Devreler II Ders Notları

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Devreler II Ders Notları"

Transkript

1 Devreler II Der Noları 3-4 LAPLACE DÖNÜŞÜMÜNÜN DURUM DENKLEMLERİNİN ÇÖZÜMÜNDE KULLANILMAI Doğrual zamanla değişmeyen bir devrenin analizi için oluşan durum denklemi abi kaayılı doğrual diferaniyel denklem ile ifade edilir ve bu diferaniyel denklem akımları - zaman bölgeinde çözülür. Bu bölümde ie Laplace dönüşümü kullanılarak durum denklemleri çözülecekir. Devre analizinde Laplace dönüşümünün kullanılmaı, üç ayrı özelliğinden dolayı üünlük göerir.. Doğrual ve zamanla değişmeyen diferaniyel denklem akımını doğrual polinom şekline dönüşürür.. Akım ve gerilimlerin (durum değişkenlerinin) başlangıç değerleri (doğrudan) kendiliğinden dikkae alınır. ( ) ( ) x() 3. Laplace dönüşümü ile am çözüm çok kolaylıkla elde edilir. Laplace dönüşümü ile domenine geçilir. LAPLACE DÖNÜŞÜMÜ Laplace dönüşümü < için f()= olduğundan F( ) f ( ) e d f ( ) Biçiminde ifade edilir. Ter Laplace dönüşümü ie; f ( ) F( ) F( ) e d ile ifade edilir. Burada =σ+jw komplek değişkendir. ( ) ( ) ( ) ( ) f F ie f F dir Bazı İşlevlerin Laplace Dönüşümleri ) Birim Baamak İşlevi: f ( ) au( ), u( ),, İle ifade edilen f() fonkiyonunun Laplace dönüşümü a F( ) olarak bulunur. a f ( ) au( ) F( ) f ( ) u( ) F( )

2 Devreler II Der Noları 3-4 ) Birim Rampa İşlevi r( ) u( ) r ( ) R( ) { r( )} 3) Birim Parabolik İşlevi f ( ) r ( ) u( ) F( ) 3 4) f()= n n F( ) { n } n! Bu bağınıdan yararlanarak 3 { } olarak heaplanır. 5) Üel Fonkiyon f a ( ) e ie a { e } a a f ( ) e ie F( ) { f ( )} a dır. 6) inüoidal Fonkiyon f ( ) Cow { Cow} Cow e d w Cow jw jw e e, inw jw jw e e anımlarını kullanırak j jw jw e e ( jw) ( jw) F( ) Cow e d e d e d e d ( jw) ( jw) e e jw jw jw jw w w 7) f ( ) inw, F( ) { inw} w

3 Devreler II Der Noları 3-4 w 8) f ( ) inhw, F( ) [ inhw] w 9) f ( ) Cohw, F( ) { Cohw} w a ) f ) e inw (, Ger a a w F( ) { e inw} ( a) w a ) f ( ) e Cow a a F( ) { e Cow} ( a) w ) f ( ) ve g( ) fonkiyonlarının kalama işlevi: f ( ) * g( ) f ( ) g( ) d İle verilir ve laplace dönüşümü olarak elde edilir. { f ( )* g( )} F( ) G( ) 3) Birim Vuruş İşarei f () { ( )} f ( ) { ( )} e { ( )} { ( )} Teorem 4 F( ) f ( ) d İnegral Özelliği( f ( ), ( ) işareini içermeyecek) Teorem 5 f ( ) Teorem 6 df( ) d f F n n ( n) ( ) ( ) ( ) f ( ) Teorem 7 Ölçülendirme eoremi lim anımlı ie f ( ) F( ) d yerine τ alındı

4 Devreler II Der Noları 3-4 Teorem 8 (kayma eoremi) f ( ) F( ) ie, a a e f F a ( ), a: gerçel bir ayı e 4 ( 4) Teorem 9 f ( ) f ( T), T: Periyo T e Teorem T Ger olmak üzere f ( ) e f ( a) F, (a>), gerçel bir ayı. a a a Teorem f ( a) u( a) e F( ), a: gerçel bir ayı Teorem f ( ) Cow F( jw) F( jw) Teorem 3 f ( )in w F( jw) F( jw) j j d Teorem 4 ( ) ( ) n n f ( ) F ( ) Teorem 5 f( ) f( ) d f( )* f( ) F ( ) F ( ) Teorem 6 f ( ) f ( ) ( )* ( ) j F F Teorem 7 (İlk Değer Teoremi) f ( ) lim f ( ) lim F( ) Teorem 8 (on Değer Teoremi) f ( ) lim f ( ) lim F( ) İmpule (birim vuruş) işlevi ( ) ( ) du ( ) d ( ) e Öelenmiş hali Ayrıca ( ) d ( ) d dir.

5 Devreler II Der Noları 3-4 ÖRNEK: F( ) 3 7 ( )( 3) fonkiyonunun er Laplace dönüşümünü bulunuz. Çözüm: Pay ve paydanın dereceleri aynı olduğu için, pay paydaya bölünerek önce abi erim ayrılır k k ( )( 3) F( ) 5 5 k ( ) 3 ( )( 3) 3 k 5 5 ( 3) ( )( 3) F( ) 3 ( ) ( ) 3 ( ) 3 f F e u e u( ) olarak elde edilir. ) f ( ) inw, w F( ) [ inw] w ) f ( ) Cow, F( ) [ Cow] w 3) f ( ) inhw, w F( ) [ inhw] w 4) f ( ) Cohw, F( ) [ Cohw] w a 5) f ( ) e inw, Ger[ a] a w F( ) [ e inw] ( a) w a 6) f ( ) e Cow a a F( ) [ e Cow] ( a) w 7) [ A( ) Bg( )] AF( ) BG( ) Buna lineerlik özelliği denir(a ve B gerçel ayı bir olmak üzere). f ( ), f ( ) fonkiyonunun nokaına ağdan yaklaşırken aldığı değer olun. 8) ' [ f ( )] F( ) f ( ) Buna ürev özelliği denir. En genel haliyle şu şekilde ifade edilir. ( n) n n n [ f ( )] F( ) f ( ) f ( )... ( n) ( n) f ( ) f ( )

6 Devreler II Der Noları 3-4 n n ni ( i) ( ) ( ) F f i LAPLACE DÖNÜŞÜMÜ İLE DURUM DENKLEMLERİNİN ÇÖZÜMÜ ( ) Ax( ) Be( ) ( ) () A ( ) BE( ) ( I A) ( ) BE( ) () ( ) ( I A) BE( ) I A () () ( ) ( ) I A ( ) ( I A) Reolven mari, (çözüm marii) Ter Laplace dönüşümünü alırak ( ) ( ) Durum geçiş marii (ae raniion marix) ( ) () (I-A) Bunu () bağınıında yerleşirirek A A ( ) e BE( ) e () Ter dönüşümü alınıra; BE () e ( ) e () - - A - A e A - F().G() f ( )* g ( ) f ( ) g( ) d ( kalama işlevi ) A A( ) ( ) () ( ) ( ) () ( ) ( ) e e Be d Be d Durum modelindeki durum değişkenlerinin bölgeinde çözümü Bu bağınıdan herhangi bir doğrual dizgenin zaman epkeinin elde edilebilmei için aşağıda verilenlerin bilinmei gerekir.. da ) başlangıç durum vekörünün bilinmei gerekir. (. için e( ) giriş kaynaklarından oluşan üun vekörünün bilinmei gerekir. 3. Durum geçiş marii ()' nin bilinmei gerekir. A( ) A( ) Çözüm ( ) e ( ) e Bu( ) d olarak heaplanır.

7 Devreler II Der Noları 3-4 Durum denkleminin en genel hali; A B e B e Durum denklemi (durum değişkeni ayıı boyuunda üun vekörü) y C D e D e Çıkış denklemi (çıkışların ayıı kadar, boyuu olan çıkış vekörü) B, D marileri ie dejenere olmayan(uygun durum ağacı) devre adını alır. durum denklemini Laplace dönüşümü yardımıyla çözelim. ( ) () A ( ) ( B B ) E( ) I A ( ) ( B B ) E( ) (), I A zorlanmış çözüm öz çözüm ( ) I A B B E( ) I A () y çıkış mariinin çözümü ie; Y ( ) C ( ) ( D D ) E( ) Burada () yerleşirilire; Y ( ) C I A B B E( ) I A () ( D D ) E( ) olarak heaplanır. C I A B B D D E( ) C I A () Başlangıç değerleri ıfır alınarak; çıkışların girişlere oranı olarak anımlanır. Y ( ) H ( ) CI A B B D D E( ) () Eğer B, D ve D marileri ıfır alınıra ÖRNEK : Y( ) H ( ) CI A B olarak bulunur. E( ) x x x x 3 x e( ) () e( ) u( ), < x () Durum denklemini Laplace dönüşümü yönemi kullanarak çözünüz. ( ) I A ( ) ( 3)( ) 3 ( )( )

8 Devreler II Der Noları ( )( ) ( )( ) ( ) 3 ( )( ) ( )( ) ( ) ( ) () ( ). BE( ) 3 3 ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 3 ( )( ) ( )( ) ( )( ) ( )( ) ÖRNEK: e e u( ) e e ( ) e e e e öz çözüm zorlanmış çözüm x ( ) x( ) 3 u( ), x(), u( ) x ( ) 3 x ( ) Durum denklemini, Laplace dönüşümü yardımıyla çözünüz. ( ) I A Reolven marii Deerminan: I A Kökler ( )( 3) b b a 4ac ,69, 39 ( ) I A B E( ) I A () E( ) u( )

9 Devreler II Der Noları ( ) ( ) ( 3) ( ( ) ( )( ) ) ( ). () ve () nin bölgeine dönüşümünün yapılmaı, rezidü kaayılarının belirlenmei yönemi kullanılarak elde edilir k k k3 ( ). ( 5 5) ( )( ) k ( ),6 5 5 k ( ), k3 ( ) ( ), (,6,568 ) 5 5, ( ) ( ) ( ),6 u( ),568 e u( ),7676 e u( ) ( ) ( ) ( 3,68)(,38) k k k3 3,68,38 ( ) k ( ) k k 3 ( 3,68) (,38) ( ) ( ) 3,68,38,847,47

10 Devreler II Der Noları 3-4 (,,847,47 ) 3,68,38 3,68,38 ( ),u( ),847e u( ),47e u( ) ÖRNEK: 3 e( ) () y, 4 () e()=δ() için, durum denklemini çözünüz ve mariel geçiş işlevini bulunuz. 3 Çözüm: I A 3 I A ( )( 3) ve =, =-3 kök değerleridir. I A 3 ( )( 3) Mariel geçiş işlevi ( ) ( )( 3) 3 H( ) C I A B ( ) ( )( 3) ( )( 3) 3 ( )( 3) 3 4 4( )( 3) 4( )( 3) I A BE( ) I A () ( ) E()= ( ) ( )( 3) 3 ( )( 3) ( ) ie ( ) e k k ( ) ie ( ) e e ( )( 3)

11 Devreler II Der Noları 3-4 olarak heaplanır. Çıkış denklemi ie e ( ) y e ( ) 4 ( e e ) 4 Eğer E( ) yani e( ) u( ) için aynı örneği çözünüz. DEVRE ÖĞELERİNİN -BÖLGEİNDE TANIM BAĞINTILARI Önce devre elemanlarının akımı ile gerilimi araındaki ilişki -bölgeinde yazılır. onra devre elemanlarının akımı ile gerilimi araındaki ilişkiler -bölgeinde elde edilir. Daha onra akım ile gerilim araındaki ilişkiyi verecek devre modeli oluşurulur. - -bölgeinde direnç elemanı: I() + I() + R v() _ R V() _ Zaman bölgei -domeni Direnç için akım-gerilim bağınıı -bölgeinde v( ) Ri( ) olarak yazılır. Bu bağınının Laplace dönüşümü alınıra; V ( ) RI ( ) olacakır. - - bölgeinde endükan elemanı: Bu endükanın içinden geçen ı() akımının başlangıç değerinin I olduğu kabul edilerek dı V L d Bağınıının Laplace dönüşümü alınıra (L abi olduğundan) elde edilir. V ( ) L I ( ) I LI ( ) LI

12 Devreler II Der Noları 3-4 dı L d V ( ) I V ( ) L I ( ) I LI ( ) LI, I ( ) L V, -bölgeinde endükan elemanı Gerilim eşdeğeri devrei Akım eşdeğeri devrei Eğer endükana depolanan başlangıç enerjii ıfır ie (yani I = ie) endükanın domenindeki modeli adece L empedanına ahip bir endükan olacakır. 3- -bölgeinde kondanaör elemanı: Önceden doldurulmuş kondanaör (başlangıça üzerinde bir gerilim olan) için akım-gerilim dv ilişkii; i c dir. Laplace dönüşümü alınıra ifadei aşağıdaki gibidir. d I ( ) C V ( ) V () CV ( ) CV, V () V ( ) I( ) C Kapaienin akım eşdeğeri (paralel) eri eşdeğer devrei Eğer V ie devre, empedanı olan bir kapaieye indirgenir. C NOT: Kapaiede ve endükana depolanmış enerji yoka, her bir devre elemanının akımı ile gerilimi araındaki ilişki V ( ) Z( ) I( ) dir. Burada Z() elemanın -domeni empedanır. Örneğin; Endükan için Z L ()=L Kapaie için Z ( ) C Direnç için Z R ()=R C dir. Birimleri Ω dur. -domeninde empedanın eri admianır.

13 Devreler II Der Noları 3-4 Endükan için Y ( ) L L Kapaie için YC ( ) C Direnç için Y ( ) R R -domeninde empedan ve admianların eşdeğerlerinin bulunmaı w-bölgeindeki devre analizinde olduğu gibidir. 4. Fizikel ranformaör -bölgei için v i anım bağınıı dı ( ) v ( ) L d dı ( ) M d bölgei için V-I anım bağınıları dı () dı () V ( ) v () L M d d V ( ) L I ( ) MI ( ) L I ( ) MI ( ) dı ( ) v ( ) M d L dı ( ) d V ( ) MI ( ) L I ( ) ( MI ( ) L I ( )) Mariel olarak yazalım: V ( ) L M I( ) L M I( ) V ( ) M L I( ) M L I( ) I( ) L M V ( ) I( ) I( ) M L L L M V ( ) I( ) 5. İdeal Tranformaör n v n v ı n ı (-bölgeinde) n

14 Devreler II Der Noları 3-4 -bölgei anım bağınıı: 6. Jiraör (Gyraor) n V ( ) n V ( ) I( ) n I( ) n (zincir paramerei) -bölgei anım bağınıları -bölgei anım bağınıları v ( ) r ı v ( ) r ı V ( ) r I( ) V ( ) r I( ) r: jirayon direncidir(birimi Ω). g: jirayon ilekenliğidir. (birimi mho) Aralarındaki ilişki r dir. g I( ) g V ( ) Admian durumunda I( ) g V ( ) 7. Negaif Empedan Çeviriciler Tanım bağlanıları yazılırken bir direnç öğei gibi düşünülür. K; abi bir dönüşüm kaayııdır a) Akım Negaif Çevirici b) Gerilim Negaif Çevirici ı v kv kı v kv ı kı v ( ) k ı ( ) V ( ) k I( ) ı ( ) k v( ) I( ) k V ( )

15 Devreler II Der Noları Üç uçlu devre elemanı I I V ( AB ) V ( ) ( ) V V V V ( ) Z Z I( ) V ( ) Z Z I( ) empedan marii I( ) y y V ( ) I ( ) y y V ( ) Admi an marii 9. (n+) uçlu devre elemanı için; V()-I() anım bağınıı Empedana bağlı olarak V ( ) Z( ) Z( ) Zn( ) I( ) V ( ) Z( ) Z( ) Zn ( ) I( ) Vn ( ) Zn( ) Zn ( ) Znn ( ) In ( ) Adminan mariine bağlı olarak I( ) Y ( ) Y ( ) Y n ( ) V ( ) I( ) Y ( ) Y ( ) Y n ( ) V ( ) In( ) Yn( ) Yn ( ) Ynn ( ) Vn ( ) w-bölgeine dönüşüm yapılmak ienire =jw yazılır. Devrelerin bölgei Çözümlenmei a) Düğüm denklemleri b) Çevre denklemleri c) Keileme denklemleri d) Temel çevre denklemleri e) Durum denklemleri UYARI: ) Devre paif (edilgen) ve bağımız kaynaklardan oluşmuş ie Z(), Y() imerik bir mariir. ) Devrede bağımlı kaynaklar bulunura Y(), Z() imerik olmakan çıkar. 3) Bağımız kaynakların ürevleri bulunduğunda, Laplace dönüşümü alınırken = daki (başlangıç değerinde) e( ), j( ) ya da ürevlerinin başlangıç değerleri ıfır alınır.

16 Devreler II Der Noları 3-4. Düğüm denklemlerinin yazılmaı Devre düğüm denklemleri -bölgeinde yazılırken uyulacak ilkeler:. Önce gerekiyora devrenin opolojik yapıı değişirilir. Devrede bulunan bazı bağımız gerilim kaynaklarının akım eşdeğerleri alınır ve devre üzerinde bu değişimler yapılır.. Bu değişikliklerden onra opolojik yapıı değişirilmiş devrenin opolojik çizgei çizilir ve uygun referan düğümü eçilir. 3. Düğüm denklemleri kol akımları cininden yazılır. 4. Kol akımları ve gerilimleri araındaki uç denklemleri (anım bağınıları) 3. deki denklemlerde yerleşirilir. 5. Öğe gerilimleri düğüm gerilimleri cininden yazılır. 6. Ek denklemlerdeki değişkenler düğüm gerilimleri cininden yazılır. 7. Elde edilen denklemler, bilinmeyen düğüm gerilimleri olda, bilinenler ağda olmak üzere düzenlenir. ÖRNEK: Başlangıç değerleri ıfırdan farklı olduğu durumda, düğüm denklemlerini yazınız. Çözüm: A-Ref araındaki gerilim ve dirençen oluşan kolun akım eşdeğerini alalım. R ı 3 3 e V AC ı G V G e, J G e 3 3 AC 3 3

17 Devreler II Der Noları 3-4 Endükan elemanının gerilim anımını yazalım: dil( ) vl ( ) L VL ( ) LIL( ) LIL( ) d Akım anımı; il( ) VL ( ). d I ( ) L I ( ) IL ( ) VL ( ) L dvc ( ) ıc ( ) C IC ( ) CVC ( ) CVC ( ) d 7 -A düğümü için ı ( ) G3E ( ) G3V 3( ) C6V6 ( ) C6V6 ( ) V7 ( ) L G5V 5( ) L ıl8( ) ıl7 ( ) B düğümü için J ( ) G4V 4( ) VL8( ) G5V 5( ) V7 ( ) L L - V VdA V V 3 6 da V V db V V V V 4 7 da db V da V db V V 5 8 db 8 7 I L G V ( ) C V ( ) ( V ( ) V ( )) G ( V ( ) V ( )) G E ( ) C V ( ) 7 A 3 A 6 A A B 5 A B L7 ıl ( ) ıl ( ) G V ( ) V ( ) G ( V ( ) V ( )) ( V ( ) V ( )) J ( ) 8 7 B 4 B B 5 A B A B L8 L7 ıl7 ( ) 3- A G3 G5 C6 VA( ) G5 VB ( ) G3E ( ) C6V6 ( ) L7 L7 L8 L7 B G5 VA( ) G4 G5 VB ( ) J ( ) L7 L7 L8 Mariel olarak düzenlenire: 7 ı ( ) ı ( ) ( )

18 Devreler II Der Noları 3-4 G G C ( G ) C6VC 6( ) I L L V G E L7( ) ( I L7 ( ) IL8 ( )) A( ) 3 ( ) VB ( ) J ( ) ( G5 ) G4 G 5 L V ( ) 7 L7 L 8 d Bağımız kaynaklara göre yapılan çözüm Y ( ) ( zorlanmış çözüm) zorlanmış çözüm ve öz çözüm elde edilmiş olur. Başlangıç değer ( öz çözüm) V ( ) V ( ) : am çözüm bulunur. d d ÖRNEK: Devrenin düğüm denklemlerini -bölgeinde yazınız. Çözüm: Devredeki C 3, L 4 ve L 5 öğelerinin -bölgeindeki akım eşdeğer devrelerini oluşuralım. IL4( ) L5 M V4 ( ) IL4( ) IL5( ) ( L4 L5 M ) M L 4 V5 ( ) I L5( ), L M I ( ) V ( ) V ( ) I ( ) 5 L4 4 5 L4 ( L4 L5 M ) ( L4L5 M ) M L4 IL5( ) V4 ( ) V5 ( ) I L5( )., ve 3 düğümleri için KAYD lerini yazalım. I ( ) I ( ) 3 I ( ) I ( ) I ( ) 3 4 I ( ) I ( ) 5. - bölgeinde anım bağınılarını yerleşirelim. L. L M ie 4 5

19 Devreler II Der Noları 3-4 GV ( ) J ( ) C V ( ) C V ( ) C3 L5 M GV ( ) C3V 3( ) C3V C3( ) gv3 ( ) V4 ( ) V5 ( ) I L4( ) M L4 GV ( ) V4 ( ) V5( ) I L5( ) 4.Öğe gerilimlerini, düğüm gerilimleri cininden yazalım. GV ( ) C V ( ) V ( ) J ( ) C V ( ) d 3 d d 3 C3 L5 M G Vd ( ) Vd 3( ) ( g C3) Vd ( ) Vd ( ) Vd ( ) Vd 3( ) C3V C3( ) IL4( ) M L4 G Vd ( ) Vd 3( ) Vd ( ) Vd 3( ) IL5( ) Bazı düzenlemeler yapılarak; L5 M ( g C3 ) Vd( ) ( G g C3 ) Vd ( ) ( G ) Vd 3 ( ) C3VC 3 ( ) I L4 ( ) M L4 ( G ) Vd ( ) ( G ) Vd 3 ( ) I L5 ( ) 4.Mariel biçimde yazılıra G C3 C3 C3V C3( ) Vd( ) J( ) L5 M ( g C3) G g C3 ( G ) Vd ( ) C3V C3( ) IL4( ) V ( ) d 3 M L 4 ( G ) G zorlanmış çözüm IL5( ) v ( ) V ( ) d Örnek: d : TAM ÇÖZÜM öz çözüm

20 Devreler II Der Noları 3-4 R3 C9 e C8 L6 L7 R4 C e R5 ı () ı L () A L6 7 V () V Vol, V () 3 Vol C8 C 9 C e ( ) e in 3, e ( ) Vol Düğüm denklemlerini yazalım. C C F, R Düğüm denklemlerini yazalım. V ( ) ( L R ) I ( ) E() C

21 Devreler II Der Noları 3-4 I ( ) Y( ) V ( ) Y ( ) E() 4 4 Y ( ) R L C Z( ) R5 L7 C Y ( ) -4 kolunun akım eşdeğeri alınan devrede yerleşirilire Topolojik değişirmeler yapılırken bağımlı kaynakların değişkenleri göz önünde bulundurulacakır. Düğüm denklemlerini devreye bakarak yazalım. G3 ( C8 C9) C9 C8 3 ( ) Vd G E C9 C9 V d L 6 R L6 5 L7 V d 3 G4E ( ) C C8 G4 C8 L6 L 6 C8V C8( ) C9VC 9 ( ) ı 6( ) L C9VC 9( ) E() Y ( ) Burada Y ( ) C8V C8( ) IL6( ) / ( 3 ) 3 3 ( ) VC VC () L L () 7 7 L7ıL7 () Y ( ) 4 V V V d d 3 3 ( ) 3 L d

Otomatik Kontrol. Fiziksel Sistemlerin Modellenmesi. Prof.Dr.Galip Cansever. Elektriksel Sistemeler Mekaniksel Sistemler. Ders #4

Otomatik Kontrol. Fiziksel Sistemlerin Modellenmesi. Prof.Dr.Galip Cansever. Elektriksel Sistemeler Mekaniksel Sistemler. Ders #4 Der #4 Otomatik Kontrol Fizikel Sitemlerin Modellenmei Elektrikel Sitemeler Mekanikel Sitemler 6 February 007 Otomatik Kontrol Kontrol itemlerinin analizinde ve taarımında en önemli noktalardan bir tanei

Detaylı

LAPLACE DÖNÜŞÜMÜNÜN DEVRE ANALİZİNE UYGULANMASI

LAPLACE DÖNÜŞÜMÜNÜN DEVRE ANALİZİNE UYGULANMASI LAPLACE DÖNÜŞÜMÜNÜN DERE ANALİZİNE UYGULANMAS ÖĞRENME HEDEFLERİ Laplace ile devre çözümleri Laplace dönüşümünün kullanışlılığını göerme Devre Elemanı Mdelleri Devrelerin Laplace düzlemine dönüşürülmei

Detaylı

ESM406- Elektrik Enerji Sistemlerinin Kontrolü. 2. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü

ESM406- Elektrik Enerji Sistemlerinin Kontrolü. 2. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü ESM406- Elektrik Enerji Sitemlerinin Kontrolü. SİSTEMLERİN MATEMATİKSEL MODELLENMESİ Laplace Dönüşümü.. Hedefler Bu bölümün hedefleri:. Komplek değişkenlerin tanıtılmaı.. Laplace Tranformayonun tanıtılmaı..

Detaylı

>> pretty(f) s exp(10) 1/ s + 1 1/100 (s + 1) + 1 s

>> pretty(f) s exp(10) 1/ s + 1 1/100 (s + 1) + 1 s ELN5 OTOMATİK KONTROL MATLAB ÖRNEKLERİ - LAPLACE VE TERS LAPLACE DÖNÜŞÜMÜ UYGULAMALARI: Symbolic Math Toolbox içinde tanımlı olan laplace ve ilaplace komutları ile Laplace ve Ter Laplace dönüşümlerinin

Detaylı

Bölüm 2: Bir Boyutta Hareket

Bölüm 2: Bir Boyutta Hareket Bölüm : Bir Boyua Hareke Kavrama Soruları 1- Harekeli bir cimin yer değişirmei ile aldığı yol aynımıdır? - Hız ile üra araındaki fark nedir? 3- Oralama ve ani hız araındaki fark nedir? 4- Ne zaman oralama

Detaylı

ESM 406 Elektrik Enerji Sistemlerinin Kontrolü 4. TRANSFER FONKSİYONU VE BLOK DİYAGRAM İNDİRGEME

ESM 406 Elektrik Enerji Sistemlerinin Kontrolü 4. TRANSFER FONKSİYONU VE BLOK DİYAGRAM İNDİRGEME . TRNSFER FONKSİYONU VE BLOK DİYRM İNDİREME. Hedefler Bu bölümün amacı;. Tranfer fonkiyonu ile blok diyagramları araındaki ilişki incelemek,. Fizikel itemlerin blok diyagramlarını elde etmek, 3. Blok diyagramlarının

Detaylı

ÇOKLU ALT SİSTEMLERİN SADELEŞTİRİLMESİ

ÇOKLU ALT SİSTEMLERİN SADELEŞTİRİLMESİ 73 BÖLÜM 5 ÇOKLU ALT SİSTEMLERİN SADELEŞTİRİLMESİ 5. Blok Diyagramları Blok diyagramları genellikle frekan domenindeki analizlerde kullanılır. Şekil 5. de çoklu alt-itemlerde kullanılan blok diyagramları

Detaylı

Otomatik Kontrol I. Laplace Dönüşümü. Vasfi Emre Ömürlü

Otomatik Kontrol I. Laplace Dönüşümü. Vasfi Emre Ömürlü Oomaik Konrol I Laplace Dönüşümü Vafi Emre Ömürlü Laplace Dönüşümü: Özellikleri eoremleri Kımî Keirlere Ayırma By Vafi Emre Ömürlü, Ph.D., 7 Laplace ranform I i advanageou o olve By uing, we can conver

Detaylı

10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması

10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması 10. Sunum: Laplace Dönüşümünün Devre Analizine Uygulanması Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Laplace Devre Çözümleri Aşağıdaki devrenin

Detaylı

Deney-1 Analog Filtreler

Deney-1 Analog Filtreler Đleişim Siemleri ab. Noları Arş.Gör.Koray GÜRKAN kgurkan@ianbul.edu.r Deney- Analog Filreler Đleişim iemlerinde, örneğin FM bandında 00 MHz de yayın yapacak olan bir radyo vericiinde modülayon onraı oraya

Detaylı

DİNAMİK DEVRELERİN FREKANS DOMENİNDE İNCELENMESİ, FREKANS KARAKTERİSTİKLERİ VE BODE DİYAGRAMLARI

DİNAMİK DEVRELERİN FREKANS DOMENİNDE İNCELENMESİ, FREKANS KARAKTERİSTİKLERİ VE BODE DİYAGRAMLARI DENEY NO: 9 DİNAMİK DEVRELERİN FREKANS DOMENİNDE İNCELENMESİ, FREKANS KARAKTERİSTİKLERİ VE BODE DİYAGRAMLARI Deneyin Amacı: Lineer-zamanla değişmeyen -kapılı devrelerin Genlik-Frekan ve Faz-Frekan karakteritiklerinin

Detaylı

Ders #9. Otomatik Kontrol. Kararlılık (Stability) Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr.

Ders #9. Otomatik Kontrol. Kararlılık (Stability) Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr. Der #9 Otomatik Kontrol Kararlılık (Stability) 1 Kararlılık, geçici rejim cevabı ve ürekli hal hataı gibi kontrol taarımcıının üç temel unurundan en önemli olanıdır. Lineer zamanla değişmeyen itemlerin

Detaylı

Bölüm 7 Sinüsoidal Kalıcı Durum Devre Analizi

Bölüm 7 Sinüsoidal Kalıcı Durum Devre Analizi Bölüm 7 Sinüoidal Kalıcı Durum Devre Analizi 7. Sinüoidal kaynaklar 7. Ortalama ve Etkin Değer 7.3 Karmaşık Sayılar 7.4 Sinüoidallerin Fazör Göterimi 7.5 Devrelerin Sinüzoidal Kalıcı Durum Cevabı 7.6 Devrelerin

Detaylı

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI DEVRE VE SİSTEM ANALİZİ 01.1.015 ÇALIŞMA SORULARI 1. Aşağıda verilen devrede anahtar uzun süre konumunda kalmış ve t=0 anında a) v 5 ( geriliminin tam çözümünü diferansiyel denklemlerden faydalanarak bulunuz.

Detaylı

Frekans Analiz Yöntemleri I Bode Eğrileri

Frekans Analiz Yöntemleri I Bode Eğrileri Frekan Analiz Yöntemleri I Bode Eğrileri Prof.Dr. Galip Canever 1 Frekan cevabı analizi 1930 ve 1940 lı yıllarda Nyquit ve Bode tarafından geliştirilmiştir ve 1948 de Evan tarafından geliştirilen kök yer

Detaylı

Otomatik Kontrol. Blok Diyagramlar ve İşaret Akış Diyagramları. Prof.Dr.Galip Cansever. Ders #3. 26 February 2007 Otomatik Kontrol

Otomatik Kontrol. Blok Diyagramlar ve İşaret Akış Diyagramları. Prof.Dr.Galip Cansever. Ders #3. 26 February 2007 Otomatik Kontrol Der # Otomatik Kontrol Blok Diyagramlar ve İşaret Akış Diyagramları ProfDralip Canever 6 February 007 Otomatik Kontrol ProfDralip Canever Karmaşık itemler bir çok alt itemin bir araya gelmeiyle oluşmuştur

Detaylı

Ders #10. Otomatik Kontrol. Sürekli Hal Hataları. Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr.

Ders #10. Otomatik Kontrol. Sürekli Hal Hataları. Prof.Dr.Galip Cansever. 26 February 2007 Otomatik Kontrol. Prof.Dr. Der #0 Otomatik ontrol Sürekli Hal Hataları Prof.Dr.alip Canever Prof.Dr.alip Canever Denetim Sitemlerinin analiz ve taarımında üç kritere odaklanılır:. eçici Rejim Cevabı. ararlılık 3. Sürekli Hal ararlı

Detaylı

ELEKTRİK DEVRE TEMELLERİ ÖDEV-2

ELEKTRİK DEVRE TEMELLERİ ÖDEV-2 ELEKTRİK DEVRE TEMELLERİ 06.05.2015 ÖDEV-2 1. Aşağıdaki şekilde verilen devrenin; a) a-b uçlarının solunda kalan kısmının Thevenin eşdeğerini bulunuz. b) Bu eşdeğerden faydalanarak R L =4 luk yük direncinde

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku

Detaylı

Deney 1 : Ayrık Sinyaller

Deney 1 : Ayrık Sinyaller İŞARET İŞLEME ve UYGULAMALARI Deney : Ayrık Sinyaller Deney : Ayrık Sinyaller. Ayrık Sinüzoidaller 2. Periyodik Ayrık Sinyaller i. Fourier Serilerinin Önemli Özellikleri 3. Peryodik Olmayan Sonlu uzunluklu

Detaylı

H09 Doğrusal kontrol sistemlerinin kararlılık analizi. Yrd. Doç. Dr. Aytaç Gören

H09 Doğrusal kontrol sistemlerinin kararlılık analizi. Yrd. Doç. Dr. Aytaç Gören H09 Doğrual kontrol itemlerinin kararlılık analizi MAK 306 - Der Kapamı H01 İçerik ve Otomatik kontrol kavramı H0 Otomatik kontrol kavramı ve devreler H03 Kontrol devrelerinde geri belemenin önemi H04

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku

Detaylı

ÖLÇME VE DEVRE LABORATUVARI DENEY: 4

ÖLÇME VE DEVRE LABORATUVARI DENEY: 4 Masa No: No. Ad Soyad: No. Ad Soyad: ÖLÇME VE DEVRE LABORATUVARI DENEY: 4 --Düğüm Gerilimleri ve Çevre Akımları Yöntemleri İle Devre Çözümleme-- 2013, Mart 20 4A: Düğüm Çözümleme ( Düğüm Gerilimi ) Deneyin

Detaylı

Elektrik Müh. Temelleri

Elektrik Müh. Temelleri Elektrik Müh. Temelleri ELK184 4 @ysevim61 https://www.facebook.com/groups/ktuemt/ Elektrik Mühendisliğinin TemelleriYrd. Doç. Dr. Yusuf SEVİM 1 Thevenin (Gerilim) ve Norton (kım) Eşdeğeri macı : Devreyi

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku

Detaylı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. 3. Bölüm: Temel Devre Tepkileri

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. 3. Bölüm: Temel Devre Tepkileri Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM07 Temel ElektronikI 3. Bölüm: Temel Devre Tepkileri Doç. Dr. Hüseyin Sarı 3. Bölüm: Temel Devre Tepkileri İçerik Devre Tepkilerinin

Detaylı

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI

T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL ELEKTRİK DEVRE LABORATUVARI THEVENIN VE NORTON TEOREMLERİNİN UYGULANMASI DENEY SORUMLUSU Arş. Gör. Sertaç SAVAŞ MART

Detaylı

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ

BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ BÖLÜM 6 LAPLACE DÖNÜŞÜMLERİ 6.2. Laplace Dönüşümü Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) ya da L[f(t)] olarak gösterilir. Burada tanımlanan s; ÇÖZÜM: a) b) c) ÇÖZÜM: 6.3.

Detaylı

Bölüm 1. Elektriksel Büyüklükler ve Elektrik Devre Elemanları

Bölüm 1. Elektriksel Büyüklükler ve Elektrik Devre Elemanları Bölüm Elektriksel Büyüklükler ve Elektrik Devre Elemanları. Temel Elektriksel Büyüklükler: Akım, Gerilim, Güç, Enerji. Güç Polaritesi.3 Akım ve Gerilim Kaynakları F.Ü. Teknoloji Fak. EEM M.G. .. Temel

Detaylı

1 Lineer Diferansiyel Denklem Sistemleri

1 Lineer Diferansiyel Denklem Sistemleri Outline İçindekiler 1 Lineer Diferansiyel Denklem Sistemleri 1 1.1 Lineer sistem türleri (iki bilinmeyenli iki denklem)................. 1 2 Normal Formda lineer denklem sistemleri (İki bilinmeyenli iki

Detaylı

Yeşilköy Anadolu Lisesi

Yeşilköy Anadolu Lisesi Yeşilköy Anadolu Lisesi TANIM (KONUYA GİRİŞ) a, b, c gerçel sayı ve a ¹ 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli denklem denir. Bu açık önermeyi

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

11. Sunum: İki Kapılı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

11. Sunum: İki Kapılı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 11. Sunum: İki Kapılı Devreler Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Giriş İki kapılı devreler giriş akımları ve gerilimleri ve çıkış akımları

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü GEÇİCİ OLAYLARIN İNCELENMESİ

KARADENİZ TEKNİK ÜNİVERSİTESİ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü GEÇİCİ OLAYLARIN İNCELENMESİ KARAENİZ TEKNİK ÜNİVERSİTESİ ELK008 EVRELER II LABORATUARI HAZIRLIK ÇALIŞMALARI GEÇİİ OLAYLARIN İNELENMESİ. Geçici olay ve Sürekli olay nedir? Kısaca açıklayınız.. Kondansatör ve Endüktans elemanlarına

Detaylı

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ LABORATUARI

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ LABORATUARI SAKAA ÜNİESİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTİK-ELEKTONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTİK ELEKTONİK MÜHENDİSLİĞİNE GİİŞ LABOATUAI DENEİ APTIAN: DENEİN ADI: DENE NO: DENEİ APANIN ADI ve SOADI: SINIFI: OKUL NO:

Detaylı

Math 322 Diferensiyel Denklemler Ders Notları 2012

Math 322 Diferensiyel Denklemler Ders Notları 2012 1 Genel Tanımlar Bir veya birden fazla fonksiyonun türevlerini içeren denklemlere diferensiyel denklem denmektedir. Diferensiyel denklemler Adi (Sıradan) diferensiyel denklemler ve Kısmi diferensiyel denklemler

Detaylı

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür. ÖZDEĞER VE ÖZVEKTÖRLER A n n tipinde bir matris olsun. AX = λx (1.1) olmak üzere n 1 tipinde bileşenleri sıfırdan farklı bir X matrisi için λ sayıları için bu denklemi sağlayan bileşenleri sıfırdan farklı

Detaylı

Problemler: Devre Analizi-II

Problemler: Devre Analizi-II Problemler: Devre Analizi-II P.7.1 Grafiği verilen sinüsoidalin hem sinüs hem de kosinüs cinsinden ifadesini yazınız. v(t) 5 4 3 2 1 0-1 t(saniye) -2-3 -4-5 0 1 2 3 4 5 6 7 8 9 10 P.7.2 v1(t) 60Cos( 100

Detaylı

DENEY 5 RL ve RC Devreleri

DENEY 5 RL ve RC Devreleri UUDAĞ ÜNİVESİTESİ MÜHENDİSİK FAKÜTESİ EEKTİK-EEKTONİK MÜHENDİSİĞİ BÖÜMÜ EEM2103 Elekrik Devreleri aborauarı 2014-2015 DENEY 5 ve Devreleri Deneyi Yapanın Değerlendirme Adı Soyadı : Deney Sonuçları (40/100)

Detaylı

KARADENĠZ TEKNĠK ÜNĠVERSĠTESĠ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK2008 DEVRELER II LABORATUARI

KARADENĠZ TEKNĠK ÜNĠVERSĠTESĠ Mühendislik Fakültesi Elektrik-Elektronik Mühendisliği Bölümü ELK2008 DEVRELER II LABORATUARI KARADENĠZ TEKNĠK ÜNĠERSĠTESĠ ELK008 DERELER LABORATUAR ĠKĠ KAPL DERELER E ĠKĠLĠLĠK ÖZELLĠĞĠ Hazırlık ÇalıĢması. T ve devreleri nedir? Bu devreler için en uygun devre parametreleri yöntemi hangisidir?.

Detaylı

DC DEVRE ÇÖZÜM YÖNTEMLERİ

DC DEVRE ÇÖZÜM YÖNTEMLERİ DC DEVRE ÇÖZÜM YÖNTEMLERİ Elektrik devresi, kaynak ve yük gibi çeşitli devre elemanlarının herhangi bir şekilde bağlantısından meydana gelir. Bu gibi devrelerin çözümünde genellikle, seri-paralel devrelerin

Detaylı

= t. v ort. x = dx dt

= t. v ort. x = dx dt BÖLÜM.4 DOĞRUSAL HAREKET 4. Mekanik Mekanik konusu, kinemaik ve dinamik olarak ikiye ayırmak mümkündür. Kinemaik cisimlerin yalnızca harekei ile ilgilenir. Burada cismin hareke ederken izlediği yol önemlidir.

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method)

Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method) Temel Elektronik Basic Electronic Düğüm Gerilimleri Yöntemi (Node-Voltage Method) Konular Düğüm Gerilimleri Yöntemi o Temel Kavramlar o Yönteme Giriş o Yöntemin Uygulanışı o Yöntemin Uygulanması o Örnekler

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri Korol Siemleri Taarımı Siem Modellerii Zama Cevabı ve Performa Krierleri Prof.Dr. Galip Caever Korol Siemleri Taarımı Prof.Dr.Galip Caever Kapalı dögü iemi oluşurulmaıda öce iem modelide geçici rejim cevabıı

Detaylı

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 4- Direnç Devreleri II

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 4- Direnç Devreleri II ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 4- Direnç Devreleri II Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net Gerilim Bölücü Bir gerilim kaynağından farklı

Detaylı

TEK-FAZLI TRANSFORMATÖRÜN PARAMETRELERİNİN BULUNMASI DENEY 325-02

TEK-FAZLI TRANSFORMATÖRÜN PARAMETRELERİNİN BULUNMASI DENEY 325-02 İNÖNÜ ÜNİERSİTESİ MÜENDİSİK FKÜTESİ EEKTRİK-EEKTRONİK MÜ. BÖ. 325 EEKTRİK MKİNRI BORTURI I TEK-FZI TRNSFORMTÖRÜN PRMETREERİNİN BUUNMSI DENEY 325-02 1. MÇ: Tek fazlı tranformatörün çalışmaını incelemek

Detaylı

HOMOGEN OLMAYAN DENKLEMLER

HOMOGEN OLMAYAN DENKLEMLER n. mertebeden homogen olmayan lineer bir diferansiyel denklemin y (n) + p 1 (x)y (n 1) + + p n 1 (x)y + p n (x)y = f(x) (1) şeklinde olduğunu ve bununla ilgili olan n. mertebeden lineer homogen denlemin

Detaylı

Elektrik Müh. Temelleri

Elektrik Müh. Temelleri Elektrik Müh. Temelleri ELK184 2 @ysevim61 https://www.facebook.com/groups/ktuemt/ 1 Akım, Gerilim, Direnç Anahtar Pil (Enerji kaynağı) V (Akımın yönü) R (Ampül) (e hareket yönü) Şekildeki devrede yük

Detaylı

Per-unit değerlerin avantajları

Per-unit değerlerin avantajları PER-UNİT DEĞERLER Per-unit değerlerin avantajları Elektriksel büyüklüklerin karşılaştırılmasında ve değerlendirilmesinde kolaylık sağlar. Trafoların per-unit eşdeğer empedansları primer ve sekonder taraf

Detaylı

Adı Soyadı: Öğrenci No: DENEY 3 ÖN HAZIRLIK SORULARI. 1) Aşağıdaki verilen devrenin A-B uçlarındaki Thevenin eşdeğerini elde ediniz.

Adı Soyadı: Öğrenci No: DENEY 3 ÖN HAZIRLIK SORULARI. 1) Aşağıdaki verilen devrenin A-B uçlarındaki Thevenin eşdeğerini elde ediniz. dı Soyadı: Öğrenci No: DENEY 3 ÖN HZIRLIK SORULRI 1) şağıdaki verilen devrenin - uçlarındaki Thevenin eşdeğerini elde ediniz. 3 10 Ω 16 Ω 10 Ω 24 V 5 Ω 2) şağıda verilen devrenin Norton eşdeğerini bulunuz.

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR ECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Ders Notu: Hayri ACAR İstanbul Teknik Üniveristesi Tel: 85 31 46 / 116 E-mail: acarh@itu.edu.tr Web: http://atlas.cc.itu.edu.tr/~acarh

Detaylı

Deneyin amacı, Thevenin ve Norton Teoremlerinin öğrenilmesi ve laboratuar ortamında test edilerek sonuçlarının analiz edilmesidir.

Deneyin amacı, Thevenin ve Norton Teoremlerinin öğrenilmesi ve laboratuar ortamında test edilerek sonuçlarının analiz edilmesidir. DENEY 4 THEVENİN VE NORTON TEOREMİ 4.1. DENEYİN AMACI Deneyin amacı, Thevenin ve Norton Teoremlerinin öğrenilmesi ve laboratuar ortamında test edilerek sonuçlarının analiz edilmesidir. 4.2. TEORİK İLGİ

Detaylı

Bölüm 7 - Kök- Yer Eğrisi Teknikleri

Bölüm 7 - Kök- Yer Eğrisi Teknikleri Bölüm 7 - Kök- Yer Eğrii Teknikleri Kök yer eğrii tekniği kararlı ve geçici hal cevabı analizinde kullanılmaktadır. Bu grafikel teknik kontrol iteminin performan niteliklerini tanımlamamıza yardımcı olur.

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

Düzenlenirse: 9I1 5I2 = 1 108I1 60I2 = 12 7I1 + 12I2 = 4 35I1 60I2 = I1 = 8 I 1

Düzenlenirse: 9I1 5I2 = 1 108I1 60I2 = 12 7I1 + 12I2 = 4 35I1 60I2 = I1 = 8 I 1 ELEKTRİK-ELEKTRONİK DERSİ FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ Şekiller üzerindeki renkli işaretlemeler soruya değil çözüme aittir: Maviler ilk aşamada asgari bağımsız denklem çözmek için yapılan tanımları,

Detaylı

Kontrol Sistemleri. Kontrolcüler. Yrd. Doç. Dr. Aytaç GÖREN

Kontrol Sistemleri. Kontrolcüler. Yrd. Doç. Dr. Aytaç GÖREN ontrol Sitemleri ontrolcüler Doğrual Sitemlerin Sınıflandırılmaı: Birinci Mertebeden Gecikmeli BMG Sitemler: x a T 1 x a t x e t Son değer teoremi : x x x adr adr adr lim xa 0 lim 0 T 1 t T t 2T t 3T t

Detaylı

Elektrik Devre Temelleri

Elektrik Devre Temelleri Elektrik Devre Temelleri 3. TEMEL KANUNLAR-2 Doç. Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Kocaeli Üniversitesi ÖRNEK 2.5 v 1 ve v 2 gerilimlerini bulun. (KGK) 1 PROBLEM 2.5 v 1 ve v 2

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siirt Üniversitesi Elektrik-Elektronik Mühendisliği Kaynak (Ders Kitabı): Fundamentals of Electric Circuits Charles K. Alexander Matthew N.O. Sadiku

Detaylı

DENEY 3 TRANZİSTORLU KUVVETLENDİRİCİ DEVRELER

DENEY 3 TRANZİSTORLU KUVVETLENDİRİCİ DEVRELER DENEY 3 TRANZİSTORLU KUVVETLENDİRİCİ DEVRELER DENEYİN AMACI: Bu deneyde BJT ve MOS kuvvelendiriciler incelenecek ve elde edilecek veriler yardımıyla her iki kuvvelendiricinin çalışma özellikleri gözlemlenecekir.

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER

Taşkın, Çetin, Abdullayeva 2. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER MATEMATİK Taşkın, Çetin, Abdullayeva BÖLÜM. ÖZDEŞLİKLER,DENKLEMLER VE EŞİTSİZLİKLER. ÖZDEŞLİKLER İki cebirsel ifade içerdikleri değişkenlerin (veya bilinmeyenlerin) her değeri içinbirbirine eşit oluyorsa,

Detaylı

ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II DENEY 3 TEK BESLEMELİ İŞLEMSEL KUVVETLENDİRİCİLER

ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II DENEY 3 TEK BESLEMELİ İŞLEMSEL KUVVETLENDİRİCİLER T.. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN ELEKTRONİK DEVRELER LABORATUVARI II DENEY TEK BESLEMELİ İŞLEMSEL KUVVETLENDİRİİLER Deneyi Yapanlar Grubu Numara

Detaylı

Devre Teorisi Ders Notu Dr. Nurettin ACIR ve Dr. Engin Cemal MENGÜÇ

Devre Teorisi Ders Notu Dr. Nurettin ACIR ve Dr. Engin Cemal MENGÜÇ BÖLÜM II BİRİNCİ DERECEDEN RC ve RL DEVRELER Bir önceki bölümde ideal bir indüktör ve kapasitörün enerji depolama kabiliyetleri ile birlikte uç davranışlarını analiz ettik. Bu bölümde ise bu elemanların

Detaylı

EEM211 ELEKTRİK DEVRELERİ-I

EEM211 ELEKTRİK DEVRELERİ-I EEM211 ELEKTRİK DEVRELERİ-I Prof. Dr. Selçuk YILDIRIM Siir Üniversiesi Elekrik-Elekronik Mühendisliği Kaynak (Ders Kiabı): Fundamenals of Elecric Circuis Charles K. Alexander Mahew N.O. Sadiku McGraw Hill,

Detaylı

GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET

GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET GERİLME ANALİZİ VE MOHR ÇEMBERİ MUKAVEMET Yrd. Doç. Dr. Emine AYDIN Yrd. Doç. Dr. Elif BORU 1 GENEL YÜKLEME DURUMUNDA GERİLME ANALİZİ Daha önce incelenen gerilme örnekleri eksenel yüklü yapı elemanları

Detaylı

KIRCHHOFF YASALARI VE WHEATSTONE(KELVİN) KÖPRÜSÜ

KIRCHHOFF YASALARI VE WHEATSTONE(KELVİN) KÖPRÜSÜ KIRCHHOFF YASALARI VE WHEATSTONE(KELVİN) KÖPRÜSÜ Deneyin Amacı Bu deneyin amacı, seri, paralel ve seri-paralel bağlı dirençleri tanımak, Kirchhoff Yasalarının uygulamasını yapmak, eşdeğer direnç hesaplamasını

Detaylı

3.4. ÇEVRE AKIMLAR YÖNTEMİ

3.4. ÇEVRE AKIMLAR YÖNTEMİ 3.4. ÇEVRE AKIMLAR YÖNTEMİ 3.4. ÇEVRE AKıMLAR YÖNTEMI (Ç.A.Y): Bu yöntemde düğümlerdeki akımlar yerine, çevredeki akımlar ele alınarak devrenin analizi yapılır. Yöntemin temel prensibi her bir bağımsız

Detaylı

2. Sunum: Birinci ve İkinci Mertebeden Geçici Devreler

2. Sunum: Birinci ve İkinci Mertebeden Geçici Devreler 2. Sunum: Birinci ve İkinci Mertebeden Geçici Devreler Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN- R. Mark NELMS, Nobel Akademik Yayıncılık 1 Giriş Geçici analizden kastedilen bir anahtarın

Detaylı

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II

T.C. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN3304 ELEKTRONİK DEVRELER LABORATUVARI II T.. ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK MİMARLIK FAKÜLTESİ ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELN ELEKTRONİK DEVRELER LABORATUVARI II DENEY : TEK BESLEMELİ İŞLEMSEL KUVVETLENDİRİİLER DENEY GRUBU :... DENEYİ YAPANLAR

Detaylı

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14.

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14. 1. Ünite: Polinomlar Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Polinomlarda Bölme, Bölüm ve Kalan Bulma 1 1 1 1 1 1 1 1 1

Detaylı

H03 Kontrol devrelerinde geri beslemenin önemi. Yrd. Doç. Dr. Aytaç Gören

H03 Kontrol devrelerinde geri beslemenin önemi. Yrd. Doç. Dr. Aytaç Gören H03 ontrol devrelerinde geri belemenin önemi Yrd. Doç. Dr. Aytaç ören MA 3026 - Der apamı H0 İçerik ve Otomatik kontrol kavramı H02 Otomatik kontrol kavramı ve devreler H03 ontrol devrelerinde geri belemenin

Detaylı

DEVRE DEĞİŞKENLERİ Bir elektrik devresinde enerji ölçülebilen bir değer değildir fakat ölçülebilen akım ve gerilim değerlerinden hesaplanır.

DEVRE DEĞİŞKENLERİ Bir elektrik devresinde enerji ölçülebilen bir değer değildir fakat ölçülebilen akım ve gerilim değerlerinden hesaplanır. DEVRE DEĞİŞKENLERİ Bir elektrik devresinde enerji ölçülebilen bir değer değildir fakat ölçülebilen akım ve gerilim değerlerinden hesaplanır. Akımın yönü okla gösterilir. Gerilimin akım gibi gösterilen

Detaylı

Elektrik Devre Temelleri

Elektrik Devre Temelleri Elektrik Devre Temelleri 2. TEMEL KANUNLAR Doç. Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Kocaeli Üniversitesi Bu bölümde Ohm Kanunu Düğüm, dal, çevre 2.1. Giriş Kirchhoff Kanunları Paralel

Detaylı

Elektrik Devre Temelleri 3

Elektrik Devre Temelleri 3 Elektrik Devre Temelleri 3 TEMEL KANUNLAR-2 Doç. Dr. M. Kemal GÜLLÜ Elektronik ve Haberleşme Mühendisliği Kocaeli Üniversitesi ÖRNEK 2.5 v 1 ve v 2 gerilimlerini bulun. (KGK) PROBLEM 2.5 v 1 ve v 2 gerilimlerini

Detaylı

Bölüm 1. Elektriksel Büyüklükler ve Elektrik Devre Elemanları

Bölüm 1. Elektriksel Büyüklükler ve Elektrik Devre Elemanları Bölüm Elektriksel Büyüklükler ve Elektrik Devre Elemanları. Temel Elektriksel Büyüklükler: Akım, Gerilim, Güç, Enerji. Güç Polaritesi.3 Akım ve Gerilim Kaynakları F.Ü. Teknoloji Fak. EEM M.G. .. Temel

Detaylı

GRAF MATRİSLERİ Giriş

GRAF MATRİSLERİ Giriş Giriş Bir graf (sisem) için Kirchhoff akım ve gerilim denklemleri marissel olarak yazılırsa, bu denklemlerde karşılaşılan marislere Graf Marisleri denir Bilindiği üzere KAY dan düğüm veya kesileme denklemleri,

Detaylı

11. SINIF SORU BANKASI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 6. Konu ALTERNATİF AKIM VE TRANSFORMATÖRLER TEST ÇÖZÜMLERİ

11. SINIF SORU BANKASI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 6. Konu ALTERNATİF AKIM VE TRANSFORMATÖRLER TEST ÇÖZÜMLERİ . SINIF SORU BANKASI. ÜNİTE: EEKTRİK VE MANYETİZMA 6. Konu ATERNATİF AKIM VE TRANSFORMATÖRER TEST ÇÖZÜMERİ 6 Alternatif Akım ve Transformatörler Test in Çözümleri. Alternatif gerilim denklemi; V sinrft

Detaylı

THEVENIN VE NORTON TEOREMLERİ. Bu teoremler en güçlü analiz tekniklerindendir EBE-215, Ö.F.BAY 1

THEVENIN VE NORTON TEOREMLERİ. Bu teoremler en güçlü analiz tekniklerindendir EBE-215, Ö.F.BAY 1 THEVENIN VE NORTON TEOREMLERİ Bu teoremler en güçlü analiz tekniklerindendir EBE-25, Ö.F.BAY THEVENIN EŞDEĞER TEOREMİ DOĞRUSAL DEVRE Bağımsız ve bağımlı kaynaklar içerebilir DEVRE A v O _ a + i Bağımsız

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces

biçimindeki ifadelere iki değişkenli polinomlar denir. Bu polinomda aynı terimdeki değişkenlerin üsleri toplamından en büyük olanına polinomun dereces TANIM n bir doğal sayı ve a 0, a 1, a 2,..., a n 1, a n birer gerçel sayı olmak üzere, P(x) = a 0 + a 1 x + a 2 x 2 +... + a n 1 x n 1 +a n x n biçimindeki ifadelere x değişkenine bağlı, gerçel (reel)

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

4. Sunum: AC Kalıcı Durum Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

4. Sunum: AC Kalıcı Durum Analizi. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 4. Sunum: AC Kalıcı Durum Analizi Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Giriş Aşağıdaki şekillere ve ifadelere bakalım ve daha önceki derslerimizden

Detaylı

RL, RC ve RLC DEN OLUŞMUŞ DEVRELERDE GEÇİCİ REJİMLERİN İNCELENMESİ

RL, RC ve RLC DEN OLUŞMUŞ DEVRELERDE GEÇİCİ REJİMLERİN İNCELENMESİ DNY NO: 6, C ve C DN OUŞMUŞ DVD GÇİCİ JİMİN İNCNMSİ Deneyin Amacı: Birinci derece elekrik devrelerinin zaman domeninde incelenmesi ve davranışlarının analiz edilmesi amaçlanmakadır. Genel Bilgiler: Bir

Detaylı

BİR ISIL SİSTEMİN MODELLENMESİ VE SIEMENS SIMATIC S7 200 PLC İLE KONTROLÜ

BİR ISIL SİSTEMİN MODELLENMESİ VE SIEMENS SIMATIC S7 200 PLC İLE KONTROLÜ BİR ISIL SİSTEMİN MODELLENMESİ VE SIEMENS SIMATIC S7 200 PLC İLE KONTROLÜ Tanel YÜCELEN 1 Özgür KAYMAKÇI 2 Salman KURTULAN 3. 1,2,3 Elektrik Mühendiliği Bölümü Elektrik-Elektronik Fakültei İtanbul Teknik

Detaylı

2. DA DEVRELERİNİN ANALİZİ

2. DA DEVRELERİNİN ANALİZİ 2. DA DEVRELERİNİN ANALİZİ 1 Hatları birbirini kesmeyecek şekilde bir düzlem üzerine çizilebilen devrelere Planar Devre adı verilir. Hatlarında kesişme olan bazı devreler de (şekil-a) kesişmeleri yok edecek

Detaylı

DENEY TARİHİ RAPOR TESLİM TARİHİ NOT

DENEY TARİHİ RAPOR TESLİM TARİHİ NOT DENEY 2 OHM-KIRCHOFF KANUNLARI VE BOBİN-DİRENÇ-KONDANSATÖR Malzeme Listesi: 1 adet 47Ω, 1 adet 100Ω, 1 adet 1,5KΩ ve 1 adet 6.8KΩ Dirençler 1 adet 100mH Bobin 1 adet 220nF Kondansatör Deneyde Kullanılacak

Detaylı

BÖLÜM 1: TEMEL KAVRAMLAR

BÖLÜM 1: TEMEL KAVRAMLAR BÖLÜM 1: TEMEL KAVRAMLAR Hal Değişkenleri Arasındaki Denklemler Aralarında sıfıra eşitlenebilen en az bir veya daha fazla denklem kurulabilen değişkenler birbirine bağımlıdır. Bu denklemlerden bilinen

Detaylı

Lineer Bağımlılık ve Lineer Bağımsızlık

Lineer Bağımlılık ve Lineer Bağımsızlık Lineer Bağımlılık ve Lineer Bağımsızlık Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayı ve alt uzay yapısını daha iyi tanıyacak, Bir vektör uzayındaki vektörlerin

Detaylı

6. Sunum: Manye-k Bağlaşımlı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık

6. Sunum: Manye-k Bağlaşımlı Devreler. Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 6. Sunum: Manye-k Bağlaşımlı Devreler Kaynak: Temel Mühendislik Devre Analizi, J. David IRWIN-R. Mark NELMS, Nobel Akademik Yayıncılık 1 Bu ders kapsamında ilgilendiğimiz bütün devre elamanlarının ideal

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever

Ders #2. Otomatik Kontrol. Laplas Dönüşümü. Prof.Dr.Galip Cansever Ders # Otomatik Kontrol Laplas Dönüşümü Pierre-Simon Laplace, 749-87 Matematiçi ve Astronomdur. http://www-history.mcs.st-andrews.ac.uk/biographies/laplace.html LAPLAS DÖNÜŞÜMÜ Zamanla değişen bir f(t)

Detaylı

V cn V ca. V bc. V bn. V ab. -V bn. V an HATIRLATMALAR. Faz-Faz ve Faz-Nötr Gerilimleri. Yıldız ve Üçgen Bağlı Yüklerde Akım-Gerilim İlişkileri

V cn V ca. V bc. V bn. V ab. -V bn. V an HATIRLATMALAR. Faz-Faz ve Faz-Nötr Gerilimleri. Yıldız ve Üçgen Bağlı Yüklerde Akım-Gerilim İlişkileri HATIRLATMALAR Faz-Faz ve Faz-Nötr Gerilimleri V cn V ca V ab 30 10 V an V aa = V cc = V bb V aa = V bb = V cc V bn V bc V ab 30 -V bn V aa = V aa V bb V aa = V aa cos(30) 30 V an V aa = V aa cos(30) =

Detaylı

OTOMATİK KONTROL SİSTEMLERİ DOĞRUSAL (LİNEER) GERİ BESLEMELİ SİSTEMLERİN KARARLILIĞI

OTOMATİK KONTROL SİSTEMLERİ DOĞRUSAL (LİNEER) GERİ BESLEMELİ SİSTEMLERİN KARARLILIĞI OOMAİ ONROL SİSEMLERİ DOĞRUSAL LİNEER GERİ BESLEMELİ SİSEMLERİN ARARLILIĞI ararlılık Denetim Sitemlerinden; ararlılık Hızlı cevap Az veya ıfır hata Minimum aşım gibi kriterleri ağlamaı beklenir. ararlılık;

Detaylı

Küçük sinyal analizi transistörü AC domende temsilş etmek için kullanılan modelleri içerir.

Küçük sinyal analizi transistörü AC domende temsilş etmek için kullanılan modelleri içerir. Küçük Sinyal Analizi Küçük sinyal analizi transistörü AC domende temsilş etmek için kullanılan modelleri içerir. 1. Karma (hibrid) model 2. r e model Üretici firmalar bilgi sayfalarında belirli bir çalışma

Detaylı

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Alıştırmalar 1 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Denklem Mertebe Derece a) 2 1 ( ) 4 6 c) 2 1 d) 2 2 e) 3 1 f) 2 4 g)

Detaylı

Rüzgar Türbininde Kullanılan AC/DC Çeviricilerde Uzay Vektörü Modülasyonu Yöntemi ile Kontrol

Rüzgar Türbininde Kullanılan AC/DC Çeviricilerde Uzay Vektörü Modülasyonu Yöntemi ile Kontrol Rüzgar ürbininde Kullanılan AC/DC Çeviricilerde Uzay ektörü Modülayonu Yöntemi ile Kontrol Cenk Cengiz Eyüp Akpınar Dokuz Eylül Üniveritei Elektrik ve Elektronik Mühenliği Bölümü Kaynaklar Yerleşkei, Buca-İzmir

Detaylı

Ders 3- Direnç Devreleri I

Ders 3- Direnç Devreleri I Ders 3- Direnç Devreleri I Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net İçerik 2. Direnç Devreleri Ohm kanunu Güç tüketimi Kirchoff Kanunları Seri ve paralel dirençler Elektriksel

Detaylı