DİNAMİK PANEL VERİ MODELLERİ. FYT Panel Veri Ekonometrisi 1

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "DİNAMİK PANEL VERİ MODELLERİ. FYT Panel Veri Ekonometrisi 1"

Transkript

1 DİNAMİK PANEL VERİ MODELLERİ FYT Panel Veri Ekonometrisi 1

2 Dinamik panel veri modeli (tek gecikme için) aşağıdaki gibi gösterilebilir; y it y it 1 x v it ' it i Gecikmeli bağımlı değişkenden başka açıklayıcı değişkeni olmayan bir model olarak düşünürsek; y it y it 1 i v it Gecikmeli bağımlı değişkenin modelde yer alması nedeniyle katı dışsallık varsayımı bozulmakta ve tutarsız tahminler elde edilmektedir. FYT Panel Veri Ekonometrisi 2

3 Tahmin Yöntemleri Araç Değişken Tahmincileri Hata terimi ile gecikmeli bağımlı değişkenin korelasyonlu olmasından dolayı bildik tahmin yöntemleri ile elde edilen tahminciler tutarsızdır. Bu nedenle hata terimi ile ilişkili olan gecikmeli bağımlı değişken yerine uygun bir araç değişken kullanılabilir. Araç değişkenin seçimi konusunda çeşitli yaklaşımlar vardır. Genel olarak araç değişken şu şartları sağlamalıdır: -Araç değişkenler hata terimlerinden ilişkisiz olmalıdır. -Araç değişkenler yerine geçecekleri değişken ile ilişkili olmalıdır. FYT Panel Veri Ekonometrisi 3

4 Balestra ve Nerlove un İki Aşamalı EKK Tahmincisi Bu yöntemde, panel veri modeli önce uygun araç değişkenler kullanılarak dönüştürülür ve daha sonra dönüştürülmüş değişkenler kullanılarak model EKK yöntemi ile tahmin edilir. Balestra X değişkenlerinin gecikmeli değerlerinin araç değişken olarak kullanılmasını önermişlerdir. Z araç değişken matrisini göstermek üzere dinamik panel veri modeli; ZY=δZX+Zu şeklinde dönüştürüldükten sonra EKK yöntemi ile tahmin edilirse; ˆ X Z (Z Z ) 1 Z X X Z (Z Z ) 1 Z Y FYT Panel Veri Ekonometrisi 4

5 Dinamik panel veri modellerinde tesadüfi etkiler genelleştirilmiş en küçük kareler tahmincileri sapmalıdır. Hata terimi içerisinde yer alan birim etki µ i nin bağımsız değişkenlerden birisi (Y it-1 ) ile korelasyonludur. Bu nedenle, dinamik modelin tesadüfi etkiler varsayımıyla tahmini tutarsızdır. Dinamik panel veri modellerinin tahmininde daha çok, birim etkileri göz önüne alan ve birim etkiler ile bağımsız değişkenlerin korelasyonlu olmasına izin veren sabit etkiler ve birinci fark tahmincileri kullanılmaktadır. FYT Panel Veri Ekonometrisi 5

6 Sabit etkiler varsayımıyla yapılan grup içi dönüşüm birim etkiyi ( i ) yok etmektedir. Y it-1 sebebiyle her bir birimin ilk döneminin kaybedilmiş olduğu ve modele her bir birim için bir gölge değişken ilave edildiği düşünüldüğünde, tutarlılık ancak T sonsuza giderse sağlanabilmektedir. Nickell (1981), otoregresif panel veri modelleri ile çalışılırken gölge değişkenli en küçük kareler tahmincisinin N büyük ve T küçükken tutarsız olduğunu göstermiştir, bu durum literatürde Nickell sapması olarak bilinmektedir. Judson ve Owen (1999) yaptıkları simülasyonlar so-nucu, T=30 olduğunda bile parametre tahminlerinin sapmasını %20 ye eşit bulmuşlardır FYT Panel Veri Ekonometrisi 6

7 Anderson ve Hsiao nun Tahmincisi Bu yöntemde dinamik modelde önce ilk farklar alınır, daha sonra Y it-2 ya da (Y it-2 -Y it-3 )=ΔY it-2 değişkenleri Y it-1 yerine araç değişken olarak kullanılır. Dinamik modelin ilk farkları; Y it Y it 1 (Y it 1 Y it 2 ) ( X i t X i t 1 ) (u it u it 1 ) alındıktan sonra bağımsız değişkenleri (Y it 1 Y it 2 ), ( X i t X i t 1 ) temsilen aşağıdaki araç değişkenlerden bir tanesi kullanılarak model EKK yöntemi ile tahmin edilebilir. Z Y it 2,( X i t X i t 1 ) Z (Y it 2 Y it 3 ), ( X i t X i t 1 ) Not: Arellano, Y it-2 nin ΔY it-2 den daha uygun bir araç olduğunu ispatlamıştır. Araç değişken olarak Y it-2 kullanılırsa 2; ΔY it-2 kullanılırsa 3 dönem kaybı olacaktır. FYT Panel Veri Ekonometrisi 7

8 Arellano Bond un Genelleştirilmiş Momentler (GMM) Tahmincisi Fark modelinin hata terimleri sabit varyanslı ve otokorelasyonsuz ise, sabit etkili modelin tahmini için araç değişken yönteminin kullanımı uygundur. Ancak hata terimleri otokorelasyonlu ve sabit varyanslı değilse, genelleştirilmiş momentler (GMM) yöntemi kullanılabilir. Bu yöntemde, fark alınmış model, araç değişken matrisi kullanılarak dönüştürülür ve bu dönüştürülmüş model genelleştirilmiş EKK ile tahmin edilir. GMM tahmincisi, iki aşamalı araç değişkenler tahmincisi olarak da bilinir. FYT Panel Veri Ekonometrisi 8

9 Araç değişkenli fark modeli matrislerle; Z Y Z Y Z X Z u -1 ve GMM tahmincisi; -1 Z Z X Z 1 1 ˆ ˆ ˆ GMM X Z Z X Z Z Z Y FYT Panel Veri Ekonometrisi 9

10 Arellano ve Bover / Blundell ve Bond Sistem GMM Tahmincisi Arellano ve Bond tahmincisi, otoregresif parametreler çok fazla ya da birim etkinin varyansının artık hatanın varyansına oranı çok yüksek ise, dengesiz panel verilerle çalışırken ya da T küçükken zayıf kalmaktadır. Bu nedenle birinci fark dönüşümü yerine önerilen bir başka dönüşüm, ileri ortogonal sapmalar ya da ortogonal sapmalar yöntemidir. Bu yöntemde, birinci farklar yönteminde olduğu gibi cari dönemden bir önceki dönemin farkı alınmamakta, bunun yerine bir değişkenin tüm mümkün gelecek değerlerinin ortalamasının farkı alınmaktadır. FYT Panel Veri Ekonometrisi 10

11 Sapması Düzeltilmiş Gölge Değişkenli EKK Otoregresif panel veri modeli, N büyük ve T küçükken gölge değişken kullanımı sonucu ortaya çıkan Nickell sapması düzeltilerek gölge değişkenli en küçük kareler yöntemi ile tahmin edilebilir. (Kiviet (1995, 1999), daha sonra Bun ve Kiviet (2003) ve Bruno (2005)) FYT Panel Veri Ekonometrisi 11

12 Bu yönteme göre model iki aşamada tahmin edilmektedir: Birinci aşamada sabit parametresiz otoregresif model gölge değişkenli en küçük kareler (grup içi) tahmin yöntemi ile tahmin edilmekte ve ikinci aşamada, parametreler düzeltilmektedir. Düzeltme için Nickell O(1/T), Kiviet (1999) O(1/NT) ve Bun ve Kiviet (2003) O(1/NT 2 ) önermiştir. İkinci aşamada kurulan parametreleri düzeltilmiş modelde standart hataların hesaplanabilmesi için özçıkarım varyans kovaryans matrisinden hareket edilmektedir. Bu durumda başlangıç değeri olarak Anderson ve Hsiao (1982), Arellano ve Bond (1995) ve Blundell ve Bond (1998) tutarlı ta-mincileri kullanılabilmektedir. FYT Panel Veri Ekonometrisi 12

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci DOĞRUSAL ZAMAN SERİSİ MODELLERİ Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci Tek Değişkenli Zaman Serisi Modelleri Ekonomik verilerin analizi ile ekonomik değişkenlerin gelecekte alabilecekleri

Detaylı

SIRADAN EN KÜÇÜK KARELER (OLS)

SIRADAN EN KÜÇÜK KARELER (OLS) SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler 1 SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama Doç.

Detaylı

Editörler Prof.Dr. Ömer Yılmaz & Doç.Dr. Nihat Işık EKONOMETRİ

Editörler Prof.Dr. Ömer Yılmaz & Doç.Dr. Nihat Işık EKONOMETRİ Editörler Prof.Dr. Ömer Yılmaz & Doç.Dr. Nihat Işık EKONOMETRİ Yazarlar Prof. Dr. Hüseyin Özer Prof.Dr. Murat Karagöz Doç.Dr. H. Bayram Işık Doç.Dr. Mustafa Kemal Beşer Doç.Dr. Nihat Işık Doç.Dr. Selçuk

Detaylı

9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir?

9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir? 9. ARDIŞIK BAĞIMLILIK SORUNU (AUTOCORRELATION) 9.1. Ardışık Bağımlılık Sorunu Nedir? Ardışık bağımlılık sorunu, hata terimleri arasında ilişki olmadığı (E(u i,u j ) = 0, i j) varsayımının geçerli olmamasıdır.

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

İÇİNDEKİLER 1. GİRİŞ...

İÇİNDEKİLER 1. GİRİŞ... İÇİNDEKİLER 1. GİRİŞ... 1 1.1. Regresyon Analizi... 1 1.2. Uygulama Alanları ve Veri Setleri... 2 1.3. Regresyon Analizinde Adımlar... 3 1.3.1. Problemin İfadesi... 3 1.3.2. Konu ile İlgili Potansiyel

Detaylı

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Marmara Üniversitesi U.B.F. Dergisi YIL 2005, CİLT XX, SAyı 1 YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Yrd. Doç. Dr. Ebru ÇACLAYAN' Arş. Gör. Burak GÜRİş" Büyüme modelleri,

Detaylı

BÖLÜM EN KÜÇÜK KARELER REGRESYONUNDA KARŞILAŞILAN PROBLEMLER

BÖLÜM EN KÜÇÜK KARELER REGRESYONUNDA KARŞILAŞILAN PROBLEMLER BÖLÜM 10 10. EN KÜÇÜK KARELER REGRESYONUNDA KARŞILAŞILAN PROBLEMLER En küçük kareler yöntemi, hataların eklenebilir, sabit varyansa sahip ve birbirinden bağımsız normal dağılış gösteren şans değişkenleri

Detaylı

EAD YBU 2015 BAHAR DÖNEMİ UYGULAMALI EKONOMETRİ EĞİTİM PROGRAMI

EAD YBU 2015 BAHAR DÖNEMİ UYGULAMALI EKONOMETRİ EĞİTİM PROGRAMI EAD YBU 2015 BAHAR DÖNEMİ UYGULAMALI EKONOMETRİ EĞİTİM PROGRAMI Aşağıda iki güne yayılmış olarak sunulmuş olan 6 Eğitim Modülü 21 22 Mart, 11 12 Nisan ve 2 3 Mayıs tarihlerinde Yıldırım Beyazıt Üniversitesi

Detaylı

KONULAR. 14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

KONULAR. 14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOKLU REGRESYON ANALİZİNDE EK KONULAR Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

Dijital Bölünmeyi Etkileyen Faktörler Üzerine Bir Uygulama: Panel Veri GMM Analizleri 1

Dijital Bölünmeyi Etkileyen Faktörler Üzerine Bir Uygulama: Panel Veri GMM Analizleri 1 Doğuş Üniversitesi Dergisi, 18 (2) 2017, 19-34 Dijital Bölünmeyi Etkileyen Faktörler Üzerine Bir Uygulama: Panel Veri GMM Analizleri 1 A Practice for the Factors Affecting the Digital Divide: Panel Data

Detaylı

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: ÇIKARSAMA Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

Normallik Varsayımı ve Ençok Olabilirlik Yöntemi

Normallik Varsayımı ve Ençok Olabilirlik Yöntemi Normallik Varsayımı ve Ençok Olabilirlik Yöntemi EO Açıklayıcı Örnekler Ekonometri 1 Konu 14 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike

Detaylı

17 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

17 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: TAHMİN Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 17 Ekim 2012 Ekonometri

Detaylı

PANEL VERİ EKONOMETRİSİ

PANEL VERİ EKONOMETRİSİ Doç. Dr. Ferda Yerdelen Tatoğlu PANEL VERİ EKONOMETRİSİ Genişletilmiş 3. Baskı İSTANBUL - 2016 Yayın No : 3410 İşletme-Ekonomi Dizisi : 816 3. Baskı Ekim 2016 - İSTANBUL ISBN 978-605 - 333-729 - 4 Copyright

Detaylı

ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ

ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ 1. ÇOKLU REGRESYON ANALİZİ VE VARSAYIMALARDAN SAPMALAR 1.1. Çoklu Regresyon modeli Varsayımları 1.2. Tahmincilerin anlamlılığının sınanması

Detaylı

Eşanlı Denklem Modelleri

Eşanlı Denklem Modelleri Eşanlı Denklem Modelleri Eşanlı Denklem Yöntemleri Ekonometri 2 Konu 23 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported (CC

Detaylı

ZAMAN SERİSİ REGRESYONLARINDA ARDIŞIK

ZAMAN SERİSİ REGRESYONLARINDA ARDIŞIK ZAMAN SERİSİ REGRESYONLARINDA ARDIŞIK BAĞINTI ve DEĞİŞEN VARYANS Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge

Detaylı

Zaman Serileri Verileriyle Regresyon Analizinde Ardışık ZAMAN SERİSİ REGRESYONLARINDA

Zaman Serileri Verileriyle Regresyon Analizinde Ardışık ZAMAN SERİSİ REGRESYONLARINDA 1 ZAMAN SERİSİ REGRESYONLARINDA ARDIŞIK BAĞINTI ve DEĞİŞEN VARYANS Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

İki İlişkili Örneklem için t-testi. Tekrarlı ölçümler için t hipotez testine uygun araştırma çalışmalarının yapısını anlamak.

İki İlişkili Örneklem için t-testi. Tekrarlı ölçümler için t hipotez testine uygun araştırma çalışmalarının yapısını anlamak. İki İlişkili Örneklem için t-testi Kazanımlar 1 2 3 4 Tekrarlı ölçümler için t hipotez testine uygun araştırma çalışmalarının yapısını anlamak. Tekrarlı ölçümler t istatistiğini kullanarak 2 uygulamanın

Detaylı

EŞANLI DENKLEM MODELLERİ

EŞANLI DENKLEM MODELLERİ EŞANLI DENKLEM MODELLERİ Eşanlı denklem modelleri, tek denklemli modeller ile açıklanamayan iktisadi olayları açıklamak için kullanılan model türlerinden birisidir. Çift yönlü neden-sonuç ilişkisi söz

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

Eşanlı Denklem Modelleri

Eşanlı Denklem Modelleri Eşanlı Denklem Modelleri Tek Denklemli Modellerde Eşanlılık Ekonometri 2 Konu 22 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported

Detaylı

27 Mart Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

27 Mart Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ZAMAN SERİLERİ VERİLERİYLE REGRESYON ANALİZİNDE EK KONULAR Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (4th ed.) J. Wooldridge

Detaylı

BASİT REGRESYON MODELİ

BASİT REGRESYON MODELİ BASİT REGRESYON MODELİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri I: Basit Regresyon

Detaylı

1: DENEYLERİN TASARIMI VE ANALİZİ...

1: DENEYLERİN TASARIMI VE ANALİZİ... İÇİNDEKİLER Bölüm 1: DENEYLERİN TASARIMI VE ANALİZİ... 1 1.1. Deneyin Stratejisi... 1 1.2. Deneysel Tasarımın Bazı Tipik Örnekleri... 11 1.3. Temel Kurallar... 16 1.4. Deneyleri Tasarlama Prensipleri...

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

A EKONOMETRİ. n iken de aynı sonuç geçerliyse, β hangi. A) β nın sabit olması. D) Xβ nın normal dağılımlı olması. E) n olması. dur?

A EKONOMETRİ. n iken de aynı sonuç geçerliyse, β hangi. A) β nın sabit olması. D) Xβ nın normal dağılımlı olması. E) n olması. dur? EKONOMETRİ KPSS-AB-PÖ/007 1. 6. SORULARI AŞAĞIDAKİ BİLGİLERE β β β ( ) Y i = 1 + x + + i k x ik+ u i i = 1,, n denkleminin matrislerle ifadesi Y = X + u dur. Y( nx1 ), β ( kx1 ), X( nxk) ve β u nx1 boyutludur

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ I Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ II Yayın No : 2845 Teknik Dizisi : 158 1. Baskı Şubat 2013 İSTANBUL ISBN 978-605 - 377 868-4 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları BETA

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

Appendix B: Olasılık ve Dağılım Teorisi

Appendix B: Olasılık ve Dağılım Teorisi Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

ortalama ve ˆ ˆ, j 0,1,..., k

ortalama ve ˆ ˆ, j 0,1,..., k ÇOKLU REGRESYONDA GÜVEN ARALIKLARI Regresyon Katsayılarının Güven Aralıkları y ( i,,..., n) gözlemlerinin, xi ortalama ve i k ve normal dağıldığı varsayılsın. Herhangi bir ortalamalı ve C varyanslı normal

Detaylı

Yrd. Doç. Dr. Mehmet Karaçuka

Yrd. Doç. Dr. Mehmet Karaçuka Dersin Adı DERS ÖĞRETİM PLANI Dersin Kodu ECO 84 Dersin Türü (Zorunlu, Seçmeli) Dersin Seviyesi (Ön Lisans, Lisans, Yüksek Lisans, Doktora) Dersin AKTS Kredisi 5 Haftalık Ders Saati 1 Haftalık Uygulama

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık - I Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kes1rim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmak7r. ü Bu anlamda, anakütleden çekilen

Detaylı

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa, NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

REGRESYON ANALĐZĐ. www.fikretgultekin.com 1

REGRESYON ANALĐZĐ. www.fikretgultekin.com 1 REGRESYON ANALĐZĐ Regresyon analizi, aralarında sebep-sonuç ilişkisi bulunan iki veya daha fazla değişken arasındaki ilişkiyi belirlemek ve bu ilişkiyi kullanarak o konu ile ilgili tahminler (estimation)

Detaylı

Sürekli Rastsal Değişkenler

Sürekli Rastsal Değişkenler Sürekli Rastsal Değişkenler Normal Dağılım: Giriş Normal Dağılım: Tamamen ortalaması ve standart sapması ile tanımlanan bir rastsal değişken, X, için oluşturulan sürekli olasılık dağılımına normal dağılım

Detaylı

(AYIRIM) DENLİ. Emre KUZUGÜDENL. Doç.Dr.Serdar CARUS

(AYIRIM) DENLİ. Emre KUZUGÜDENL. Doç.Dr.Serdar CARUS DİSKRİMİNANT ANALİZİ (AYIRIM) Emre KUZUGÜDENL DENLİ Doç.Dr.Serdar CARUS Bu analiz ile; Bir bireyin hangi gruptan geldiği (p değişkeni kullanarak, bireyi uygun bir gruba atar ) Her bir değişkenin atama

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER

ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER DOÇ. DR. NİHAL ERGİNEL 2015 X beklenen değeri B[X] ile gösterilir. B[X] = BEKLENEN DEĞER Belli bir malzeme taşınan kolilerin ağırlıkları

Detaylı

Merkezi Limit Teoremi

Merkezi Limit Teoremi Örnekleme Dağılımı Merkezi Limit Teoremi Şimdiye kadar normal dağılıma uygun olan veriler ile ilgili örnekler incelendi. Çarpıklık gösteren veriler söz konusu olduğunda ne yapılması gerekir? Hala normal

Detaylı

ENTELEKTÜEL KATMA DEĞER KATSAYISI YÖNTEMİ İLE ÖLÇÜLEN ENTELEKTÜEL SERMAYENİN FİRMA PERFORMANSI ÜZERİNDEKİ ETKİSİ *

ENTELEKTÜEL KATMA DEĞER KATSAYISI YÖNTEMİ İLE ÖLÇÜLEN ENTELEKTÜEL SERMAYENİN FİRMA PERFORMANSI ÜZERİNDEKİ ETKİSİ * C.Ü. İktisadi ve İdari Bilimler Dergisi, Cilt 18, Sayı 1, 2017 35 ENTELEKTÜEL KATMA DEĞER KATSAYISI YÖNTEMİ İLE ÖLÇÜLEN ENTELEKTÜEL SERMAYENİN FİRMA PERFORMANSI ÜZERİNDEKİ ETKİSİ * Tuba GÜLCEMAL 1 Levent

Detaylı

7.Ders Bazı Ekonometrik Modeller. Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla.

7.Ders Bazı Ekonometrik Modeller. Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla. 7.Ders Bazı Ekonometrik Modeller Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla. Kaynak: TÜĐK dönemler gayri safi yurt içi hasıla düzeyi 1987-1 8680793 1987-2 9929354 1987-3 13560135 1987-4

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

RİSK ANALİZİ VE AKTÜERYAL MODELLEME SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla

Detaylı

İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1

İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1 İÇİNDEKİLER ÖNSÖZ... v 1. BÖLÜM Örneklem Genişliğinin Elde edilmesi... 1 1.1. Kitle ve Parametre... 1 1.2. Örneklem ve Tahmin Edici... 2 1.3. Basit Rastgele Örnekleme... 3 1.4. Tabakalı Rastgele Örnekleme...

Detaylı

REGRESYON ANALİZİ BÖLÜM 3-4

REGRESYON ANALİZİ BÖLÜM 3-4 REGRESYON ANALİZİ BÖLÜM 3-4 Yayın arihi: 17-08-008 ÇOK DEĞİŞKENLİ DOĞRUSAL REGRESYON FONKSİYONU 3. ÇOK DEĞİŞKENLİ DOĞRUSAL REGRESYON Çok değişkenli regresyon modelinde bir y bağımlı değişkeni, k adet bağımsız

Detaylı

İSTATİSTİK HAFTA. ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ

İSTATİSTİK HAFTA. ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ ÖRNEKLEME METOTLARI ve ÖRNEKLEM BÜYÜKLÜĞÜNÜN TESPİTİ HEDEFLER Bu üniteyi çalıştıktan sonra; Örneklemenin niçin ve nasıl yapılacağını öğreneceksiniz. Temel Örnekleme metotlarını öğreneceksiniz. Örneklem

Detaylı

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma...

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma... İçindekiler İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii BÖLÜM 1 Ölçme, İstatistik ve Araştırma...1 Ölçme Nedir?... 3 Ölçme Süreci... 3 Değişkenler

Detaylı

İki Değişkenli Bağlanım Çıkarsama Sorunu

İki Değişkenli Bağlanım Çıkarsama Sorunu İki Değişkenli Bağlanım Çıkarsama Sorunu Aralık Tahmini Ekonometri 1 Konu 15 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported

Detaylı

Makroekonomik Belirsizlik ve Risk Altında Yatırım Kararları: Türkiye Örneği a

Makroekonomik Belirsizlik ve Risk Altında Yatırım Kararları: Türkiye Örneği a anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi Journal of Social Sciences of Muş Alparslan University Yıl/Year: 2016 Cilt/Volume: 4 Sayı/Number: 2 ISSN: 2147-7655 e-issn: 2149-4622 ÖZGÜN ARAŞTIRMA

Detaylı

İstatistiksel Kavramların Gözden Geçirilmesi

İstatistiksel Kavramların Gözden Geçirilmesi İstatistiksel Kavramların Gözden Geçirilmesi İstatistiksel Çıkarsama Ekonometri 1 Konu 3 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike

Detaylı

Bağımlı Kukla Değişkenler

Bağımlı Kukla Değişkenler Bağımlı Kukla Değişkenler Bağımlı değişken özünde iki değer alabiliyorsa yani bir özelliğin varlığı ya da yokluğu söz konusu ise bu durumda bağımlı kukla değişkenler söz konusudur. Bu durumdaki modelleri

Detaylı

FIRM LEVEL DETERMINANTS OF FOREIGN PORTFOLIO INVESTMENTS IN TURKEY: A DYNAMIC PANEL REGRESSION ANALYSIS APPROACH

FIRM LEVEL DETERMINANTS OF FOREIGN PORTFOLIO INVESTMENTS IN TURKEY: A DYNAMIC PANEL REGRESSION ANALYSIS APPROACH Journal of Economics, Finance and Accounting (JEFA), ISSN: 2148-6697 Journal of Economics, Finance and Accounting JEFA (2016), Vol.3(2) Year: 2016 Volume: 3 Issue: 2 FIRM LEVEL DETERMINANTS OF FOREIGN

Detaylı

Popülasyon Ortalamasının Tahmin Edilmesi

Popülasyon Ortalamasının Tahmin Edilmesi Güven Aralıkları Popülasyon Ortalamasının Tahmin Edilmesi Tanımlar: Nokta Tahmini Popülasyon parametresi hakkında tek bir rakamdan oluşan tahmindir. Popülasyon ortalaması ile ilgili en iyi nokta tahmini

Detaylı

İstatistiksel Yorumlama

İstatistiksel Yorumlama İstatistiksel Yorumlama Amaç, popülasyon hakkında yorumlamalar yapmaktadır. Populasyon Parametre Karar Vermek Örnek İstatistik Tahmin 1 Tahmin Olaylar hakkında tahminlerde bulunmak ve karar vermek zorundayız

Detaylı

Tekrarlı Ölçümler ANOVA

Tekrarlı Ölçümler ANOVA Tekrarlı Ölçümler ANOVA Repeated Measures ANOVA Aynı veya ilişkili örneklemlerin tekrarlı ölçümlerinin ortalamalarının aynı olup olmadığını test eder. Farklı zamanlardaki ölçümlerde aynı (ilişkili) kişiler

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

çindekiler Yatay-Kesit Veriler ile Regresyon Analizi 21 Ekonometrinin Do as ve ktisadi Veri 1 Çoklu Regresyon Analizi: Tahmin 68

çindekiler Yatay-Kesit Veriler ile Regresyon Analizi 21 Ekonometrinin Do as ve ktisadi Veri 1 Çoklu Regresyon Analizi: Tahmin 68 BÖLÜM 1 Ekonometrinin Do as ve ktisadi Veri 1 1.1 Ekonometri Nedir? 1 1.2 Uygulamal ktisadi Analizin Ad mlar 2 1.3 ktisadi Verinin Yap s 5 Yatay-Kesit Verileri 5 Zaman Serisi Verisi 8 Havuzlanm Yatay Kesitler

Detaylı

Nedensel Modeller Y X X X

Nedensel Modeller Y X X X Tahmin Yöntemleri Nedensel Modeller X 1, X 2,...,X n şeklinde tanımlanan n değişkenin Y ile ilgili olmakta; Y=f(X 1, X 2,...,X n ) şeklinde bir Y fonksiyonu tanımlanmaktadır. Fonksiyon genellikle aşağıdaki

Detaylı

TALEP YANLI YENİLİK: FARKLI ÖZELLİKLERDEKİ FİRMALAR İÇİN ROLÜNÜN BELİRLENMESİ

TALEP YANLI YENİLİK: FARKLI ÖZELLİKLERDEKİ FİRMALAR İÇİN ROLÜNÜN BELİRLENMESİ TALEP YANLI YENİLİK: FARKLI ÖZELLİKLERDEKİ FİRMALAR İÇİN ROLÜNÜN BELİRLENMESİ Yeşim Üçdoğruk Dokuz Eylül Üniversitesi AYTEP-27.01.2011 Literatür Ar-Ge Harcamaları ~ Yenilik Faaliyetleri Farklı firmaların

Detaylı

AR-GE & İNOVASYON VE EKONOMİK BÜYÜME: TÜRKİYE VE AB ÖRNEĞİ İÇİN DİNAMİK PANEL VERİ ANALİZİ

AR-GE & İNOVASYON VE EKONOMİK BÜYÜME: TÜRKİYE VE AB ÖRNEĞİ İÇİN DİNAMİK PANEL VERİ ANALİZİ AİBÜ Sosyal Bilimler Enstitüsü Dergisi, 2014, Cilt:14, Yıl:14, Sayı:2, 14: 1-17 AR-GE & İNOVASYON VE EKONOMİK BÜYÜME: TÜRKİYE VE AB ÖRNEĞİ İÇİN DİNAMİK PANEL VERİ ANALİZİ Ahmet GÜLMEZ * Ahmet Gökçe AKPOLAT

Detaylı

LOJİSTİK REGRESYON ANALİZİ

LOJİSTİK REGRESYON ANALİZİ LOJİSTİK REGRESYON ANALİZİ Lojistik Regresyon Analizini daha kolay izleyebilmek için bazı terimleri tanımlayalım: 1. Değişken (incelenen özellik): Bireyden bireye farklı değerler alabilen özellik, fenomen

Detaylı

altında ilerde ele alınacaktır.

altında ilerde ele alınacaktır. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 1 NOKTA TAHMİN YÖNTEMLERİ Şimdiye kadar verilmiş tahmin edicilerin sonlu örneklem ve asimptotik özelliklerini inceledik. Acaba bilinmeyen anakütle parametrelerini

Detaylı

Değişen Varyans (Heteroscedasticity) Sabit Varyans (Homoscedasticity) Varsayımı Altında Basit Regresyon Modeli

Değişen Varyans (Heteroscedasticity) Sabit Varyans (Homoscedasticity) Varsayımı Altında Basit Regresyon Modeli 1 2 Değişen Varyans (Heteroscedasticity) DEĞİŞEN VARYANS Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14

Detaylı

Makroekonomik Faktörlerin Vadeli İşlem (Futures) Sözleşmelerine Etkisi: VOB ta Bir Uygulama

Makroekonomik Faktörlerin Vadeli İşlem (Futures) Sözleşmelerine Etkisi: VOB ta Bir Uygulama Makroekonomik Faktörlerin Vadeli İşlem (Futures) Sözleşmelerine Etkisi: VOB ta Bir Uygulama Hasibe ÖZGÜMÜŞ Turhan KORKMAZ ** Emrah İsmail ÇEVİK *** Özet Bu çalışmada Şubat 2005 - Kasım 2011 tarihleri arasında,

Detaylı

A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir.

A İSTATİSTİK. 1. nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. . nc r, n tane nesneden her defasında r tanesinin alındığı (sıralama önemsiz) kombinasyonların sayısını göstermektedir. Buna göre, n C r + n C r toplamı aşağıdakilerden hangisine eşittir? A) n + C r B)

Detaylı

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI SORU- 1 : ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI X ve Y birbirinden bağımsız iki rasgele değişken olmak üzere, sırasıyla aşağıdaki moment çıkaran fonksiyonlarına sahiptir: 2 2 M () t = e,

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri

SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri ÖNSÖZ Gerçekte herhangi bir olguyu etkileyen dinamikler çok karmaşıktır ve her alanda olayların akışını etkileyen faktörler çok sayıda (genellikle sonsuz sayıda) özellik tarafından belirlendiğinden çok

Detaylı

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı)

TAHMİNLEYİCİLERİN ÖZELLİKLERİ Sapmasızlık 3.2. Tutarlılık 3.3. Etkinlik minimum varyans 3.4. Aralık tahmini (güven aralığı) 3 TAHMİNLEYİCİLERİN ÖZELLİKLERİ 3.1. Sapmasızlık 3.. Tutarlılık 3.3. Etkilik miimum varyas 3.4. Aralık tahmii (güve aralığı) İyi bir tahmi edici dağılımı tahmi edilecek populasyo parametresie yakı civarda

Detaylı

İmalat Sanayi Firmalarının Nakit Tutma Dinamikleri Cash Holding Dynamics of Manufacturing Firms. Yrd. Doç. Dr. Emel Yücel

İmalat Sanayi Firmalarının Nakit Tutma Dinamikleri Cash Holding Dynamics of Manufacturing Firms. Yrd. Doç. Dr. Emel Yücel Anadolu Üniversesi Sosyal Bilimler Dergisi Anadolu Universy Journal of Social Sciences İmalat Sanayi Firmalarının Nak Tutma Dinamikleri Cash Holding Dynamics of Manufacturing Firms Yrd. Doç. Dr. Emel Yücel

Detaylı

DIŞ TİCARET ENSTİTÜSÜ WORKING PAPER SERIES WPS NO/ 09/2015-11 HALKA AÇIK MEVDUAT BANKALARINDA TAHVİL İHRACININ NET FAİZ GETİRİSİNE ETKİSİ

DIŞ TİCARET ENSTİTÜSÜ WORKING PAPER SERIES WPS NO/ 09/2015-11 HALKA AÇIK MEVDUAT BANKALARINDA TAHVİL İHRACININ NET FAİZ GETİRİSİNE ETKİSİ DIŞ TİCARET ENSTİTÜSÜ WORKING PAPER SERIES WPS NO/ 09/2015-11 HALKA AÇIK MEVDUAT BANKALARINDA TAHVİL İHRACININ NET FAİZ GETİRİSİNE ETKİSİ Cansel Nuray AKSOY* * Türkiye İş Bankası A.Ş. Cansel.aksoy@isbank.com.tr

Detaylı

Makroekonomik Faktörlerin Vadeli İşlem (Futures) Sözleşmelerine Etkisi: VOB ta Bir Uygulama

Makroekonomik Faktörlerin Vadeli İşlem (Futures) Sözleşmelerine Etkisi: VOB ta Bir Uygulama Makroekonomik Faktörlerin Vadeli İşlem (Futures) Sözleşmelerine Etkisi: VOB ta Bir Uygulama Hasibe ÖZGÜMÜŞ Turhan KORKMAZ ** Emrah İsmail ÇEVİK *** Özet Bu çalışmada Şubat 2005 - Kasım 2011 tarihleri arasında,

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

Ekonomik Özgürlükler Ekonomik Büyümenin Belirleyicileri mi? OECD Ülkeleri Üzerine Bir Uygulama

Ekonomik Özgürlükler Ekonomik Büyümenin Belirleyicileri mi? OECD Ülkeleri Üzerine Bir Uygulama Ekonomik Özgürlükler Ekonomik Büyümenin Belirleyicileri mi? OECD Ülkeleri Üzerine Bir Uygulama Ekonomik Özgürlükler Ekonomik Büyümenin Belirleyicileri mi? OECD Ülkeleri Üzerine Bir Uygulama Mine Işık*

Detaylı

15.433 YATIRIM. Ders 2: Menkul Kıymetler ve Wall Street de Rassal Yürüyüş. Bahar 2003

15.433 YATIRIM. Ders 2: Menkul Kıymetler ve Wall Street de Rassal Yürüyüş. Bahar 2003 15.433 YATIRIM Ders 2: Menkul Kıymetler ve Wall Street de Rassal Yürüyüş Bahar 2003 İçerik Olasılık Teorisi Olasılık dağılımlarının kısa bir gözden geçirmesi Rassal olayları normal olaylarla değerlendirmek

Detaylı

OLASILIK ve İSTATİSTİK Hipotez Testleri

OLASILIK ve İSTATİSTİK Hipotez Testleri OLASILIK ve İSTATİSTİK Hipotez Testleri Yrd.Doç.Dr. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü Hipotezler ve Testler Hipotez, kitleye(yığına) ait

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Örnekleme Planlar ve Dağılımları Prof. Dr. İrfan KAYMAZ Tanım İncelenen olayın ait olduğu anakütlenin bütünüyle dikkate alınması zaman, para, ekipman ve bunun gibi nedenlerden dolayı

Detaylı

İhracata Dayalı Büyüme Hipotezi: Türkiye Uygulaması

İhracata Dayalı Büyüme Hipotezi: Türkiye Uygulaması The PDF version of an unedited manuscript has been peer reviewed and accepted for publication. Based upon the publication rules of the journal, the manuscript has been formatted, but not finalized yet.

Detaylı

The Journal of Accounting and Finance October/ 2014

The Journal of Accounting and Finance October/ 2014 Muhasebe ve Finansman Dergisi Ekim/ 2014 Finansal Oranlar Ve Firma Değeri İlişkisi: BİST de Bir Uygulama Yücel AYRIÇAY Veysel Eren TÜRK ÖZET Bu çalışmanın amacı, firmaların finansal oranları ile firma

Detaylı

Zaman Serileri Ekonometrisine Giriş

Zaman Serileri Ekonometrisine Giriş Zaman Serileri Ekonometrisine Giriş Yöney Özbağlanım Modeli Ekonometri 2 Konu 27 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Fikriye KURTOĞLU QUANTILE REGRESYON: TEORİSİ VE UYGULAMALARI İSTATİSTİK ANABİLİM DALI ADANA, 2011 ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

Detaylı

KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ

KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ 1 KORELASYON ANALİZİ İki değişken arasındaki doğrusal ilişkinin gücünü(derecesini) ve yönünü belirlemek için hesaplanan bir sayıdır. Belirli

Detaylı

Araş.Gör. Efe SARIBAY

Araş.Gör. Efe SARIBAY GÜVEN ARALIKLARI (ARALIK TAHMİNİ) ALIŞTIRMA SORULARI Araş.Gör. Efe SARIBAY 1) Bir hisse senedinin $ bazında fiyatının ortalamasını incelemek için yapılan bir araştırmada 18 gün boyunca hisse senedinin

Detaylı

Korelasyon, Korelasyon Türleri ve Regresyon

Korelasyon, Korelasyon Türleri ve Regresyon Korelasyon, Korelasyon Türleri ve Regresyon İçerik Korelasyon Korelasyon Türleri Korelasyon Katsayısı Regresyon KORELASYON Korelasyon iki ya da daha fazla değişken arasındaki doğrusal ilişkiyi gösterir.

Detaylı