

Detaylı

MDS KOD TABANLI BĐR ASĐMETRĐK KRĐPTOSĐSTEMĐ UYGULAMASI

MDS KOD TABANLI BĐR ASĐMETRĐK KRĐPTOSĐSTEMĐ UYGULAMASI MDS KOD TABANLI BĐR ASĐMETRĐK KRĐPTOSĐSTEMĐ UYGULAMASI Deya ARDA 2 Eca BULUŞ Taya Üv. Müh.Mm.Fa. Blgsaya Müh. Bölümü 22030 Ede 2 Namı Kemal Üv. Çolu Müh. Mm. Fa. Blgsaya Müh. Bölümü Çolu deyaa@taya.edu.t

Detaylı

ÜÇ BOYUTLU BOUGUER ANOMALİSİNİN TÜREV KULLANILMADAN YENİ BİR YÖNTEMLE HESAPLANIŞI. Hasan CAVŞAK 1 cavsak@ktu.edu.tr

ÜÇ BOYUTLU BOUGUER ANOMALİSİNİN TÜREV KULLANILMADAN YENİ BİR YÖNTEMLE HESAPLANIŞI. Hasan CAVŞAK 1 cavsak@ktu.edu.tr ÜÇ OTL OER NOMLİSİNİN TÜREV KLLNILMDN ENİ İR ÖNTEMLE HESPLNIŞI Hasan VŞK cavsa@tu.eu.t Ö: lm Dünyasına genel anlama b büyülüğün stenen b yöne gaent yan eğşm o yöne alınan tüevle saptanı. u yöntem aman

Detaylı

TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2.

TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2. AIŞIRMAAR 8 BÖÜM R ÇÖZÜMER R cos N 4N 0 4sin0 N M 5d d N ve 4N luk kuv vet lein çu bu ğa dik bi le şen le i şekil de ki gi bi olu nok ta sı na gö e top lam tok; τ = 6 4sin0 + cos4 = 4 + 4 = Nm Çubuk yönde

Detaylı

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1

Örnek 2.1 YÖNEYLEM ARAŞTIRMASI III. Markov Süreçleri Ders 7. Koşulsuz Durum Olasılıkları. Örnek 2.1 Örek.1 YÖNEYLEM ARAŞTIRMASI III Markov Süreçleri Ders 7 Yrd. Doç. Dr. Beyazıt Ocakta Web site: ocakta.bau.edu.tr E-mail: bocakta@gmail.com Reault marka otomobil sahilerii bir soraki otomobillerii de Reault

Detaylı

BÖLÜM 2 GAUSS KANUNU

BÖLÜM 2 GAUSS KANUNU BÖLÜM GAUSS KANUNU.1. ELEKTRİK AKISI Elektik akısı, bi yüzeyden geçen elektik alan çizgileinin sayısının bi ölçüsüdü. Kapalı yüzey içinde net bi yük bulunduğunda, yüzeyden geçen alan çizgileinin net sayısı

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açı Ders Malzemeleri http://ocw.mit.edu Bu materyallerde alıtı yapma veya Kullaım Koşulları haıda bilgi alma içi http://ocw.mit.edu/terms veya http://www.aciders.org.tr adresii ziyaret ediiz. 18.102

Detaylı

Kutu Poblemlei (Tekalı Kombiasyo) c) faklı dağıtılabili! Özdeş üç kutuya pay, pay, pay dağıtımı yapılısa; pay ala kutuu diğeleiyle ola özdeşliği bozul

Kutu Poblemlei (Tekalı Kombiasyo) c) faklı dağıtılabili! Özdeş üç kutuya pay, pay, pay dağıtımı yapılısa; pay ala kutuu diğeleiyle ola özdeşliği bozul Kutu Poblemlei (Tekalı Kombiasyo) KUTU PROBLEMLERİ Bu kouyu öekle üzeide iceleyeek geellemele elde edelim Öek a) faklı ese, kutuya pay, kutuya pay ve kutuya pay olacak şekilde kaç faklı dağıtılabili? b)

Detaylı

1. Düğüm noktası ve eleman tabloları hazırlanır.

1. Düğüm noktası ve eleman tabloları hazırlanır. Yapı tatğ - Mats Ye Değştme Yöntemne Gş / Doç DBlgeDOAN Öne : Şelde göülen sstem Mats Deplasman Yöntem le, velen dış yüle çn çözülmüş ve ç uvvetle hesaplanmıştı x Nm N N N/m z N/m m m EI Nm,EA 7 N Düğüm

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER 4 TANIMLAYICI İSTATİSTİKLER 4.. Mekez Eğlm Ölçüle 4... Atmetk Otalama 4... Ağılıklı Atmetk Otalama 4... Geometk Otalama 4..4. Hamok Otalama 4..5 Kuadatk Otalama 4..6. Medya 4..7. Katlle 4..8. Decle ve

Detaylı

A COMMUTATIVE MULTIPLICATION OF DUAL NUMBER TRIPLETS

A COMMUTATIVE MULTIPLICATION OF DUAL NUMBER TRIPLETS . Sayı Mayıs 6 A COMMTATIVE MLTIPLICATION OF DAL NMBER TRIPLETS L.KLA * & Y.YAYLI * *Ankara Üniversitesi Fen Fakültesi, Matematik Bölümü 6 Tandoğan-Ankara, Türkiye ABSTRACT Pfaff [] using quaternion product

Detaylı

TEST - 1 ÜRETEÇLER. ε 3 =6V. ε 2. ε i=3a. ε 3 =12V. ε 2 =36V. ε ε. Devrenin eflde er direnci = = 6Ω olur. Devrenin eflde er direnci

TEST - 1 ÜRETEÇLER. ε 3 =6V. ε 2. ε i=3a. ε 3 =12V. ε 2 =36V. ε ε. Devrenin eflde er direnci = = 6Ω olur. Devrenin eflde er direnci ÜETEÇE TEST - 1 1. 3 10Ω 3. =5 2 15Ω = 1 1 =36 2 =12 1 = 2 = 3 =6 3 = Devenn eflde e denc efl = 6 3 1 = 10Ω Devenn eflde e denc efl = 3 1 1 1 = / 36 12 6 30 = = = = 5 / 6 6 na koldan geçen ak m, / 25 25

Detaylı

0,1,..., n p polinomu bulma işlemine interpolasyon ve px ( )

0,1,..., n p polinomu bulma işlemine interpolasyon ve px ( ) Ç.Ü Fe Blmler Esttüsü Yl:29 Clt:2-1 İNTERPOLASYON VE KALAN TEORİSİ Iterpolto d Remder Theory Fge GÜLTÜRK Mtemt Ablm Dl Yusuf KARAKUŞ Mtemt Ablm Dl ÖZET Bu çlşmd İterpolsyo tmlmş, Lgrge İterpolsyo Formülü

Detaylı

Filbert Matrislerinin Normları İçin Alt ve Üst Sınırlar. The Upper and Lower Bounds For Norms of Filbert Matrices

Filbert Matrislerinin Normları İçin Alt ve Üst Sınırlar. The Upper and Lower Bounds For Norms of Filbert Matrices lert Matrsler Normları İç lt ve Üst Sıırlar Sülema Demrel Üverstes B Türe E Sarııar e Blmler Esttüsü Dergs - (00 - lert Matrsler Normları İç lt ve Üst Sıırlar Bahr TÜREN E SRIPINR Sülema Demrel Üverstes

Detaylı

13. Ders. Mahir Bilen Can. Mayı 25, : α nın eş-kökü

13. Ders. Mahir Bilen Can. Mayı 25, : α nın eş-kökü 13. Ders Mahir Bilen Can Mayı 25, 2016 1 Kök Sistemlerine Bir Örnek Hatırlayacağımız üzere basit kökler kümesi = {α 1,..., α l } Φ ya karşılık gelen temel baskın kökler olan ω 1,..., ω l leri aşağıdaki

Detaylı

18.06 Professor Strang FİNAL 16 Mayıs 2005

18.06 Professor Strang FİNAL 16 Mayıs 2005 8.6 Professor Strag FİNAL 6 Mayıs 25 ( Pua) P,..., P R deki oktalar olsu. ( ai, ai2,..., a i) P i i koordiatlarıdır. Bütü P i oktasıı içere bir cx +... + cx = hiperdüzlemi bulmak istiyoruz. a) Bu hiperdüzlemi

Detaylı

BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering. Makine Elemanları 2 DİŞLİ ÇARKLAR IV: KONİK DİŞLİ ÇARKLAR

BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering. Makine Elemanları 2 DİŞLİ ÇARKLAR IV: KONİK DİŞLİ ÇARKLAR Makine Elemanları 2 DİŞLİ ÇARKLAR IV: KONİK DİŞLİ ÇARKLAR Doç.Dr. Ali Rıza Yıldız 1 Bu bölümden elde edilecek kazanımlar Konik ın Tanımı Konik dişli çark çeşitleri Konik dişli çark boyutları Konik dişli

Detaylı

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007)

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007) MEKANİK TİTREŞİMLER TİTREŞİM ÖLÇÜMÜ: Titeşim ölçümü oldukça kapsamlı bi koudu ve mekaik, elektik ve elektoik bilgisi içeiklidi. Titeşim ölçümleide titeşim geliği (ye değiştime-displacemet, hız-velocity

Detaylı

Dönerek Öteleme Hareketi ve Açısal Momentum

Dönerek Öteleme Hareketi ve Açısal Momentum 6 Döneek Ötelee Haeketi e Açısal Moentu Test 'in Çözülei.. R L P N yatay M Çebe üzeindeki bi noktanın yee göe hızı, o noktanın ekeze göe çizgisel hızı ile çebein ötelee hızının ektöel toplaına eşitti.

Detaylı

KANTOROVICH-STANCU TİP OPERATÖRLER İLE YAKLAŞIM. Neslihan KOZAN BAŞAK YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

KANTOROVICH-STANCU TİP OPERATÖRLER İLE YAKLAŞIM. Neslihan KOZAN BAŞAK YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KANTOROVICH-STANCU TİP OPERATÖRLER İLE YAKLAŞIM Nesliha KOZAN BAŞAK YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ŞUBAT 00 ANKARA Nesliha Koza BAŞAK taraıda hazırlaa KANTOROVICH-STANCU

Detaylı

7. Ders Fresnel Eşitlikleri

7. Ders Fresnel Eşitlikleri 7. De Feel şlkle k k θ θ z 1 Bu bölümü bdğzde, Gelş düzlem, - ve -kuulu ışık, Feel kaayılaı, Kuulama (Bewe) açıı, Yaıma ve geçme kaayılaı koulaıda blg ahb olacakıız. 2 Bu bölümü öem, Geomek ok aa yüzeye

Detaylı

5. Ders Yeterlilik. f(x 1 ; x 2 ; :::; x n ; ) = g (T (x 1 ; x 2 ; :::; x n ); ) h(x 1 ; x 2 ; :::; x n )

5. Ders Yeterlilik. f(x 1 ; x 2 ; :::; x n ; ) = g (T (x 1 ; x 2 ; :::; x n ); ) h(x 1 ; x 2 ; :::; x n ) 5. Ders Yeterlilik Yeterlilik Ilkesi: Bir T(X ; X ; :::; X ) istatisti¼gi, hakk da yeterli bir istatistik olacaksa hakk da herhagi bir souç ç kar m T arac l ¼g ile (X ; X,...,X ) öreklemie ba¼gl olmal

Detaylı

İKTİSATÇILAR İÇİN MATEMATİK

İKTİSATÇILAR İÇİN MATEMATİK Kostadi Teçevski Aeta Gatsovska Naditsa İvaovska Yovaka Teçeva Smileski İKTİSATÇILAR İÇİN MATEMATİK DÖRT YILLIK MESLEKİ OKULLARA AİT SINIF IV İKTİSAT - HUKUK MESLEĞİ EKONOMİ TEKNİSYENİ Deetleyele: D. Bilyaa

Detaylı

BAĞINTI VE FONKSİYON

BAĞINTI VE FONKSİYON BAĞINTI VE FONKSİYON SIRALI N-Lİ x, x, x,..., x tae elema olsu. ( x, x, x,..., x ) yazılışıda elemaları sırası öemli ise x, x, x,..., x ) e sıralı -li deir. x, x, x,..., x ) de ( x (, x, x ( x, ) sıralı

Detaylı

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri,

POLİNOMLAR. reel sayılar ve n doğal sayı olmak üzere. n n. + polinomu kısaca ( ) 2 3 n. ifadeleri polinomun terimleri, POLİNOMLAR Taım : a0, a, a,..., a, a reel sayılar ve doğal sayı olmak üzere P x = a x + a x +... + a x + a x + a biçimideki ifadelere x e bağlı reel katsayılı poliom (çok terimli) deir. 0 a 0 ax + a x

Detaylı

BR GRAPHIN KOMULUK MATRS LE DERECE MATRSNN ÇARPIMININ EN BÜYÜK ÖZDEER ÇN SINIRLAR

BR GRAPHIN KOMULUK MATRS LE DERECE MATRSNN ÇARPIMININ EN BÜYÜK ÖZDEER ÇN SINIRLAR BR GRAPHIN KOMULUK MATRS LE DERECE MATRSNN ÇARPIMININ EN BÜYÜK ÖZDEER ÇN SINIRLAR Sezer SORGUN ve erfe BÜYÜKKÖSE Ercyes Üverstes, Fe Bller Esttüsü, Mateat Bölüü, KAYSER srgrzs@gal.co Ah Evra Üverstes,

Detaylı

ÖZET Yüksek Lsas Tez NORMAL DAĞILIM VE NORMAL DAĞILIMLA İLGİLİ ÇIKARIMLAR Şeol ÇELİK Akara Üverstes Fe Blmler Esttüsü İstatstk Aablm Dalı Daışma : Doç

ÖZET Yüksek Lsas Tez NORMAL DAĞILIM VE NORMAL DAĞILIMLA İLGİLİ ÇIKARIMLAR Şeol ÇELİK Akara Üverstes Fe Blmler Esttüsü İstatstk Aablm Dalı Daışma : Doç ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ NORMAL DAĞILIM VE NORMAL DAĞILIMLA İLGİLİ ÇIKARIMLAR Şeol ÇELİK İSTATİSTİK ANABİLİM DALI ANKARA 006 Her hakkı saklıdır ÖZET Yüksek Lsas Tez

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edton VECTOR ECHNICS OR ENGINEERS: STTICS ednand. ee E. Russell Johnston, J. Des Notu: Ha CR İstanbul Ten Ünvestes Tel: 285 31 46 / 116 E-mal: acah@tu.edu.t Web: http://atlas.cc.tu.edu.t/~acah

Detaylı

SİSTEM MODELLEME VE OTOMATİK KONTROL FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ

SİSTEM MODELLEME VE OTOMATİK KONTROL FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ SİSTEM MODELLEME VE OTOMATİK KONTROL FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ.Gup: Vize sou önekleindeki son gup (Routh-Huwitz testi) soula dahildi. Bunla PID soulaıyla bilikte de soulabili..) Tansfe fonksiyonu

Detaylı

BÖLÜM 1 ELEKTRİK ALANLARI

BÖLÜM 1 ELEKTRİK ALANLARI BÖLÜM 1 ELEKTRİK ALANLARI 1.1. ELEKTRİK YÜKLERİNİN ÖZELLİKLERİ Elektk yükü aşağıdak özellklee sahpt: 1. Doğada atı ve eks olmak üzee k tü yük bulunmaktadı. Aynı yükle bblen tele, faklı yükle se bblen çekele.

Detaylı

KONİK METRİK UZAYLAR VE BAZI SABİT NOKTA TEOREMLERİ. Muhib ABULOHA DOKTORA TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

KONİK METRİK UZAYLAR VE BAZI SABİT NOKTA TEOREMLERİ. Muhib ABULOHA DOKTORA TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KONİK METRİK UZAYLAR VE BAZI SABİT NOKTA TEOREMLERİ Muhib ABULOHA DOKTORA TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ HAZİRAN 009 ANKARA Muhib ABULOHA tarafıda hazırlaa KONİK METRİK UZAYLAR

Detaylı

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve BÖLÜM III Kogrüaslar Taım 3. N sabit bir sayı, a, b Z olma üzere, eğer ( a b) ise a ile b, modülüe göre ogrüdür deir ve a b(mod ) şelide gösterilir. Asi halde, yai F ( a b) ise a ile b ye modülüe göre

Detaylı

DIRAC SİSTEMİ İÇİN BİR SINIR DEĞER PROBLEMİ

DIRAC SİSTEMİ İÇİN BİR SINIR DEĞER PROBLEMİ DIRAC SİSTEMİ İÇİN BİR SINIR DEĞER PROBLEMİ UFUK KAYA Mersi Üiversitesi Fe Bilimleri Estitüsü Matematik Aa Bilim Dalı YÜKSEK LİSANS TEZİ Tez Daışmaı Prof. Dr. Nazım KERİMOV MERSİN Hazira - 8 ÖZ Bu çalışmada

Detaylı

AB YE ÜYE ÜLKELERİN VE TÜRKİYE NİN EKONOMİK PERFORMANSLARINA GÖRE VIKOR YÖNTEMİ İLE SIRALANMASI

AB YE ÜYE ÜLKELERİN VE TÜRKİYE NİN EKONOMİK PERFORMANSLARINA GÖRE VIKOR YÖNTEMİ İLE SIRALANMASI İstabul Tcaet Üvestes Sosyal Blmle Degs Yıl: Sayı: Baha 0 / s.455-468 AB YE ÜYE ÜLKELERİN VE TÜRKİYE NİN EKONOMİK PERFORMANSLARINA GÖRE VIKOR YÖNTEMİ İLE SIRALANMASI Üal H. ÖZDEN 6 ÖZET Çalışmada, AB ye

Detaylı

MATEMATİK ANABİLİM DALI

MATEMATİK ANABİLİM DALI ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Serka ÖKTEN -NORMLU UZAYLAR MATEMATİK ANABİLİM DALI ADANA, 00 ÖZ YÜKSEK LİSANS TEZİ -NORMLU UZAYLAR Serka ÖKTEN ÇUKUROVA ÜNİVERSİTESİ FEN

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

BÖLÜM 2 KORUNUM DENKLEMLERİ

BÖLÜM 2 KORUNUM DENKLEMLERİ BÖLÜM KORUNUM DENKLEMLERİ.-Uzayda sabit konumlu sonlu kontol hacmi.- Debi.3- Haeketi takiben alınmış tüev.4- üeklilik denklemi.5- Momentum denklemi.6- Eneji Denklemi.7- Denklemlein bilançosu Kounum Denklemlei

Detaylı

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ. f-cebirlerinin İKİNCİ SIRALI DUALİ VE BANACH A-MODÜLLERİ ÜZERİNDEKİ A-LİNEER OPERATÖRLER

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ. f-cebirlerinin İKİNCİ SIRALI DUALİ VE BANACH A-MODÜLLERİ ÜZERİNDEKİ A-LİNEER OPERATÖRLER T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ -CEBİRLERİNİN İKİNCİ SIRALI DUALİ VE BANACH A-MODÜLLERİ ÜZERİNDEKİ A-LİNEER OPERATÖRLER ESRA ULUOCAK DOKTORA TEZİ MATEMATİK ANABİLİM DALI MATEMATİK

Detaylı

Jeodezi. Hatırlatma. Vektör gösterimi. Skaler çarpımı

Jeodezi. Hatırlatma. Vektör gösterimi. Skaler çarpımı 0.0.0 Jeoe 0.0.0 Hatılatma Vetö göstem Sale çapımı 0.0.0 0.0.0 Hatılatma 0.0.0 Yüele e Eğle Yüelen Gass Paametele le Göstelmes e etöü B üen he hang b notasının oonatlaı se üe F=0 ea =f enlem bçmne aılabl.

Detaylı

D( 4 6 % ) "5 2 ( 0* % 09 ) "5 2

D( 4 6 % ) 5 2 ( 0* % 09 ) 5 2 3 BÖLÜM KAALI SİSEMLEDE EMODİNAMİĞİN I KANUNU I Yasaya giriş Birii bölümde eerjii edilide var veya yo edilemeyeeği vurgulamış, sadee biçim değiştirebileeği belirtilmişti Bu ile deeysel souçlara dayaır

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI

6. BÖLÜM VEKTÖR UZAYI VEKTÖR UZAYI VEKTÖR UZAYLARI 6. BÖLÜM VEKTÖR LARI -BOYUTLU (ÖKLİT) I Taım: Eğer pozitif bir tam sayı ise sıralı -sayı, gerçel sayılar kümesideki adet sayıı (a 1, a 2,, a ) bir dizisidir. Tüm sıralı -sayılarıı kümesi -boyutlu uzay

Detaylı

2. TEMEL İSTATİSTİK KAVRAMLARI

2. TEMEL İSTATİSTİK KAVRAMLARI TEMEL İSTATİSTİK KAVRAMLARI İstatistik Kavamı İstatistik bi olaya (eve, aa kütle,toplu, kolektif ve yığı şeklideki) ait veilei (aket, deey ve gözlem vb) toplaaak sayısal olaak ifade edilmesii ve bu veilei

Detaylı

SAÜ Fen Edebiyat Dergisi (2009-II) ÜÇ BOYUTLU LORENTZ UZAYI MANNHEİM EĞRİ ÇİFTİ ÜZERİNE A. ZEYNEP AZAK

SAÜ Fen Edebiyat Dergisi (2009-II) ÜÇ BOYUTLU LORENTZ UZAYI MANNHEİM EĞRİ ÇİFTİ ÜZERİNE A. ZEYNEP AZAK SAÜ Fen Edebiyat Dergisi (009-II) ÜÇ BOYUTLU LORENTZ UZAYI L DE TIMELIKE MANNHEİM EĞRİ ÇİFTİ ÜZERİNE A. ZEYNEP AZAK Saarya Üniversitesi, Fen-Edebiyat Faültesi Matemati Bölümü, 5487, SAKARYA apirdal@saarya.edu.tr

Detaylı

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI AĞIRLIKLI LORENTZ UZAYLARINDA TRİGONOMETRİK YAKLAŞIM

T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI AĞIRLIKLI LORENTZ UZAYLARINDA TRİGONOMETRİK YAKLAŞIM T.C. BALIKESİR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI AĞIRLIKLI LORENTZ UZAYLARINDA TRİGONOMETRİK YAKLAŞIM YÜKSEK LİSANS TEZİ AHMET HAMDİ AVŞAR BALIKESİR, HAZİRAN - 2016 T.C. BALIKESİR

Detaylı

GENELLEŞTİRİLMİŞ BULANIK KÜMELER. Mehmet Şahin Gaziantep Üniversitesi, Matematik Bölümü, 27310, Gaziantep

GENELLEŞTİRİLMİŞ BULANIK KÜMELER. Mehmet Şahin Gaziantep Üniversitesi, Matematik Bölümü, 27310, Gaziantep GENEEŞTİRİMİŞ UANIK KÜMEER Mehme Şah Gazaep Üverses, Maemak ölümü, 27310, Gazaep ÖZET: u çalışmada öcelkle P ( br al ale olarak buludura bulaık kümeler GF ales br halka olarak yapıladırılmaka ve bu yapıı

Detaylı

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI ÜNİVERSİTEYE GİRİŞ SINV SORULRI. 99 ÖYS D C 5. 99 ÖYS fonksionunun ba lan g ç nok ta s na en a k n olan nok ta s n n, ba lan g ç nok ta s na uzak l kaç bi im di? O bi im olan bi a çem be in içi ne çi zi

Detaylı

KUVVET SİSTEMLERİ KUVVET. Vektörel büyüklük. - Kuvvetin büyüklüğü - Kuvvetin doğrultusu - Kuvvetin uygulama noktası - Kuvvetin yönü. Serbest vektör.

KUVVET SİSTEMLERİ KUVVET. Vektörel büyüklük. - Kuvvetin büyüklüğü - Kuvvetin doğrultusu - Kuvvetin uygulama noktası - Kuvvetin yönü. Serbest vektör. İ.T.Ü. aka akültes ekak Aa Blm Dalı STATİK - Bölüm KUVVET SİSTELEİ KUVVET Vektörel büyüklük - Kuvvet büyüklüğü - Kuvvet doğrultusu - Kuvvet uygulama oktası - Kuvvet yöü S = (,,..., ) = + +... + = Serbest

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

3. Bir kabı, biri 17 diğeri 55 litre su alan ölçeklendirilmemiş iki kap yardımıyla tam olarak 1 litre suyla nasıl doldurursunuz açıklayınız. (10 P.

3. Bir kabı, biri 17 diğeri 55 litre su alan ölçeklendirilmemiş iki kap yardımıyla tam olarak 1 litre suyla nasıl doldurursunuz açıklayınız. (10 P. 0..006 MAT3 AYRIK MATEMATİK ARASINAV SORULARI Numarası :..................................... Adı Soyadı :...................................... F,. Fiboacci sayısıı gösterme üzere, ( 0 P.) (a) F + = F

Detaylı

İLERLEYEN TÜR TİP-II SAĞDAN SANSÜRLÜ ÖRNEKLEME DAYALI DÜZGÜN DAĞILIMIN PARAMETRELERİNİN JACKKNİFE TAHMİN EDİCİSİ

İLERLEYEN TÜR TİP-II SAĞDAN SANSÜRLÜ ÖRNEKLEME DAYALI DÜZGÜN DAĞILIMIN PARAMETRELERİNİN JACKKNİFE TAHMİN EDİCİSİ ooet ve İtatt Sayı: 5-9 İSTANBUL ÜNİVSİTSİ İKTİSAT FAKÜLTSİ KONOMTİ V İSTATİSTİK DGİSİ İLLYN TÜ TİP-II SAĞDAN SANSÜLÜ ÖNKLM DAYALI DÜZGÜN DAĞILIMIN PAAMTLİNİN JACKKNİF TAHMİN DİCİSİ D. Coşu Kuş Bu aale

Detaylı

Veri zarflama analizi (VZA) ile Türkiye deki vakıf üniversitelerinin etkinliğinin ölçülmesi

Veri zarflama analizi (VZA) ile Türkiye deki vakıf üniversitelerinin etkinliğinin ölçülmesi İtabul Üvete İşlete Faülte Deg Itabul Uvety Joual of the School of Bue Adtato Clt/Vol:37, Sayı/No:2, 2008, 167-185 ISSN: 1303-1732 - www.fdeg.og 2008 Ve zaflaa aalz (VZA) le Tüye de vaıf üvetele etlğ ölçüle

Detaylı

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi,

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi, . Ders Büyü Sayılar Kauları Kouya geçmede öce DeMoivre-Stirlig formülüü ve DeMoivre-Laplace teoremii hatırlayalım. DeMoivre, geel terimi, a!,,, 3,... e ola dizii yaısa olduğuu göstermiş, aca limitii bulamamış.

Detaylı

FİZ101 FİZİK-I. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B Grubu 3. Bölüm (Doğrusal Hareket) Özet

FİZ101 FİZİK-I. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B Grubu 3. Bölüm (Doğrusal Hareket) Özet FİZ11 FİZİK-I Ankaa Üniesitesi Fen Fakültesi Kimya Bölümü B Gubu 3. Bölüm (Doğusal Haeket) Özet.1.14 Aysuhan Ozansoy Haeket Nedi? Mekanik; kuetlei e onlaın cisimle üzeine etkileini inceleyen fizik dalıdı

Detaylı

ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE

ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE ANADOLU ÜNİVERSİTESİ BİLİM VE TEKNOLOJİ DERGİSİ ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY Cilt/Vol.:10-Sayı/No: : 383-388 (009) ARAŞTIRMA MAKALESİ /RESEARCH ARTICLE BAZI ÜÇGENSEL VE DÖRTGENSEL

Detaylı

TEZ ONAYI Eda YAZAR tarafıda hazırlaa Fuzzy Topolojk Gruplar adlı tez çalışması 22/07/2008 tarhde jür tarafıda oy brlğ le Akara Üverstes Fe Blmler Est

TEZ ONAYI Eda YAZAR tarafıda hazırlaa Fuzzy Topolojk Gruplar adlı tez çalışması 22/07/2008 tarhde jür tarafıda oy brlğ le Akara Üverstes Fe Blmler Est ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ FUZZY TOPOLOJİK GRUPLAR Eda YAZAR MATEMATİK ANABİLİM DALI ANKARA 2008 Her hakkı saklıdır TEZ ONAYI Eda YAZAR tarafıda hazırlaa Fuzzy Topolojk

Detaylı

A= {1,2,3}, B={1,3,5,7}kümeleri veriliyor. A dan B ye tanımlanan aşağıdaki bağıntılardan hangisi fonksiyon değildir?

A= {1,2,3}, B={1,3,5,7}kümeleri veriliyor. A dan B ye tanımlanan aşağıdaki bağıntılardan hangisi fonksiyon değildir? ÖRNEK 1 : A= {1,,}, B={1,,5,7}kümeleri veriliyor. A da B ye taımlaa aşağıdaki bağıtılarda hagisi foksiyo değildir? A) {(1,), (,5), (,7)} B) {(1,), (1,5), (,1)} C) {(1,1), (,1), (,1)} D) {(1,5), (,1), (,7)}

Detaylı

Diferansiyel Geometri

Diferansiyel Geometri Öklid Uzayıda Diferasiyel Geometri Salim Yüce Prof. Dr. DİFERNSİYEL GEOMETRİ ISBN 978-605-318-812-4 DOI 10.14527/9786053188124 Kitap içeriğii tüm sorumluluğu yazarlarıa aittir. 2017, PEGEM KDEMİ Bu kitabı

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT ORTAÖĞRETİM MATEMATİK Bu testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının veya

Detaylı

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir.

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir. 203-204 Bahar REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyo Basit doğrusal regresyo modeli: y i = β 0 + β x i + ε i Modeli matris gösterimi, y i = [ x i ] β 0 β + ε i şeklidedir. x y 2 gözlem

Detaylı

Đst201 Đstatistik Teorisi I

Đst201 Đstatistik Teorisi I Đst20 Đstatstk Teors I DERSĐN TÜRÜ Zorulu DERSĐN DÖNEMĐ Yaz DERSĐN KREDĐSĐ Ulusal Kred: (4, 0, 0 ) 4 KTS: 7 DERSĐN VERĐLDĐĞĐ Bölüm: Đstatstk 200/20 Öğretm Yılı DERSĐN MCI Đstatstğ matematksel temeller

Detaylı

KARMAŞIK SAYILAR ÇALIŞMA SORULARI 1 1.

KARMAŞIK SAYILAR ÇALIŞMA SORULARI 1 1. KARMAŞIK SAYILAR ÇALIŞMA SORULARI.., +.,.,. +.,,. +, + Re( ) İm( ) +. olmak üere? olmak üere.. + )? (. 6 +.. 9 + 8 ( ) olduğua göre İm (Z) Re (Z)?. + + 9 + 6 +... + 89 6. 0 + + +... + 7. P(x) x 7 + x x

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üiversitesi İşaat Mühedisliği Bölümü umutokka@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN idrolik Aabilim Dalı Balıkesir Üiversitesi İşaat Mühedisliği Bölümü Bölüm 5 Örekleme

Detaylı

alan ne kadardır? ; 3 3

alan ne kadardır? ; 3 3 - -. Doğa saıa kümeside f(k)=(k+) -k foksiou kuaaak k, k, k topamaı buuuz. ( + ) ( + )( + ) ( + ) 6. Topam fomüei kuaaak uzuuğu oa homoje bi çubuğu ucua göe ağıık mekezi buuuz.. Topam fomüei kuaaak uzuuğudaki

Detaylı

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ

POLİNOMLARDA İNDİRGENEBİLİRLİK. Derleyen Osman EKİZ Eskişehir Fatih Fen Lisesi 1. GİRİŞ POLİNOMLARDA İNDİRGENEBİLİRLİK Derleye Osma EKİZ Eskişehir Fatih Fe Lisesi. GİRİŞ Poliomları idirgeebilmesi poliomları sıfırlarıı bulmada oldukça öemlidir. Şimdi poliomları idirgeebilmesi ile ilgili bazı

Detaylı

12. Ders. Mahir Bilen Can. Mayıs 24, Son dersten hatırlayacağınız üzere simetrikleştirme operasyonundan elde ettiğimiz fonksiyon.

12. Ders. Mahir Bilen Can. Mayıs 24, Son dersten hatırlayacağınız üzere simetrikleştirme operasyonundan elde ettiğimiz fonksiyon. 12. Ders Mahir Bilen Can Mayıs 24, 2016 1 Yerel Kaldırma Özellikleri Son dersten hatırlayacağınız üzere simetrikleştirme operasyonundan elde ettiğimiz fonksiyon ι : Sym(g) n 0 U n /U n+1 bize bir derecelendirilmiş

Detaylı

ASTRONOTİK DERS NOTLARI 2014

ASTRONOTİK DERS NOTLARI 2014 YÖRÜNGE MEKANİĞİ Yöüngeden Hız Hesabı Küçük bi cismin yöüngesi üzeinde veilen hehangi bi noktadaki hızı ve bu hızın doğultusu nedi? Uydu ve çekim etkisinde bulunan cisim (Ye, gezegen, vs) ikili bi sistem

Detaylı

FZM450 Elektro-Optik. 4.Hafta. Işığın Elektromanyetik Tanımlanması-3:

FZM450 Elektro-Optik. 4.Hafta. Işığın Elektromanyetik Tanımlanması-3: FZM45 letr-opt 4.Hafta Işığı letrmaet Taımlaması-3: Krstal İçde letrmaet algaı İlerleş 8 HSarı 1 4. Hafta ers İçerğ Işığı rstal çde lerleş İtrp lmaa rstaller Küb rstaller Te sel Krstaller Çft sel Krstaller

Detaylı

32. Kardinal Say lar, Tan m ve lk Özellikler

32. Kardinal Say lar, Tan m ve lk Özellikler 32. Kardial Say lar, Ta ve l Özelliler Her üei iyis ralaabilece ii a tla flt (Teore 24.1). Özel iyis ral üeler ola ordialleri de Bölü 10 da ta la flt. Ordiallerde iyis ralaa iliflisiyle verilir, yai bir

Detaylı

MÖBİUS İNVERSİYON FORMÜLÜ, GENELLEŞTİRİLMELERİ VE UYGULAMALARI. Mehmet YILDIZ YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

MÖBİUS İNVERSİYON FORMÜLÜ, GENELLEŞTİRİLMELERİ VE UYGULAMALARI. Mehmet YILDIZ YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÖBİUS İNVERSİYON FORMÜLÜ, GENELLEŞTİRİLMELERİ VE UYGULAMALARI Mehmet YILDIZ YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ OCAK 200 ANKARA ii Mehmet YILDIZ tarafıda hazırlaa MÖBİUS

Detaylı