ANADOLU ÜNİVERSİTESİ. ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL

Save this PDF as:

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ANADOLU ÜNİVERSİTESİ. ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL"

Transkript

1 ANADOLU ÜNİVERSİTESİ ENM317 Mühendislik İstatistiği İSTATİSTİKSEL TAHMİN Prof. Dr. Nihal ERGİNEL

2 İSTATİSTİKSEL TAHMİN Örnekten anakütle parametrelerinin tahmin edilmesidir. İki tür tahminleme yöntemi vardır: 1-Nokta tahminlemesi (Point estimation) - Aralık tahminlemesi (Interval estimation)

3 İYİ BİR TAHMİNLEYİCİNİN ÖZELLİKLERİ: Yansızlık (Unbiasedness) B( θ) = B ( X) = µ (yansız tahminleyici) B( θ) = B ( X + α) = B ( X)+ B (α) = µ + α (yanlı tahminleyici) Kararlılık (Consistency) n (or N) iken X µ ise ve P( X µ ) = 1 ise kararlı tahminleyicidir.

4 Etkinlik (Efficiency) n 1 = n iken, V( θ 1 ) < V( θ ), X 1 daha etkin tahminleyicidir. Yeterlilik (Sufficiency) x i : rassal değişken f(x i ) : olasılık yoğunluk fonksiyonu iken, f(x 1, x,.., x n / θ ), θ dan bağımsız ise θ, θ için yeterli bir tahminleyicidir.

5 1-Nokta Tahminlemesi B[ X ] = µ, B[S ] = σ Risk: Anakütle ortalaması µ nün örnek ortalaması ile tahmin edilmesine ilişkin risk, X nın µ den mutlak farkın uygun bir hata düzeyi e den fazla olma olasılığıdır.

6 Risk = P( X - µ > e ) = α : anlam düzeyi

7 Ortalamalar için: X ~ N (µ, σ n ) Tek taraflı baktığımızda, P ( X - µ > e )= α ise, P (e < X - µ)= α / olur. P( e σ x < X µ σ x e ) = P ( < z) = α/ e Buradan, σ/ n σ/ n = z α/ elde edilir. n= Zα e. σ nokta tahminlemesinde alınması gereken örnek büyüklüğü

8 Anakütle az ve iadesiz örnek seçiliyorsa; alınması gereken örnek büyüklüğü: n = N.(z α/ ). σ N 1 e + (z α/ ). σ

9 Oranlar için; P( p p > e ) = Risk = α iken, P( p p > e) = P( p p < e) = α olur P( e σ p < p p σ p ) = α P( e σ p < z) z= e p(1 p) n n = (z α/ ).p(1 p) e

10 Anakütle küçük ve iadesiz örnek ise; alınması gereken örnek büyüklüğü: n = N.(z α/ ).p(1 p) N 1 e +(z α/ ).p(1 p)

11 ÖRNEK Bir bisküvi paketleme makinesinden alınan örnekler gramajlarının belirlenmesi amacıyla tartılmış ve aşağıdaki değerler elde edilmiştir Buna göre; a) Anakütlenin ortalama ve standart sapmasını tahmin ediniz. b) Örnekten anakütle ortalaması tahmin edilirken yapılacak hatanın en fazla 5gr olması istenirse, % 95 güven seviyesinde alınan örnek büyüklüğünün yeterli olup olmadığını belirleyiniz.

12 ÇÖZÜM 0 i=1 Xi a) X= 0 = = 80,9 B[ X] = µ olduğu için µ = 80,9 gr S 0 i=1 (xi x) = = 665,8/ 19 = 35, B[S ] = σ olduğu için σ = 35,04 olur.

13 b) e = 5 gr α = 0,05 Zα = Z0,05= 1,96 n = (z α/). σ e = 1,96.35, adet

14 Aralık Tahminlemesi Her zaman tekbir değer anakütleyi temsil etmeye yetmez. Belirli bir güvenle anakütle parametresinin belirlenmiş aralıkta çıkmasıdır. L µ u güven aralığı Güven Seviyesi: Aynı anakütleden alınan, aynı büyüklükteki örneklerden elde edilen aralık tahminlerinin µ yü içerenlerin oranı olarak tanımlanır. (1-α)

15 Şekilde 10 örnek alınmış ve 1 örnek için hesaplanan güven aralığı, anakütle parametresi µ yü içermemektedir. Güven seviyesi %90 dır. Aldığımız 1 kerelik örnek %90 güvenle µ yü içerir.

16 L: Alt güven sınırı (Lower confidence limit) U: Üst güven sınırı (Upper confidence limit) 1-α: güven seviyesi (confidence coefficient) α: anlam düzeyi (significant level) P L θ U = 1-α Çift yönlü güven aralığı P L θ = 1-α P θ U = 1-α Tek yönlü güven aralığı

17 Anakütle ortalamasının güven aralığı: σ biliniyor iken; X ~ N (µ, σ x µ ), z= ~ N (0,1) n σ/ n P z α/ z z α/ = 1-α olduğu görülmektedir.

18 P z α/ x µ z σ/ n α/ P x z α/. σ n µ x + z α/. σ n = 1-α ise ;

19 ÖRNEK: Bir tuğla üretim sürecinde tuğlanın boyutları için 5 adet örnek alınmış ve tuğlanın boyunun ortalaması 6,3 cm olarak bulunmuştur. Anakütle varyansı,56 ise %90 güven seviyesinde anakütle ortalamasının güven aralığını bulunuz.

20 ÇÖZÜM: x: tuğla boyu(cm) n = 5 adet x = 6,3 cm, σ =,56 σ biliniyor σ= 1,6 cm, α = 0,1 Anakütle µ nün % 90 güven seviyesinde güven aralığı: x z α/. σ n µ x + z α. σ n

21 = 6,3 z0,01. 1,6 5 µ 6,3 + z0,01. 1,6 5 = 6,3 1,65. 1,6 1,6 µ 6,3 + 1, = 5,77 µ 6,83 Yorum: % 90 güvenle anakütledeki tuğlaların boyu 5,77cm ile 6,83 cm arasındadır.

22 ! σ bilinmiyor ise yerine S kullanılır. x z α. S n µ x + z α. S n n 30 x t α ;n 1. S n µ x + t α ;n 1. S n n < 30 Eğer anakütle dağılımı Normal ve σ biliniyor ise, n < 30 olsa bile; güven aralığı tahmininde Normal Dağılım (z) kullanılır.

23 ÖRNEK: Bir üretim hattından alınan 0 adet seramik karonun ağırlıkları tartılmıştır. Ortalama 75,8 gr, S = 6,78 olarak bulunmuştur. Buna göre üretim hattı anakütle ortalamasının %5 anlam düzeyinde güven aralığını bulunuz.

24 ÇÖZÜM: x: seramik karonun ağırlığı (gr) n = 0 adet x = 75,8 gr; S= 6,78, α = 0,05! σ bilinmiyor ve n<30 olduğu için t dağılımı kullanıyoruz.

25 x t α ;n 1. S n µ x + t α ;n 1. S n 6,78 = 75 t 0,05. ;0 1 0 = 75,8 (,093). 6,78 0 = 7,6 µ 78,97 6,78 µ 75,8+t 0,05. ;0 1 0 µ 75,8 + (,093). 6,78 0 Yorum: %95 güven seviyesinde seramik karo ağırlıklarının anakütle ortalaması 7,6 gr ile 78,97 gr arasında değişmektedir.

26 Anakütle oranının güven aralığı p: anakütle oranı p: örnek oranı olmak üzere; σ p = p(1 p) n p p σ p ~ N (p;σ p ) ise; p z α/. σ p p p + z α/. σ p veya p z α/. p(1 p) n p p + z α/. p(1 p) n

27 ÖRNEK: Rassal olarak 75 adet otomobil mili incelenmiş ve bunlardan 1 tanesinin yüzey düzgünlüğünün verilen spesifikasyonlar dışında olduğu belirlenmiştir. Buna göre yüzey düzgünlüğü belirlenen spesifikasyonlar dışında olan millerin anakütle oranının %99 güven seviyesinde güven aralığını bulunuz.

28 ÇÖZÜM: n: 75 adet p = 1 = 0,16, α = 0,01 75 p z α/. p(1 n p) p p + z α/. p(1 n p) = 0.16-(,58) 0,16(1 0,16) 75 p (,58) 0,16(1 016) 75 =0,05 p 0,7 Yorum: %99 güven seviyesinde yüzey düzgünlüğü belirlenen spesifikasyonlar dışında olan millerin anakütle oranı 0,05 ile 0,7 arasında değişmektedir.

29 Anakütle Ortalamaları Arasındaki Farkın Güven Aralığı σ 1 ve σ biliniyor ise; σ X1 X = σ 1 n 1 + σ n ise; X 1 - X - Z α/. σ 1 n 1 + σ n µ 1 µ X 1 - X + Z α/. σ 1 n 1 + σ n

30 ÖRNEK: 1. diyet 95 kişiye,. diyet 100 kişiye uygulanmış ve ortalama kaybedilen kilolar sırasıyla X 1 =3 kg ve X = 5 kg olarak bulunmuştur. Standart sapmaları da sırasıyla 5 kg. ve 6 kg.dır. %95 güven seviyesinde, farklı diyet uygulamak kilo kayıplarını etkilemiş midir?

31 ÇÖZÜM: X 1 - X - Z α/. σ 1 n 1 + σ n µ 1 µ X 1 - X + Z α/. σ 1 n 1 + σ n 3-5-Z 0, µ 1 µ 3-5+Z 0, (1,96).(0,7894) µ 1 µ -+(1,96).(0,7894) -3,547 µ 1 µ -0,45 Yorum: %95 güven seviyesinde. diyet 1. diyete göre daha fazla kilo kaybettirmiştir.

32 σ 1 ve σ bilinmiyor ancak varyansların eşit olduğu varsayılıyor ise; (σ 1 = σ ) S p = n 1 1 S 1 + n 1 S n 1 +n X 1 - X - tα ;(n 1+n ).S p 1 n n µ 1 µ X 1 - X + tα ;(n 1+n ).S p 1 n n

33 ÖRNEK: Bir kimyasal süreçte iki farklı katalizör devre levhalarını aşındırmak için kullanılmaktadır. Bu iki katalizörün photoresist malzemeyi yok etme zamanları ölçülmüştür. 1. Katalizör için 1 adet örnek alınmış ve zaman ortalaması X 1 = 4,6 ve standart sapması S 1 = 0,85 olarak bulunmuştur... Katalizör için 15 örnek alınmış ve X =,1 dk. ve standart sapması S = 0,98 dk. olarak bulunmuştur. İki ana kütlenin varyanslarının eşit olduğu varsayımı ile %95 güven seviyesinde ortalamalar arası farkın güven aralığını bulunuz.

34 ÇÖZÜM: S p = n 1 1 S 1 + n 1 S n 1 +n = 1 1 S S 1+15 = 0,95 X 1 - X - tα ;(n 1+n ).S p 1 n n µ 1 µ X 1 - X + tα ;(n 1+n ).S p 1 n n 4,6-,1-t 0,05;(5).0, µ 1 µ 4,6-,1+t 0,05;(5).0, ,6-,1-(,06).0, µ 1 µ 4,6-,1+(,06).0,95 1,76 µ 1 µ 3, Yorum: % 95 güven seviyesinde katalizör 1 için photoresist malzemeyi yok etme zamanı 1,76 ile 3,4 dk. daha fazladır.

35 σ 1 ve σ bilinmiyor ancak varyansların eşit olmadığı varsayılıyor ise; (σ 1 σ ) X 1 - X - tα ; θ. S 1 + S n 1 n µ 1 µ X 1 - X + tα ; θ. S 1 + S n 1 n θ = S1 n1 + S n S1 /n1 + S /n n1+1 n+1

36 ÖRNEK: İki farklı tip çimento karıştırma aracından birisinin alınmasına kara verebilmek için her ikisi ile de denemeler yapılmıştır. 1. tip çimento aracında 15 deneme yapılarak beton oluşturulmuş ve betonun mukavemet ortalaması X 1 = 300 nt, varyansı 16 nt olarak bulunmuştur.. tip çimento aracında 10 deneme yapılarak beton oluşturulmuş ve betonun mukavemet ortalaması X = 35 nt, varyansı 49 nt olarak tespit edilmiştir. İki ana kütlenin varyanslarının eşit olmadığı varsayımı ile %95 güven seviyesinde ortalamalar arası farkın güven aralığını bulunuz.

37 X 1 - X - tα ; θ. S 1 + S n 1 n µ 1 µ X 1 - X + tα ; θ. S 1 + S n 1 n t 0,05; µ µ (,145) ,4 µ 1 µ 19,76 θ = S1 n1 + S n S1 /n1 + S /n n1+1 n+1 =14 t 0,05;14 =.145 Yorum: % 95 güven seviyesinde. çimento makinesinin beton mukavemeti, 1. çimento makinesinin beton mukavemetinden den daha fazladır.

38 Anakütle Oranları Arasındaki Farkın Güven Aralığı p 1 - p - Z α/. p 1 (1 p 1 ) n 1 + p (1 p ) n p 1 p p 1 - p +Z α/. p 1 (1 p 1 ) n 1 + p (1 p ) n

39 ÖRNEK: 75 adet otomobil mili incelenmiş ve 1 tanesinin yüzey düzgünlüğünün spesifikasyon limitlerinin dışında olduğu görülmüştür. Mühendisler yüzey düzgünlüğünü sağlamak için iyileştirme çalışmaları yapmış ve tekrar süreçten 85 adet örnek almıştır. Alınan örneklerden 10 tanesinin yüzey düzgünlüğü hatalı çıkmıştır. Buna göre yapılan iyileştirmenin yüzey pürüzlülüğünü gidermek için faydalı olup olmadığını %95 güven seviyesinde yorumlayınız.

40 ÇÖZÜM: n 1 = 75 n = 85 p 1 = 1/75= 0,16 p = 10/85=0,1 p 1 - p - Z α/. p 1 (1 p 1 ) n 1 + p (1 p ) n p 1 p p 1 - p +Z α/. p 1 (1 p 1 ) n 1 + p (1 p ) n 0,16-0,1-(1,96) 0,16 0, ,1(0,88) 85 p 1 p 0,16-0,1+(1,96) 0,16 0, ,1(0,88) 85-0,07 p 1 p 0,15 Yorum: Güven aralığı 0 değerinin içerdiği için yapılan iyileştirmenin kusurlu oranını azalttığı söylenemez. Bunun için veriler yeterli kanıt oluşturmamaktadır.

41 Eşleştirilmiş Gözlemlerin Güven Aralığı Aynı örneklerin farklı iki durumunun incelenmesidir.

42 X 1, X Normal dağılmış ve ortalaması µ 1, µ olan rassal değişkenler olsun. D i = x 1i - x i ise; S D = D i D n 1 M D = B[D]= B(X 1 - X )= µ 1 - µ σ D = V(X 1 - X ); (σ 1 σ ) olduğu varsayılıyor. (n 30 ) t = D D S D/ n ; n-1 serbestlik derecesinde. D - tα ;n 1. S D n µ D D + tα ;n 1. S D n

43 ÖRNEK: farklı araba markasının belirlenmiş bir park yerine paralel olarak park edilme sürelerinin birbirinden farklı olup olmadığı incelenmek istenmiş ve n=14 kişinin park etme süreleri aşağıdaki gibidir. %90 güven seviyesinde park etme süreleri arasındaki farkın güven aralığını bulunuz. Otomobil 1 Otomobil Fark 37 17,8 19, 5,8 0, 5,6 16, 16,8-0,6 4, 41,4-17, 1,4-19,4 33,4 38,4-5 3,8 16,8 7 58, 3, 6 33,6 7,8 5,8 4,4 3, 1, 3,4 9,6-6, 1, 0,6 0,6 36, 3, 4 9,8 53,8-4

44 ÇÖZÜM: d = 1,1 n=14 S d =1,68 D - tα ;n 1. S D n µ D D + tα ;n 1. S D n 1,1-t 0,05;13. 1,68 µ 14 D 1,1+t 0,05;13. 1, ,1-(1,771). 1,68 µ 14 D 1,1+(1,771). 1, ,79 µ D 7,1 Yorum: µ D aralığı 0 değerini içermektedir. Bu da % 90 güven seviyesinde iki arabanın park etme süreleri arasında fark olduğu iddiasını desteklememektedir.

45 Normal Dağılım Varyansının Güven Aralığı X ; µ ve σ bilinmeyen Normal dağılmış bir rassal değişken olsun. X 1, X,.., X n n birimlik rassal örnekler ve bunların varyansı da S olsun. Örnekleme dağılımı; χ = (n 1)S σ, n-1 serbestlik derecesinde olur

46 Anakütle varyansının güven aralığı; (n 1)S χ α ; n 1 σ (n 1)S χ 1 α ; n 1

47 ÖRNEK: Bir süt şişeleme tesisinde dolum sürecinin standart sapmasının 0 gramdan az olması isteniyor. Bu tesisten alınan 5 adet süt şişesi tartılmış ve varyansı 56 gr olarak bulunmuştur. Dolum işleminin normal dağıldığı varsayılırsa değişkenlik istenen düzeyde midir? (α = 0,05)

48 ÇÖZÜM: σ 400 gr istenmektedir. σ 0 gr n: 5 adet S = 56 gr Yorum: %95 güven seviyesinde anakütle varyansının istenen varyansı sağlamadığı görülmektedir. σ σ σ (n 1)S χ 1 α; n χ 1 0,05; ,85 σ 443 gr

49 İki Normal Dağılımın Varyanslarının Oranlarının Güven Aralığı X 1, X ortalaması µ 1, µ ve varyansları σ 1, σ bilinmeyen Normal dağılmış iki bağımsız rassal değişken iken; anakütle varyanslarının örnekleme dağılımı; F = S 1 /σ 1 S /σ (n 1), (n 1 1) serbestlik derecesinde olur.

50 Anakütle varyansları oranlarının güven aralığı; S 1 S. F 1 α ; n 1;n 1 1 σ 1 S 1 σ. Fα S ; n 1;n 1 1 olur.

51 ÖRNEK: Aynı parçayı üreten iki üretim hattının ana kütle varyansınını eşit olup olmadığını test etmek için sırasıyla 5 ve 30 birimden oluşan örnekler alınmış ve 1. Hattın varyansı 0,084;. Hattın varyansı 0,095 olarak bulunmuştur. Sonucu %90 güven seviyesinde yarumlayınız.

52 ÇÖZÜM: S 1 F α 1 ; n 1;n 1 1 = 1 Fα ;n 1 1;n 1 S. F 1 α ; n 1;n 1 1 σ 1 S 1 σ. Fα S ; n 1;n 1 1 0, σ 1 0,084.F 0,095 F 0,05; 4;9 σ 0,095 0,05; 9;4 F 0,05; 9;4 = 1,94 F 0,95; 9;4 = = 1 1,89 = 0,59 1 F 0,05; 4;9 0,084 0,095.(0,59) σ 1 0,4677 σ 1 σ 1,7 σ 0,084 0,095.(1,94) Yorum: Güven aralığı 1 i içerdiği için %90 güven seviyesinde varyanslar arasında fark olduğu söylenemez.

ANADOLU ÜNİVERSİTESİ. Hipotez Testleri. ENM317 Mühendislik İstatistiği Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. Hipotez Testleri. ENM317 Mühendislik İstatistiği Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ Hipotez Testleri ENM317 Mühendislik İstatistiği Prof. Dr. Nihal ERGİNEL HİPOTEZ TESTLERİ Pek çok problemde bazı parametrelere bağlı bir ifadeyi kabul yada red etmek için karar vermek

Detaylı

HİPOTEZ TESTLERİ ANADOLU ÜNİVERSİTESİ. Hipotez Testleri ENM317 Mühendislik İstatistiği Doç. Dr. Nihal ERGİNEL 2014

HİPOTEZ TESTLERİ ANADOLU ÜNİVERSİTESİ. Hipotez Testleri ENM317 Mühendislik İstatistiği Doç. Dr. Nihal ERGİNEL 2014 ANADOLU ÜNİVERSİTESİ Hipotez Testleri ENM317 Mühendislik İstatistiği Doç. Dr. Nihal ERGİNEL 2014 HİPOTEZ TESTLERİ Pek çok problemde bazı parametrelere bağlı bir ifadeyi kabul yada red etmek için karar

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 Prof. Dr. Nihal ERGİNEL 2 ÖRNEKLEME Anakütleden n birimlik örnek alınması ve anakütle parametrelerinin örnekten tahmin edilmesidir. 3 ÖRNEKLEME ALMANIN NEDENLERİ Anakütleye

Detaylı

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08

10. Bir ana kütle oranının tahmininde α = 0,05 ise kullanılan Z değeri nedir? A) 1,64 B) 1,84 C) 1,96 D) 2,28 E) 3,08 1. Tanımlanan ana kütleden rassal seçilen örneklemlerden hesaplanan istatistikler yardımı ile ilgili ana kütle parametrelerinin değerini araştırma sürecine ne ad verilir? A) İstatistiksel hata B) İstatistiksel

Detaylı

Ders 9: Kitle Ortalaması ve Varyansı için Tahmin

Ders 9: Kitle Ortalaması ve Varyansı için Tahmin Ders 9: Kitle Ortalaması ve Varyansı için Tahmin Kitle ve Örneklem Örneklem Dağılımı Nokta Tahmini Tahmin Edicilerin Özellikleri Kitle ortalaması için Aralık Tahmini Kitle Standart Sapması için Aralık

Detaylı

ARALIK TAHMİNİ (INTERVAL ESTIMATION):

ARALIK TAHMİNİ (INTERVAL ESTIMATION): YTÜ-İktisat İstatistik II Aralık Tahmini I 1 ARALIK TAHMİNİ INTERVAL ESTIMATION): Nokta tahmininde ilgilenilen anakütle parametresine ilişkin örneklem bilgisinden hareketle tek bir sayı üretilir. Bir nokta

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 8: Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır. Bu anlamda, anakütleden çekilen

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık - I Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kes1rim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmak7r. ü Bu anlamda, anakütleden çekilen

Detaylı

Doç.Dr.İstem Köymen KESER

Doç.Dr.İstem Köymen KESER Doç.Dr.İstem Köymen KESER Güven Aralıkları Ortalama yada iki ortalama farkı için biliniyor bilinmiyor n30 n

Detaylı

WEIBULL DAĞILIMI WEIBULL DAĞILIMI ANADOLU ÜNİVERSİTESİ

WEIBULL DAĞILIMI WEIBULL DAĞILIMI ANADOLU ÜNİVERSİTESİ ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ SÜREKLİ DAĞILIMLAR-2 DOÇ. DR. NİHAL ERGİNEL 2015 WEIBULL DAĞILIMI Weibull dağılımı, pek çok farklı sistemlerin bozulana kadar geçen süreleri ile ilgilenir. Dağılımın

Detaylı

İstatistiksel Yorumlama

İstatistiksel Yorumlama İstatistiksel Yorumlama Amaç, popülasyon hakkında yorumlamalar yapmaktadır. Populasyon Parametre Karar Vermek Örnek İstatistik Tahmin 1 Tahmin Olaylar hakkında tahminlerde bulunmak ve karar vermek zorundayız

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL PARAMETRİK OLMAYAN TESTLER Daha önce incelediğimiz testler, normal dağılmış ana kütleden örneklerin

Detaylı

Ders 10: Bazı Tek Kitleli Hipotez Testleri

Ders 10: Bazı Tek Kitleli Hipotez Testleri Ders 10: Bazı Tek Kitleli Hipotez Testleri Hipotez testi kavramı Ortalama için hipotez testi (bilinen varyans) Ortalama için hipotez testi (bilinmeyen varyans) P-değeri yaklaşımı Güven aralıkları ile hipotez

Detaylı

İstatistik 1 Bölüm 12 Tahmin: Hipotez Testleri 2

İstatistik 1 Bölüm 12 Tahmin: Hipotez Testleri 2 İstatistik 1 Bölüm 12 Tahmin: Hipotez Testleri 2 Notları Prof. Dr. Onur Özsoy Hipotez Testleri Yapılırken İzlenecek Aşamalar 1. H 0 ve H a nın belirlenmesi 2. Test İstatistiğinin belirlenmesi 3. Anlamlılık

Detaylı

İSTATİSTİK II. Hipotez Testleri 1

İSTATİSTİK II. Hipotez Testleri 1 İSTATİSTİK II Hipotez Testleri 1 1 Hipotez Testleri 1 1. Hipotez Testlerinin Esasları 2. Ortalama ile ilgili bir iddianın testi: Büyük örnekler 3. Ortalama ile ilgili bir iddianın testi: Küçük örnekler

Detaylı

Hipotez Testleri. Mühendislikte İstatistik Yöntemler

Hipotez Testleri. Mühendislikte İstatistik Yöntemler Hipotez Testleri Mühendislikte İstatistik Yöntemler Hipotez Testleri Parametrik Testler ( z ve t testleri) Parametrik Olmayan Testler (χ 2 Testi) Hipotez Testleri Ana Kütle β( µ, σ ) Örnek Kütle b ( µ

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

GÜVEN ARALIKLARI ve İSTATİSTİKSEL ANLAMLILIK. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

GÜVEN ARALIKLARI ve İSTATİSTİKSEL ANLAMLILIK. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı GÜVEN ARALIKLARI ve İSTATİSTİKSEL ANLAMLILIK Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Kestirim Pratikte kitle parametrelerinin doğrudan hesaplamak olanaklı değildir. Bunun yerine

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I

Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I Aktüerlik Sınavları I. Seviye / Olasılık-İstatistik Örnek Sorular I S1. Cep telefonu üreten bir fabrikada toplam üretimin % 30 u A, % 30 u B ve % 40 ı C makineleri tarafından yapılmaktadır. Bu makinelerin

Detaylı

BİYOİSTATİSTİK. Uygulama 4. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK. Uygulama 4. Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Güven Aralıkları 2 Güven Aralıkları

Detaylı

Appendix C: İstatistiksel Çıkarsama

Appendix C: İstatistiksel Çıkarsama Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama

Detaylı

PARAMETRİK OLMAYAN TESTLER

PARAMETRİK OLMAYAN TESTLER PARAMETRİK OLMAYAN TESTLER Daha önce incelediğimiz testler, normal dağılmış ana kütleden örneklerin rassal seçilmesi varsayımına dayanmaktaydı ve parametrik testler kullanılmıştı. Parametrik olmayan testler

Detaylı

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Örnek Senaryo İmplant üreten İMPLANTDENT

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama Doç.

Detaylı

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0 YTÜ-İktisat İstatistik II Hipotez Testi 1 HİPOTEZ TESTİ: AMAÇ: Örneklem bilgisinden hareketle anakütleye ilişkin olarak kurulan bir hipotezin (önsavın) geçerliliğinin test edilmesi Genel notasyon: anakütleye

Detaylı

ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ

ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ ÖRNEKLEME DAĞILIŞLARI VE TAHMİNLEYİCİLERİN ÖZELLİKLERİ TEMEL KAVRAMLAR PARAMETRE: Populasyonun sayısal açıklayıcı bir ölçüsüdür ve anakütledeki tüm elemanlar dikkate alınarak hesaplanabilir. Ana kütledeki

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Örnekleme Planlar ve Dağılımları Prof. Dr. İrfan KAYMAZ Tanım İncelenen olayın ait olduğu anakütlenin bütünüyle dikkate alınması zaman, para, ekipman ve bunun gibi nedenlerden dolayı

Detaylı

ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER

ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER DOÇ. DR. NİHAL ERGİNEL 2015 X beklenen değeri B[X] ile gösterilir. B[X] = BEKLENEN DEĞER Belli bir malzeme taşınan kolilerin ağırlıkları

Detaylı

GÜVEN ARALIKLARI ALISTIRMA SORULARI. 2012 Aras.Gör. Efe SARIBAY

GÜVEN ARALIKLARI ALISTIRMA SORULARI. 2012 Aras.Gör. Efe SARIBAY GÜVEN ARALIKLARI ALISTIRMA SORULARI 2012 Aras.Gör. Efe SARIBAY 1) Bir bankada bir gün içerisinde açılan vadeli TL. hesaplarının ortalamasını incelemek amacıyla yapılan bir araştırmada 12 günlük yapılan

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

Hipotez Testi ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 4 Minitab da İstatiksel Çıkarım-I. Hipotez Testi. Hipotez Testi

Hipotez Testi ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 4 Minitab da İstatiksel Çıkarım-I. Hipotez Testi. Hipotez Testi ENM 52 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 4 Minitab da İstatiksel Çıkarım-I (Ortalamalar ve Oranlar İçin ) İstatistiksel Hipotezler İstatistiksel hipotez testi ve parametrelerin güven aralığı tahmini,

Detaylı

Dokuz Eylül Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü END Kalite Planlama ve Kontrol

Dokuz Eylül Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü END Kalite Planlama ve Kontrol Dokuz Eylül Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü END 3618 - Kalite Planlama ve Kontrol Uygulama Çalışması-I Dr. Öğr. Üyesi Kemal SUBULAN Tarih: 12.04.2018 A Aşağıda yer alan

Detaylı

KESİKLİ DÜZGÜN DAĞILIM

KESİKLİ DÜZGÜN DAĞILIM KESİKLİ DÜZGÜN DAĞILIM Eğer X kesikli rassal değişkeninin alabileceği değerler (,,..., ) eşit olasılığa sahip ise, kesikli düzgün dağılım söz konusudur. p(x) =, X=,,..., şeklinde gösterilir. Bir kutuda

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

İki Değişkenli Bağlanım Çıkarsama Sorunu

İki Değişkenli Bağlanım Çıkarsama Sorunu İki Değişkenli Bağlanım Çıkarsama Sorunu Aralık Tahmini Ekonometri 1 Konu 15 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 9 VARYANS ANALİZİ Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Varyans analizi niçin yapılır? İkiden fazla veri grubunun ortalamalarının karşılaştırılması t veya Z testi

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 8: Prof. Dr. Tanım Hipotez, bir veya daha fazla anakütle hakkında ileri sürülen, ancak doğruluğu önceden bilinmeyen iddialardır. Ortaya atılan iddiaların, örnekten elde edilen

Detaylı

İstatistiksel Kavramların Gözden Geçirilmesi

İstatistiksel Kavramların Gözden Geçirilmesi İstatistiksel Kavramların Gözden Geçirilmesi İstatistiksel Çıkarsama Ekonometri 1 Konu 3 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike

Detaylı

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek,

8.Hafta. Değişkenlik Ölçüleri. Öğr.Gör.Muhsin ÇELİK. Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, İSTATİSTİK 8.Hafta Değişkenlik Ölçüleri Hedefler Bu üniteyi çalıştıktan sonra; Uygun değişkenlik ölçüsünü hesaplayıp yorumlayabilecek, Serilerin birbirlerine değişkenliklerini yorumlayabileceksiniz. 2

Detaylı

İSTATİSTİKSEL TAHMİNLEME. Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir.

İSTATİSTİKSEL TAHMİNLEME. Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir. İSTATİSTİKSEL TAHMİNLEME Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir. 1 ŞEKİL: Evren uzay-örneklem uzay İstatistiksel tahmin

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 10: Prof. Dr. İrfan KAYMAZ Tanım Varyans analizi niçin yapılır? İkiden fazla veri grubunun ortalamalarının karşılaştırılması t veya Z testi ile yapılabilir. Ancak karşılaştırılacak

Detaylı

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş

Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Nokta ve Aralık Tahmini Merkezi Limit Teoremi Örneklem Dağılımı Hipotez Testlerine Giriş Doç. Dr. Ertuğrul ÇOLAK Eskişehir Osmangazi Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı Nokta Tahmini

Detaylı

HİPOTEZ TESTLERİ ALIŞTIRMA SORULARI Araş.Gör. Efe SARIBAY

HİPOTEZ TESTLERİ ALIŞTIRMA SORULARI Araş.Gör. Efe SARIBAY HİPOTEZ TESTLERİ ALIŞTIRMA SORULARI 2012 Araş.Gör. Efe SARIBAY 1) Bir kafede yaz aylarında satılan limonataların satış miktarının ortalamasının 24 lt. den az olduğu iddia edilmektedir. İddiayı test etmek

Detaylı

OLASILIK ve İSTATİSTİK Hipotez Testleri

OLASILIK ve İSTATİSTİK Hipotez Testleri OLASILIK ve İSTATİSTİK Hipotez Testleri Yrd.Doç.Dr. Pınar YILDIRIM Okan Üniversitesi Mühendislik ve Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü Hipotezler ve Testler Hipotez, kitleye(yığına) ait

Detaylı

SÜREKLİ DÜZGÜN DAĞILIM

SÜREKLİ DÜZGÜN DAĞILIM SÜREKLİ DÜZGÜN DAĞILIM X rassal değişkenin olasılık yoğunluk fonksiyonu; şeklinde ise x e düzgün dağılmış rassal değişken, f(x) e sürekli düzgün dağılım denir. a 0 olduğuna göre, f(x) >0 olur.

Detaylı

BİYOİSTATİSTİK PARAMETRİK TESTLER

BİYOİSTATİSTİK PARAMETRİK TESTLER BİYOİSTATİSTİK PARAMETRİK TESTLER Doç. Dr. Mahmut AKBOLAT *Bir testin kullanılabilmesi için belirli şartların sağlanması gerekir. *Bir testin, uygulanabilmesi için gerekli şartlar; ne kadar çok veya güçlü

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 9: Prof. Dr. İrfan KAYMAZ Tanım Hipotez, bir veya daha fazla anakütle hakkında ileri sürülen, ancak doğruluğu önceden bilinmeyen iddialardır. Ortaya atılan iddiaların, örnekten

Detaylı

Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır.

Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır. Hipotez testleri-oran testi Oran Testi Herhangi bir oranın belli bir değere eşit olmadığını test etmek için kullanılır Örnek: Yüz defa atılan bir para 34 defa yazı gelmiştir Paranın yazı gelme olasılığının

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

ANADOLU ÜNİVERSİTESİ ÖRNEK: GEOMETRİK DAĞILIM

ANADOLU ÜNİVERSİTESİ ÖRNEK: GEOMETRİK DAĞILIM ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ KESİKLİ DAĞILIMLAR-2 DOÇ. DR. NİHAL ERGİNEL 2015 GEOMETRİK DAĞILIM Bir Bernoulli deneyi ilk olumlu sonuç elde edilmesine kadar tekrarlansın. X: ilk olumlu sonucun

Detaylı

OLASILIK ve KURAMSAL DAĞILIMLAR

OLASILIK ve KURAMSAL DAĞILIMLAR OLASILIK ve KURAMSAL DAĞILIMLAR Kuramsal Dağılımlar İstatistiksel çözümlemelerde; değişkenlerimizin dağılma özellikleri, çözümleme yönteminin seçimi ve sonuçlarının yorumlanmasında önemlidir. Dağılma özelliklerine

Detaylı

Araş.Gör. Efe SARIBAY

Araş.Gör. Efe SARIBAY HİPOTEZ TESTLERİ ALIŞTIRMA SORULARI Araş.Gör. Efe SARIBAY 1) Telekom da çalışan bir operatör A ve B şehirleri arasında yapılan telefon görüşmelerinin ortalamasının 6 dakikadan daha fazla sürdüğünü iddia

Detaylı

11. Hafta Ders Notları BİR İSTATİSTİĞE DAİR FARKLI ÖRNEKLEMLERDEN ELDE EDİLEN DEĞERLERİN DAĞILIMI (SAMPLING DISTRIBUTION OF A STATISTIC)

11. Hafta Ders Notları BİR İSTATİSTİĞE DAİR FARKLI ÖRNEKLEMLERDEN ELDE EDİLEN DEĞERLERİN DAĞILIMI (SAMPLING DISTRIBUTION OF A STATISTIC) 11. Hafta Ders Notları BİR İSTATİSTİĞE DAİR FARKLI ÖRNEKLEMLERDEN ELDE EDİLEN DEĞERLERİN DAĞILIMI (SAMPLING DISTRIBUTION OF A STATISTIC) Hatırlanacağı üzere, bir anakütleye ait olan sayısal değerlere (örneğin

Detaylı

İstatistiksel Tahmin ÜNİTE. Amaçlar. İçindekiler. Yazar Doç.Dr. Ahmet ÖZMEN

İstatistiksel Tahmin ÜNİTE. Amaçlar. İçindekiler. Yazar Doç.Dr. Ahmet ÖZMEN İstatistiksel Tahmin Yazar Doç.Dr. Ahmet ÖZMEN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; evren parametreleri hakkında yorum yapmayla ilgili iki yöntemden birisi olan evren parametrelerinin tahmin edilmesine

Detaylı

HİPOTEZ TESTLERİ HİPOTEZ NEDİR?

HİPOTEZ TESTLERİ HİPOTEZ NEDİR? HİPOTEZ TESTLERİ HİPOTEZ NEDİR? Örnekleme ile test edilmeye çalışılan bir popülasyonun ilgili parametresi hakkında ortaya sunulan iddiadır. Örneğin; A dersi için vize ortalaması 50 nin altındadır Firestone

Detaylı

ALIŞTIRMALAR. Sayısal Bilginin Özetlenmesi:

ALIŞTIRMALAR. Sayısal Bilginin Özetlenmesi: İSTATİSTİK I ALIŞTIRMALAR Y.Doç.Dr. Hüseyin Taştan AÇIKLAMA: N: P. Newbold, İşletme ve İktisat için İstatistik, 4. basımdan çeviri. Çift sayılı alıştırmalar için kitabın arkasındaki çözümlere bakabilirsiniz.

Detaylı

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa, NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına

Detaylı

Bir Normal Dağılım Ortalaması İçin Testler

Bir Normal Dağılım Ortalaması İçin Testler Bir Normal Dağılım Ortalaması İçin Testler İÇERİK o Giriş ovaryansı Bilinen Bir Normal Dağılım Ortalaması İçin Hipotez Testler P-değerleri: II. Çeşit hata ve Örnekleme Büyüklüğü Seçimi Örnekleme Büyüklüğü

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL İYİ UYUM TESTİ Rassal değişkenin olasılık yoğunluk fonksiyonunun ve parametresinin bilinmediği, ancak belirli

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli

Detaylı

RISK TEORİSİ SINAV SORULARI WEB

RISK TEORİSİ SINAV SORULARI WEB MAYIS 2017 SORU 1: RISK TEORİSİ SINAV SORULARI WEB Bir sigorta şirketinin konut sigortasında uyguladığı iki tip poliçe (A ve B) bulunmaktadır. A tipi konut poliçesinde şirket en fazla 5.500 TL hasar ödemektedir.

Detaylı

NİCELİKSEL KONTROL GRAFİKLERİ

NİCELİKSEL KONTROL GRAFİKLERİ NİCELİKSEL KONTROL GRAFİKLERİ Prof. Dr. Nihal ERGİNEL Anadolu Üniversitesi X BİRİMLER VE HAREKETLİ DEĞİŞİM ARALIĞI KONTROL GRAFİĞİ X- Birimler Kontrol Grafiği n= birimlik örnekler alınır. Üretim hızı oldukça

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

Araş.Gör. Efe SARIBAY

Araş.Gör. Efe SARIBAY GÜVEN ARALIKLARI (ARALIK TAHMİNİ) ALIŞTIRMA SORULARI Araş.Gör. Efe SARIBAY 1) Bir hisse senedinin $ bazında fiyatının ortalamasını incelemek için yapılan bir araştırmada 18 gün boyunca hisse senedinin

Detaylı

13. Olasılık Dağılımlar

13. Olasılık Dağılımlar 13. Olasılık Dağılımlar Mühendislik alanında karşılaşılan fiziksel yada fiziksel olmayan rasgele değişken büyüklüklerin olasılık dağılımları için model alınabilecek çok sayıda sürekli ve kesikli fonksiyon

Detaylı

ENM 316 BENZETİM ÖDEV SETİ

ENM 316 BENZETİM ÖDEV SETİ ENM 16 BENZETİM ÖDEV SETİ Ödev 1. Bir depo ve N adet müşteriden oluşan bir taşımacılık sisteminde araç depodan başlayıp bütün müşterileri teker teker ziyaret ederek depoya geri dönmektedir. Sistemdeki

Detaylı

Ekonometri I VARSAYIMLARI

Ekonometri I VARSAYIMLARI Ekonometri I ÇOK DEĞİŞKENLİ REGRESYON MODELİNİN VARSAYIMLARI Hüseyin Taştan Temmuz 23, 2006 İçindekiler 1 Varsayım MLR.1: Parametrelerde Doğrusallık 1 2 Varsayım MLR.2: Rassal Örnekleme 1 3 Varsayım MLR.3:

Detaylı

Gruplanmış serilerde standart sapma hesabı

Gruplanmış serilerde standart sapma hesabı Gruplanmış serilerde standart sapma hesabı Örnek: Verilen gruplanmış serinin standart sapmasını bulunuz? Sınıflar f i X X X m i f i. m i m i - (m i - ) f i.(m i - ) 0 den az 3 4 den az 7 4 6 dan az 4 6

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

RİSK ANALİZİ VE AKTÜERYAL MODELLEME SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla

Detaylı

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.

Detaylı

Merkezi Limit Teoremi

Merkezi Limit Teoremi Örnekleme Dağılımı Merkezi Limit Teoremi Şimdiye kadar normal dağılıma uygun olan veriler ile ilgili örnekler incelendi. Çarpıklık gösteren veriler söz konusu olduğunda ne yapılması gerekir? Hala normal

Detaylı

EVREN ORTALAMASI HİPOTEZ TESTİ VE EVREN ORANI HİPOTEZ TESTİ. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı

EVREN ORTALAMASI HİPOTEZ TESTİ VE EVREN ORANI HİPOTEZ TESTİ. Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı EVREN ORTALAMASI HİPOTEZ TESTİ VE EVREN ORANI HİPOTEZ TESTİ Ankara Üniversitesi Tıp Fakültesi Biyoistatistik Anabilim Dalı EVREN ORTALAMASI İÇİN TEK ÖRNEKLEM T-TESTİ Tek örneklem t-testi, örneklemin çekildiği

Detaylı

ĐŞLE 544 ĐSTATĐSTĐK ARA SINAV 11 Mayıs 2006

ĐŞLE 544 ĐSTATĐSTĐK ARA SINAV 11 Mayıs 2006 ĐŞLE 5 ĐSTATĐSTĐK ARA SINAV Mayıs 00 Adı Soyadı: No: [0 puan] -Bir Üniversitede okutulan derslerin öğrenciler tarafından değerlendirilmesi amacı ile hazırlanan bir anket formundaki sorulardan biri: Aldığınız

Detaylı

BÖLÜM 10 ÖRNEKLEME YÖNTEMLERİ

BÖLÜM 10 ÖRNEKLEME YÖNTEMLERİ İÇİNDEKİLER BÖLÜM 10 ÖRNEKLEME YÖNTEMLERİ I. ÖRNEKLEME... 1 II. ÖRNEKLEMENİN SAFHALARI... 2 III. ÖRNEK ALMA YÖNTEMLERİ 5 A. RASYONEL ÖRNEK ALMA... 5 B. TESADÜFİ ÖRNEK ALMA... 6 C. KADEMELİ ÖRNEK ALMA...

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

Örneklemden elde edilen parametreler üzerinden kitle parametreleri tahmin edilmek istenmektedir.

Örneklemden elde edilen parametreler üzerinden kitle parametreleri tahmin edilmek istenmektedir. ÇIKARSAMALI İSTATİSTİKLER Çıkarsamalı istatistikler, örneklemden elde edilen değerler üzerinde kitleyi tanımlamak için uygulanan istatistiksel yöntemlerdir. Çıkarsamalı istatistikler; Tahmin Hipotez Testleri

Detaylı

Örneklem Dağılımları & Hipotez Testleri Örneklem Dağılımı

Örneklem Dağılımları & Hipotez Testleri Örneklem Dağılımı Örneklem Dağılımları & Hipotez Testleri Örneklem Dağılımı Ortalama veya korelasyon gibi istatistiklerin dağılımıdır Çıkarımsal istatistikte örneklem dağılımı temel fikirlerden biridir. Çıkarımsal istatistik

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

EME 3117 SİSTEM SİMÜLASYONU. Üçgensel Dağılım. Sürekli Düzgün Dağılım. Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar

EME 3117 SİSTEM SİMÜLASYONU. Üçgensel Dağılım. Sürekli Düzgün Dağılım. Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar 9.0.06 Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar EME 7 SİSTEM SİMÜLASYONU Simulasyonda İstatistiksel Modeller (Sürekli Dağılımlar) Ders 5 Sürekli Düzgün Dağılım Sürekli Düzgün (Uniform)

Detaylı

Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri

Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 5: SEKK (OLS) nin Asimptotik

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri

Detaylı

İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2014)

İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2014) İstatistik Dersi Çalışma Soruları Final(Matematik Müh. Bölümü-2014) S-1) Standart normal dağılıma sahip Z değişkeni için aşağıda istenilen olasılıkları hesaplayınız. S-2) 50 müşteriye yeni bir ürün tattırılır.

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri

Detaylı

BÖLÜM 12 STUDENT T DAĞILIMI

BÖLÜM 12 STUDENT T DAĞILIMI 1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir

Detaylı

İstatistik. Temel Kavramlar Dr. Seher Yalçın 1

İstatistik. Temel Kavramlar Dr. Seher Yalçın 1 İstatistik Temel Kavramlar 26.12.2016 Dr. Seher Yalçın 1 Evren (Kitle/Yığın/Popülasyon) Herhangi bir gözlem ya da inceleme kapsamına giren obje ya da bireylerin oluşturduğu bütüne ya da gruba Evren veya

Detaylı

2018 İKİNCİ SEVİYE AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME 12 MAYIS 2018

2018 İKİNCİ SEVİYE AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME 12 MAYIS 2018 2018 İKİNCİ SEVİYE AKTÜERLİK SINAVLARI RİSK ANALİZİ VE AKTÜERYAL MODELLEME 12 MAYIS 2018 Sigortacılık Eğitim Merkezi (SEGEM) tarafından hazırlanmış olan bu sınav sorularının her hakkı saklıdır. Hangi amaçla

Detaylı

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

EME 3117 SISTEM SIMÜLASYONU. Üçgensel Dağılım. Sürekli Düzgün Dağılım. Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar

EME 3117 SISTEM SIMÜLASYONU. Üçgensel Dağılım. Sürekli Düzgün Dağılım. Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar 0..07 EME 37 SISTEM SIMÜLASYONU Simulasyonda İstatistiksel Modeller-II Ders 5 Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar Sürekli Düzgün (Uniform) Dağılım Normal Dağılım Üstel (Exponential)

Detaylı

2019 YILI BİRİNCİ SEVİYE AKTÜERLİK SINAVLARI İSTATİSTİK VE OLASILIK 21 NİSAN 2019

2019 YILI BİRİNCİ SEVİYE AKTÜERLİK SINAVLARI İSTATİSTİK VE OLASILIK 21 NİSAN 2019 2019 YILI BİRİNCİ SEVİYE AKTÜERLİK SINAVLARI İSTATİSTİK VE OLASILIK 21 NİSAN 2019 Sigortacılık Eğitim Merkezi (SEGEM) tarafından hazırlanmış olan bu sınav sorularının her hakkı saklıdır. Hangi amaçla olursa

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testi-III Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testi-III Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK İstatistiksel Tahminleme ve Hipotez Testi-III Dr. Öğr. Üyesi Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr

Detaylı

Istatistik ( IKT 253) 4. Çal şma Sorular - Cevaplar 7. CHAPTER (DISTRIBUTION OF SAM- PLE STATISTICS) 1 Ozan Eksi, TOBB-ETU

Istatistik ( IKT 253) 4. Çal şma Sorular - Cevaplar 7. CHAPTER (DISTRIBUTION OF SAM- PLE STATISTICS) 1 Ozan Eksi, TOBB-ETU TOBB-ETÜ, Iktisat Bölümü Istatistik ( IKT 253) 4. Çal şma Sorular - Cevaplar 7. CHAPTER (DISTRIBUTION OF SAM- PLE STATISTICS) 1 Soru 1-(Sampling Distribution of Sample Means): Bir bölgedeki evlerin ortalama

Detaylı

ENM 316 BENZETİM. Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30)

ENM 316 BENZETİM. Faaliyet Faaliyet zamanı dağılımı A U(5, 8) B U(6, 15) U(10,20) U(4,20) U(12,25) U(15,30) ENM 316 BENZETİM ÖDEV 1: Bir projede A, B, C, D, E ve F olmak üzere 6 faaliyet vardır. Projenin tamamlanması için bu faaliyetlerin sırası ile yapılması gerekmektedir. Her faaliyetin tamamlanması için gereken

Detaylı

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL

Ki- Kare Testi ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ İYİ UYUM TESTİ Prof.Dr. Nihal ERGİNEL İYİ UYUM TESTİ Rassal değişkenin olasılık yoğunluk fonksiyonunun ve parametresinin bilinmediği, ancak belirli

Detaylı