Eğitim Öğretim Yılı Güz Dönemi Diferansiyel Denklemler Çalışma Soruları

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Eğitim Öğretim Yılı Güz Dönemi Diferansiyel Denklemler Çalışma Soruları"

Transkript

1 0 0 Eğiim Öğreim Yılı Güz Dönemi Diferansiel Denklemler Çalışma Soruları 0/0/0 ) 3 8 diferansiel denklemini çözünüz. ) a) d d ( ) diferansiel denklemini çözünüz. b) 3 5 diferansiel denklemini çözünüz. 3) 6 0 diferansiel denkleminin genel çözümünü bulunuz ve diferansiel denklemin çözümlerinin emel cümlesi olup olmadığını araşırınız. 4) ' e 0 diferansiel denkleminin Wronskian deerminanını bulunuz. W(, )()3 ise, W(, )(4) değerini bulunuz. 5) ' e diferansiel denkleminin genel çözümünü bulunuz. ' 6) 7 sin e 4 diferansiel denklemini çözünüz. 7) ' ( ) e verilen diferansiel denklemin özel çözümünü bulunuz. 8) 40 denkleminin özel bir çözümü () olduğuna göre, merebe düşürme önemi ile lineer bağımsız ikinci çözümünü bulunuz. UFUK ÖZERMAN DİFERANSİYEL DENKLEMLER Page

2 ) 3 8 denkleminin genel çözümünü bulunuz f() ipi p, konularak 8 pdp 3 8 d inegra alınırsa P 4 8 c bulunur buradan da 8. d/ p idi. c genel çözüm bulunur. ) a) d d ( ) diferansiel denklemini çözünüz. Çözüm: d ( ) d ' f (, ) ipi d dp ' p ifadeleri dif. denklemde erlerine konulursa dp p dp p Haırlama: ln[ ( a )] a Lnlncln(p alınırsa p ) c p p c-p p arafın karesi c cp p p c cp c c p c c d d p idi. c c d c c c 4 ln c c UFUK ÖZERMAN DİFERANSİYEL DENKLEMLER Page

3 b) 3 5 diferansiel denklemini çözünüz. f(, ) ipi p, 5 3 azılarak lnlncln(c)3/5 lnplnp 3/5 p 3/5 c pc 5/3 p idi c 5/3 / / 3) 6 0 diferansiel denkleminin genel çözümünü bulunuz ve diferansiel denklemin çözümlerinin emel cümlesi olup olmadığını araşırınız. r r ' azılarak r 6 0 karakerisik denklemden kompleks kök b α 0 a 4ac b β 6 a r 0 6 r 0 6 i i h e α (c Cosβc 3 Sinβ) h (c Cos 6 c Sin 6 ) cos 6 sin 6 6 sin 6 6 cos 6 W çözümlerin emel cümlesidir ) ' e 0 diferansiel denkleminin Wronskian deerminanını bulunuz. W(, )()3 ise, W(, )(4) değerini bulunuz. ' e 0 e ' 0 azılarak Abel Teoreminden WC e -p()d WC e -p()d Ce -/d ce -ln c - c/ W(, )()3 den 3c/4 c bulunur. UFUK ÖZERMAN DİFERANSİYEL DENKLEMLER Page 3

4 W(, )(4)/4 3/4 5) " 7'068e diferansiel denkleminin genel çözümünü bulunuz. Çözüm: önce denklem 0 a eşilenerek homojen kısmın çözümü bulunur. r 7r00 (r )(r 5)0 karakerisik denklem r, r 5 iki farklı reel kök homogen c e c e 5 Eşiliğin sağ arafı doğru denklemi ve üsel fonksionun oplamı olduğundan özel çözüm olarak doğru denklemi ve üsel fonksion için arı arı özel çözümler seçilir. " 7'06 için; 0 karakerisik denklemin kökü olmadığından özel AB seçilerek ürevler( ve ) alınır, verilen denklemde erlerine konularak kasaılar hesaplanır. A 0 7 A0(AB)6 0A0 B 7 A6 0A6 A 6/03/5 0 B 7 A0 B/50 özel 3/5/50 Verilen Üsel fonksionda (8e ) nin kasaısı karakerisik denklemin basi bir kökü olduğundan özel De De De De 4De De De 4De De -7(De De )0De 8 e 4De 8 e D özel De e UFUK ÖZERMAN DİFERANSİYEL DENKLEMLER Page 4

5 genel çözüm; genel homogen özel genel c e c e 5 e 3/5/50 ' 6) 7 sin e 4 diferansiel denklemini çözünüz. Çözüm: 7 ' 0 ile homojen çözüm apılarak r r azılarak r 7r 0 karakerisik denklemden r 7r 0 r 3 r 4 farklı reel kök hom ojen c e c e 4 bulunur. Özel çözümler Sin için (i karakerisik denklemin kökü değil) özel Acos Bsin seçilerek özel Acos Bsin ' özel Asin Bcos özel 4Acos 4Bsin ile sin ( 4A 8B) cos(8a 4B) sin 4 A 8B A-7/30, B4/30 8 A 4B özel cos sin UFUK ÖZERMAN DİFERANSİYEL DENKLEMLER Page 5

6 e -3 için özel çözüm e -3 üsel fonksionda in kasaısı (-3), karakerisik denklemin kökü olduğundan özel Ae seçilerek özel Ae ' özel Ae 3Ae özel 6Ae 9Ae diferansiel denklemde erlerine konularak Ae -3 e -3 bulunur. den A ve özel e Sabi saı (4) için, 0 değeri karakerisik denklemin kökü değil. özel D 3 seçilirse D/3 bulunur özel 3 4/ /3 genel h özel özel özel3 genel c e 7 4 e 3 / ce cos sin elde edilir. 7) ' ( ) e diferansiel denklemini çözünüz. r r ' azılarak r 5r 4 0 karakerisik denklemden r 5r 4 0 r r 4 farklı reel kök hom ojen ce üsel fonksionnda in kasaısı olan 3 değeri karakerisik denklemin kökü olmadığından denklemde erlerine konarak A,B ve C kasaıları belirlenir. 3 özel ( A B C) e seçilerek ürevler alınır ve verilen diferansiel c e 4 UFUK ÖZERMAN DİFERANSİYEL DENKLEMLER Page 6

7 -( B C) A B A 4( ) A den 3 A, B ve C5 elde edilir. ( 5) e özel genel h özel 4 3 c e ce ( 5) e 8) ) 4 0 ö çö ü ü olduğuna göre genel çözümü bulunuz. Merebe İndirgeme önemi ; v v ile ürevler alınıp verilen denklemde erlerine azılırsa ani, v, v v, v 4v v (v 4v v) (v v)-4 v 0 v v vv 3 v -4v 0 v 4 5v 3 0 v /v -5/ inegar alınırsa; lnv -5lnlnc lnv -lncln -5 v c -5 dv/ c -5 v-cv -4 /4c v (-cv -4 /4c ) çö ü 4 UFUK ÖZERMAN DİFERANSİYEL DENKLEMLER Page 7

DİFERANSİYEL DENKLEMLER Güz Bahar Dönemi Diferansiyel Denklemlerin Sınıflandırılması

DİFERANSİYEL DENKLEMLER Güz Bahar Dönemi Diferansiyel Denklemlerin Sınıflandırılması DİFERANSİYEL DENKLEMLER Güz Bahar Dönemi Diferansiel Denklemlerin Sınıflandırılması Birçok mühendislik, fizik ve sosal kökenli problemler maemaik erimleri ile ifade edildiği zaman bu problemler, bilinmeen

Detaylı

UYGULAMALI DİFERANSİYEL DENKLEMLER

UYGULAMALI DİFERANSİYEL DENKLEMLER UYGULAMALI DİFERANSİYEL DENKLEMLER GİRİŞ Birçok mühendislik, fizik ve sosal kökenli problemler matematik terimleri ile ifade edildiği zaman bu problemler, bilinmeen fonksionun bir vea daha üksek mertebeden

Detaylı

3) dy/dt 3y=7 diferansiyel denklemini y(0)=15 başlangıç koşulu için çözünüz.

3) dy/dt 3y=7 diferansiyel denklemini y(0)=15 başlangıç koşulu için çözünüz. 04/10/ 011 011 01 Eğitim Öğretim Yılı Güz Dönemi Diferansiel Denklemler Dersi Çalışma Sorları denklemini çözünüz. 1) d + ( cot + sin ) d 0 denklemini çözünüz. ) (4+t)d/dt + 6+t diferansiel denklemini çözünüz.

Detaylı

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9 İÇİNDEKİLER Ön Söz... Adi Diferansiyel Denklemler... Birinci Mertebeden ve Birinci Dereceden Diferansiyel Denklemler...9 Homojen Diferansiyel Denklemler...15 Tam Diferansiyel Denklemler...19 Birinci Mertebeden

Detaylı

diferansiyel hale getiren) bir integrasyon çarpanı olur? belirleyiniz, bu çarpanı kullanarak denklemin çözümünü bulunuz.

diferansiyel hale getiren) bir integrasyon çarpanı olur? belirleyiniz, bu çarpanı kullanarak denklemin çözümünü bulunuz. Diferansiel Denklemler I /8 Çalışma Soruları 9.0.04 A. Aşağıda istenilenleri elde ediniz!. ( e +. d + ( e + k. d 0 denkleminin tam diferansiel denklem olabilmesi için ugun k saısını belirleiniz. Bu k saısı

Detaylı

Diferansiyel denklemler uygulama soruları

Diferansiyel denklemler uygulama soruları . Aşağıdaki diferansiyel denklemleri sınıflandırınız. a) d y d d + y = 0 b) 5 d dt + 4d + 9 = cos 3t dt Diferansiyel denklemler uygulama soruları 0.0.3 c) u + u [ ) ] d) y + = c d. y + 3 = 0 denkleminin,

Detaylı

1 Lineer Diferansiyel Denklem Sistemleri

1 Lineer Diferansiyel Denklem Sistemleri Outline İçindekiler 1 Lineer Diferansiyel Denklem Sistemleri 1 1.1 Lineer sistem türleri (iki bilinmeyenli iki denklem)................. 1 2 Normal Formda lineer denklem sistemleri (İki bilinmeyenli iki

Detaylı

Diferansiyel Denklemler I (M) Çalışma Soruları

Diferansiyel Denklemler I (M) Çalışma Soruları Diferansiel Denklemler I (M Çalışma Soruları 800 ( A Aşağıdaki diferansiel denklemlerin çözümlerini bulunuz ( ( = d n d 0 d ( sin cos d = 0 3 ( cos sin d sin d = 0 4 5 6 7 ( 5 d ( 5 d = 0 ( ( = d d 0 =

Detaylı

TRİGONOMETRİK DENKLEMLER

TRİGONOMETRİK DENKLEMLER TRİGONOMETRİK DENKLEMLER Daha önceden Sin + Cos = 1 ifadesinin R için gerçekleştiğini biliyoruz. Bu tür eşitliklere Özdeşlik adını verdiğimizi biliyorsunuz. Fakat ; Sin = 0 ve tan = 0 gibi eşitlikler R

Detaylı

BÖLÜM 4 4- TÜREV KAVRAMI 4- TÜREV KAVRAMI. Tanım y = fonksiyonunda x değişkeni x. artımını alırken y de. kadar artsın. = x.

BÖLÜM 4 4- TÜREV KAVRAMI 4- TÜREV KAVRAMI. Tanım y = fonksiyonunda x değişkeni x. artımını alırken y de. kadar artsın. = x. - TÜREV KAVRAMI - TÜREV KAVRAMI 7 iadesinin türevini alınız. Çözüm lim lim 7 7 lim 7 7 lim lim onksionunun türevini alınız. Tanım onksionunda değişkeni artımını alırken de kadar artsın. oranının giderken

Detaylı

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz.

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz. D DİFERANSİYEL DENKLEMLER ÇALIŞMA SORULARI Fakülte No:................................................... Adı ve Soyadı:................................................. Bölüm:...................................................................

Detaylı

YARDIRMALI MATEMATİK TÜREV FASİKÜLÜ

YARDIRMALI MATEMATİK TÜREV FASİKÜLÜ YRIRMLI MTEMTİK TÜREV FSİKÜLÜ Maksimum-Minimum Problemleri MESUT ERİYES MKSİMUM - MİNİMUM PROLEMLERİ Maksimum ve minimum problemlerini çözmek için şu kurallar ugulanır; 1) Maksimum a da minimum olması

Detaylı

Ders: MAT261 Konu: Matrisler, Denklem Sistemleri matrisi bulunuz. olmak üzere X = AX + B olacak şekilde bir X 1.

Ders: MAT261 Konu: Matrisler, Denklem Sistemleri matrisi bulunuz. olmak üzere X = AX + B olacak şekilde bir X 1. Ders: MAT6 Konu: Matrisler, Denklem Sistemleri. A = matrisi bulunuz.. A = a b c d e f ve B = ÇALIŞMA SORULARI- olmak üzere X = AX + B olacak şekilde bir X matrisi satır basamak hale getirildiğinde en fazla

Detaylı

İkinci Mertebeden Lineer Diferansiyel Denklemler

İkinci Mertebeden Lineer Diferansiyel Denklemler A(x)y + B(x)y + C(x)y = F (x) (5) Denklem (5) in sağ tarafında bulunan F (x) fonksiyonu, I aralığı üzerinde sıfıra özdeş ise, (5) denklemine lineer homogen; aksi taktirde lineer homogen olmayan denklem

Detaylı

f(1)=1 2-4 x 1+20=17 f ' (x)=2 x- 4 f ' (1)=2 x 1-4= -2 y= -2 x (-2) x y= -2x +19

f(1)=1 2-4 x 1+20=17 f ' (x)=2 x- 4 f ' (1)=2 x 1-4= -2 y= -2 x (-2) x y= -2x +19 Notlar: - dzleminde iki on vardir. 1)pozitif on, 2)negatif on Ornek olarak =f()= 2-4+20 fonksion icin 0 =10 noktasindan pozitif onnde gidersek ( e artan degerler verirsek) fonksionn degeri artar, negatif

Detaylı

Fizik 101: Ders 23 Gündem

Fizik 101: Ders 23 Gündem Fizik 101: Ders 3 Gündem Basit Harmonik Hereket Yatay yay ve kütle Sinus ve cosinus lerin anlamı Düşey yay ve kütle Enerji yaklaşımı Basit sarkaç Çubuk sarkaç Basit Harmonik Hareket (BHH) Ucunda bir kütle

Detaylı

Çözüm Kitapçığı Deneme-6

Çözüm Kitapçığı Deneme-6 KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ -5 MART Çözüm Kitapçığı Deneme-6 Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İ.Ü. Fen Fakültesi Matematik Bölümü Diferansiyel Denklemler I (örgün i.ö)

İ.Ü. Fen Fakültesi Matematik Bölümü Diferansiyel Denklemler I (örgün i.ö) İÜ Fen Fakültesi Matematik Bölümü Diferansiel Denklemler I (örgün iö) Ekim04 Ödevler - Çalışma Sorları - Arasınav Hazırlık Sorları Hazırlaan: YrdDoçDr Serkan İLTER http://avesistanbledtr/ilters/dokmanlar

Detaylı

LYS - 1 MATEMATÝK TESTÝ

LYS - 1 MATEMATÝK TESTÝ LYS - 1 MATEMATÝK TESTÝ DÝKKAT : 1. Bu ese oplam 50 soru vardýr.. Cevaplamaa isediðiniz sorudan baþlaabilirsiniz.. Cevaplarýnýzý, cevap kaðýdýnýn Maemaik Tesi için arýlan kýsmýna iþareleiniz.. Safalar

Detaylı

Eğitim-Öğretim Yılı Güz Dönemi Diferansiyel Denklemler Dersi Çalışma Soruları 1

Eğitim-Öğretim Yılı Güz Dönemi Diferansiyel Denklemler Dersi Çalışma Soruları 1 006-007 Eğitim-Öğrtim Yılı Güz Dönmi Difransil Dnklmlr Drsi Çalışma Soruları 1 1) d/dt +sint difransil dnklmini çözünüz. ) (4+t)d/dt + 6+t difransil dnklmini çözünüz. ) d/dt-7 difransil dnklmini (0)15

Detaylı

Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören

Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında ılmaarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören çocuklarımızın ana ve babalarına da avrularının öğreniminin tamamlanması

Detaylı

ÖZEL TANIMLI FONKSİYONLAR

ÖZEL TANIMLI FONKSİYONLAR ÖZEL TANIMLI FONKSİYONLAR Fonksionlar ve Özel Tanımlı Fonksionlar Özel tanımlı fonksionlar konusu fonksionların alt bir dalıdır. Bu konuu daha ii anlaabilmemiz için fonksionlar ile ilgili bilgilerimizi

Detaylı

Chapter 1 İçindekiler

Chapter 1 İçindekiler Chapter 1 İçindekiler Kendinizi Test Edin iii 10 Birinci Mertebeden Diferansiel Denklemler 565 10.1 Arılabilir Denklemler 566 10. Lineer Denklemler 571 10.3 Matematiksel Modeller 576 10.4 Çözümü Olmaan

Detaylı

FONKSİYONLAR BÖLÜM 8. Örnek...3 : Örnek...1 : f(x)=2x+5 fonksiyonu artan mıdır? Örnek...4 :

FONKSİYONLAR BÖLÜM 8. Örnek...3 : Örnek...1 : f(x)=2x+5 fonksiyonu artan mıdır? Örnek...4 : FONKSİYONLAR BÖLÜM 8 Örnek...3 : ARTAN AZALAN FONKSİYONLAR ARTAN FONKSİYON f : A R R fonksionu verilsin. Her i B A için 1 < 2 f ( 1 )

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İÇİNDEKİLER. 1. DÖNEL YÜZEYLER a Üreteç Eğrisi Parametrik Değilse b Üreteç Eğrisi Parametrik Olarak Verilmişse... 4

İÇİNDEKİLER. 1. DÖNEL YÜZEYLER a Üreteç Eğrisi Parametrik Değilse b Üreteç Eğrisi Parametrik Olarak Verilmişse... 4 İÇİNDEKİLER 1. DÖNEL YÜZEYLER... 1 1.a Üreeç Eğrisi Paramerik Değilse... 1 1.b Üreeç Eğrisi Paramerik Olarak Verilmişse.... DÖNEL YÜZEYLERLE İLGİLİ ÖRNEKLER... 5.a α f,,0 Eğrisinin Dönel Yüzeyleri... 5.b

Detaylı

LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI

LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI LYS GENEL KATILIMLI TÜRKİYE GENELİ ONLİNE DENEME SINAVI LYS- MATEMATİK (MF-TM). Bu testte Matematik ile ilgili soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz..

Detaylı

ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI

ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI ÖABT ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT ANALİZ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı a da bir kısmı, azarın izni olmaksızın, elektronik, mekanik,

Detaylı

Math 322 Diferensiyel Denklemler Ders Notları 2012

Math 322 Diferensiyel Denklemler Ders Notları 2012 1 Genel Tanımlar Bir veya birden fazla fonksiyonun türevlerini içeren denklemlere diferensiyel denklem denmektedir. Diferensiyel denklemler Adi (Sıradan) diferensiyel denklemler ve Kısmi diferensiyel denklemler

Detaylı

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür. ÖZDEĞER VE ÖZVEKTÖRLER A n n tipinde bir matris olsun. AX = λx (1.1) olmak üzere n 1 tipinde bileşenleri sıfırdan farklı bir X matrisi için λ sayıları için bu denklemi sağlayan bileşenleri sıfırdan farklı

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16.MATEMATİK YARIŞMASI 10. SINIF FİNAL SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16.MATEMATİK YARIŞMASI 10. SINIF FİNAL SORULARI 10. SINIF FİNAL SORULARI 1. a,b,c,d sıfırdan farklı reel sayılar olmak üzere, + c + d = 0 denkleminin kökleri a ve b, + a + b = 0 denkleminin kökleri c ve d ise b + d değerini bulunuz.. sin + cos cos +

Detaylı

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012

Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi ye Ku ru lu Baş kan lı ğı nın 24.08.2011 ta rih ve 121 sa yı lı ka ra rı ile ka bul edi len ve 2011-2012 Mil li Eği tim Ba kan lı ğı Ta lim ve Ter bi e Ku ru lu Baş kan lı ğı nın.8. ta rih ve sa ı lı ka ra rı ile ka bul edi len ve - Öğ re tim Yı lın dan iti ba ren u gu lana cak olan prog ra ma gö re ha zır

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS MTEMTİK TESTİ. Bu testte soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz.. d + n - d + n d - + n- d + + n işleminin sonucu kaçtır?., R olmak üzere, + +

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

NÜMERİK ANALİZ. Sayısal Yöntemlerin Konusu. Sayısal Yöntemler Neden Kullanılır?!! Denklem Çözümleri

NÜMERİK ANALİZ. Sayısal Yöntemlerin Konusu. Sayısal Yöntemler Neden Kullanılır?!! Denklem Çözümleri Saısal Yöntemler Neden Kullanılır?!! NÜMERİK ANALİZ Saısal Yöntemlere Giriş Yrd. Doç. Dr. Hatice ÇITAKOĞLU 2016 Günümüzde ortaa konan problemlerin bazılarının analitik çözümleri apılamamaktadır. Analitik

Detaylı

KATI CİSİMLERİN BAĞIL İVME ANALİZİ:

KATI CİSİMLERİN BAĞIL İVME ANALİZİ: KATI CİSİMLERİN BAĞIL İVME ANALİZİ: Genel düzlemsel hareket yapmakta olan katı cisim üzerinde bulunan iki noktanın ivmeleri aralarındaki ilişki, bağıl hız v A = v B + v B A ifadesinin zamana göre türevi

Detaylı

Üstel ve Logaritmik Fonksiyonlar 61. y = 2 in grafiğinin büzülmesiyle de elde

Üstel ve Logaritmik Fonksiyonlar 61. y = 2 in grafiğinin büzülmesiyle de elde DERS 4 Üstel ve Logaritmik Fonksionlar, Bileşik Faiz 4.. Üstel Fonksionlar. > 0, olmak üzere fonksiona taanında üstel fonksion denir. f = ( ) denklemi ile tanımlanan gösterimi ile ilgili olarak, okuucunun

Detaylı

Cebir Notları. Özel Tanımlı Fonksiyonlar TEST I. Gökhan DEMĐR, 2006

Cebir Notları. Özel Tanımlı Fonksiyonlar TEST I. Gökhan DEMĐR,  2006 MC www.matematikclub.com, Cebir Notları Gökhan DEMĐR, gdemir@ahoo.com.tr Özel Tanımlı Fonksionlar TEST I. f() = + 4 + fonksionunun alabileceği en büük 8 9. f() = + + ifadesinin alabileceği en küçük 4 5.

Detaylı

9. BÖLÜM. Özel Tanımlı Fonksiyonlar ÇİFT VE TEK FONKSİYONLAR: ÖRNEK ÖRNEK ÇÖZÜM ÇÖZÜM. M A T E M A T İ K

9. BÖLÜM. Özel Tanımlı Fonksiyonlar ÇİFT VE TEK FONKSİYONLAR: ÖRNEK ÖRNEK ÇÖZÜM ÇÖZÜM. M A T E M A T İ K M A T E M A T İ K www.akademitemellisesi.com ÇİFT VE TEK FONKSİYONLAR: f:ar (A R) fonksionu için, 9. BÖLÜM ) Her A için f( ) = f() ise f e çift fonksion denir. olduğundan ne tek nede çifttir. MUTL AK DEĞER

Detaylı

6 II. DERECEDEN FONKSÝYONLAR 2(Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MATEMATÝK. y f(x) f(x)

6 II. DERECEDEN FONKSÝYONLAR 2(Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MATEMATÝK. y f(x) f(x) 6 II. DERECEDEN FNKSÝYNLR (Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MTEMTÝK 1. f(). f() 6 8 T Yukarıda grafiği verilen = f() parabolünün denklemi nedir?( = 6) Yukarıda grafiği verilen

Detaylı

BÖLÜM 3 LAMİNER AKIMIN DİFERANSİYEL DENKLEMLERİ

BÖLÜM 3 LAMİNER AKIMIN DİFERANSİYEL DENKLEMLERİ BÖLÜM 3 LAMİNER AKIMIN DİFERANSİYEL DENKLEMLERİ 3.1- Giriş 3.. Külenin kornm: Süreklilik denklemi 3.3. Momenmn kornm: Momenm denklemi 3.3.1 Laminer kama gerilmesinin modellenmesi 3.3. Momenm denkleminin

Detaylı

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır?

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır? . SINIF M Fonksionlar. f ( + a ) + vef( ) 7 olduğuna göre a kaçtır? E) TEST. f ( ) k + 6 fonksionu sabit fonksion olduğuna f ( ) göre aşağıdakilerden k E). f( ) 6 k ve f ( ) olduğuna göre k kaçtır? E)

Detaylı

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır.

1-A. Adı Soyadı. Okulu. Sınıfı LYS-1 MATEMATİK TESTİ. Bu Testte; Toplam 50 Adet soru bulunmaktadır. Cevaplama Süresi 75 dakikadır. -A Adı Soadı kulu Sınıfı LYS- MATEMATİK TESTİ Bu Testte; Toplam Adet soru bulunmaktadır. Cevaplama Süresi 7 dakikadır. Süre bitiminde Matematik Testi sınav kitapçığınızı gözetmeninize verip Geometri Testi

Detaylı

İÇİNDEKİLER. Tekrar Zamanı TÜREVİN GEOMETRİK YORUMU ÇÖZÜMLÜ TEST 1... 52 ÇÖZÜMLÜ TEST 2... 54 MAKS. - MİN. PROBLEMLERİ. Uygulama Zamanı 1...

İÇİNDEKİLER. Tekrar Zamanı TÜREVİN GEOMETRİK YORUMU ÇÖZÜMLÜ TEST 1... 52 ÇÖZÜMLÜ TEST 2... 54 MAKS. - MİN. PROBLEMLERİ. Uygulama Zamanı 1... İÇİNDEKİLER TÜREVİN GEOMETRİK YORUMU Teğet ve Normal Doğruların Eğimi... Teğet Doğrusunun Eğim Açısı... Teğet ve Normal Denklemleri... Eğrinin Teğetine Paralel ve Dik Doğrular... Grafikte Teğet I... 5

Detaylı

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI YILLAR 966 967 968 969 97 97 97 975 976 977 978 980 98 98 98 98 985 986 987 988 989 990 99 99 99 99 995 996 997 998 006 007 ÖSS / ÖSS-I ÖYS / ÖSS-II 5 6 6 5

Detaylı

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI DEVRE VE SİSTEM ANALİZİ 01.1.015 ÇALIŞMA SORULARI 1. Aşağıda verilen devrede anahtar uzun süre konumunda kalmış ve t=0 anında a) v 5 ( geriliminin tam çözümünü diferansiyel denklemlerden faydalanarak bulunuz.

Detaylı

ö ğ ğ ğ ö ö ö ö ç ö çö ç ö ö ö ğ ç ö ç ğ ğ ö ğ ö ç ğ ö ğ ç ğ ğ ç ğ Ö ğ ğ ç ç ö ç ğ ö ğ ç ö ğ ç ç ö ö ğ ç ğ ğ ö ğ ç ğ ğ ö ç ö ç ö ö ğ ö ç Ş Ü ğ Ü ö Ö Ş ğ Ş Ü ö ğ ö ğ ö ö Ü ö «Ç ğ ö ğ ç ğ ğ ğ çö ç ğ ö ğ

Detaylı

Ğ Ğ Ğ Ç Ç Ç Ş ç Ş Ü ö çö ö ö Ç ö ç ç ç ö ö ç ç ç ö Ç Ç ç Ç Ç Ç Ç ç ç ç Ç Ö Ç ç Ç ç ç ç ö ç ö ö Ç ç ö ö ö ö ç ö Ş Ş Ü Ü ç ö ö Ö ö ö ö çö ç Ğ ö ç Ğ ö Ü Ü ç ö ö Ö Ç Ç ç Ç Ç ç Ç Ö ö ö ç Ş Ç ç ö Ö Ş Ş Ü Ü ç

Detaylı

Ğ İ Ç Ü Ö Ö ö Ü ö ç İ ö ç ç ğ ç «Ü İ ğ İ Ü Ü İ İ İ ğ Ü Ü İ İ ğ ç ç ğ ğ ö ö Ç Ö İ ö İ ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ ğ ğ ç ğ ö ğ ğ ğ ç ğ ğ ğ ğ ö ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

- 2-1 0 1 2 + 4a a 0 a 4a

- 2-1 0 1 2 + 4a a 0 a 4a İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri

Detaylı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. 3. Bölüm: Temel Devre Tepkileri

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. 3. Bölüm: Temel Devre Tepkileri Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM07 Temel ElektronikI 3. Bölüm: Temel Devre Tepkileri Doç. Dr. Hüseyin Sarı 3. Bölüm: Temel Devre Tepkileri İçerik Devre Tepkilerinin

Detaylı

2 2 g= = ( ) = g = = = ( ) () 1

2 2 g= = ( ) = g = = = ( ) () 1 MÜHENDİSLİK MATEMATİĞİ ÜÜ ÜÜ İİ İİ MM MM HH HH EEEEEEE NN NN DDDDD SSSSS LLLL KKK KK MMM MMM ÜÜ ÜÜ HH HH EE EE NNN NN DD DD İİİİ SS SS LL İİİİ KK KK MMMMMMM ÜÜ ÜÜ HH HH EE E NNNN NN DD DD İİ SS SS LL İİ

Detaylı

Diferansiyel Denklemler

Diferansiyel Denklemler 1 ĐÇĐNDEKĐLER KONU Sayfa No Diferansiyel Denklem, Mertebe ve Derecesi... 3 Diferansiyel Denklemlerin Çözümleri... 3 Konu ile ilgili Alıştırmalar... 3 1. Mertebeden Diferansiyel Denklemler... 4 Değişkenleri

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan

Detaylı

A COMMUTATIVE MULTIPLICATION OF DUAL NUMBER TRIPLETS

A COMMUTATIVE MULTIPLICATION OF DUAL NUMBER TRIPLETS . Sayı Mayıs 6 A COMMTATIVE MLTIPLICATION OF DAL NMBER TRIPLETS L.KLA * & Y.YAYLI * *Ankara Üniversitesi Fen Fakültesi, Matematik Bölümü 6 Tandoğan-Ankara, Türkiye ABSTRACT Pfaff [] using quaternion product

Detaylı

ITAP Fizik Olimpiyat Okulu

ITAP Fizik Olimpiyat Okulu 5 Eylül 00 Resmi Sınavı (rof Dr Ventsislav Dimitrov) Konu: Döngüsel süreçlerin ermodinamiği Soru Diyagramdaki döngüsel süreç iki izobar ve iki izotermal süreçten oluşuyor V V Eğer diyagramdaki - noktaları

Detaylı

FİZİK-II DERSİ LABORATUVARI ( FL 2 4 )

FİZİK-II DERSİ LABORATUVARI ( FL 2 4 ) FİZİK-II DERSİ LABORATUVARI ( FL 2 4 ) KURAM: Kondansaörün Dolma ve Boşalması Klasik olarak bildiğiniz gibi, iki ileken paralel plaka arasına dielekrik (yalıkan) bir madde konulursa kondansaör oluşur.

Detaylı

ARASINAV SORULARININ ÇÖZÜMLERİ GÜZ DÖNEMİ A A A A A A A

ARASINAV SORULARININ ÇÖZÜMLERİ GÜZ DÖNEMİ A A A A A A A AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ BİTİRME ÖDEVİ I ARASINAV SORULARININ ÇÖZÜMLERİ - 6 GÜZ DÖNEMİ ADI SOYADI :... NO :... A A A A A A A SINAV TARİHİ VE SAATİ : Bu sınav 4 sorudan oluşmaktadır ve sınav

Detaylı

Değişken Katsayılı Adi Diferensiyel Denklemler Katsayıları bağımsız(x) değişkene bağlı diferensiyel denklemlerdir. Genel ifadesi şöyledir.

Değişken Katsayılı Adi Diferensiyel Denklemler Katsayıları bağımsız(x) değişkene bağlı diferensiyel denklemlerdir. Genel ifadesi şöyledir. 3. Yüksek Mertebeden Adi Diferansiyel Denklemler Geçmiş konularda şu ana kadar ele alınan 1.mertebe-1.dereceden adi diferensiyel denklemler ancak 1.mertebe seviyesindeki belirli problemleri ifade edebilmektedir.

Detaylı

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10 Diferenisyel Geometri 2 Yazokulu 2010 AdıSoyadı: No : 1. ϕ (u, v) = ( u + 2v, v + 2u, u 2 v ) parametrizasyonu ile verilen M kümesinin bir regüler yüzey olduğunu gösteriniz. (15 puan) 3. V, R 3 ün açık

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

1998 ÖYS. 1. Üç basamaklı bir x doğal sayısının 7. iki basamaklı bir y doğal sayısına eşittir. Buna göre, y doğal sayısı en az kaç olabilir?

1998 ÖYS. 1. Üç basamaklı bir x doğal sayısının 7. iki basamaklı bir y doğal sayısına eşittir. Buna göre, y doğal sayısı en az kaç olabilir? 99 ÖYS. Üç basamaklı bir doğal saısının 7 katı, iki basamaklı bir doğal saısına eşittir. Buna göre, doğal saısı en az kaç olabilir? A) B) C) 6. Bugünkü aşları 6 ve ile orantılı olan iki kardeşin 6 ıl sonraki

Detaylı

BÖLÜM V BİRİNCİ MERTEBEDEN DİFERANSİYEL DENKLEMLERİN UYGULAMALARI

BÖLÜM V BİRİNCİ MERTEBEDEN DİFERANSİYEL DENKLEMLERİN UYGULAMALARI 96 BÖLÜM V BİRİNCİ MERTEBEDEN DİFERANSİYEL DENKLEMLERİN UYGULAMALARI Bu bölümde birinci mertebeden diferansiel denklemlerin geometrik ve fiziksel ugulamalarına er verilmiştir. Diferansiel denklemler, geometrik

Detaylı

Doğrusal Fonksiyonlar, Karesel Fonksiyonlar, Polinomlar ve Rasyonel Fonksiyonlar, Fonksiyon Çizimleri

Doğrusal Fonksiyonlar, Karesel Fonksiyonlar, Polinomlar ve Rasyonel Fonksiyonlar, Fonksiyon Çizimleri Doğrusal Fonksionlar, Karesel Fonksionlar, Polinomlar ve Rasonel Fonksionlar, Fonksion Çizimleri Bir Fonksionun Koordinat Kesişimleri(Intercepts). Bir fonksionun grafiğinin koordinat eksenlerini kestiği

Detaylı

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08

MATEMATİK MATEMATİK-GEOMETRİ SINAVI LİSANS YERLEŞTİRME SINAVI-1 TESTİ SORU KİTAPÇIĞI 08 LİSNS YRLŞTİRM SINVI- MTMTİK-GMTRİ SINVI MTMTİK TSTİ SRU KİTPÇIĞI 08 U SRU KİTPÇIĞI LYS- MTMTİK TSTİ SRULRINI İÇRMKTİR. . u testte 0 soru vardýr. MTMTİK TSTİ. evaplarýnýzý, cevap kâðýdýnın Matematik Testi

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

1977 ÜSS. 2 y ifadesi aşağıdakilerden hangisine eşittir? 1 x. 2 y. 1 y. 1 y. 1 x. 2 x. 2 x. 1 x. 1 y. 1 x. 1 y. 1 x. 1 y 2 C) 4 E)

1977 ÜSS. 2 y ifadesi aşağıdakilerden hangisine eşittir? 1 x. 2 y. 1 y. 1 y. 1 x. 2 x. 2 x. 1 x. 1 y. 1 x. 1 y. 1 x. 1 y 2 C) 4 E) 77 ÜSS. ifadesi aşağıdakilerden hangisine eşittir?. C) 4 E). Şekilde a+b+c+d açılarının toplamı kaç dik açıdır? (açılar pozitif önlüdür.) 4 C) 6 7 E) 8 Verilen şekilde açıların ölçüleri verilmiştir. En

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. ab iki basamaklı saısı b ile bölündüğünde, bölüm 5 ve kalan b 5 tir. u şartlara uan kaç farklı ab iki basamaklı saısı vardır? ) 5 6 7 5. a, b, c, d, e sıfırdan farklı tamsaılar

Detaylı

2. Dereceden Denklemler

2. Dereceden Denklemler . Dereceden Denklemler Yazım hataları olabilir. Tam olarak tashih edilmemiştir. Hataları osmanekiz000@gmail.com mail adresine bildirilseniz makbule geçer.. a + b + 5c = c(a + b) ise a b =? C: 9. ( 4) (

Detaylı

OLİMPİYATLARA HAZIRLIK İÇİN FONKSİYONEL DENKLEM PROBLEMLERİ ve ÇÖZÜMLERİ (L. Gökçe)

OLİMPİYATLARA HAZIRLIK İÇİN FONKSİYONEL DENKLEM PROBLEMLERİ ve ÇÖZÜMLERİ (L. Gökçe) OLİMPİYATLARA HAZIRLIK İÇİN FONKSİYONEL DENKLEM PROBLEMLERİ ve ÇÖZÜMLERİ (L. Gökçe) Merak uyandıran konulardan birisi olan fonksiyonel denklemlerle ilgili Türkçe kaynakların az oluşundan dolayı, matematik

Detaylı

Örnek...1 : Örnek...3 : Örnek...2 :

Örnek...1 : Örnek...3 : Örnek...2 : FONKSİYONLR FONKSİYONUN EKSENLERİ KESİM NOKTLRI fonksionunun ekseninin kestiği k noktaların m apsisleri b, c, e dir. u noktalar a b c f()= denkleminin n kök leridir p in eksenini kestiği nokta ise (,p)

Detaylı

TÜREVİN GEOMETRİK YORUMU

TÜREVİN GEOMETRİK YORUMU TÜREVİN GEOMETRİK YORUMU f :R R, =f ( fonksionuna düzlemde A karşılık gelen f( +h eğri anda ki =f( P gibi olsun. f( Eğrinin P(,f( noktasındaki teğetlerini +h araştıralım. Bunun için P(,f( noktasının sağıda

Detaylı

MATEMAT K TEST. 3. a ve b reel say lar olmak üzere, 3 a = 4 ve 3 2a b 3 = 8 oldu una göre,

MATEMAT K TEST. 3. a ve b reel say lar olmak üzere, 3 a = 4 ve 3 2a b 3 = 8 oldu una göre, MTMT K TST KKT! + u testte 80 soru vard r. + u test için ar lan cevaplama süresi 5 dakikad r. + evaplar n z, cevap ka d n n Matematik Testi için ar lan k sma iflaretleiniz.. a, b, c pozitif reel sa lard

Detaylı

ÖABT LİSE MATEMATİK ÖĞRETMENLİĞİ

ÖABT LİSE MATEMATİK ÖĞRETMENLİĞİ ÖABT LİSE MATEMATİK ÖĞRETMENLİĞİ 000000000 Komison ÖABT LİSE MATEMATİK PİYASA 9 DENEME ISBN 978-605-38-86-6 Kitapta er alan bölümlerin tüm sorumluluğu azarlarına aittir. Pegem Akademi Bu kitabın basım,

Detaylı

Sayfa No. Test No İÇİNDEKİLER TRİGONOMETRİ

Sayfa No. Test No İÇİNDEKİLER TRİGONOMETRİ TRİGONOMETRİ İÇİNDEKİLER Sayfa No Test No YÖNLÜ AÇI VE YÖNLÜ YAY KAVRAMI -AÇI ÖLÇÜ BİRİMLERİ...00-00.... BİRİM ÇEMBER...00-00.... BİR AÇININ ESAS ÖLÇÜSÜ...00-00.... BİR AÇININ TRİGONOMETRİK ORANLARININ

Detaylı

Momentum iletimi. Kuvvetin bileşenleri (Momentum akısının bileşenleri) x y z x p + t xx t xy t xz y t yx p + t yy t yz z t zx t zy p + t zz

Momentum iletimi. Kuvvetin bileşenleri (Momentum akısının bileşenleri) x y z x p + t xx t xy t xz y t yx p + t yy t yz z t zx t zy p + t zz 1. Moleküler momentum iletimi Hız gradanı ve basınç nedenile Kesme gerilmesi (t ij ) ve basınç (p) Momentum iletimi Kuvvetin etki ettiği alana dik ön (momentum iletim önü) Kuvvetin bileşenleri (Momentum

Detaylı

TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi

TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi Merkezleri aynı, aralarında dielektrik madde bulunan iki küreden oluşur. Elektrik Alanı ve Potansiyel Yarıçapları ve ve elektrotlarına uygulanan

Detaylı

Diferensiyel Denklemler I Uygulama Notları

Diferensiyel Denklemler I Uygulama Notları 2004 Diferensiyel Denklemler I Uygulama Notları Mustafa Özdemir İçindekiler Temel Bilgiler...................................................................... 2 Tam Diferensiyel Denklemler........................................................4

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

KONUM ÖLÇMELERİ DERS-3

KONUM ÖLÇMELERİ DERS-3 KONUM ÖLÇMELERİ DERS-3 Doç. Dr. Ayhan CEYLAN Yrd. Doç. Dr. İsmail ŞANLIOĞLU S.Ü. Müh. Fak. Harita Mühendisliği Bölümü, Ölçme Tekniği A.B.D. A Blok Oda no:306 Tel:3 1933 aceylan@selcuk.edu.tr 3. NİRENGİ

Detaylı

Bölüm: Matlab e Giriş.

Bölüm: Matlab e Giriş. 1.Bölüm: Matlab e Giriş. Aşağıdaki problemleri MATLAB komut penceresinde komut yazarak çözünüz. Aşağıdaki formüllerde (.) ondalıklı sayı için, ( ) çarpma işlemi için kullanılmıştır. 1.. 8.5 3 3 1500 7

Detaylı

{ } ( ) ( ) 3. β = (x,y) : y - x = 1, x,y R bağıntısı Aşağıdaki sayılardan hangisi asal alabilir?

{ } ( ) ( ) 3. β = (x,y) : y - x = 1, x,y R bağıntısı Aşağıdaki sayılardan hangisi asal alabilir? . Aşağıdaki saılardan hangisi asal alabilir? A) 5!+7! B) 7 - ) 54 D) A seçeneği: 5!+7! 5! ( + 6.7 ) 5!.4 7 - E ) 57 5!.4 saısı 5! ile bölünür.o halde asal değildir. B seçeneği: 7-8- 7 7 kendisi hariç hiçbir

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Sürekliliği tanımlamak için önce yakınlık kavramını tanımlamak gerekmektedir.

Sürekliliği tanımlamak için önce yakınlık kavramını tanımlamak gerekmektedir. Genel olarak matematikte, özel olarak da matematiksel iktisatta, fonksionlar üzerine konulan en önemli kısıtlama sürekliliktir. Kabaca, bir fonksion tanımlı olduğu bir o noktasında sürekli ise, o a akın

Detaylı

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x. 4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.

Detaylı

KARMAŞIK SAYILAR Test -1

KARMAŞIK SAYILAR Test -1 KARMAŞIK SAYILAR Test -. i olmak üere, i olduğuna göre, Re() kaçtır? B) C) 0 D) E). i olmak üere, 00 0 06 i i i işleminin sonucu aşağıdakilerden hangisine i B) i C) i + D) E) i. i olmak üere, i olduğuna

Detaylı

MAT MATEMATİK I DERSİ

MAT MATEMATİK I DERSİ MATEMATİK BÖLÜMÜ MAT 0 - MATEMATİK I DERSİ ÇALIŞMA SORULARI Bölüm : Fonksiyonlar. Tanım Kümesi ) f() = ln fonksiyonu verilsin. Tanım kümesini bulunuz. ((0, )\{}) Bölüm : Limit ve Süreklilik.. Limit L Hospital

Detaylı

Ö.S.S MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ 1 E) x x. x x = x

Ö.S.S MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ 1 E) x x. x x = x Ö.S.S. MATEMATĐK II SORULARI ve ÇÖZÜMLERĐ. olduğuna göre, kaçtır? A B C D E Çözüm. -. : ifadesinin sadeleştirilmiş biçimi aşağıdakilerden hangisidir? A B C D E Çözüm :... :....... . olduğuna göre, - ifadesinin

Detaylı

DERS 2. Fonksiyonlar

DERS 2. Fonksiyonlar DERS Fonksionlar.1. Fonksion Kavramı. Her bilim dalının önemli bir işlevi, çeşitli nesneler vea büüklükler arasında eşlemeler kurmaktır. Böle bir eşleme kurulması tahmin ürütme olanağı verir. Örneğin,

Detaylı

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN

STATİK MÜHENDİSLİK MEKANİĞİ. Behcet DAĞHAN. Behcet DAĞHAN. Behcet DAĞHAN.  Behcet DAĞHAN Statik Ders Notları Sınav Soru ve Çözümleri DAĞHAN MÜHENDİSLİK MEKANİĞİ STATİK MÜHENDİSLİK MEKANİĞİ STATİK İÇİNDEKİLER 1. GİRİŞ - Skalerler ve Vektörler - Newton Kanunları. KUVVET SİSTEMLERİ - İki Boutlu

Detaylı

TUNCELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ LİNEER CEBİR DERSİ 2012 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜTÜNLEME SORULARI ÖĞR.GÖR.

TUNCELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ LİNEER CEBİR DERSİ 2012 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜTÜNLEME SORULARI ÖĞR.GÖR. UNCELİ ÜNİVERSİESİ MÜHENDİSLİK FAKÜLESİ LİNEER CEBİR DERSİ 0 GÜZ DÖNEMİ ÇIKMIŞ VİZE,FİNAL VE BÜÜNLEME SORULARI ÖĞR.GÖR.İNAN ÜNAL www.inanunal.com UNCELİ ÜNİVERSİESİ MÜHENDİSLİK FAKÜLESİ MAKİNE MÜHENDİSLİĞİ

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. A.. n saısının tamsaı bölenlerinin saısı olduğuna göre, n 0. R de tanımlı " " işlemi; ο ο işleminin sonucu 0. (6) 6 (6) ifadesinin eşiti aşağıdakilerden hangisidir? 6 6 (6)

Detaylı

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Alıştırmalar 1 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Denklem Mertebe Derece a) 2 1 ( ) 4 6 c) 2 1 d) 2 2 e) 3 1 f) 2 4 g)

Detaylı

S4 u(x, y) = ln ( sin y. S5 u(x, y) = 2α 2 sec(α(x 4α 2 t)) fonksiyonunun

S4 u(x, y) = ln ( sin y. S5 u(x, y) = 2α 2 sec(α(x 4α 2 t)) fonksiyonunun Kısmi Türevli Denklemler Problem Seti-I S1 u = u(x, y ve a, b, c R olmak uzere, ξ = ax + by ve η = bx ay degisken degistirmesi yaparak n cozunuz. au x + bu y + cy = 0 S2 Aşa gidaki denklemleri Adi Diferensiyel

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. n olmak üzere; n n toplamı ten büük n nin alabileceği tamsaı değerleri kaç tanedir? 9 B) 8 7.,, z reel saılar olmak üzere; ( 8) l 8 l z z aşağıdakilerden hangisidir? B) 8. tabanındaki

Detaylı