VECTOR MECHANICS FOR ENGINEERS: STATICS

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "VECTOR MECHANICS FOR ENGINEERS: STATICS"

Transkript

1 Seventh Edton VECTOR ECHNICS OR ENGINEERS: STTICS ednand. ee E. Russell Johnston, J. Des Notu: Ha CR İstanbul Ten Ünvestes Tel: / 116 E-mal: Web: 3. Rt Csmle: Eşdeğe Kuvvet Sstemle 2002 The cgaw-hll Companes, Inc. ll ghts eseved.

2 csm maddesel nota olaa abul etme he aman ugun değld. Genelde, csmn boutlaı ve uvvetlen ugulama notası önemld. eante b ço csm t olaa abul edlebl: uvvet ets altında şel değşm ço üçütü ve denge oşullaını ve csmn haeetnn etleme. u bölümde, t csme ugulanan uvvetlen ets ve velen uvvet sstemnn daha bast olan eşdeğe uvvet sstemne dönüştüülmes ncelenecet uvvetn b notaa göe moment uvvetn b esene göe moment uvvet çftnn moment t csme et eden hehang b uvvet sstem, b notaa et eden b uvvet ve uvvet çftnden oluşan eşdeğe b ssteme dönüştüülebl.

3 Dış ve İç Kuvvetle Rt csmlee et eden uvvetle guba aılı: - Dış uvvetle - İç uvvetle Dış uvvetle sebest csm dagamında göstel He uvvet csme öteleme haeet, dönme haeet vea he sn blte aptıabl.

4 Kadıılablme İles: Eşdeğe Kuvvetle uvvetn tes çgs bounca adııldığında, csmn denge vea haeet şatlaında değşl olma. uvvetnn ugulama notasını ön tampondan aa tampona adıılması amonun haeetn değştme. Kadıılablme les ç uvvetle çn ve şel değşten csmle çn ullanılama.

5 İ Vetöün Vetöel Çapımı uvvetn b notaa göe moment, vetöel çapım ugulamalaı le daha anlaşılabl. ve vetölenn vetöel çapımı şu şelde tanımlanı: 1. Sonuç vetöü V, ve vetölenn oluştuduğu düleme dt. 2. V vetöünün şddet: V sn θ 3. V vetöünün önü sağ el ualı le bellen. Vetöel çapım öellle: ( ) ( 1 2 ) 1 2 ( ) S ( S)

6 Sağ el ualı

7 Vetöel Çapım: D leşenle Kateen bm vetölen vetöel çapımı: v ve vetölenn vetöel çapımı: ( ) ( ) V ( ) ( ) ( )

8 Kuvvetn Notaa Göe oment uvvet vetöü şddet ve önü le tanımlanı. u uvvetn csm üende ets ugulama notasına bağlıdı. e vetöü uvvetnn O notasına göe moment: O oment vetöü O O notası ve uvvetnn oluştuduğu düleme dt. O momentnn şddet csmn uvvet ets altında dönme eğlmnn ölçüsüdü. Yönü sağ el ualı le bellen. O snθ d nı şddetl ve önlü moment oluştuan he hang b uvvet, uvvetnn eşdeğed.

9 İ-boutlu apılada uunlu ve genşl vadı. Denl hmal edl. Kuvvetle b dülem çnded. Yapı dülemn O notası ve uvvet oluştuu. O : uvvetn O notasına göe momentd ve düleme dt. Kuvvet, apıı saat belenn tes önünde çevmee çalışısa moment önü dülemden dışaıa doğudu. u ön potf ön olaa seçl. Kuvvet, apıı saat belenn önünde çevmee çalışısa moment önü dülemden çee doğudu. u ön negatf ön olaa seçl.

10 Vagnon Teoem notaa eten b ço uvvetn bleşesnn b O notasına göe moment, bu uvvetlen O notasına göe momentlenn toplamına eştt: ( ) L L

11 omentn D leşenle O uvvetnn O notasına göe moment: O, ( ) ( ) ( ) O

12 uvvetnn notasına göe moment: / ( ) ( ) ( ) ( ) ( ) ( ) /

13 İ-boutlu apıla çn: ( ) Z O O ( ) ( ) [ ] ( ) ( ) Z O O

14 Öne oblem N lu d uvvet O notasından bağlanmış şafta notasından etmeted. a) O notasına göe moment, 24 cm N b) anı moment oluştuaca, notasına ugulanaca ata uvvet, c) anı moment oluştuaca, notasına ugulanaca en üçü şddetl uvvet, d) anı moment oluştuaca 240 N lu düşe uvvetn en, e) b, c, ve d şıında elde ettğn uvvetlen onal uvvete eşdeğe olup olmadığını, bellen.

15 24 cm N a) Kuvvetn O notasına göe oluştuduğu momentn şddet, uvvetn tes çgsle moment alma notası aasında d mesafele çapımı le bulunu. oment saat bele önünde olduğuna göe, önü safa dülemnn çne doğudu. O d O d ( 24cm) cos60 ( 100 N)( 12 cm) 12 cm. O 1200 N cm

16 b) nı moment oluştuan notasına ugulanaca ata uvvet: 24 cm 1200 N d O cm. ( ) 24 cm sn 60 d ( 20.8 cm. ) 20.8 cm 1200 N cm cm 57.7 N

17 24 cm c) nı moment oluştuan notasına ugulanaca en üçü uvvet: unun çn tes çgs le moment alma notası aasında d mesafenn en büü değee sahp olması gee. uvvetnn şaft esenne d olduğu duumda geçeleş N O cm d ( 24 cm) 1200 N cm 24 cm 50 N

18 d) anı moment oluştuaca 240 N lu d uvvetn ugulama notası: N 1200 N O cm d ( 240 N) d d Ocos N cm 240 N 5 cm 5 cm O 10 cm

19 24 cm N e) b, c ve d şılaında elde edlen uvvetle onal uvvet le O notasına göe eşt şddetl ve önlü moment oluştumatadıla. aat bu evvetlen şddet, önü ve tes çgle falı olduğu çn eşdeğe uvvet değldle. 24 cm 24 cm N

20 Öne oblem 3.4 Ddötgen plaa ve notalaından duvaa sabtlenmşt ve CD tel le destelenmeted. Telde uvvetn 200 N olduğu blnosa, teln C notasından plaaa uguladığı uvvetn notasına göe momentn hesaplaını. ÇÖZÜ: uvvetnn notasına göe moment vetöel çapım le bulunu: C

21 C C C λ ( 200 N) ( 200 N) ( 0.3 m) ( 0.08 m) C C ( 0.3 m) ( 0.24 m) ( 0.32 m) ( 120 N) ( 96 N) ( 128 N) D D 0.5 m v ( 7.68 N m) ( 28.8 N m) ( 28.8 N m)

22 İ Vetöün Sale Çapımı İ vetö ve nun sale çapım tanımı: cosθ Scale çapım öellle: ( ) ( ) tanms S v ( ) ( ) Kateen bm vetölen sale çapımı:

23 İ Vetöün Sale Çapımı: Ugulamala İ vetö aasında açı: cosθ cosθ Vetöün velen esende düşümü: OL cosθ cosθ cosθ nn OL bounca düşümü OL m vetö le tanımlanmış b esen çn: OL λ cos θ cosθ cosθ

24 Vetölen Üçlü Kaşı Çapımı ( ) sonuc sale S S, ve vetölenn 6 değş çapımı eşt şddetld faat şaetle anı değld. ( ) ( ) ( ) ( ) ( ) ( ) S S S S S S ( ) ( ) ( ) ( ) S S S S S S S

25 Kuvvetn Velen Esene Göe oment notasına ugalanan uvvetnn O notasına göe moment O : O OL esenne göe moment OL, O momentnn OL esen üende düşümüdü: OL Cos Cosθ λ λ λ 0 θ 01 0 O ( ) OL λ λ λ omentn bleşenle:

26 uvvetn ef b esene göe moment: L λ λ ( ) Sonuç velen esende notasından bağımsıdı.

27 Öne oblem 3.5 uvvet üpüne öşesnde etmeted. uvvetnn a) notasına göe, b) enaına göe, c) G öşegenne göe momentlen bulunu. d) G le C.doğulaı aasında d uunluğu bulunu.

28 uvvetnn notasına göe moment: ( ) ( ) ( ) ( ) ( ) a a a a 2) / ( 2) / ( 2 ) (1/ ) 2 (1/ ( )( ) a 2 / uvvetnn esenne göe moment: ( )( ) a 2 / 2 a /

29 uvvetnn G öşegenne göe moment: ( ) ( ) ( ) ( ) ( ) a a a a a a a G G G G λ λ 6 a G

30 G le C doğulaı asında d mesafe: ( ) ( ) ( ) λ u nedenle, vetöü G.öşegenne dt. d a G 6 6 a d

31 Kuvvet Çftnn oment İ uvvet ve - anı şddete, paalel tes çgsne faat ıt önlee sahp se uvvet çft oluştuula Kuvvet çftnn moment: ( ) snθ d ( ) Kuvvet çftnn moment vetöü seçlen oodnat meenn enden bağımsıdı: Sebest vetödü ve hehang b notaa ugulandığında anı et oluştuu.

32 İ uvvet çftnn momentn anı olması çn: aalel dülemlee sahp olması gee He uvvet çftnn oluştuduğu momentlen önle anı olmalıdı. ıca d d

33 Kuvvet Çftlenn Toplanması Kuvvet çftle çeen 1 ve 2 esşen dülemle çn: dülem dülem Vetölen bleşes de uvvet çft oluştuu: ( ) 1 2 R Vagnon theoem ullanılısa:

34 Kuvvet Çftle Vetölele Göstelebl uvvet çft, uvvet çftnn oluştuduğu momentle anı şddete ve öne sahp vetöle göstelebl. Kuvvet çft vetöle vetöel toplama uallaına uala. Kuvvet çft netöle bleşenlene aılabl. Kuvvet çft vetöle sebest vetödüle. Ugulama notası enn önem otu.

35 Kuvvetn O Notasında Kuvvet ve Kuvvet Çftne Çöümlenmes Kuvvet vetöü, O notasına adıılıen sadece bast taşıma şlem apılma. O notasında uvvetle anı şddete sahp ıt vetöle eleştlse sstemde değşlğe neden olma. u üç uvvet eşdeğe b uvvet ve uvvet çft le e değştebl: Kuvvet-Kuvvet çft sstem.

36 uvvetnn notasından O notasına adıılması falı b uvvet çftnn toplamını geet, O : O ' uvvetnn O notalaına göe momentle: ( ) s s s O O ' ' Kuvvet-Kuvvet çft sstemnn O notasından O notasına taşınması, O notasında uvvetn O notasına göe momentnn toplamını geet.

37 12 cm Öne oblem N 12 cm Şelde uvvet çftnn te b uvvet çft çn bleşenlen bulunu. 20 N 9 cm 9 cm 30 N 20 N Çöüm Velen uvvet çftlenn hesabını olalaştıma çn notasına doğultulaında 20 N lu uvvet lave edlebl. ölece toplamı ola olan 3 uvvet çft oluşu. ltenatf olaa, uvvetn ugulama notası olduğu çn (bu uvvetlen moment sıfı olacatı), D notasına göe momentle hesaplanabl.

38 12 cm 12 cm notasına 20 N şddetl önlende uvvet lave edlse: 30 N 9 cm 9 cm 20 N 30 N 20 N 20 N 20 N Üç uvvet çft: ( 30 N)( 18 cm) 540 N ( 20 N)( 12 cm) 240N ( 20 N)( 9 cm) 180 N cm cm cm ( 180 N cm) ( 540 N cm) ( 240N cm)

39 12 cm 12 cm 30 N 20 N ltenatf olaa, uvvetlen D notasına göe moment hesaplanabl: 9 cm 9 cm 30 N 20 N D notasına göe sadece C ve E notalaında uvvetlen momentle vadı. D ( 18 cm) ( 30 N) ( 9 cm) ( 12 cm) ( 180 N cm) [ ] ( 20 N) ( 540 N cm) ( 240N cm)

40 Kuvvet Sstemlenn Kuvvet ve Kuvvet Çftne Çöümlenmes Kuvvetle sstem O notasına göe b uvvet ve uvvet çftne çöümlenebl. lşee uvvet ve uvvet çft vetöle: R R ( ) O O notasında uvvet ve moment çft O notasına adıılısa: R O' R O s R İ uvvetle sstem anı uvvet-uvvet çftne çöümleneblosa eşdeğed.

41 Öne oblem 3.8 Şelde ş çn, uvvetle sstemn (a) notasında eşdeğe uvvet-uvvet çftne (b) notasında eşdeğe uvvet-uvvet çftne ve (c) te b uvvete ndgen Not: esnet teple atılmaacağı çn velen uvvet sstem ets altında ş dengede değld.

42 a) Kuvvetle notasına taşısa: R R R R ( 150 N) ( 600 N) ( 100 N) ( 250 N) ( 600 N) ( ) ( 1.6 ) ( 600 ) ( 2.8 ) ( 100 ) ( 4.8 ) ( 250 ) ( 1880 N m)

43 b) notasında eşdeğe uvvet-uvvet çftn bulma çn notasında uvvet-uvvet çftn ullanabl. R ( 600 N) R R R ( 1880 N m) ( 4.8 m) ( 600 N) ( 1880 N m) ( 2880 N m) R ( 1000 N m)

44 Öne oblem 3.10 Şelde dseğe et eden 3 uvvet ene notasına eten eşdeğe b uvvet-uvvet çft bulunu.

45 Kuvvet vetölenn notasına göe e vetöle: C D ( m) ( m) ( m) Kuvvetlen bleşenle: C D ( 1000 N)( cos 45 cos 45 ) 707 ( 1200 N)( cos60 cos30 ) ( N) ( N) λ ( 700 N) λ E E ( N)

46 Eşdeğe Kuvvet: ( ) ( ) ( ) R ( ) N R Kuvvet Çft: ( ) D D c C R v R

47 d Cvata sıılması d d enteşe Kapı açılması Duva Duva Kapı d

θ A **pozitif dönüş yönü

θ A **pozitif dönüş yönü ENT B Kuvvetn B Noktaa Göe oment o o d θ θ d.snθ o..snθ d. **poztf dönüş önü noktasına etk eden hehang b kuvvetnn noktasında medana geteceğ moment o ; ı tanımlaan e vektöü le kuvvet vektöünün vektöel çapımıdı.

Detaylı

İLERİ DİNAMİK. Yücel Ercan

İLERİ DİNAMİK. Yücel Ercan İERİ DİNAİK Yücel Ecan İERİ DİNAİK Yücel Ecan Bnc Süüm: Aalı 4 SBN: 978-65-3-98- Coght 4: Yücel Ecan Bu tabın telf halaı aaa att. Yaa tabın açı ana olaa ullanımına n vemşt. Kta ana beltme suetle sebestçe

Detaylı

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTİ

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTİ ĞLK MEKEZİ VE LN TLET MMENTİ 1 1. ĞLK MEKEZİ (CENTD) ğılık meke paalel kuvvetleen otaa çıkan geometk kavamı. Yalnıca paalel kuvvetle ağılık meke vaı. ğılık meke fksel csmn vea paçacıkla sstemnn tüm ağılığının

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS OR ENGINEERS: STATICS edinand P. Bee E. Russell Johnston, J. Des Notu: Hai ACAR İstanbul Teknik Üniveistesi Tel: 285 31 46 / 116 E-mail: acah@itu.edu.t Web: http://atlas.cc.itu.edu.t/~acah

Detaylı

FİZ121 FİZİK. Ankara Üniversitesi Diş Hekimliği Fakültesi. 26.09.2013 Ankara. Aysuhan Ozansoy

FİZ121 FİZİK. Ankara Üniversitesi Diş Hekimliği Fakültesi. 26.09.2013 Ankara. Aysuhan Ozansoy FİZ121 FİZİK naa Ünvestes Dş Hemlğ Faültes 2. Des naa suhan Oanso ölüm:2 Vetöle 1. Vetöel ve Sale Ncelle 2. Vetölen Göstem 3. Vetölede Toplama 3.1. Koodnat Sstemle 3.2. Uç uca eleme Yöntem 3.3. Paalele

Detaylı

AKM 202. Akõşkanlar Mekaniği. Ders Notları. 2.Bölüm. Temel Kavramlar. Gemi İnşaatõ ve Deniz Bilimleri Fakültesi. Hazõrlayan

AKM 202. Akõşkanlar Mekaniği. Ders Notları. 2.Bölüm. Temel Kavramlar. Gemi İnşaatõ ve Deniz Bilimleri Fakültesi. Hazõrlayan KM 0 õşala Meağ Des Notlaı ölüm Temel Kavamla İTÜ Gem İşaatõ ve De lmle Faültes Haõlaa Yd Doç D Şafa Nu Etü Oda No:47 Tel: 85 68 e-posta: etu@tuedut DERS NOTLRI TEMEL KRMLR KM 0 KIŞKNLR MEKNİĞİ Süel Otam

Detaylı

ÜÇ BOYUTLU BOUGUER ANOMALİSİNİN TÜREV KULLANILMADAN YENİ BİR YÖNTEMLE HESAPLANIŞI. Hasan CAVŞAK 1 cavsak@ktu.edu.tr

ÜÇ BOYUTLU BOUGUER ANOMALİSİNİN TÜREV KULLANILMADAN YENİ BİR YÖNTEMLE HESAPLANIŞI. Hasan CAVŞAK 1 cavsak@ktu.edu.tr ÜÇ OTL OER NOMLİSİNİN TÜREV KLLNILMDN ENİ İR ÖNTEMLE HESPLNIŞI Hasan VŞK cavsa@tu.eu.t Ö: lm Dünyasına genel anlama b büyülüğün stenen b yöne gaent yan eğşm o yöne alınan tüevle saptanı. u yöntem aman

Detaylı

5. Ders Işığın Kutuplanması

5. Ders Işığın Kutuplanması 5. Des Işığın Kutuplanması H = H +z Bu bölümü bitidiğinizde, Işığın utuplanma özelliği, Doğusal, daiesel, elipti utuplu ışığın özellilei, Kutuplaıcıla, Jones vetö ve matis gösteimi onulaında bilgi sahibi

Detaylı

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B-Grubu 2014-2015 Bahar Yarıyılı Bölüm-II 25.02.2015 Ankara. Aysuhan OZANSOY

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B-Grubu 2014-2015 Bahar Yarıyılı Bölüm-II 25.02.2015 Ankara. Aysuhan OZANSOY FİZ10 FİZİK-II Ankaa Ünvestes Fen Fakültes Kmya Bölümü B-Gubu 014-015 Baha Yaıyılı Bölüm-II 5.0.015 Ankaa Aysuhan OZANSOY Bölüm : Elektk Alan 1. Elektk Alan. Elektk Alan Çzgle 3. Süekl Yük Dağılımlaı 4.

Detaylı

1. Düğüm noktası ve eleman tabloları hazırlanır.

1. Düğüm noktası ve eleman tabloları hazırlanır. Yapı tatğ - Mats Ye Değştme Yöntemne Gş / Doç DBlgeDOAN Öne : Şelde göülen sstem Mats Deplasman Yöntem le, velen dış yüle çn çözülmüş ve ç uvvetle hesaplanmıştı x Nm N N N/m z N/m m m EI Nm,EA 7 N Düğüm

Detaylı

BÖLÜM 8: POTANSİYEL ENERJİ VE ENERJİNİN KORUNUMU (Kimya Bölümü A grubu)

BÖLÜM 8: POTANSİYEL ENERJİ VE ENERJİNİN KORUNUMU (Kimya Bölümü A grubu) .1.016 BÖLÜM 8: POTANSİYEL ENERJİ VE ENERJİNİN KORNM Km Bölümü A gubu 1. Potnsel Enej 1.1. Yeçem potnsel enejs 1.. Esnel potnsel enejs. Kounumlu ve Kounumsu Kuvvetle 3. Kounumlu Kuvvet - Potnsel Enej İlşs

Detaylı

TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2.

TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2. AIŞIRMAAR 8 BÖÜM R ÇÖZÜMER R cos N 4N 0 4sin0 N M 5d d N ve 4N luk kuv vet lein çu bu ğa dik bi le şen le i şekil de ki gi bi olu nok ta sı na gö e top lam tok; τ = 6 4sin0 + cos4 = 4 + 4 = Nm Çubuk yönde

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Fedinand P. Bee E. Russell Johnston, J. Des Notu: Hayi ACAR İstanbul Teknik Üniveistesi Tel: 285 31 46 / 116 E-mail: acah@itu.edu.t Web: http://atlas.cc.itu.edu.t/~acah

Detaylı

BÖLÜM 2 GAUSS KANUNU

BÖLÜM 2 GAUSS KANUNU BÖLÜM GAUSS KANUNU.1. ELEKTRİK AKISI Elektik akısı, bi yüzeyden geçen elektik alan çizgileinin sayısının bi ölçüsüdü. Kapalı yüzey içinde net bi yük bulunduğunda, yüzeyden geçen alan çizgileinin net sayısı

Detaylı

Optoelektronik Ara Sınav-Çözümler

Optoelektronik Ara Sınav-Çözümler Optelektk Aa Sıav-Çöümle s (.57 ) Su : Dğusal laak kutuplamış ışık ç elektk ala 5 π + t + ( + ) 5 velmekted. uada ala gelğ ˆ ˆ se bu ışık dalgasıı, a) aetk alaı (vektöel) ç b fade tüet ( pua) b) Otamı

Detaylı

DUAL KUATERNİYONLAR ÜZERİNDE SİMPLEKTİK GEOMETRİ E. ATA

DUAL KUATERNİYONLAR ÜZERİNDE SİMPLEKTİK GEOMETRİ E. ATA DÜ Fe Blmle Esttüsü Degs Dual Kuateyola 6. Sayı (Em l004) Üzede Smlet Geomet DUAL KUATERNİYONLAR ÜZERİNDE SİMLEKTİK GEOMETRİ E. ATA Özet Bu maalede dual uateyola üzede smlet gu, smlet etö uzayı e smlet

Detaylı

2.9.1 Parametrik Denklemler Yansıma katsayısı Γ genellikle sanal bir büyüklük olup Γ büyüklüğü ile θr faz açısından oluşur. (1) Yukarıdaki denklemde

2.9.1 Parametrik Denklemler Yansıma katsayısı Γ genellikle sanal bir büyüklük olup Γ büyüklüğü ile θr faz açısından oluşur. (1) Yukarıdaki denklemde .9. Smth Katı Blgsayala gelştlmeden önce letm hattı poblemlen çömek çn bçok abak gelştlmşt. Smth katı veya abağı gelştlen en yaygın patk hesaplama yöntemne sahp olup hala letm hatlılaının gafk olaak analnde

Detaylı

ELEKTRİKSEL KUVVET VE ELEKTRİKSEL ALAN

ELEKTRİKSEL KUVVET VE ELEKTRİKSEL ALAN . BÖÜ TRİS UVVT V TRİS IŞTIRR ÇÖZÜR TRİS UVVT V TRİS. v no ta sın a i yü ün no ta sın a bu lu nan yü e uy gu la ı ğı uv vet,.. 0. & 0 olu. b. 5 0.. 0. 0.. ( 6 olu... 5 0.. 0. 0.. ( 6 olu. uv vet le eşit

Detaylı

Fizik 101: Ders 19 Gündem

Fizik 101: Ders 19 Gündem Fzk 101: Ders 19 Gündem Açısal Momentum: Tanım & Türetmeler Anlamı nedr? Sabt br eksen etrafında dönme L = I Örnek: 2 dsk Dönen skemlede br öğrenc Serbest hareket eden br csmn açısal momentumu Değneğe

Detaylı

HAREKET VE DENGE. ise (P / K) göre hareketlidir. zaman aralığında. ise (P/ oxyz) göre. hareketlidir.

HAREKET VE DENGE. ise (P / K) göre hareketlidir. zaman aralığında. ise (P/ oxyz) göre. hareketlidir. İTÜ Makna akültes HREKET VE DENGE l l örünge Q Q K Q n Kat Csm l n l = l () t l l = l () t = l () t 3 3 n = l () n t l se ( / K) göre hareketldr z t t t zaman aralığında er vektörü r (x,,z) x = xt () =

Detaylı

MÜHENDİSLİK MEKANİĞİ STATİK DERS NOTLARI. Yrd. Doç. Dr. Hüseyin BAYIROĞLU

MÜHENDİSLİK MEKANİĞİ STATİK DERS NOTLARI. Yrd. Doç. Dr. Hüseyin BAYIROĞLU MÜHENİSLİK MEKNİĞİ STTİK ES NOTLI Yrd. oç. r. Hüsen YIOĞLU İSTNUL 6 . Mekanğn tanımı 5. Temel lkeler ve görüşler 5 İçndekler GİİŞ 5 EKTÖLEİN E İŞLEMLEİNİN TNIMI 6. ektörün tanımı 6. ektörel şlemlern tanımı

Detaylı

Jeodezi. Hatırlatma. Vektör gösterimi. Skaler çarpımı

Jeodezi. Hatırlatma. Vektör gösterimi. Skaler çarpımı 0.0.0 Jeoe 0.0.0 Hatılatma Vetö göstem Sale çapımı 0.0.0 0.0.0 Hatılatma 0.0.0 Yüele e Eğle Yüelen Gass Paametele le Göstelmes e etöü B üen he hang b notasının oonatlaı se üe F=0 ea =f enlem bçmne aılabl.

Detaylı

ESKĐŞEHĐR-ŞUBAT 2014. http://mizan.ogu.edu.tr.

ESKĐŞEHĐR-ŞUBAT 2014. http://mizan.ogu.edu.tr. ÖLÜM I ESKĐŞEHĐ-ŞUT 14 1 http://mian.ogu.edu.t. ÖLÜM I ÖLÜM ĐÇĐNEKĐLE ÖNSÖZ... ÖLÜM 1.... Safa ı 1.1 Giiş... 1.. Statikte Kullanılan Temel iimle... 1.3. Vektöel [Sinüs] ve Skale Çapım... ÖLÜM : MOMENT....1.

Detaylı

VEKTÖRLER Koordinat Sistemleri. KONULAR: Koordinat sistemleri Vektör ve skaler nicelikler Bir vektörün bileşenleri Birim vektörler

VEKTÖRLER Koordinat Sistemleri. KONULAR: Koordinat sistemleri Vektör ve skaler nicelikler Bir vektörün bileşenleri Birim vektörler 11.10.011 VEKTÖRLER KONULR: Koordnat ssteler Vektör ve skaler ncelkler r vektörün bleşenler r vektörler Koordnat Ssteler Karteen (dk koordnatlar: r noktaı tesl etenn en ugun olduğu koordnat ssten kullanırı.

Detaylı

11. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 4. Konu MANYETİZMA ETKİNLİK VE TEST ÇÖZÜMLERİ

11. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 4. Konu MANYETİZMA ETKİNLİK VE TEST ÇÖZÜMLERİ 11. SINIF KONU ANLATIMLI. ÜNİTE: ELEKTRİK VE MANYETİZMA 4. Konu MANYETİZMA ETKİNLİK VE TEST ÇÖZÜMLERİ 4 Manyetzma 1.. Ünte 4. Konu (Manyetzma) A nın Çözümle P 1 1 3. Üzenen akımı geen yaıçaplı b halkanın

Detaylı

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI Q z Genel ükleme durumunda, bir Q noktasını üç boutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni gösterilebilir: σ, σ, σ z, τ, τ z, τ z.

Detaylı

Basit Makineler. Test 1 in Çözümleri

Basit Makineler. Test 1 in Çözümleri Basit Makinele BASİ MAİNELER est in Çözümlei. Şekil üzeindeki bilgilee göe dinamomete değeini göstei. Cevap D di.. Makaa ve palanga sistemleinde kuvvetten kazanç sayısı kada yoldan kayıp vadı. uvvet kazancı

Detaylı

BÖLÜM 5: AĞIRLIK MERKEZI-ATALET MOMENTİ

BÖLÜM 5: AĞIRLIK MERKEZI-ATALET MOMENTİ BÖLÜM ĞLK MERKEZİ-TLET MOMENTİ BÖLÜM 5: ĞRLK MERKEZ-TLET MOMENTİ 5.. ĞRLK MERKEZİ HESB [LNN BİRİNCİ MOMENTİ] ğılık, csme uulnn kütle çekm kuvvetd. Dnmomete le ölçülü. Dün'd csm ele lısk ükseğe çıkıldıkç

Detaylı

Harmonik Ortalama İSTATİSTİK I. Ders 4 Merkezi Eğilim Ölçüleri-II. Harmonik Ortalama. Harmonik Ortalama. 70,42 kelime/dakika

Harmonik Ortalama İSTATİSTİK I. Ders 4 Merkezi Eğilim Ölçüleri-II. Harmonik Ortalama. Harmonik Ortalama. 70,42 kelime/dakika Haon Otalaa İSTATİSTİK I Tanı: Haon otalaa b sede gözle değelenn teslenn atet otalaasının tesne eştt. Bast Se çn; Des 4 Meez Eğl Ölçüle-II + + + + X X X 3 X H = = H = + + + + X X X X 3 X = Haon Otalaa

Detaylı

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A)

KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A) KOCELİ ÜNİVERSİTESİ Mühendslk akültes Makna Mühendslğ Bölümü Mukavemet I Vze Sınavı () dı Soyadı : 18 Kasım 013 Sınıfı : No : SORU 1: Şeklde verlen levhalar aralarında açısı 10 o la 0 o arasında olacak

Detaylı

Kütle Merkezi ve Merkezler. Konular: Kütle/Ağırlık merkezleri Merkez kavramı Merkez hesabına yönelik yöntemler

Kütle Merkezi ve Merkezler. Konular: Kütle/Ağırlık merkezleri Merkez kavramı Merkez hesabına yönelik yöntemler Kütle Merkez ve Merkezler Konular: Kütle/ğırlık merkezler Merkez kavramı Merkez hesabına önelk öntemler ğırlıklı Ortalama Merkez kavramının brçok ugulama alanı vardır. Öncelkle ağırlıklı ortalama kavramına

Detaylı

BÖLÜM 1 ELEKTRİK ALANLARI

BÖLÜM 1 ELEKTRİK ALANLARI BÖLÜM 1 ELEKTRİK ALANLARI 1.1. ELEKTRİK YÜKLERİNİN ÖZELLİKLERİ Elektk yükü aşağıdak özellklee sahpt: 1. Doğada atı ve eks olmak üzee k tü yük bulunmaktadı. Aynı yükle bblen tele, faklı yükle se bblen çekele.

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çöümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMLERİ - İki Boutlu

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR ECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi Tel: 85 31 46 / 116 E-mail: acarh@itu.edu.tr Web: http://atlas.cc.itu.edu.tr/~acarh

Detaylı

VEKTÖRLER VE VEKTÖREL IŞLEMLER

VEKTÖRLER VE VEKTÖREL IŞLEMLER VEKTÖRLER VE VEKTÖREL IŞLEMLER 1 2.1 Tanımlar Skaler büyüklük: Sadece şddet bulunan büyüklükler (örn: uzunluk, zaman, kütle, hacm, enerj, yoğunluk) Br harf le sembolze edleblr. (örn: kütle: m) Şddet :

Detaylı

Nokta (Skaler) Çarpım

Nokta (Skaler) Çarpım Nokta (Skale) Çapım Statikte bazen iki doğu aasındaki açının, veya bi kuvvetin bi doğuya paalel ve dik bileşenleinin bulunması geeki. İki boyutlu poblemlede tigonometi ile çözülebili, ancak 3 boyutluda

Detaylı

AJANDA LİTERATÜR TARAMASI

AJANDA LİTERATÜR TARAMASI AJANDA İSTANBUL DAKİ HASTANELERDEN TIBBİ ATIKLARIN TOPLANMASI İÇİN ARA TESİSE UĞRAMALI BİR ARAÇ ROTALAMA MODELİ Denz Asen Koç Ünverstes İtsad ve İdar Blmler Faültes Müge Güçlü Koç Ünverstes Endüstr Mühendslğ

Detaylı

VİDALAR VE CIVATALAR. (DĐKKAT!! Buradaki p: Adım ve n: Ağız Sayısıdır) l = n p

VİDALAR VE CIVATALAR. (DĐKKAT!! Buradaki p: Adım ve n: Ağız Sayısıdır) l = n p VİDALA VE CIVAALA d : Miniu, inö yada diş dibi çapı (=oot) d : Otalaa, noinal çap yada böğü çapı (=ean) d : Maksiu, ajö çap, diş üstü çapı λ : Helis açısı p : Adı (p=pitch) l (hatve): Civatanın bi ta dönüşüne

Detaylı

Fizik 101: Ders 20. Ajanda

Fizik 101: Ders 20. Ajanda Fzk 101: Ders 20 = I konusunda yorumlar Ajanda Br sstemn açısal momentumu çn genel fade Kayan krş örneğ Açısal momentum vektörü Bsklet teker ve döner skemle Jroskobk hareket Hareketl dönme hakkında yorum

Detaylı

Basit Makineler Çözümlü Sorular

Basit Makineler Çözümlü Sorular Basit Makinele Çözümlü Soula Önek 1: x Çubuk sabit makaa üzeinde x kada haeket ettiilise; makaa kaç tu döne? x = n. n = x/ olu. n = sabit makaanın dönme sayısı = sabit makaanın yaıçapı Önek : x Çubuk x

Detaylı

BASİT MAKİNELER BÖLÜM 4

BASİT MAKİNELER BÖLÜM 4 BASİ AİNEER BÖÜ 4 ODE SORU DE SORUARIN ÇÖZÜER fi ip fiekil-i fi fiekil-i ip N fiekil-ii fiekil-ii Çuuklın he iinin ğılığın diyelim Şekil-I de: Desteğe göe moment lısk, Şekil-I de: Şekil-II de: 4 ESEN AINARI

Detaylı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı SRY ÜNİVERSİESİ Djtal ontrol Laboratuvar Deney Föyü Deney No: 2 Sıvı Sevye ontrol Deney 2.. Deneyn macı Bu deneyn amacı, doğrusal olmayan sıvı sevye sstemnn belrlenen br çalışma noktası cvarında doğrusallaştırılmış

Detaylı

FİZK Ders 6. Gauss Kanunu. Dr. Ali ÖVGÜN. DAÜ Fizik Bölümü.

FİZK Ders 6. Gauss Kanunu. Dr. Ali ÖVGÜN. DAÜ Fizik Bölümü. FİZK 14- Des 6 Gauss Kanunu D. Ali ÖVGÜN DAÜ Fizik Bölümü Kaynakla: -Fizik. Cilt (SWAY) -Fiziğin Temellei.Kitap (HALLIDAY & SNIK) -Ünivesite Fiziği (Cilt ) (SAS ve ZMANSKY) http://fizk14.aovgun.com www.aovgun.com

Detaylı

FİZ102 FİZİK-II. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B-Grubu Bahar Yarıyılı Bölüm-III Ankara. A.

FİZ102 FİZİK-II. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B-Grubu Bahar Yarıyılı Bölüm-III Ankara. A. FİZ12 FİZİK-II Ankaa Ünivesitesi Fen Fakültesi Kimya Bölümü B-Gubu 214-215 Baha Yaıyılı Bölüm-III Ankaa A. Ozansoy Bölüm-III: Gauss Kanunu 1. lektik Akısı 2. Gauss Kanunu 3. Gauss Kanununun Uygulamalaı

Detaylı

Çekme testi ve gerilme-birim uzama diyagramı

Çekme testi ve gerilme-birim uzama diyagramı MCHANICS OF MATRIALS Beer Johnston DeWolf Maurek Çekme testi ve gerilme-birim uama diagramı Sünek bir maleme için çekme testi diagramı P P Lo P 2009 The McGraw-Hill Companies, Inc All rights reserved -

Detaylı

BÖLÜM CROSS METODU (HARDY CROSS-1932)

BÖLÜM CROSS METODU (HARDY CROSS-1932) Bölüm Cross Yöntem 5.1. CROSS ETODU (HARDY CROSS-193) BÖÜ 5 Hperstat sstemlern çözümünde ullanılan cross yöntem açı yöntemnn özel br hal olup moment dağıtma (terasyon) metodu olara da ullanılmatadır. Açı

Detaylı

7. VİSKOZ ( SÜRTÜNMELİ ) AKIŞLAR

7. VİSKOZ ( SÜRTÜNMELİ ) AKIŞLAR Tüm aın haklaı Doç. D. Bülent Yeşilata a aitti. İinsi çoğaltılama. III/ 7. İSKOZ ( SÜTÜNMELİ ) AKIŞLA 7.. Giiş Bi akışta iskoite etkisi önemli ise bu akış isko (sütünmeli) akış adını alı. Akışkan iskoitesinden

Detaylı

11. SINIF SORU BANKASI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 4. Konu MANYETİZMA TEST ÇÖZÜMLERİ

11. SINIF SORU BANKASI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 4. Konu MANYETİZMA TEST ÇÖZÜMLERİ 11. SINI SORU ANKASI. ÜNİTE: ELEKTRİK VE MANYETİZMA 4. Konu MANYETİZMA TEST ÇÖZÜMLERİ 4 Manyetzma Test 1 n Çözümle 3. y 1. T R P x S P + tel 1 S ve T noktalaınak bleşke manyetk alanlaın eşt olablmes çn

Detaylı

Fizk 103 Ders 7 İş Güç Enerji Dr. Ali Övgün

Fizk 103 Ders 7 İş Güç Enerji Dr. Ali Övgün Fzk 03 Ders 7 İş Güç Enerj Dr. Al Övgün Os: AS45 Fen ve Edebyat Fakültes Tel: 039-630-897 al.ovgun@emu.edu.tr www.aovgun.com Enerj Nedr? Enerj kısaca ş yapablme yeteneğdr. Ayrıca enerj skaler büyüklüktür.

Detaylı

SORULAR 2 B3. 47k. Şekil 1.

SORULAR 2 B3. 47k. Şekil 1. SOULA Su Şel. de devede ullanılan tanzstla çn h FE 00 ve BE 0, değele velmşt. ve tanzstlaı eşt. a B B 0 en E 0 lablmes çn 5 dencnn değen hesaplaınız. b anzstlaın letöemetö elmlen hesaplaınız ve letö aımlaını

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ 9. BÖÜM ESİŞE UVVEERİ DEESİ MDE SRU - DEİ SRUAR ÇÖZÜMERİ.....cos 0 0 0.sn.cos..sn mvkg 0v Csm dengede olduğun göre, ve kuvvetler bleşenlerne yrılırs,.sn.sn.cos +.cos eştlkler sğlnır. Bu durumd verlen eştlklerden

Detaylı

Çözüm Kitapçığı Deneme-4

Çözüm Kitapçığı Deneme-4 KMU PERSONEL SEÇME SINVI ÖĞRETMENLİK LN İLGİSİ TESTİ LİSE MTEMTİK ÖĞRETMENLİĞİ -5 ŞUT 7 Çözüm Kitapçığı Deneme- u tetlein he hakkı aklıdı. Hangi amaçla olua olun, tetlein tamamının vea bi kımının Mekezimizin

Detaylı

BÖLÜM 4 4. AÇI METODU

BÖLÜM 4 4. AÇI METODU Açı etodu Bölüm. AÇ ETODU BÖÜ Hperstat sstemlern çözümü sstem hperstat yapan blnmeyenlern uvvet ve şel değştrme olmasına göre değşr. Ço açılılı br mütemad rş hperstat yapan mesnet tep uvvetler en atlı

Detaylı

MATERIALS. Basit Eğilme. Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf. Lecture Notes: J. Walt Oler Texas Tech University

MATERIALS. Basit Eğilme. Third Edition. Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf. Lecture Notes: J. Walt Oler Texas Tech University CHAPTER BÖLÜM MECHANICS MUKAVEMET OF I MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Basit Eğilme Lecture Notes: J. Walt Oler Teas Tech Universit Düzenleen: Era Arslan 2002 The McGraw-Hill

Detaylı

BASİT HARMONİK HAREKET... 35. Basit Harmonik Hareket... 35. Yaya Bağlı Bir Kütlenin Basit Harmonik Hareketi... 37. Basit Sarkaç...

BASİT HARMONİK HAREKET... 35. Basit Harmonik Hareket... 35. Yaya Bağlı Bir Kütlenin Basit Harmonik Hareketi... 37. Basit Sarkaç... KUVVET VE HREKET Sayfa No BSİT HRMONİK HREKET................................................ 35 Basit Haoni Haeet............................................ 35 Yaya Bağlı Bi Kütlenin Basit Haoni Haeeti.......................

Detaylı

KUVVET SİSTEMLERİ KUVVET. Vektörel büyüklük. - Kuvvetin büyüklüğü - Kuvvetin doğrultusu - Kuvvetin uygulama noktası - Kuvvetin yönü. Serbest vektör.

KUVVET SİSTEMLERİ KUVVET. Vektörel büyüklük. - Kuvvetin büyüklüğü - Kuvvetin doğrultusu - Kuvvetin uygulama noktası - Kuvvetin yönü. Serbest vektör. İ.T.Ü. aka akültes ekak Aa Blm Dalı STATİK - Bölüm KUVVET SİSTELEİ KUVVET Vektörel büyüklük - Kuvvet büyüklüğü - Kuvvet doğrultusu - Kuvvet uygulama oktası - Kuvvet yöü S = (,,..., ) = + +... + = Serbest

Detaylı

Belvermeye Dayalı Nano Konumlandırıcının Simulasyon Tabanlı Yapısal Analizi

Belvermeye Dayalı Nano Konumlandırıcının Simulasyon Tabanlı Yapısal Analizi TOK'7 Bildiile Kitab stanbul, 5-7 Elül 7 Belvemee Daalı ano Konumlandııcının Simulason Tabanlı Yaısal Analizi Mustafa Yiit ÖZDEMR, Tuna ili, Sehat Yeilut Meatoni Pogamı Sabancı Ünivesitesi, stanbul, Tüie

Detaylı

1. BÖLÜM 1. BÖLÜM BASİ BAS T İ MAKİ T MAK N İ ELER NELER

1. BÖLÜM 1. BÖLÜM BASİ BAS T İ MAKİ T MAK N İ ELER NELER BÖÜ BASİ AİNEER AIŞIRAAR ÇÖZÜER BASİ AİNEER yatay düzlem 0N 0N 0N 0N fiekil-i fiekil-ii yatay düzlem 06 5 06 7 08 He iki şe kil de de des te ğe gö e tok alı nı sa a) kuvvetinin büyüklüğü 04 + 08 80 + 60

Detaylı

11. z = 1 2i karmaşık sayısının çarpmaya göre tersinin eşleniğinin sanal kısmı kaçtır? 14. eşitliğini sağlayan z karmaşık sayısı kaçtır? 15.

11. z = 1 2i karmaşık sayısının çarpmaya göre tersinin eşleniğinin sanal kısmı kaçtır? 14. eşitliğini sağlayan z karmaşık sayısı kaçtır? 15. GD. + se Re() + Im()? www.gkhandemr.rg, 007 Cebr Ntları Gökhan DEMĐR, gdemr@yah.cm.tr Karmaşık sayılar 9. + + sayısı kaça eşttr? 7 890. ( x y) + + ( x + y) se x + y tplamı kaçtır?. x + y ( x) ve se y kaçtır?.

Detaylı

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Ffth E CHPTER MECHNICS OF MTERILS Ferdnand P. eer E. Russell Johnston, Jr. John T. DeWolf Davd F. Mazurek Lecture Notes: J. Walt Oler Texas Tech Unversty. Eksenel Yüklemede Toplam uzama-hperstatk problemler-termal

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT ORTAÖĞRETİM MATEMATİK Bu testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının veya

Detaylı

MÜHENDİSLİK MEKANİĞİ DİNAMİK DERS NOTLARI

MÜHENDİSLİK MEKANİĞİ DİNAMİK DERS NOTLARI MÜHENDİSLİK MEKNİĞİ DİNMİK DERS NOTLR Ya. Doç. D. Hüsein aıoğlu EKİM 00 İSTNUL İçindekile 1 İRİŞ EKTÖREL NLİZ.1 ektö fonksionu. ektö fonksionunun tüevi.3 ektö fonksionunun integali 3 EĞRİLERDE DİFERNSİYEL

Detaylı

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU

VEKTÖRLER KT YRD.DOÇ.DR. KAMİLE TOSUN FELEKOĞLU VEKTÖRLER KT YRD.DOÇ.DR. KMİLE TOSUN ELEKOĞLU 1 Mekanik olaları ölçmekte a da değerlendirmekte kullanılan matematiksel büüklükler: Skaler büüklük: sadece bir saısal değeri tanımlamakta kullanılır, pozitif

Detaylı

TÜMEVARIM DİZİ - SERİ

TÜMEVARIM DİZİ - SERİ 99 A = {, N } ve P() öemes vels. Eğe :. P() doğu,. A ç P() doğu e P(+) öemes de doğu se; P() öemes A ç doğudu. TOPLAM SEMBOLÜ R ve N olm üzee;... dı. c c. c c b b < m < ç m m p p p 0 F F F F F F F F A

Detaylı

30. Uzay çerçeve örnek çözümleri

30. Uzay çerçeve örnek çözümleri . Ua çerçeve örnek çöümleri. Ua çerçeve örnek çöümleri Ua çerçeve eleman sonlu elemanlar metodunun en karmaşık elemanıdır. Bunun nedenleri: ) Her eleman için erel eksen takımı seçilmesi gerekir. Elemanın

Detaylı

Faiz oranının rastlantı değişkeni olması durumunda tam hayat ve dönem sigortaları

Faiz oranının rastlantı değişkeni olması durumunda tam hayat ve dönem sigortaları wwwsascleog İsasçle Degs 009-8 İsasçle Degs Fa oaıı aslaı değşe olması duumuda am haya ve döem sgoalaı sa Saıcı Haceee Üveses Fe Faüles İsas Bölümü eelago@haceeeedu Cea dem Haceee Üveses Fe Faüles üeya

Detaylı

Elektrik Alan Çizgileri. ρ (C/m 3 ) Sürekli bir Yük Dağılımının Elektrik Alanı. Elektrik Alanı, devam. Elektrik Alanı, devam. Elektrik Alanı, devam

Elektrik Alan Çizgileri. ρ (C/m 3 ) Sürekli bir Yük Dağılımının Elektrik Alanı. Elektrik Alanı, devam. Elektrik Alanı, devam. Elektrik Alanı, devam Süekl b Yük Dağılıının Elektk Alanı Yükle topluluğunun yükle aasındak uzaklıkla, lglenlen b noktanın topluluktan olan uzaklığından çok daha küçükse, yükle sste süekld. Süekl b Yük Dağılıının Elektk Alanı,

Detaylı

C) 2 2 2 2H c. D) v = v + 2uv + 2u ; tanθ= C) v 0 =10 3 m/s; tanθ= 2 3

C) 2 2 2 2H c. D) v = v + 2uv + 2u ; tanθ= C) v 0 =10 3 m/s; tanθ= 2 3 . Bi uça sesten ızı oaa, H yüseiğinde üstüüzden uçaen ta tepeizden geçtiten τ süe sona sesini duyabiiyouz. es ızı c ise uçağın ızını buunuz. H c τ H c τ H c τ H c τ H c τ tenis oeti u o v tenis topu. Kütesi

Detaylı

Örnek 1. Çözüm: Örnek 2. Çözüm: 60 30000 300 60 = = = 540

Örnek 1. Çözüm: Örnek 2. Çözüm: 60 30000 300 60 = = = 540 Önek 1 1.8 kn yük altında 175 dev/dak dönen bi mil yatağında çalışacak bilyeli ulman için, 5 saat ömü ve %9 güvenililik istemekteyiz. Öneğin SKF kataloğundan seçmemiz geeken inamik yük sayısı (C 1 ) nedi?

Detaylı

Parçacıkların Kinetiği Impuls-Momentum Yöntemi: Çarpışma

Parçacıkların Kinetiği Impuls-Momentum Yöntemi: Çarpışma Paçacıklaın Kinetiği Impuls-Momentum Yöntemi: Çapışma İki kütle bibii ile kısa süe içeisinde büyük impulsif kuvvetlee yol açacak şekilde temas edese buna çapışma (impact) deni. Çapışma 1. Diekt mekezcil

Detaylı

BÖLÜM 5 İNCE PROFİLLER İÇİN SAYISAL UYGULAMALAR

BÖLÜM 5 İNCE PROFİLLER İÇİN SAYISAL UYGULAMALAR BÖLÜM 5 İE PROFİLLER İÇİ SAYISAL UYGULAMALAR 5. Grş 5. İne profl teors 5.. Analt çözümler 5.. Kamburlu eğrsne polnom şelnde eğr uydurulması 5.. Fourer ntegrallernn sayısal hesabı 5. Kümelenmş-grdaplar

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik ers Notları Sınav Soru ve Çözümleri ĞHN MÜHENİSİK MEKNİĞİ STTİK MÜHENİSİK MEKNİĞİ STTİK İÇİNEKİER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları 2. KUVVET SİSTEMERİ - İki Boutlu Kuvvet Sistemleri

Detaylı

T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İKİ BOYUTTA ETKİLEŞEN TUZAKLANMIŞ AŞIRI SOĞUK BOZONLAR

T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İKİ BOYUTTA ETKİLEŞEN TUZAKLANMIŞ AŞIRI SOĞUK BOZONLAR T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İKİ BOYUTTA ETKİLEŞEN TUZAKLANMIŞ AŞIRI SOĞUK BOZONLAR Al hsan MEŞE DOKTORA TEZİ FİZİK ANABİLİM DALI Danışman :. Pof. D. Eol OKAN. Pof.D. Zeha AKDENİZ EDİRNE

Detaylı

2- Skaler ve Vektörel Büyüklükler (Skaler nicelikler, Vektörsel nicelikler, Vektör bileşenleri, Birim vektörler, Vektör

2- Skaler ve Vektörel Büyüklükler (Skaler nicelikler, Vektörsel nicelikler, Vektör bileşenleri, Birim vektörler, Vektör DESİN DI : İZİK ve MÜHENDİSLİK İLMİ DESİ VEEN ÖĞETİM ELEMNI : Yrd. Doç. Dr. ahrettn ÖVEÇ DESİN İÇEİKLEİ: -zsel üülüler ve out nalz (Teel ve Türev üülüler, r Ssteler, r dönüşüler) - Saler ve Vetörel üülüler

Detaylı

Basit Makineler. Test 1 in Çözümleri. 3. Verilen düzenekte yük 3 ipe bindiği için kuvvetten kazanç 3 tür. Bu nedenle yoldan kayıp da 3 olacaktır.

Basit Makineler. Test 1 in Çözümleri. 3. Verilen düzenekte yük 3 ipe bindiği için kuvvetten kazanç 3 tür. Bu nedenle yoldan kayıp da 3 olacaktır. 9 Basit Makinele BASİ MAİNEER est in Çözülei.. Veilen düzenekte yük ipe bindiği için kuvvetten kazanç tü. Bu nedenle yoldan kayıp da olacaktı. kasnak ükün 5x kada yükselesi için kasnağa bağlı ipin 5x.

Detaylı

- 1 - 3 4v A) 450 B) 500 C) 550 D) 600 E) 650

- 1 - 3 4v A) 450 B) 500 C) 550 D) 600 E) 650 - -. Bi cisi uzunutai younu sabit hızı ie at eteye başıyo. Cisi youn yaısını at ettiğinde hızını yaıya düşüüp aan youn yaısını at ettiğinde yine hızını yaıya düşüetedi. Cisi aan youn yaısını gittiğinde

Detaylı

ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK

ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK ÖABT ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK DENEME SINAVI ÇÖZÜMLERİ ÖĞRETMENLİK ALAN BİLGİSİ DENEME SINAVI / çözümlei. DENEME. Veile öemelede yalız III kesi olaak doğudu. Bu edele doğu cevap seçeeği B di..

Detaylı

3. EŞPOTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ. Bir çift elektrot tarafından oluşturulan elektrik alan ve eş potansiyel çizgilerini görmek.

3. EŞPOTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ. Bir çift elektrot tarafından oluşturulan elektrik alan ve eş potansiyel çizgilerini görmek. 3. EŞPOTNSİYEL VE ELEKTRİK LN ÇİZGİLERİ MÇ i çift elektot taafından oluştuulan elektik alan ve eş potansiyel çizgileini gömek. RÇLR Güç kaynağı Galvanomete Elektot (iki adet) Pob (iki adet) İletken sıvı

Detaylı

KARMAŞIK SAYILAR. Derse giriş için tıklayın...

KARMAŞIK SAYILAR. Derse giriş için tıklayın... KARMAŞIK SAYILAR Derse grş çn tıklayın A Tanım B nn Kuvvetler C İk Karmaşık Sayının Eştlğ D Br Karmaşık Sayının Eşlenğ E Karmaşık Sayılarda Dört İşlem Toplama - Çıkarma Çarpma Bölme F Karmaşık Dülem ve

Detaylı

ö ğ ğ ğ ö ö ö ö ç ö çö ç ö ö ö ğ ç ö ç ğ ğ ö ğ ö ç ğ ö ğ ç ğ ğ ç ğ Ö ğ ğ ç ç ö ç ğ ö ğ ç ö ğ ç ç ö ö ğ ç ğ ğ ö ğ ç ğ ğ ö ç ö ç ö ö ğ ö ç Ş Ü ğ Ü ö Ö Ş ğ Ş Ü ö ğ ö ğ ö ö Ü ö «Ç ğ ö ğ ç ğ ğ ğ çö ç ğ ö ğ

Detaylı

Ğ Ğ Ğ Ç Ç Ç Ş ç Ş Ü ö çö ö ö Ç ö ç ç ç ö ö ç ç ç ö Ç Ç ç Ç Ç Ç Ç ç ç ç Ç Ö Ç ç Ç ç ç ç ö ç ö ö Ç ç ö ö ö ö ç ö Ş Ş Ü Ü ç ö ö Ö ö ö ö çö ç Ğ ö ç Ğ ö Ü Ü ç ö ö Ö Ç Ç ç Ç Ç ç Ç Ö ö ö ç Ş Ç ç ö Ö Ş Ş Ü Ü ç

Detaylı

Ğ İ Ç Ü Ö Ö ö Ü ö ç İ ö ç ç ğ ç «Ü İ ğ İ Ü Ü İ İ İ ğ Ü Ü İ İ ğ ç ç ğ ğ ö ö Ç Ö İ ö İ ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ ğ ğ ç ğ ö ğ ğ ğ ç ğ ğ ğ ğ ö ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ

Detaylı

1. GAZLARIN DAVRANI I

1. GAZLARIN DAVRANI I . GZLRIN DRNI I İdeal Gazlar ç: lm 0 RT İdeal gazlar ç: RT Hacm() basıçla() değşk sıcaklıklarda değşm ekl.. de gösterlmştr. T >T 8 T T T 3 asıç T 4 T T 5 T 7 T 8 Molar Hacm ekl.. Gerçek br gazı değşk sıcaklıklardak

Detaylı

5. ( 8! ) 2 ( 6! ) 2 = ( 8! 6! ). ( 8! + 6! ) Cevap E. 6. Büyük boy kutu = 8 tane. Cevap A dakika = 3 saat 15 dakika olup Göksu, ilk 3 saatte

5. ( 8! ) 2 ( 6! ) 2 = ( 8! 6! ). ( 8! + 6! ) Cevap E. 6. Büyük boy kutu = 8 tane. Cevap A dakika = 3 saat 15 dakika olup Göksu, ilk 3 saatte Deneme - / Mat MTEMTİK DENEMESİ Çözümle. 7 7 7, 0, 7, + + = + + 03, 00,, 3 0 0 7 0 0 7 =. +. +. 3 = + + = 0 bulunu.. Pa ve padaa eklenecek saı olsun. a- b+ b =- a+ b+ a & a - ab+ a =-ab-b -b & a + b =

Detaylı

5. Açısal momentum korunduğu için eşit zaman aralıklarında. 6. Uydular eşit periyotta dönüyor ise yörünge yarıçapları CEVAP: D.

5. Açısal momentum korunduğu için eşit zaman aralıklarında. 6. Uydular eşit periyotta dönüyor ise yörünge yarıçapları CEVAP: D. KOU 5 VSL ÇK SS Çözüle. S 5- ÇÖÜL 5. çısal oentu kounduğu için eşit zaan aalıklaında eşit açı taala. L v CVP: C liptik öüngede dönen udua etki eden çeki kuvveti h z vektöüne dik de ildi. Bundan dola çeki

Detaylı

TEST - 1 BAS T MAK NELER. fiekil-ii

TEST - 1 BAS T MAK NELER. fiekil-ii BA A EER E - fiekil-i fiekil-ii difllisi fiekil - II deki konuma yönünde devi yapaak gelebili Bu duumda difllisi yönünde döne f f ve kasnakla n n ya çapla eflit oldu undan kasna- tu atasa, de tu ata,,

Detaylı

BÖLÜM 1 LİNEER DENKLEM TAKIMLARININ ÇÖZÜM YÖNTEMLERİ

BÖLÜM 1 LİNEER DENKLEM TAKIMLARININ ÇÖZÜM YÖNTEMLERİ BÖLÜM LİEER DEKLEM TAKIMLARII ÇÖZÜM YÖTEMLERİ - Gş Mtse Lnee enem tımının çözüm yönteme Gss emnsyon yöntem Gss-Jon Yöntem Thoms yöntem LU Ayıştım yönteme Jco st tesyon yöntem Gss-Se tesyon yöntem 7 SOR

Detaylı

Uzaysal Görüntü İyileştirme/Filtreleme. Doç. Dr. Fevzi Karslı fkarsli@ktu.edu.tr

Uzaysal Görüntü İyileştirme/Filtreleme. Doç. Dr. Fevzi Karslı fkarsli@ktu.edu.tr Uasal Görüntü İileştirme/Filtreleme Doç. Dr. Fevi Karslı karsli@ktu.edu.tr İileştirme Herhangi bir ugulama için, görüntüü orijinalden daha ugun hale getirmek Ugunluğu her bir ugulama için sağlamak. Bir

Detaylı

BÖLÜM 6 KİNETİK. olarak tanımlanır. Bu tanımla ikinci hareket yasası

BÖLÜM 6 KİNETİK. olarak tanımlanır. Bu tanımla ikinci hareket yasası BÖLÜM 6 KİNETİK 6. Kinetik ve Newtonun ikinci hareket kanunu Kinetik hareketi oluşturan kuvvet moment gibi nedenleri de gö önüne alarak hareketin incelenmesidir. Kinetikte temel asa Newtonun ikinci hareket

Detaylı

ITAP Fizik Olimpiyat Okulu

ITAP Fizik Olimpiyat Okulu Eylül Deneme Sınavı (Prof.Dr.Ventsslav Dmtrov) Konu: Elektrk Devrelernde İndüktans Soru. Şekldek gösterlen devrede lk anda K ve K anahtarları açıktır. K anahtarı kapatılıyor ve kondansatörün gerlm U ε/

Detaylı

Kimyasal Reaksiyon Mühendisliği. Hız Kanunları

Kimyasal Reaksiyon Mühendisliği. Hız Kanunları Kimyasal Reasiyon Mühendisliği Hız Kanunlaı 1 Tanımla Homojen Reasiyon Te fazlıdı. Heteojen Reasiyon Ço fazlıdı, easiyon genel olaa fazla aasındai aaesitlede meydana geli. Tesinmez (Te yönlü) Reasiyon

Detaylı

Bölüm 5 Manyetizma. Prof. Dr. Bahadır BOYACIOĞLU

Bölüm 5 Manyetizma. Prof. Dr. Bahadır BOYACIOĞLU ölüm 5 Manyetizma Pof. D. ahadı OYACOĞLU Manyetizma Manyetik Alanın Tanımı Akım Taşıyan İletkene Etkiyen Kuvvet Düzgün Manyetik Alandaki Akım İlmeğine etkiyen Tok Yüklü bi Paçacığın Manyetik Alan içeisindeki

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları. KUVVET SİSTEMLERİ - İki Boutlu

Detaylı

Katı Cismin Uç Boyutlu Hareketi

Katı Cismin Uç Boyutlu Hareketi Katı Cismin Uç outlu Haeketi KĐNEMĐK 7/2 Öteleme : a a a ɺ ɺ ɺ ɺ ɺ / / /, 7/3 Sabit Eksen Etafında Dönme : Hız : wx bwe bwe wx be he x we wx bwe e d b be d be he b h O n n n ɺ ɺ θ θ θ θ θ ( 0 Đme : d d

Detaylı

8. f( x) 9. Almanca ve İngilizce dillerinden en az birini bilenlerin

8. f( x) 9. Almanca ve İngilizce dillerinden en az birini bilenlerin . MAEMAİK çapıldığıda, çapım olu? 6 ifadesi aşağıdakilede hagisi ile ) 6 + ifadesie eşit ) D) 6 + 8. f( ) ile taımlı f foksiouu e geiş taım kümesi aşağıdaki sg( ) lede hagisidi? 6,@ ) 6,@ ) ^, h, ^, +

Detaylı

HOMOJEN OLMAYAN MALZEMEDEN YAPILMIŞ İÇİ DOLU DÖNEN DİSKLERİN ELASTİK-PLASTİK GERİLME ANALİZİ

HOMOJEN OLMAYAN MALZEMEDEN YAPILMIŞ İÇİ DOLU DÖNEN DİSKLERİN ELASTİK-PLASTİK GERİLME ANALİZİ Gaz Ünv. Müh. Mm. Fa. De. J. Fac. ng. Ach. Gaz Unv. Clt 3 No 3 67-635 8 Vol 3 No 3 67-635 8 HOMOJN OLMAAN MALZMDN APLMŞ İÇİ DOLU DÖNN DİSKLRİN LASTİK-PLASTİK GRİLM ANALİZİ Ahmet N. RASLAN Tunç APATA* ve

Detaylı

Kamera Destekli Gerçek Zamanlı Robotik Al-Bırak Uygulamalar Đçin Yeni Bir Matematiksel Kinematik Güvenlik Modeli

Kamera Destekli Gerçek Zamanlı Robotik Al-Bırak Uygulamalar Đçin Yeni Bir Matematiksel Kinematik Güvenlik Modeli ELECO Eleti - Eletoni ve Bilgisaa Mühendisliği Sempoumu, 9 Kasım - Aalı, Busa Kamea Desteli Geçe Zamanlı Roboti Al-Bıa Ugulamala Đçin Yeni Bi Matematisel Kinemati Güvenli Modeli A New Mathematical Kinematic

Detaylı