Örnek...1 : 3x 8<0 eşitsizliğini çözünüz. f(x)=3x-8 fonksiyonunun işaretini x değişkeninin değişim ine göre incele yini z. (-,8/3)

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Örnek...1 : 3x 8<0 eşitsizliğini çözünüz. f(x)=3x-8 fonksiyonunun işaretini x değişkeninin değişim ine göre incele yini z. (-,8/3)"

Transkript

1 DENKLEM VE -3 f () 0, f () 0, f ()>0, f()<0 if ad elerine eşitsi zl i kler denir. Örnek...1 : 3 8<0 eşitsizliğini çözünüz. f()=3-8 fonksionunun işaretini değişkeninin değişim ine göre incele ini z. (-,8/3) durum a +b+c=0, b 4ac=0-1 = Örnek...3 : +6+9 ifadesinin işaretini inceleiniz Birinci derecede n do ğrusal eşitsizl i kler d ışınd aki eşitsizl i kleri çözm ek için veril e n i f ade nin işaretini işar et tabl osu de diğimiz t abloda öze tleriz. f ()=a +b+c İFADESİNİN İŞARETİ d u rum 1 a +b+c=0, b 4ac<0 a +b+c - durum 3 a +b+c=0, b 4ac>0-1 a'nın işaretinin zıttı Örnek...4 : --1 ifadesinin işaretini inceleiniz Örnek... : ++10 ifadesinin işaretini inceleiniz 11 Sınıf Matematik Konu Anlatımı 1/6

2 DENKLEM VE -3 Genelleme Eşitsi zlik sorular ı çözülürk en; a) Eşitsi zlik ifadesi çarpanlarına a rılır. Eşitsizliğin bir tarafı sıfır olmalıdır. Eşitsizlikte sadeleştirme apılmaıp, ortak çarpan parantezi k ullan ılır Örnek...6 : ( 3) (+) 3 <0 eşitsizliğinin çözüm kümesini (-,-) b) Her çarpan sıfıra eşitlenir. Kökler küçükten büüğe doğru azılarak tablo a pılır. c) Herhangi bir aralıktan kök olmaan bir değer alınarak ifadede erine azılır ve bu aral ığ ın işareti bulunur. d) Bulunan işaretten itibaren kök gördükçe işaret değiştirilir. Çift katlı k öklerde işaret değiştirilm e z. ( a) n.( b) m+1 =0 İfadesinde =a çift kat ve =b tek kat köktür. (m,n tamsaı) e) Çözüm kümesi azılırken sorulan sorunun eşitsizlik önüne bakılır ve bu işaret tabloda bulunur. Rasonel ifadelerde padaı sıf ır apan değerler çözüm kümesine alınamaz. f) Kökleri reel olmaan çarpanların sadece işaretleri dikk ate al ınır. g) Mutlak değerli if adelerin sonucu pozitif olduğundan mutlak değerli çarpanların köklerine çift katlı kök muamelesi apılır ve işaret değiştirilmez. (istenirse mutlak değerli çarpanlar ve çift katlı kökler tabloa azılmaabilir ama kökleri çözüm aranırken unutulmamalıdır) h) İki vea daha fazla eşitsizliğin oluşturduğu eşitsizlik sistem inde a rı a rı çözümlerin kesişimi alınır. Örnek...7 : 3 <0 eşitsizliğinin çözüm kümesini (-,-1)U(0,1) Örnek...8 : eşitsizliğinin çözüm kümesini 6 (-,-]U[,3) Örnek...5 : ( 1)( )(+5) 0 eşitsizliğinin çözüm k ümesini (-,-5/]U[1,] 11 Sınıf Matematik Konu Anlatımı /6

3 DENKLEM VE -3 Örnek...9 : ( 4 3) 0 eşitsizliğinin çözüm kümesini ( 4) bulunu z [-4,-)U(,8] Birden fazla eşitsizliğin oluşturduğu sisteme eşitsizlik siztemi denir. Eşitsizlik sistemleri çözülürken bir tabloda iaşaretinin incelenmesi gerekli görülen ifadeleri içerecek kadar satır apılır Örnek...13 : 1>0 <0 eşitsizlik sisteminin çözüm kümesini (1/,1 ) Örnek...10 : ( 5) 4 (+) 13 <0 eşitsizliğinin çözüm kümesini ( ) 3. bulunu z (-,)-{0} Örnek...11 : eşitsizliğinin çözüm kümesini [-,0)U[, ) Örnek...14 : 6>0 5 <0 eşitsizlik sisteminin çözüm kümesini (3,5) Örnek...15 : 9 4 5<7 eşitsizliğini sağlaan tamsaıların toplamı kaçtır? (-,6) Örnek...1 : 5.( 8+1)<0 eşitsizliğinin çözüm k ümesini (,6)-{5} 11 Sınıf Matematik Konu Anlatımı 3/6

4 DENKLEM VE -3 Örnek...16 : a ve b birer reel saı olmak üzere a b a 0 eşitsizliğinin en geniş çözüm aralığı [3,5) ise a.b kaçtır? 75 Örnek...18 : (m+) +4+m 3=0 denkleminin köklerinin zıt işaretli olması için m nasıl seçilmelidir? ( 1 <0< ) (-,3) İKİNCİ DERECEDEN DENKLEMİN KÖKLERİ Örnek...19 : (m+) +(m+3)+1=0 denkleminin köklerinin pozitif işaretli olmasını sağlaan m değeri var mıdır? oktur Örnek...17 : m -(m-3)+m+=0 denkleminin reel kökü ok sa m nasıl seçilmelidir? (9/0, ) Örnek...0 : (p+)+p+4=0 denkleminin köklerinin negatif işaretli olması için p nasıl seçilmelidir? ( 4, 3 ) 11 Sınıf Matematik Konu Anlatımı 4/6

5 DENKLEM VE -3 F(X)=AX +BX+C NİN İŞARETİ Örnek...1 : Her reel saısı için -(m-1)+m+ >0 oluorsa m hangi aralıktadır? (-1,7) Örnek... : (a-3) -1-3 ifadesi daima -6 dan büükse a hangi aralıkta olmalıdır? (15, ) Şekilde verilen eğrisinin tablosunu apalım. Bunun için eksenin üzerindeki noktalarda nin pozitif, ekseninin üzerindeki noktalarda nin 0, ekseninin altındaki kısımda da nin negatif olduğunu bilm ek e terlidir. Özetlersek Örnek...3 : f()>0 eşitsizliğinin çözüm kümesini (-,)-{-3} Örnek...4 : 4 0 f () 16 0 eşitsizliğinin çözüm kümesini (4, )U{} 11 Sınıf Matematik Konu Anlatımı 5/6

6 DENKLEM VE -3 DEĞERLENDİRME 1) a<0<b<c olmak üzere (a 1)(b 1) <0 (c 1) eşitsizliğinin çözüm kümesini (1/a,1/c)U(1/b, ) 4) a 0 olmak üzere a -3-a=0 denklemi için hangileri doğru olabilir? 1. eşit iki kök vardır. iki pozitif kök vardır 3. köklerden biri sıfırdır 4. anı işaretli iki kök vardır 5. zıt işaretli iki kök vardır 5 ) 3 4 >0 <6 eşitsizlik sisteminin çözüm kümesini (-,0)U(,3) 5) +(k+) k 6=0 denkleminin kökleri 1 ve dir. 1 <0< ve 1 < ise k nın en geniş değer aralığı nedir? (-6,-) 3) -(m-1)+m+ ifadesi in reel saı değerleri için daima pozitif oluorsa m hangi aralıktadır? (-1,7) 6) (+)f () 3 4 ( 3 +1) 0 eşitsizliğinin çözüm kümesini 1 1 (-1,) 11 Sınıf Matematik Konu Anlatımı 6/6

EŞİTSİZLİK SİSTEMLERİ Test -1

EŞİTSİZLİK SİSTEMLERİ Test -1 EŞİTSİZLİK SİSTEMLERİ Test -1 1. 9 5. 69 A) (, ] B) (, ) C) (, ) D) [, ] E) [, ) A) B) {} C) {, } D) R E) R {}. 5 6. 1 A) (, 5) B) [, 5] C) (, 5) D) (5, ) E) (, ) A) (, 1] B) (, ) C) [1, ) D) (, ] [1,

Detaylı

6. loga log3a log5a log4a. 7. x,y R olmak üzere;

6. loga log3a log5a log4a. 7. x,y R olmak üzere; log. 5 5 0 olduğuna göre, değeri kaçtır? A) 5 B) 0 C) 6 8 E) 6. loga loga log5a loga eşitliğini sağlaan a değeri kaçtır? 5 A) 5 5 B) 5 5 C) 5 E) 5. loga logb logc ifadesinin eşiti aşağıdakilerden a c A)

Detaylı

9. BÖLÜM. Özel Tanımlı Fonksiyonlar ÇİFT VE TEK FONKSİYONLAR: ÖRNEK ÖRNEK ÇÖZÜM ÇÖZÜM. M A T E M A T İ K

9. BÖLÜM. Özel Tanımlı Fonksiyonlar ÇİFT VE TEK FONKSİYONLAR: ÖRNEK ÖRNEK ÇÖZÜM ÇÖZÜM. M A T E M A T İ K M A T E M A T İ K www.akademitemellisesi.com ÇİFT VE TEK FONKSİYONLAR: f:ar (A R) fonksionu için, 9. BÖLÜM ) Her A için f( ) = f() ise f e çift fonksion denir. olduğundan ne tek nede çifttir. MUTL AK DEĞER

Detaylı

İKİNCİ DERECEDEN FONKSİYONLAR VE GRAFİKLERİ

İKİNCİ DERECEDEN FONKSİYONLAR VE GRAFİKLERİ İKİNCİ DERECEDEN FONKSİYONLAR VE GRAFİKLERİ TANIM: a, b, c R ve a olmak üzere, f : R R, = f ( ) = a + b + c fonksionuna, ikinci dereceden bir bilinmeenli fonksion denir. { } (, ) : = f ( ) R kümesinin

Detaylı

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM EŞİTSİZLİKLER A. TANIM f(x)>0, f(x) - eşitsizliğinin

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. A.. n saısının tamsaı bölenlerinin saısı olduğuna göre, n 0. R de tanımlı " " işlemi; ο ο işleminin sonucu 0. (6) 6 (6) ifadesinin eşiti aşağıdakilerden hangisidir? 6 6 (6)

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı

MUTLAK DEĞER. Örnek...6 : 1 x > 1 y > 1 z. Örnek...7 : x=1 5, y= 5 2, ise x+y y x x =? Örnek...1 : =? Örnek...8 : Örnek...2 : =?

MUTLAK DEĞER. Örnek...6 : 1 x > 1 y > 1 z. Örnek...7 : x=1 5, y= 5 2, ise x+y y x x =? Örnek...1 : =? Örnek...8 : Örnek...2 : =? TANIM MUTLAK DEĞER Örnek...6 : 1 x > 1 y > 1 z ise x y x z z y =? Bir x reel sayısına karşılık gelen noktanın sayı doğrusunda 0 (sıf ır) a olan uzaklığına x sayısının mutlak değeri denir ve x şeklinde

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. n olmak üzere; n n toplamı ten büük n nin alabileceği tamsaı değerleri kaç tanedir? 9 B) 8 7.,, z reel saılar olmak üzere; ( 8) l 8 l z z aşağıdakilerden hangisidir? B) 8. tabanındaki

Detaylı

2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir?

2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir? MC www.matematikclub.com, 006 Cebir Notları Gökhan DEMĐR, gdemir3@ahoo.com.tr. Dereceden Denklem ve Eşitsizlikler- TEST I A) 1 B) C) 3 D) 4 E) 5 1. 1/ = 0 denkleminin köklerinin toplamı aşağıdakilerden

Detaylı

ÖZEL TANIMLI FONKSİYONLAR

ÖZEL TANIMLI FONKSİYONLAR ÖZEL TANIMLI FONKSİYONLAR Fonksionlar ve Özel Tanımlı Fonksionlar Özel tanımlı fonksionlar konusu fonksionların alt bir dalıdır. Bu konuu daha ii anlaabilmemiz için fonksionlar ile ilgili bilgilerimizi

Detaylı

alalım. O noktasına, bu eksenlerin sıfır noktası(orijin, merkez) denir. Pozitif sayılar, yatay

alalım. O noktasına, bu eksenlerin sıfır noktası(orijin, merkez) denir. Pozitif sayılar, yatay 1 DİK (KARTEZYEN) KOORDİNAT SİSTEMİ: Bir O noktasında dik olarak kesişen ata ve düşe doğrultudaki iki saı eksenini ele alalım. O noktasına, u eksenlerin sıfır noktası(orijin, merkez) denir. Pozitif saılar,

Detaylı

Taşkın, Çetin, Abdullayeva

Taşkın, Çetin, Abdullayeva BÖLÜM Taşkın, Çetin, Abdullaeva FONKSİYONLAR.. FONKSİYON KAVRAMI Tanım : A ve B boş olmaan iki küme a A ve b B olmak üzere ( ab, ) sıralı eleman çiftine sıralı ikili denir. ( ab, ) sıralı ikilisinde a

Detaylı

2018/2019 EĞİTİM ÖĞRETİM YILI.ORTAOKULU 8. SINIFLAR MATEMATİK DERSİ 2. DÖNEM 1. YAZILI SINAVI

2018/2019 EĞİTİM ÖĞRETİM YILI.ORTAOKULU 8. SINIFLAR MATEMATİK DERSİ 2. DÖNEM 1. YAZILI SINAVI AD/SOYAD: NO: 2018/2019 EĞİTİM ÖĞRETİM YILI.ORTAOKULU 8. SINIFLAR MATEMATİK DERSİ 2. DÖNEM 1. YAZILI SINAVI PUAN: 1) 6 İrrasonel saısı hangisi ile çarpılırsa rasonel saı elde edilir? a) 12 b) 2 c) 12 d)

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS MATEMATİK TESTİ. Bu testte 5 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz.. - - ^- h + c- m - (-5 )-(- ) işleminin sonucu kaçtır? A) B) C) D) 5 E).

Detaylı

2.2 Bazıözel fonksiyonlar

2.2 Bazıözel fonksiyonlar . Bazıözel fonksionlar Kuvvet fonksionu, polinomlar ve rasonel fonksionlar, mutlak değer ve tam değer fonksionları, pratik grafik çizimleri. 1-) Lineer fonksionlar: m ve n sabit saılar olmak üzere f()

Detaylı

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır.

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır. -A Adı Soadı kulu Sınıfı LYS- MATEMATİK TESTİ Bu Testte; Toplam Adet soru bulunmaktadır. Cevaplama Süresi 7 dakikadır. Süre bitiminde Matematik Testi sınav kitapçığınızı gözetmeninize verip Geometri Testi

Detaylı

FONKSİYONLAR BÖLÜM 8. Örnek...3 : Örnek...1 : f(x)=2x+5 fonksiyonu artan mıdır? Örnek...4 :

FONKSİYONLAR BÖLÜM 8. Örnek...3 : Örnek...1 : f(x)=2x+5 fonksiyonu artan mıdır? Örnek...4 : FONKSİYONLAR BÖLÜM 8 Örnek...3 : ARTAN AZALAN FONKSİYONLAR ARTAN FONKSİYON f : A R R fonksionu verilsin. Her i B A için 1 < 2 f ( 1 )

Detaylı

7 2 işleminin sonucu kaçtır? A) 7 B) 6 C) 5 D) 4 E) 3. Not : a buluruz. Doğru Cevap : E şıkkı

7 2 işleminin sonucu kaçtır? A) 7 B) 6 C) 5 D) 4 E) 3. Not : a buluruz. Doğru Cevap : E şıkkı ) 3 4 5 3 0 A) B) 6 C) 5 D) 4 E) 3 0 Not : a 0 3 4 5 3 4 5 3 3 3.3.3... ÜSLÜ SAYILAR QUİZİ VE CEVAPLARI 6 4 4 3 buluruz. Doğru Cevap : E şıkkı 0 ) n bir doğal saı olmak üzere, ( ) ( ) n ( ) n n n A) 4

Detaylı

Fonksiyonlar ve Grafikleri

Fonksiyonlar ve Grafikleri Fonksionlar ve Grafikleri Isınma Hareketleri Aşağıda verilenleri inceleiniz. A f f(a) 7 çocuk baan f: Çocukları annelerine götürüor. Fonksion olma şartı: Her çocuğun annesi olmalı ve bir tane olmalı. (

Detaylı

Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören

Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında ılmaarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören çocuklarımızın ana ve babalarına da avrularının öğreniminin tamamlanması

Detaylı

Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören

Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında ılmaarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören çocuklarımızın ana ve babalarına da avrularının öğreniminin tamamlanması

Detaylı

İÇİNDEKİLER. Tekrar Zamanı TÜREVİN GEOMETRİK YORUMU ÇÖZÜMLÜ TEST 1... 52 ÇÖZÜMLÜ TEST 2... 54 MAKS. - MİN. PROBLEMLERİ. Uygulama Zamanı 1...

İÇİNDEKİLER. Tekrar Zamanı TÜREVİN GEOMETRİK YORUMU ÇÖZÜMLÜ TEST 1... 52 ÇÖZÜMLÜ TEST 2... 54 MAKS. - MİN. PROBLEMLERİ. Uygulama Zamanı 1... İÇİNDEKİLER TÜREVİN GEOMETRİK YORUMU Teğet ve Normal Doğruların Eğimi... Teğet Doğrusunun Eğim Açısı... Teğet ve Normal Denklemleri... Eğrinin Teğetine Paralel ve Dik Doğrular... Grafikte Teğet I... 5

Detaylı

ÜNİTE. MATEMATİK-1 Prof.Dr.Murat ÖZDEMİR İÇİNDEKİLER HEDEFLER GRAFİK ÇİZİMİ. Simetri ve Asimtot Bir Fonksiyonun Grafiği

ÜNİTE. MATEMATİK-1 Prof.Dr.Murat ÖZDEMİR İÇİNDEKİLER HEDEFLER GRAFİK ÇİZİMİ. Simetri ve Asimtot Bir Fonksiyonun Grafiği HEDEFLER İÇİNDEKİLER GRAFİK ÇİZİMİ Simetri ve Asimtot Bir Fonksionun Grafiği MATEMATİK-1 Prof.Dr.Murat ÖZDEMİR Bu ünitei çalıştıktan sonra; Fonksionun simetrik olup olmadığını belirleebilecek, Fonksionun

Detaylı

- 2-1 0 1 2 + 4a a 0 a 4a

- 2-1 0 1 2 + 4a a 0 a 4a İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri

Detaylı

1977 ÜSS. 2 y ifadesi aşağıdakilerden hangisine eşittir? 1 x. 2 y. 1 y. 1 y. 1 x. 2 x. 2 x. 1 x. 1 y. 1 x. 1 y. 1 x. 1 y 2 C) 4 E)

1977 ÜSS. 2 y ifadesi aşağıdakilerden hangisine eşittir? 1 x. 2 y. 1 y. 1 y. 1 x. 2 x. 2 x. 1 x. 1 y. 1 x. 1 y. 1 x. 1 y 2 C) 4 E) 77 ÜSS. ifadesi aşağıdakilerden hangisine eşittir?. C) 4 E). Şekilde a+b+c+d açılarının toplamı kaç dik açıdır? (açılar pozitif önlüdür.) 4 C) 6 7 E) 8 Verilen şekilde açıların ölçüleri verilmiştir. En

Detaylı

II. DERECEDEN DENKLEMLER Test -1

II. DERECEDEN DENKLEMLER Test -1 II. DERECEDEN DENKLEMLER Test -. 5 {, 5} {, 5} { 5, } {, 5} {, 5} 5. 5 {,, } {,, } {,, } {,, } {,, }.. 5 7 7 5 5,, 5 5, 5 5, 5 5, 6. 7. 5 95 { 5,, } {,, 5} { 5,, 9} {,, 5} { 9,, 5} 6 66 {, } {,, } {,,

Detaylı

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER MATEMATİK Taşkın, Çetin, Abdullayeva BÖLÜM. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER. ÖZDEŞLİKLER İki cebirsel ifade içerdikleri değişkenlerin (veya bilinmeyenlerin) her değeri içinbirbirine eşit oluyorsa,

Detaylı

Fonksiyonlar ve Grafikleri

Fonksiyonlar ve Grafikleri Fonksionlar ve Grafikleri Isınma Hareketleri Aşağıda verilenleri inceleiniz. A f f(a) 7 f: Çocukları annelerine götürüor. Fonksion olma şartı: Her çocuğun annesi olmalı ve bir tane olmalı. ( çocuk annenin

Detaylı

11 SINIF MATEMATİK. Fonksiyonlarda Uygulamalar Denklemler ve Eşitsizlik Sistemleri

11 SINIF MATEMATİK. Fonksiyonlarda Uygulamalar Denklemler ve Eşitsizlik Sistemleri SINIF MATEMATİK Fonksionlarda Ugulamalar Denklemler ve Eşitsizlik Sistemleri Fonksionlarla İlgili Ugulamalar İkinci Dereceden Fonksionlar ve Grafikleri Fonksionların Dönüşümleri Denklem ve Eşitsizlik Sistemleri

Detaylı

Örnek...1 : Örnek...3 : Örnek...2 :

Örnek...1 : Örnek...3 : Örnek...2 : FONKSİYONLR FONKSİYONUN EKSENLERİ KESİM NOKTLRI fonksionunun ek seninin k estiği k nok taların m apsisleri b, c, e dir. u noktalar a b c f()= denk leminin n kök leridir p in eksenini kestiği nokta ise

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan

Detaylı

Yeşilköy Anadolu Lisesi

Yeşilköy Anadolu Lisesi Yeşilköy Anadolu Lisesi TANIM (KONUYA GİRİŞ) a, b, c gerçel sayı ve a ¹ 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli denklem denir. Bu açık önermeyi

Detaylı

İÇİNDEKİLER ÖNERMELER BİLEŞİK ÖNERMELER AÇIK ÖNERMELER İSPAT YÖNTEMLERİ

İÇİNDEKİLER ÖNERMELER BİLEŞİK ÖNERMELER AÇIK ÖNERMELER İSPAT YÖNTEMLERİ - MANTIK İÇİNDEKİLER Safa No Test No ÖNERMELER...-... - BİLEŞİK ÖNERMELER...-... -6 AÇIK ÖNERMELER...-6... 7-8 İSPAT YÖNTEMLERİ...7-8... 9-9 - KÜMELER KÜMELERDE TEMEL KAVRAMLAR...9-4... - KÜMELERDE İŞLEMLER...5-6...

Detaylı

FONKSİYONLAR ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT

FONKSİYONLAR ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİTE 3. ÜNİT FONKSİYONLAR ÜNİTE. ÜNİTE. ÜNİTE. ÜNİTE. ÜNİT. Kazanım : Gerçek saılar üzerinde tanımlanmış fonksion kavramını açıklar. Tanım kümesi, değer kümesi, görüntü kümesi kavramlarını açıklar.. Kazanım : Fonksionların

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS MTEMTİK TESTİ. Bu testte soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz.. d + n - d + n d - + n- d + + n işleminin sonucu kaçtır?., R olmak üzere, + +

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. abba dört basamaklı, ab iki basamaklı doğal saıları için, abba ab. a b eşitliğini sağlaan kaç farklı (a, b) doğal saı ikilisi vardır? 7 olduğuna göre, a b toplamı kaçtır? 9.,,

Detaylı

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x. 4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.

Detaylı

Örnek...1 : Örnek...3 : Örnek...2 :

Örnek...1 : Örnek...3 : Örnek...2 : FONKSİYONLR FONKSİYONUN EKSENLERİ KESİM NOKTLRI fonksionunun ekseninin kestiği k noktaların m apsisleri b, c, e dir. u noktalar a b c f()= denkleminin n kök leridir p in eksenini kestiği nokta ise (,p)

Detaylı

LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI

LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI LYS- MATEMATİK (MF-TM). Bu testte Matematik ile ilgili soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz..

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan

Detaylı

Örnek...1 : f (x)=2x 2 5x+6 parabolü K(2,p) noktasından geçiyorsa p kaçtır? Örnek...2 : Aşağıda çeşitli parabol grafikleri verilmiştir incele yi niz.

Örnek...1 : f (x)=2x 2 5x+6 parabolü K(2,p) noktasından geçiyorsa p kaçtır? Örnek...2 : Aşağıda çeşitli parabol grafikleri verilmiştir incele yi niz. a, b,c R,a 0 olmak koşulula f ()=a 2 +b+c fonksionuna ikinci dereceden bir değişkenli fonksion ve bu fonksionun belirttiği eğrie de parabol denir. Uarı ir parabolün grafiği başkatsaı olan a saısına bağlı

Detaylı

1996 ÖYS. 2 nin 2 fazlası kız. 1. Bir sınıftaki örencilerin 5. örencidir. Sınıfta 22 erkek öğrenci olduğuna göre, kız öğrencilerin sayısı kaçtır?

1996 ÖYS. 2 nin 2 fazlası kız. 1. Bir sınıftaki örencilerin 5. örencidir. Sınıfta 22 erkek öğrenci olduğuna göre, kız öğrencilerin sayısı kaçtır? 996 ÖYS. Bir sınıftaki örencilerin nin fazlası kız örencidir. Sınıfta erkek öğrenci olduğuna göre, kız öğrencilerin saısı kaçtır? 8 C) 6 D) E) 6. Saatteki hızı V olan bir hareketti A ve B arasındaki olu

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. Üç basamaklı doğal saılardan kaç tanesi, 8 ve ile tam bölünür? 8 9. ile in geometrik ortası z dir. ( z). ( z ). z aşağıdakilerden hangisidir?. 9 ifadesinin cinsinden değeri

Detaylı

BAĞINTI - FONKSİYON Test -1

BAĞINTI - FONKSİYON Test -1 BAĞINTI - FONKSİYON Test -. A,,,4,5 B,, olduğuna göre, AB kümesinin eleman saısı A) 8 B) C) D) 4 E) 5 5. A ve B herhangi iki küme AB,a,,a,,a,,b,,b,,b olduğuna göre, s(a) + s(b) toplamı A) B) 4 C) 5 D)

Detaylı

MUTLAK DEĞER Test -1

MUTLAK DEĞER Test -1 MUTLAK DEĞER Test -. < x < olduğuna göre, x x ifadesinin eşiti aşağıdakilerden 7 B) 7 x C) x 7 D) x 7 E) 7 x 5. y < 0 < x olduğuna göre, y x x y x y ifadesinin eşiti aşağıdakilerden xy B) xy C) xy D) xy

Detaylı

Cebir Notları. Özel Tanımlı Fonksiyonlar TEST I. Gökhan DEMĐR, 2006

Cebir Notları. Özel Tanımlı Fonksiyonlar TEST I. Gökhan DEMĐR,  2006 MC www.matematikclub.com, Cebir Notları Gökhan DEMĐR, gdemir@ahoo.com.tr Özel Tanımlı Fonksionlar TEST I. f() = + 4 + fonksionunun alabileceği en büük 8 9. f() = + + ifadesinin alabileceği en küçük 4 5.

Detaylı

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012 Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi e Ku ru lu Baş kan lı ğı nın.8. ta rih ve sa ı lı ka ra rı ile ka bul edi len ve - Öğ re tim Yı lın dan iti ba ren u gu lana cak olan prog ra ma gö re ha zır

Detaylı

YARDIRMALI MATEMATİK TÜREV FASİKÜLÜ

YARDIRMALI MATEMATİK TÜREV FASİKÜLÜ YRIRMLI MTEMTİK TÜREV FSİKÜLÜ Maksimum-Minimum Problemleri MESUT ERİYES MKSİMUM - MİNİMUM PROLEMLERİ Maksimum ve minimum problemlerini çözmek için şu kurallar ugulanır; 1) Maksimum a da minimum olması

Detaylı

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =?

Örnek...1 : Örnek...5 : n bir pozitif tamsayı ise i 4 n + 2 +i 8 n + 1 2 +i 2 0 n + 6 =? KARMAŞIK SAYILAR Karmaşık saılar x 2 + 1 = 0 biçimindeki denklemlerin çözümünü apabilmek için tanım lanm ıştır. Örnek...2 : Toplamları 6 ve çarpımları 34 olan iki saı bulunuz. a ve b birer reel saı ve

Detaylı

Örnek...3 : f(2x 3)=4 3x ise f(1) kaçtır? Örnek...4 : f(x)=3x+1 ise f(2x) fonksiyonu nedir?

Örnek...3 : f(2x 3)=4 3x ise f(1) kaçtır? Örnek...4 : f(x)=3x+1 ise f(2x) fonksiyonu nedir? FONKSİYON HATIRLATMA ( FONKSİYON TANIMI ) A dan B e tanımlı f kuralının fonksion olm ası için; Örnek... : f( )= ise f() kaçtır? ) A daki her elemanın görüntüsü olmalı ( A da açıkta eleman kalmamalı) )A

Detaylı

Örnek...1 : Örnek...2 : Örnek...3 : A={0,1,2} kümesinden reel sayılara tanımlı f(x)=x² x fonksiyonu bire bir midir? Örnek...4 :

Örnek...1 : Örnek...2 : Örnek...3 : A={0,1,2} kümesinden reel sayılara tanımlı f(x)=x² x fonksiyonu bire bir midir? Örnek...4 : FONKSİYONLAR BÖLÜM 4 FONKSİYON TÜRLERİ: BİRE BİR FONKSİYON Bir fonksionun grafiğinden bire bir olup olmadığını anlamak için verilen tanım aralığında çizilen ata doğruların sadece bir defa grafiği kesmesini

Detaylı

T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları

T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları T. C. Manisa Celal Bayar Üniversitesi Kırkağaç Meslek Yüksekokulu 016-017 Öğretim Yılı Güz Yarıyılı MATEMATİK Dersi Final Sınavı Çalışma Soruları 1) 3. [15 3(8: )] 9 =? a) 16 b) 14 c) 0 d) 14 e) 16 6)

Detaylı

LYS MATEMATİK-2 SORU BANKASI LYS. M. Ali BARS. çözümlü sorular. yıldızlı testler. Sınavlara en yakın özgün sorular

LYS MATEMATİK-2 SORU BANKASI LYS. M. Ali BARS. çözümlü sorular. yıldızlı testler. Sınavlara en yakın özgün sorular LYS LYS 6 Sınavlara en akın özgün sorular MATEMATİK- SORU BANKASI çözümlü sorular ıldızlı testler M. Ali BARS M. Ali Bars LYS Matematik Soru Bankası ISBN 978-65-8-7-9 Kitapta er alan bölümlerin tüm sorumluluğu

Detaylı

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere,

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere, Bölüm 33 Denklemler 33.1 İkinci Dereceden Denklemler İkinci dereceden Bir Bilinmeyenli Denklemler a,b,c IR ve a 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli

Detaylı

Örnek...3 : f : R R, f (x)=2 x fonksiyonuna ait tabloyu. Örnek...4 : Örnek...1 :

Örnek...3 : f : R R, f (x)=2 x fonksiyonuna ait tabloyu. Örnek...4 : Örnek...1 : LOGARİTMA a b =c eşitliğini düşünelim. Mümkün olan durum larda; Durum 1: a ve b biliniorsa c üs alma işlemile bulunabilir. Örneğin 2 5 =c ise c=32 dir. Örnek...3 : f : R R, f ()=2 fonksionuna ait tablou

Detaylı

ETKİNLİK ÇÖZÜMLERİ ADIM m(ëa) + m(b) = m(ëa) = ise 2.m(ëA ) = =

ETKİNLİK ÇÖZÜMLERİ ADIM m(ëa) + m(b) = m(ëa) = ise 2.m(ëA ) = = ETKİNLİK ÇÖZÜMLERİ DIM 0. m(ë) 0 0 7 ise.m(ë ) 80 60 8 0.m(ë) m(ë) 8 0 8 7 99 7 66 60. m(ë) m() 8 60 08 dir. 08 R 80 08. R 80 radandır. 99 8 6. 60 06 9 8 60 0 79 8 6 79 8 6 7. irim çemberin üzerindeki

Detaylı

Rakam : Sayıları yazmaya yarayan sembollere rakam denir.

Rakam : Sayıları yazmaya yarayan sembollere rakam denir. A. SAYILAR Rakam : Sayıları yazmaya yarayan sembollere rakam denir. Sayı : Rakamların çokluk belirten ifadesine sayı denir.abc sayısı a, b, c rakamlarından oluşmuştur.! Her rakam bir sayıdır. Fakat bazı

Detaylı

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674 kapak safası İÇİNDEKİLER. ÜNİTE FNKSİYNLARDA İŞLEMLER VE UYGULAMALARI Fonksionların Simetrileri ve Cebirsel Özellikleri... 4 Tek ve Çift Fonksionlar... 4 Fonksionlarda İşlemler... 6 Konu Testleri -...

Detaylı

Mustafa YAĞCI, Parabol ile Eğrilerin Kesişimi

Mustafa YAĞCI, Parabol ile Eğrilerin Kesişimi www.mustafaagci.com.tr, 11 Ceir Notları Mustafa YAĞCI, agcimustafa@ahoo.com Paraol ile Eğrilerin Kesişimi P araol İle Doğrunun Birirlerine Göre Durumları. Aslında sadece paraol ve doğru çifti için değil,

Detaylı

1.DERECEDEN DENKLEMLER. (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz)

1.DERECEDEN DENKLEMLER.  (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) .DERECEDEN DENKLEMLER Rüstem YILMAZ 546 550 86 48 destek@sinavdestek.com www.sinavdestek.com (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) JET Yayınları 8 Ağustos 07 0. Bir Bilinmeyenli

Detaylı

İÇİNDEKİLER BASİT EŞİTSİZLİKLER. HARFLİ İFADELER Harfli İfadeler ve Elemanları Eşitsizlik Sembolleri ve İşaretin Eşitsizlik İfadesi...

İÇİNDEKİLER BASİT EŞİTSİZLİKLER. HARFLİ İFADELER Harfli İfadeler ve Elemanları Eşitsizlik Sembolleri ve İşaretin Eşitsizlik İfadesi... İÇİNDEKİLER HARFLİ İFADELER Harfli İfadeler ve Elemanları... 1 Benzer Terim... Harfli İfadenin Terimlerini Toplayıp Çıkarma... Harfli İfadelerin Terimlerini Çarpma... Harfli İfadelerde Parantez Açma...

Detaylı

ÜNİTE 1: TEMEL KAVRAMLAR

ÜNİTE 1: TEMEL KAVRAMLAR MATEMATİK ÜNİTE : TEMEL KAVRAMLAR Temel Kavramlar ADF 0 RAKAM Sayı oluşturmak için kullanılan sembollere... denir. 0 luk sayma düzenindeki rakamlar 0,,,... 8 ve 9 olup 0 tanedir. örnek a, b, c sıfırdan

Detaylı

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır?

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır? . SINIF M Fonksionlar. f ( + a ) + vef( ) 7 olduğuna göre a kaçtır? E) TEST. f ( ) k + 6 fonksionu sabit fonksion olduğuna f ( ) göre aşağıdakilerden k E). f( ) 6 k ve f ( ) olduğuna göre k kaçtır? E)

Detaylı

Örnek...1 : Örnek...3 : Örnek...2 :

Örnek...1 : Örnek...3 : Örnek...2 : FONKSİYONLR FONKSİYONUN EKSENLERİ KESİM NOKTLRI =f() fonksio - nunun ekseninin kestiği noktaların m apsisleri b, c, e dir. u noktalar a b f()= denkleminin kökleridir n =f() in p eksenini kestiği nokta

Detaylı

Chapter 1 İçindekiler

Chapter 1 İçindekiler Chapter 1 İçindekiler Kendinizi Test Edin iii 10 Birinci Mertebeden Diferansiel Denklemler 565 10.1 Arılabilir Denklemler 566 10. Lineer Denklemler 571 10.3 Matematiksel Modeller 576 10.4 Çözümü Olmaan

Detaylı

1997 ÖSS Soruları. 5. Rakamları birbirinden farklı olan üç basamaklı en büyük doğal sayı aşağıdakilerden hangisi ile kalansız bölünebilir?

1997 ÖSS Soruları. 5. Rakamları birbirinden farklı olan üç basamaklı en büyük doğal sayı aşağıdakilerden hangisi ile kalansız bölünebilir? 997 ÖSS Soruları. ( ) + ( ).( ) işleminin sonucu kaçtır? ) ) ) ) 8 6 ) 6. Rakamları birbirinden farklı olan üç basamaklı en büük doğal saı aşağıdakilerden hangisi ile kalansız bölünebilir? ) ) 9 ) 6 )

Detaylı

12-B. Polinomlar - 1 TEST. olduğuna göre P(x - 2, y + 4) polinomunun katsayılar toplamı kaçtır? olduğuna göre A B kaçtır? A) 78 B) 73 C) 62 D 58 E) 33

12-B. Polinomlar - 1 TEST. olduğuna göre P(x - 2, y + 4) polinomunun katsayılar toplamı kaçtır? olduğuna göre A B kaçtır? A) 78 B) 73 C) 62 D 58 E) 33 -B TEST Polinomlar -. Py _, i= y- y + 5y- olduğuna göre P( -, y + ) polinomunun katsayılar toplamı. - 6 = A - 5 + - + B - olduğuna göre A B 78 B) 7 6 D 58 E) B) D) - E) -. -a- b = _ + -5i_ -ci eşitliğine

Detaylı

TÜRKİYE GENELİ DENEME SINAVI LYS - 1 MATEMATİK

TÜRKİYE GENELİ DENEME SINAVI LYS - 1 MATEMATİK TÜRKİY GNLİ SINVI LYS - 1 7 MYIS 017 LYS 1 - TSTİ 1. u testte 80 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz. + k+ n 15 + 10 1. : = + 6 16 + 8 0 + 8 olduğuna

Detaylı

1) BU TESTTE TEMEL MATEMATİK VE GEOMETRİ OLMAK ÜZERE, TOPLAM 40 ADET SORU VARDIR. 2) BU TESTİN CEVAPLANMASI İÇİN TAVSİYE EDİLEN SÜRE 40 DAKİKADIR.

1) BU TESTTE TEMEL MATEMATİK VE GEOMETRİ OLMAK ÜZERE, TOPLAM 40 ADET SORU VARDIR. 2) BU TESTİN CEVAPLANMASI İÇİN TAVSİYE EDİLEN SÜRE 40 DAKİKADIR. YGS DENEESİ 2 1) U ESE EEL AEAİK VE GEOERİ OLAK ÜERE, OPLA ADE SORU VARDIR. 2) U ESİN CEVAPLANASI İÇİN AVSİYE EDİLEN SÜRE DAKİKADIR. 1) 2,.(!+1!+2!) =?, 1 A) ) 1 C) 2 D) ) +8 ( 2 + 1) ( 2 2+ 2 ) hangisidir?

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. a 9! 8!, 9! 8! OKEK (a, ) OBEB (a, ) ifadesinin değeri kaçtır?. a ve a ile arasındaki ağıntı nedir? a a a a a a a a. ( ). ( ). ( ) 8 nın insinden eşiti nedir?. z z z toplamı

Detaylı

TÜREV TANIMI TÜREV ALMA KURALLARI FEN LĠSESĠ ÖĞRETĠM PROGRAMINA GÖRE DERS ANLATIM FÖYÜ 1

TÜREV TANIMI TÜREV ALMA KURALLARI FEN LĠSESĠ ÖĞRETĠM PROGRAMINA GÖRE DERS ANLATIM FÖYÜ 1 TÜRE TNIMI TÜRE LM KURLLRI FEN LĠSESĠ ÖĞRETĠM PROGRMIN GÖRE DERS NLTIM FÖYÜ Ortalama Değişim Oranı Bu itte dönüşümü apılırsa olur. f(b) B d f() f(b) f(a) Bu durumda iken olur. Buna göre, f() fonksionunun

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 12.MATEMATİK YARIŞMASI 8. SINIF FİNAL SORULARI Dikkat: Yanıtlarınızı size verilen yanıt kağıtlarına yazınız.

ÖZEL EGE LİSESİ OKULLAR ARASI 12.MATEMATİK YARIŞMASI 8. SINIF FİNAL SORULARI Dikkat: Yanıtlarınızı size verilen yanıt kağıtlarına yazınız. OKULLAR ARASI 1.MATEMATİK YARIŞMASI 8. SINIF FİNAL SORULARI Dikkat: Yanıtlarınızı size verilen anıt kağıtlarına azınız. 1) Yukarıdaki şekilde AH BC BE DE m (BÂH) = m(aĉb) AH = BE BD = DC ve m (CBE) = dir.

Detaylı

10. SINIF. Sayma TEST. 1. Bir otobüse binen 3 yolcu yan yana duran 4 boş koltuğa kaç farklı şekilde oturabilirler?

10. SINIF. Sayma TEST. 1. Bir otobüse binen 3 yolcu yan yana duran 4 boş koltuğa kaç farklı şekilde oturabilirler? SINI Sama. ir otobüse binen olcu an ana duran boş koltuğa kaç farklı şekilde oturabilirler? ) ) ) 8 ) 6 ) 8 KZNI KVR. = #,,,,, - kümesinin elemanları kullanılarak basamaklı rakamları birbirinden farklı

Detaylı

TAM SAYILAR. Tam Sayılarda Dört İşlem

TAM SAYILAR. Tam Sayılarda Dört İşlem TAM SAYILAR Tam Sayılarda Dört İşlem Pozitif ve negatif tam sayılar konu anlatımı ve örnekler içermektedir. Tam sayılarda dört işlem ve bu konuyla ilgili örnek soru çözümleri bulunmaktadır. Grup_09 29.11.2011

Detaylı

DERS 2. Fonksiyonlar

DERS 2. Fonksiyonlar DERS Fonksionlar.1. Fonksion Kavramı. Her bilim dalının önemli bir işlevi, çeşitli nesneler vea büüklükler arasında eşlemeler kurmaktır. Böle bir eşleme kurulması tahmin ürütme olanağı verir. Örneğin,

Detaylı

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan

SAYILAR ( ) MATEMATİK KAF01 RAKAM VE DOĞAL SAYI KAVRAMI TEMEL KAVRAM 01. Sayıları ifade etmeye yarayan SAYILAR RAKAM VE DOĞAL SAYI KAVRAMI MATEMATİK KAF01 TEMEL KAVRAM 01 Sayıları ifade etmeye yarayan { 0,1,, 3, i i i,9} kümesindeki semollere onluk sayma düzeninde rakam denir. N =... kümesinin elemanlarına

Detaylı

13. 2x y + z = 3 E) 1. (Cevap B) 14. Dikdörtgen biçimindeki bir tarlanın boyu 10 metre, eni 5 metre. Çözüm Yayınları

13. 2x y + z = 3 E) 1. (Cevap B) 14. Dikdörtgen biçimindeki bir tarlanın boyu 10 metre, eni 5 metre. Çözüm Yayınları Doğrusal Denklem Sistemlerinin Çözümleri BÖLÜM 04 Test 0. y = y = 6 denklem sisteminin çözüm kümesi aşağıdakilerden A) {(, 4)} B) {(, )} C) {(, 4)} D) {( 4, )} E) {(, )}./ y = / y = 6 5 = 5 = = için y

Detaylı

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır.

Dikkat: Bir eleman, her iki kümede de olsa bile sadece bir kez yazılır. KÜMELER Kümelerin birleşimi (A B ): Kümelerin bütün elemanlarından oluşur. Kümelerin kesişimi (A B): Kümelerin ortak elemanlarından oluşur. Kümelerin Farkı (A \ B ) veya (A - B ): Birinci kümede olup ikinci

Detaylı

6 II. DERECEDEN FONKSÝYONLAR 2(Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MATEMATÝK. y f(x) f(x)

6 II. DERECEDEN FONKSÝYONLAR 2(Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MATEMATÝK. y f(x) f(x) 6 II. DERECEDEN FNKSÝYNLR (Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MTEMTÝK 1. f(). f() 6 8 T Yukarıda grafiği verilen = f() parabolünün denklemi nedir?( = 6) Yukarıda grafiği verilen

Detaylı

Yanda verilen ABCD dikdörtgeninde AB = 5x br ve BC = 6x br'dir. Buna göre, bu dikdörtgenin alanı kaç br 2 'dir?

Yanda verilen ABCD dikdörtgeninde AB = 5x br ve BC = 6x br'dir. Buna göre, bu dikdörtgenin alanı kaç br 2 'dir? Ders 0 CEBİRSEL İFADELER + 5 + cebirsel ifadesinde Değişken:, Terimler:, 5,, Katsaılar:, 5,, Sabit terim: 'tür. 5 A B 6 D C Yanda verilen ABCD dikdörtgeninde AB = 5 br ve BC = 6 br'dir. Buna göre, bu dikdörtgenin

Detaylı

1 (c) herhangi iki kompleks sayı olmak üzere

1 (c) herhangi iki kompleks sayı olmak üzere KOMPLEKS FONKSİYONLAR TEORİSİ UYGULAMA SORULARI- Problem. Aşağıdaki (a) ve (b) de olmak üere (a) olduklarını gösterini. (b) (c) Imi Re Çöüm (a) i olsun. i i (b) i olsun. i i i i i i i i i i Im i Re i (c)

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08 LİSNS YRLŞTİRM SINVI- MTMTİK-GMTRİ SINVI MTMTİK TSTİ SRU KİTPÇIĞI 08 U SRU KİTPÇIĞI LYS- MTMTİK TSTİ SRULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik Testi

Detaylı

DENKLEM SİSTEMLERİ. ifadesinde a sayısı bilinmeyenin katsayısı ve b ise sabit sayıdır.

DENKLEM SİSTEMLERİ. ifadesinde a sayısı bilinmeyenin katsayısı ve b ise sabit sayıdır. DENKLEM SİSTEMLERİ 1) BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER: a,bϵ R ve olmak üzere; şeklindeki denklemlere birinci dereceden bir bilinmeyenli denklem denir. Bu tür denklemlerde sadece bir bilinmeyen

Detaylı

ÖRNEK : x. y = 1 biçiminde verilen fonksiyonun grafiğini. çiziniz. Çizim : x. y = 1 olması ancak x =1ve y =1 yada x =-1ve. x =1ve x =-1ve ÖRNEK :

ÖRNEK : x. y = 1 biçiminde verilen fonksiyonun grafiğini. çiziniz. Çizim : x. y = 1 olması ancak x =1ve y =1 yada x =-1ve. x =1ve x =-1ve ÖRNEK : MC www.matematikclub.com, 6 Cebir Notları Gökhan DEMĐR, gdemir@ahoo.com.tr Özel Tanımlı Fonksionlar. Tam değer fonksionu: Tanım: Tamsaı ise kendisi, tamsaı değilse kendinden önce gelen ilk tamsaı (kendinden

Detaylı

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi

ÜNİTE: TAM SAYILAR KONU: Tam Sayılar Kümesinde Çıkarma İşlemi ÜNE: AM AYIAR N: am ayılar ümesinde Çıkarma şlemi ÖRNE RAR VE ÇÖZÜMER 1. [(+17) (+25)] + [( 12) (+21)] işleminin sonucu A) 41 B) 25 C) 25 D) 41 Çıkarma işlemi yapılırken çıkanın işareti değişir ve eksilen

Detaylı

NÜMERİK ANALİZ. Sayısal Yöntemlerin Konusu. Sayısal Yöntemler Neden Kullanılır?!! Denklem Çözümleri

NÜMERİK ANALİZ. Sayısal Yöntemlerin Konusu. Sayısal Yöntemler Neden Kullanılır?!! Denklem Çözümleri Saısal Yöntemler Neden Kullanılır?!! NÜMERİK ANALİZ Saısal Yöntemlere Giriş Yrd. Doç. Dr. Hatice ÇITAKOĞLU 2016 Günümüzde ortaa konan problemlerin bazılarının analitik çözümleri apılamamaktadır. Analitik

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. ab iki basamaklı saısı b ile bölündüğünde, bölüm 5 ve kalan b 5 tir. u şartlara uan kaç farklı ab iki basamaklı saısı vardır? ) 5 6 7 5. a, b, c, d, e sıfırdan farklı tamsaılar

Detaylı

LYS MATEMATİK KONU ANLATIM FASİKÜLÜ

LYS MATEMATİK KONU ANLATIM FASİKÜLÜ Ders Adı.ınıf Mezun LY MATEMATİK KONU ANLATIM FAİKÜLÜ TÜREV KAF 0 Konu Bir doğrunun eğimi dik koordinat sisteminde X ekseni ile aptığı pozitif önlü açının tanjantıdır. Örneğin, şekilde verilen d doğrusunun

Detaylı

Doğrusal Fonksiyonlar, Karesel Fonksiyonlar, Polinomlar ve Rasyonel Fonksiyonlar, Fonksiyon Çizimleri

Doğrusal Fonksiyonlar, Karesel Fonksiyonlar, Polinomlar ve Rasyonel Fonksiyonlar, Fonksiyon Çizimleri Doğrusal Fonksionlar, Karesel Fonksionlar, Polinomlar ve Rasonel Fonksionlar, Fonksion Çizimleri Bir Fonksionun Koordinat Kesişimleri(Intercepts). Bir fonksionun grafiğinin koordinat eksenlerini kestiği

Detaylı

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir? PROL est -. m parabolü eksenini kesmiorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?. f a b c (, ) ) (, ) (, ) (, ) ( 6, ). m parabolü eksenini iki farklı noktada kesmektedir. una göre,

Detaylı

FONKSİYONUN TANIMI ve FONKSİYON ÇEŞİTLERİ

FONKSİYONUN TANIMI ve FONKSİYON ÇEŞİTLERİ KONU: Fonksionlar FONKSİYONUN TANIMI ve FONKSİYON ÇEŞİTLERİ. A,, kümesinden B a, b, c, d kümesine tanımlanan aşağıdaki bağıntılardan hangisi bir fonksiondur?,a,,b,,c,,d,a,,d,,a,a,,b,,c,,d,b,, c,,d,a,,b,,c,,a.

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

TRİGONOMETRİK FONKSİYONLARIN GRAFİKLERİ

TRİGONOMETRİK FONKSİYONLARIN GRAFİKLERİ TRİGONOMETRİK FONKSİYONLARIN GRAFİKLERİ A. PERİYODİK FONKSİYONLAR A, düna ve güneşin hareketleri, a ve güneş tutulmaları her 7 ılda bir Halle kuruklu ıldızının dünamızı ziareti periodik olarak medana gelen

Detaylı

( ANALİTİK DÜZLEM NOKTA BÖLGELER İKİ NOKTA ARASI UZAKLIK ORTA NOKTA ÜÇGENİN AĞIRLIK MERKEZİ VE ALANI DEĞERLENDİRME ) dört bölgeye ayrılır.

( ANALİTİK DÜZLEM NOKTA BÖLGELER İKİ NOKTA ARASI UZAKLIK ORTA NOKTA ÜÇGENİN AĞIRLIK MERKEZİ VE ALANI DEĞERLENDİRME ) dört bölgeye ayrılır. NİTİ GEMETRİ 1 ( NİTİ DÜZEM NT ÖGEER İİ NT RSI UZI RT NT ÜÇGENİN ĞIRI MEREZİ VE NI DEĞERENDİRME NİTİ DÜZEM Dİ RDİNT DÜZEMİ İki saı doğrusunun dik kesişmesile oluşan düzleme, dik koordinat düzlemi ve a

Detaylı

1. DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER

1. DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER 1. DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER Örnek...3 : 3 x+ y= 5 2x 3 =2 y s i s t e m i n i s a ğ l a ya n y d e ğ e r i k aç t ır? a, b, c R, a 0, b 0, x v e y d e ğ i şk e n o l m a k ü ze r e, a x+ b

Detaylı

( ANALİTİK DÜZLEM NOKTA BÖLGELER İKİ NOKTA ARASI UZAKLIK ORTA NOKTA ÜÇGENİN AĞIRLIK MERKEZİ VE ALANI DEĞERLENDİRME )

( ANALİTİK DÜZLEM NOKTA BÖLGELER İKİ NOKTA ARASI UZAKLIK ORTA NOKTA ÜÇGENİN AĞIRLIK MERKEZİ VE ALANI DEĞERLENDİRME ) NİTİ GEMETRİ 1 ( NİTİ DÜZEM NT ÖGEER İİ NT RSI UZI RT NT ÜÇGENİN ĞIRI MEREZİ VE NI DEĞERENDİRME NİTİ DÜZEM Dİ RDİNT DÜZEMİ İki saı doğrusunun dik kesişmesile oluşan düzleme, dik koordinat düzlemi ve a

Detaylı

SAYILAR SAYI KÜMELERİ

SAYILAR SAYI KÜMELERİ SAYILAR SAYI KÜMELERİ 1.Sayma Sayıları Kümesi: S=N =1,2,3,... 2. Doğal Sayılar Kümesi : N=0,1,2,... 3. Tamsayılar Kümesi : Z=..., 2, 1,0,1,2,... Sıfırın sağında bulunan 1,2,3,. tamsayılarına pozitif tamsayılar

Detaylı