Sembolik değişken tanımlama a, t, x ve y değişkenlerini sembolik olarak tanımlayalım ve değişken listesinde görelim:

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Sembolik değişken tanımlama a, t, x ve y değişkenlerini sembolik olarak tanımlayalım ve değişken listesinde görelim:"

Transkript

1 Sembolik değişken tanımlama... 1 İfadeleri daha görsel biçimde görme... 2 Türev alma... 2 Integral alma... 3 Limit alma... 4 Sembolik fonksiyonları çizdirme... 5 Sembolik ifadeleri basitleştirme... 9 Sembolik denklem çözme... 9 Çok bilinmeyenli sembolik denklemler... 9 Diferansiyel denklem çözme Çok bilinmeyenli diferansiyel denklemler Laplace dönüşümü Ters Laplace dönüşümü Diğer dönüşümler Sembolik ifadelerde değişkenlere değer verme Çok değişken içeren sembolik ifadelerde değişkenlere değer verme: Sembolik matrisler Sembolik matris işlemleri Sembolik matris işlemleri Sembolik fonksiyonlarla interaktif işlem yapmak için bir araç (funtool) Sembolik değişken tanımlama a, t, x ve y değişkenlerini sembolik olarak tanımlayalım ve değişken listesinde görelim: syms a t x y whos Name Size Bytes Class Attributes a 1x1 112 sym t 1x1 112 sym x 1x1 112 sym y 1x1 112 sym Sembolik değişkenler ile her türlü hesap yapılabilir, bu değişkenler kullanılarak başka değişkenler oluşturulabilir: f = exp(-2*t) g = sin(3*t)/(3*t) h = x^2+y^3; f =

2 exp(-2*t) g = sin(3*t)/(3*t) İfadeleri daha görsel biçimde görme pretty komutu ile ifadelerin daha görsel biçimde formatlanarak ekrana yazdırılmasını sağlayabiliriz: pretty(f) pretty(g) pretty(h) exp(-2 t) sin(3 t) t 2 3 x + y Türev alma diff komutu ile türev alınabilir: dfdt = diff(f) dgdt = diff(g) dfdt = -2*exp(-2*t) dgdt = cos(3*t)/t - sin(3*t)/(3*t^2) Yüksek dereceli türevler: dfdt2 = diff(f,2) % İkinci türev dfdt3 = diff(f,3) % Üçüncü türev dfdt10 = diff(f,10) % Onuncu türev dfdt2 = 4*exp(-2*t)

3 dfdt3 = -8*exp(-2*t) dfdt10 = 1024*exp(-2*t) Birden fazla değişken varsa, hangi değişkene göre türev alınacağını belirtebiliriz: dhdx = diff(h,x) dhdy = diff(h,y) dhdx = 2*x dhdy = 3*y^2 Integral alma int komutu ile integral alınabilir: fi = int(f) gi = int(g) fi = -exp(-2*t)/2 gi = sinint(3*t)/3 Yine integralin de hangi değişkene göre alınacağını belirtelibiliriz: hix = int(h,x) hiy = int(h,y) hix = x^3/3 + x*y^3 hiy =

4 x^2*y + y^4/4 Belirli integral aldırma: fi = int(f,0,1) gi = int(g,1,2) hix = int(h,x,-1,2) hiy = int(h,y,-1,2) fi = 1/2 - exp(-2)/2 gi = sinint(6)/3 - sinint(3)/3 hix = 3*y^3 + 3 hiy = 3*x^2 + 15/4 Limit alma limit komutu ile limit bulunabilir: f0 = limit(f,0) % t 0'a giderken f'nin limiti finf = limit(f,inf) % t sonsuza giderken f'nin limiti g0 = limit(f,0) % t 0'a giderken g'nin limiti ginf = limit(f,inf) % t sonsuza giderken g'nin limiti f0 = 1 finf = 0 g0 = 1

5 ginf = 0 Yine limitin de hangi değişkene göre alınacağını belirtelibiliriz: hx2 = limit(h,x,2) hy3 = limit(h,y,3) hx2 = y^3 + 4 hy3 = x^ Sembolik fonksiyonları çizdirme İki boyutlu çizimler ezplot(f); % f'yi çizdir ezplot(f,[-1 1]); % f'yi istenilen aralıkta çizdir

6 ezplot(g); % g'yi çizdir

7 ezplot(g, [2 4]); % g'yi istenilen aralıkta çizdir Üç boyutlu çizimler ezsurf(h); % h'yi çizdir

8 ezsurf(h, [ ]); % h'yi x [-1,1] ve y [-2,2] aralığında çizdir

9 Sembolik ifadeleri basitleştirme Aşağıdaki ifadede normalde olduğundan paydaki ile sadeleşebilir. Yine basitleştirmesi yapılabilir. f = (x^2-1)/(x-1)+cos(x)^2+sin(x)^2; pretty(f); x - 1 cos(x) + sin(x) x - 1 MATLAB'da sembolik ifadeleri basitleştirmek için simplify kullanabiliriz: simplify(f) x + 2 Sembolik denklem çözme Tek bilinmeyenli denklem çözme xs = solve('x^2-9=0') xs = -3 3 xs = solve('sin(x)=1/2') xs = pi/6 (5*pi)/6 Çok bilinmeyenli sembolik denklemler İki bilinmeyenli iki denklem çözdürelim: [xs,ys] = solve('3*x+5*y=9','2*x+3*y=5') xs =

10 -2 ys = 3 Alternatif notasyon S = solve('3*x+5*y=9','2*x+3*y=5') % Tüm değişkenler için çözümü S'ye yaz S = x: [1x1 sym] y: [1x1 sym] S.x % x için çözüm -2 S.y % y için çözüm 3 Üç bilinmeyeli üç denklem çözdürelim: eq1 = 'x+y*z=-5'; eq2 = '2*x^2+3*y-z=-7'; eq3 = 'x*y^2*z=12'; S = solve(eq1,eq2,eq3) % Tüm değişkenler için çözümü S'ye yaz S = x: [5x1 sym] y: [5x1 sym] z: [5x1 sym]

11 Birkaç tane çözüm bulunduğuna dikkat edin. Bu çözümlerin hepsi de bu denklemleri sağlar. Örnek olarak birinci çözümün doğruluğunu kontrol edelim. x, y ve z değişkenlerine birinci çözüm değerlerini verelim: x = S.x(1) y = S.y(1) z = S.z(1) x = 1 y = -2 z = 3 Birinci denklemin sol tarafını hesaplayalım, sağ tarafa (-5) eşit çıkmalı x+y*z -5 İkinci denklemin sol tarafını hesaplayalım, sağ tarafa (-7) eşit çıkmalı 2*x^2+3*y-z -7 Üçüncü denklemin sol tarafını hesaplayalım, sağ tarafa (12) eşit çıkmalı x*y^2*z 12

12 Diğer çözümler için de benzer şekilde sağlama yapabiliriz. Diferansiyel denklem çözme dsolve komutu ile diferansiyel denklemler çözülebilir. Bunun için iki yaklaşım izlenebilir. Birinci yöntemde önce zamana bağlı bir değişken şu şekilde tanımlanır: syms x(t) Burada değişkeni 'ye bağlı, yani 'nin bir fonksyonu olarak düşünülebilir. Bu fonksiyonun türevini belirmek için diff komutunu kullanarak bir diferansiyel denklem oluşturularak çözdürülebilir. Örneğin denklemini için çözdürelim: dsolve(diff(x) == -3*x) C5*exp(-3*t) = atama komutu olduğundan diferansiyel denklemdeki eşitliği belirtmek için == kullanıldığına dikkat ediniz. Ayrıca denkeml için ilk koşul vermediğimiz için çözümde bir C sabiti var. Eğer ilk koşul da vermek istersek (mesela ilk koşul verelim) dsolve(diff(x) == -3*x, x(0)==1) exp(-3*t) denklemini ve için çözdürelim. Türeve bağlı ilk koşulu verebilmek için önce türev fonksiyonunu oluşturmalıyız: Dx = diff(x); % x'in türev fonksiyonunu Dx değişkenine atayalım dsolve(diff(x,2)-4*diff(x)+5*x==1,x(0)==1,dx(0)==0) % İstenilen ilk değerler için çözdürelim (4*exp(2*t)*cos(t))/5 - (8*exp(2*t)*sin(t))/5 + 1/5 Türevsel denklem çözdürmek için ikinci yaklaşım da şudur: Sembolik değişkenleri içeren ifadeleri metin şeklinde ifade edebiliriz. Metin içerisinde türevi belirtmek için D harfi kullanılır. İkinci türev D2, üçüncü türev D3... şeklinde belirtilir. MATLAB bu metin ifadelerini kendi içinde sembolik ifadelere çevirerek işlem yapar. Metin içerisinde geçen değişkenlerin daha öncesinde syms ile tanımlanmasına gerek yoktur. Örneğin denklemini için çözdürelim:

13 dsolve('dx = -3*x') C5*exp(-3*t) İlk koşul vermediğimiz için çözümde bir C sabiti var. Eğer ilk koşul da vermek istersek (mesela ilk koşul verelim) x = dsolve('dx = -3*x','x(0) = 1') x = exp(-3*t) denklemini ve için çözdürelim dsolve('d2x-4*dx+5*x=1','x(0)=1','dx(0)=0') (4*exp(2*t)*cos(t))/5 - (8*exp(2*t)*sin(t))/5 + 1/5 dsolve normalde bağımsız değişkeni zaman (t) olarak alır. Bağımsız değişkene başka bir şey demek istersek onu da parametre olarak belirtebiliriz. Mesela bağımsız değişken olsun ve denkleminden 'yi çözdürelim: dsolve('dx = -3*x','s') C12*exp(-3*s) Yukarıda verilen iki yaklaşım (bağımlı değişken tanımlama ve metin tabanlı yaklaşım) teoride eşdeğerdir, birbiri yerine kullanılabilir. Fakat problem tipine göre pratikte bir metot diğerine göre daha kodlama açısından daha avantajlı olabilir, tercih programcıya aittir. Çok bilinmeyenli diferansiyel denklemler Çok bilinmeyenli diferansiyel denklemleri de normal denklemleri çözdürdüğümüze benzer çekilde çözdürebiliriz. Örneğin

14 denklemlerini ilk koşullar ve olmak üzere çözdürelim: S = dsolve('dx = y', 'Dy = -x', 'x(0)=0', 'y(0)=1') S = y: [1x1 sym] x: [1x1 sym] S.x % x(t) için çözüm sin(t) S.y % y(t) için çözüm cos(t) Laplace dönüşümü laplace komutu ikl sembolik fonksiyonların Laplace dönüşümü alınabilir. Örneğin birim dürtü fonksiyonu için Laplace dönüşümü: syms t F = laplace(dirac(t)) % dirac = birim dürtü F = 1 Birim basamak fonksiyonu için Laplace dönüşümü: F = laplace(heaviside(t)) % heaviside = birim basamak F = 1/s

15 Rampa fonksiyonu için Laplace dönüşümü: f = int(heaviside(t)); % rampa, birim basamağın integralidir F = laplace(f) F = 1/(2*s^2) + laplace(t*sign(t), t, s)/2 Sinüs ve kosinüs fonksiyonları için Laplace dönüşümü syms w F = laplace( sin(w*t) ) F = w/(s^2 + w^2) F = laplace( cos(w*t) ) F = s/(s^2 + w^2) Ters Laplace dönüşümü ilaplace komutu ile ters Laplace dönüşümü alınabilir. Örneğin: syms s; f = ilaplace(1/(s+2)) f = exp(-2*t) f = ilaplace(3/(s^2+9)) f = sin(3*t) f = ilaplace(s/(s^2+9))

16 f = cos(3*t) F = 1/(s^2*(s+1)*(s+2)); pretty(f); % Fonksiyonu güzel formatlanmış olarak görelim s (s + 1) (s + 2) f = ilaplace(1/(s^2*(s+1)*(s+2))); pretty(f); % Sonucu güzel formatlanmış olarak görelim t exp(-2 t) exp(-t) Laplace ve ters Laplace dönüşümü birbirinin tersidir. f'nin Laplace'ını alırsak yine F'yi elde ederiz: laplace(f) 1/(s + 1) - 1/(4*(s + 2)) - 3/(4*s) + 1/(2*s^2) Eşit olduklarını görebilmek için sonucu basitleştirelim ve güzel formatlanmıl bir biçimde görelim pretty(simplify(laplace(f))) s (s + 3 s + 2) Diğer dönüşümler Laplace dönüşümüne benzer şekilde başka faydalı sembolik dönüşümler, örneğin Fourier ve z- dönüşümleri ve tersleri de MATLAB'da kolayca gerçekleştirebilir. Detaylı bilgi ve örnekler için: doc fourier, doc ifourier, doc ztrans, doc iztrans ile ilgili yardım dosyalarına ulaşabilirsiniz. Sembolik ifadelerde değişkenlere değer verme subs komutu ile sembolik ifadede bir değişkene nümerik bir değer verebiliriz.

17 syms x f = x^3+x^2+x+4 f = x^3 + x^2 + x + 4 f ifadesindeki sembolik değişken (x) yerine 2 koyalım subs(f,2) 18 subs komutu ile bir sembolik değişkeni başka bir sembolik değişkenle veya ifadeyle de değiştirebiliriz: syms y f2 = subs(f,y) % f'de x yerine y koyarak f2 değişkenini oluştur f2 = y^3 + y^2 + y + 4 f3 = subs(f,(x+1)) % f'de x yerine x+1 koyarak f3 değişkenini oluştur f3 = x + (x + 1)^2 + (x + 1)^3 + 5 Not: f3'teki terimleri açmak için expand komutunu kullanabiliriz: expand(f3) x^3 + 4*x^2 + 6*x + 7 Çok değişken içeren sembolik ifadelerde değişkenlere değer verme: syms x y; f = x*y

18 f = x*y f'de x yerine 2, y yerine de 3 koyalım: subs(f, {x, y}, {2,3}) 6 f'de x yerine x+2, y yerine de y^3 koyalım: subs(f, {x, y}, {x+2,y^3}) y^3*(x + 2) Sembolik matrisler Sembolik değişkenler kullanılarak matrisler de oluşturulabilir: syms x; A = [1 x;2 x^2+1] B = [x^2+1 4*x; x-3 1] A = [ 1, x] [ 2, x^2 + 1] B = [ x^2 + 1, 4*x] [ x - 3, 1] Sembolik matris işlemleri 1 Nümerik matrislerle yaptığımız işlemlerin çoğunu sembolik matrislerde de yapabiliriz. Örneğin matris toplamı

19 C = A+B C = [ x^2 + 2, 5*x] [ x - 1, x^2 + 2] Matris çarpımı C = A*B C = [ x*(x - 3) + x^2 + 1, 5*x] [ (x^2 + 1)*(x - 3) + 2*x^2 + 2, x^2 + 8*x + 1] Matris tersi Ai = inv(a) Ai = [ (x^2 + 1)/(x^2-2*x + 1), -x/(x^2-2*x + 1)] [ -2/(x^2-2*x + 1), 1/(x^2-2*x + 1)] Matris tersinin doğruluğunu kontrol edelim Ai*A [ (x^2 + 1)/(x^2-2*x + 1) - (2*x)/(x^2-2*x + 1), 0] [ 0, (x^2 + 1)/(x^2-2*x + 1) - (2*x)/(x^2-2*x + 1)] Bu sonuç aslında birim matrise eşit ama MATLAB sadeleştirmeleri yapmamış olduğu için böyle olduğu anlaşılmıyor. Bu durumlarda simplify kullanabiliriz: simplify(ai*a) [ 1, 0]

20 [ 0, 1] Sembolik matris işlemleri 2 Özdeğer buldurma eig(a) x^2/2 - (x*(x + 2)*(x^2-2*x + 4))^(1/2)/2 + 1 (x*(x + 2)*(x^2-2*x + 4))^(1/2)/2 + x^2/2 + 1 Determinant det(a) x^2-2*x + 1 Karakteristik polinom charpoly(a) [ 1, - x^2-2, x^2-2*x + 1] Matris exponansiyeli expm(a) [ (x^2*exp(x^2/2 - (x*(x + 2)*(x^2-2*x + 4))^(1/2)/2 + 1) - x^2*exp((x*(x + 2)*(x^2-2*x + 4))^(1/2)/2 + x^2/2 + 1) + exp(x^2/2 - (x*(x + 2)*(x^2-2*x + 4))^(1/2)/2 + 1)*(x*(x + 2)*(x^2-2*x + 4))^(1/2) + exp((x*(x + 2)*(x^2-2*x + 4))^(1/2)/2 + x^2/2 + 1)*(x*(x + 2)*(x^2-2*x + 4))^(1/2))/(2*(x*(x + 2)*(x^2-2*x + 4))^(1/2)), -(x*exp(x^2/2 - (x^4 + 8*x)^(1/2)/2 + 1) - x*exp((x^4 + 8*x)^(1/2)/2 + x^2/2 + 1))/(x^4 + 8*x)^(1/2)] [ -(2*(exp(x^2/2 - (x*(x + 2)*(x^2-2*x + 4))^(1/2)/2 + 1) - exp((x*(x + 2)*(x^2-2*x + 4))^(1/2)/2 + x^2/2 + 1)))/(x*(x + 2)*(x^2-2*x + 4))^(1/2), (x^2*exp((x*(x + 2)*(x^2-2*x + 4))^(1/2)/2 + x^2/2 + 1) - x^2*exp(x^2/2 - (x*(x + 2)*(x^2-2*x + 4))^(1/2)/2 + 1) + exp(x^2/2 - (x*(x + 2)*(x^2-2*x + 4))^(1/2)/2 + 1)*(x*(x + 2)*(x^2-2*x + 4))^(1/2) + exp((x*(x + 2)*(x^2-2*x + 4))^(1/2)/2 + x^2/2 + 1)*(x*(x + 2)*(x^2-2*x +

21 4))^(1/2))/(2*(x*(x + 2)*(x^2-2*x + 4))^(1/2))] Sembolik fonksiyonlarla interaktif işlem yapmak için bir araç (funtool) funtool

22 Published with MATLAB R2015a

a, t, x ve y değişkenlerini sembolik olarak tanımlayalım ve değişken listesinde görelim:

a, t, x ve y değişkenlerini sembolik olarak tanımlayalım ve değişken listesinde görelim: Contents Sembolik değişken tanımlama İfadeleri daha görsel biçimde görme Türev alma Integral alma Limit alma Sembolik fonksiyonları çizdirme Sembolik ifadeleri basitleştirme Sembolik denklem çözme Çok

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

>> 5*3-4+6/2^0 ans = 17 ( Matlab da sayılar arası işlemler [ +, -, /, *, ^ ] bu şekilde ifade edilmektedir.)

>> 5*3-4+6/2^0 ans = 17 ( Matlab da sayılar arası işlemler [ +, -, /, *, ^ ] bu şekilde ifade edilmektedir.) 7. Diferensiyel Denklemlerin Çözümünde Matlab Uygulamaları MATLAB, Matrislere dayanan ve problemlerin çözümlerinde kullanılan Matematik metotların bilgisayar ortamında kullanılmasını sağlayan yazılım paketidir.

Detaylı

diff Türev Alma Fonksiyonu. >> syms x >> A=3*x^4+x^2-3*x A = 3*x^4+x^2-3*x. >> diff(a) // A fonksiyonunun türevini alır. ans = 12*x^3+2*x-3

diff Türev Alma Fonksiyonu. >> syms x >> A=3*x^4+x^2-3*x A = 3*x^4+x^2-3*x. >> diff(a) // A fonksiyonunun türevini alır. ans = 12*x^3+2*x-3 7.4.. diff Türev Alma Fonksiyonu >> syms x >> A=3*x^4+x^-3*x A = 3*x^4+x^-3*x >> diff(a) // A fonksiyonunun türevini alır. 1*x^3+*x-3 >> diff(a,) // A fonksiyonunun türevini kere alır. 36*x^+ ÖRNEK: >>

Detaylı

Birinci Mertebeden Adi Diferansiyel Denklemler

Birinci Mertebeden Adi Diferansiyel Denklemler Birinci Mertebeden Adi Diferansiyel Denklemler Bir veya daha çok bağımlı değişken, bir veya daha çok bağımsız değişken ve bağımlı değişkenin bağımsız değişkene göre (diferansiyel) türevlerini içeren bağıntıya

Detaylı

Sembolik Programlama1. Gün. Sembolik Programlama. 20 Eylül 2011

Sembolik Programlama1. Gün. Sembolik Programlama. 20 Eylül 2011 Sembolik Programlama 1. Gün Şenol Pişkin 20 Eylül 2011 Sunum Kapsamı MuPAD İçerik Başlangıç 1. Bölüm: Cebirsel işlemler 2. Bölüm: Denklem çözümleri MuPAD Kısaca MuPAD Bilgisi ve Tarihçesi MuPAD Diğer Araçlar

Detaylı

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz.

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz. D DİFERANSİYEL DENKLEMLER ÇALIŞMA SORULARI Fakülte No:................................................... Adı ve Soyadı:................................................. Bölüm:...................................................................

Detaylı

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

DENKLEMLER CAUCHY-EULER DENKLEMİ. a n x n dn y dx n + a n 1x n 1 dn 1 y

DENKLEMLER CAUCHY-EULER DENKLEMİ. a n x n dn y dx n + a n 1x n 1 dn 1 y SABİT KATSAYILI DENKLEMLERE DÖNÜŞTÜREBİLEN DENKLEMLER Bu bölümde sabit katsayılı diferansiyel denklemlere dönüşebilen değişken katsayılı diferansiyel denklemlerden Cauchy Euler ve Legendre difarensiyel

Detaylı

Şeklinde çok sayıda diferansiyel denklemden oluşan denklem sistemleridir. Denklem sayısı = bağımlı değişken eşitliği sağlanmasıdır.

Şeklinde çok sayıda diferansiyel denklemden oluşan denklem sistemleridir. Denklem sayısı = bağımlı değişken eşitliği sağlanmasıdır. 5. Diferansiyel Denklem Sistemleri ve Çözüm Yöntemleri X=bağımsız, Y, Z, W = bağımlı değişkenler olmak üzere; Y= (X, Y, Y, Y,, Z, Z, Z,, W, W, W, ) Z= (X, Y, Y, Y,, Z, Z, Z,, W, W, W, ) W= (X, Y, Y, Y,,

Detaylı

MATLAB ve Simulink Kullanımına Giriş

MATLAB ve Simulink Kullanımına Giriş MATLAB ve Simulink Kullanımına Giriş Marmara Üniversitesi Teknoloji Fakültesi Mekatronik Mühendisliği Bölümü Hazırlayan: Arş.Gör. Barış DOĞAN baris@marmara.edu.tr MATLAB Nedir? MATLAB, bilim ve mühendislik

Detaylı

Bahar Yarıyılı D_IFERANS_IYEL DENKLEMLER II ARA SINAV 6 Nisan 2011 Süre: 90 dakika CEVAP ANAHTARI. y = c n x n+r. (n + r) c n x n+r 1 +

Bahar Yarıyılı D_IFERANS_IYEL DENKLEMLER II ARA SINAV 6 Nisan 2011 Süre: 90 dakika CEVAP ANAHTARI. y = c n x n+r. (n + r) c n x n+r 1 + DÜZCE ÜN_IVERS_ITES_I FEN-EDEB_IYAT FAKÜLTES_I MATEMAT_IK BÖLÜMÜ 010-011 Bahar Yarıyılı D_IFERANS_IYEL DENKLEMLER II ARA SINAV 6 Nisan 011 Süre: 90 dakika CEVAP ANAHTARI 1. 0p x d y + dy + xy = 0 diferansiyel

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini

Detaylı

MATLAB ile Meslek Matematiği Kullanım Kılavuzu

MATLAB ile Meslek Matematiği Kullanım Kılavuzu MATLAB ile Meslek Matematiği Kullanım Kılavuzu Tez Danışmanı: Yrd. Doç. Dr. MEHMET TEKTAŞ HAZIRLAYANLAR Ali Süleyman TOPUZ Bilgisayar Teknolojileri ve Programlama BS2 2722008 Bekir Hakan AYDOGAN Bilgisayar

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 15 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

Dijital Kontrol Sistemleri Prof.Dr. Ayhan Özdemir. Dengede bulunan kütle-yay sistemine uygulanan kuvvetin zamana göre değişimi aşağıda verilmiştir.

Dijital Kontrol Sistemleri Prof.Dr. Ayhan Özdemir. Dengede bulunan kütle-yay sistemine uygulanan kuvvetin zamana göre değişimi aşağıda verilmiştir. Dengede bulunan kütle-yay sistemine uygulanan kuvvetin zamana göre değişimi aşağıda verilmiştir. u(t):kuvvet u(t) F yay F sönm Yay k:yay sabiti m kütle Sönümlirici b:ösnümlirme sabiti y(t):konum 1 1 3

Detaylı

MATLAB a GİRİŞ. Doç. Dr. Mehmet İTİK. Karadeniz Teknik Üniversitesi Makine Mühendisliği Bölümü

MATLAB a GİRİŞ. Doç. Dr. Mehmet İTİK. Karadeniz Teknik Üniversitesi Makine Mühendisliği Bölümü MATLAB a GİRİŞ Doç. Dr. Mehmet İTİK Karadeniz Teknik Üniversitesi Makine Mühendisliği Bölümü İçerik: MATLAB nedir? MATLAB arayüzü ve Bileşenleri (Toolbox) Değişkenler, Matris ve Vektörler Aritmetik işlemler

Detaylı

Sınav süresi 75 dakika. Student ID # / Öğrenci Numarası

Sınav süresi 75 dakika. Student ID # / Öğrenci Numarası March 16, 2017 [16:00-17:15]MATH216 First Midterm Exam / MAT216 Birinci Ara Sınav Page 1 of 6 Your Name / İsim Soyisim Your Signature / İmza Student ID # / Öğrenci Numarası Professor s Name / Öğretim Üyesi

Detaylı

Ders 5 : MATLAB ile Grafik Uygulamaları

Ders 5 : MATLAB ile Grafik Uygulamaları Ders 5 : MATLAB ile Grafik Uygulamaları Kapsam Polinomlar Enterpolasyon Grafikler 5.1. Polinomlar 5.1.1. Polinom Girişi Matlab de polinomlar katsayılarının vektörü ile tanımlanır. Örnek: P(x) = -6x 5 +4x

Detaylı

Runge-Kutta Metodu. Runge-Kutta metodu

Runge-Kutta Metodu. Runge-Kutta metodu Runge-Kutta metodu Runge-Kutta Metodu dy dx = f(x, y), y(0) = y 0 (1) bicimindeki birinci dereceden adi diferansiyel denklemleri numerik olarak cozmekte kullanilan bir metottur. Runge-Kutta metodunu kullanabilmek

Detaylı

ELE /16 BAHAR DÖNEMİ - ÖDEV

ELE /16 BAHAR DÖNEMİ - ÖDEV ELE 515-2015/16 BAHAR DÖNEMİ - ÖDEV 1 Aşağıdaki soruları çözerek en geç 17 Şubat 2016 Çarşamba günü saat 23:59'a kadar bana ve dersin asistanına ilgili dosyaları eposta ile gönderin. Aşağıda hem soruların

Detaylı

Birinci Mertebeden Diferansiyel Denklemler Edwards and Penney, Difarensiyel denklemler ve sınır değer problemleri (çeviri: Prof. Dr.

Birinci Mertebeden Diferansiyel Denklemler Edwards and Penney, Difarensiyel denklemler ve sınır değer problemleri (çeviri: Prof. Dr. Birinci Mertebeden Diferansiyel Denklemler Edwards and Penney, Difarensiyel denklemler ve sınır değer problemleri (çeviri: Prof. Dr. Ömer Akın) AYRILABİLİR DENKLEMLER Birinci mertebeden dy = f(x, y) (1)

Detaylı

Sağ Taraf Fonksiyonu İle İlgili Özel Çözüm Örnekleri(rezonans durumlar)

Sağ Taraf Fonksiyonu İle İlgili Özel Çözüm Örnekleri(rezonans durumlar) 3.1.2.1. Sağ Taraf Fonksiyonu İle İlgili Özel Çözüm Örnekleri(rezonans durumlar) ÖRNEK: y + 4.y + 4.y = 5.sin2x diferensiyel denkleminin genel çözümünü bulalım: Homojen kısmın çözümü: y + 4.y + 4.y = 0

Detaylı

BM202 SAYISAL ÇÖZÜMLEME

BM202 SAYISAL ÇÖZÜMLEME BM202 SAYISAL ÇÖZÜMLEME DOÇ.DR. CİHAN KARAKUZU DERS-2 1 Ders2-Sayısal Hesaplamalarda Gerek Duyulabilecek Matlab İşlemleri MATLAB, çok paradigmalı (bir şeyin nasıl üretileceği konusunda örnek, model) sayısal

Detaylı

Stokastik Süreçler. Bir stokastik süreç ya da rastgele süreç şöyle tanımlanabilir.

Stokastik Süreçler. Bir stokastik süreç ya da rastgele süreç şöyle tanımlanabilir. Bir stokastik süreç ya da rastgele süreç şöyle tanımlanabilir. Zamanla değişen bir rastgele değişkendir. Rastgele değişkenin alacağı değer zamanla değişmektedir. Deney çıktılarına atanan rastgele bir zaman

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

>> pretty(f) s exp(10) 1/ s + 1 1/100 (s + 1) + 1 s

>> pretty(f) s exp(10) 1/ s + 1 1/100 (s + 1) + 1 s ELN5 OTOMATİK KONTROL MATLAB ÖRNEKLERİ - LAPLACE VE TERS LAPLACE DÖNÜŞÜMÜ UYGULAMALARI: Symbolic Math Toolbox içinde tanımlı olan laplace ve ilaplace komutları ile Laplace ve Ter Laplace dönüşümlerinin

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

1 Lineer Diferansiyel Denklem Sistemleri

1 Lineer Diferansiyel Denklem Sistemleri Outline İçindekiler 1 Lineer Diferansiyel Denklem Sistemleri 1 1.1 Lineer sistem türleri (iki bilinmeyenli iki denklem)................. 1 2 Normal Formda lineer denklem sistemleri (İki bilinmeyenli iki

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 7- SAYISAL TÜREV Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ İntegral işlemi gibi türev işlemi de mühendislikte çok fazla kullanılan bir işlemdir. Basit olarak bir fonksiyonun bir noktadaki

Detaylı

Elastisite Teorisi Düzlem Problemleri için Sonuç 1

Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Elastisite Teorisi Düzlem Problemleri için Sonuç 1 Düzlem Gerilme durumu için: Bilinmeyenler: Düzlem Şekil değiştirme durumu için: Bilinmeyenler: 3 gerilme bileşeni : 3 gerilme bileşeni : 3 şekil değiştirme

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

KUADRATİK FORM. Tanım: Kuadratik Form. Bir q(x 1,x 2,,x n ) fonksiyonu

KUADRATİK FORM. Tanım: Kuadratik Form. Bir q(x 1,x 2,,x n ) fonksiyonu KUADRATİK FORMLAR KUADRATİK FORM Tanım: Kuadratik Form Bir q(x,x,,x n ) fonksiyonu q x : n şeklinde tanımlı ve x i x j bileşenlerinin doğrusal kombinasyonu olan bir fonksiyon ise bir kuadratik formdur.

Detaylı

2.3. MATRİSLER Matris Tanımlama

2.3. MATRİSLER Matris Tanımlama 2.3. MATRİSLER 2.3.1. Matris Tanımlama Matrisler girilirken köşeli parantez kullanılarak ( [ ] ) ve aşağıdaki yollardan biri kullanılarak girilir: 1. Elemanları bir tam liste olarak girmek Buna göre matris

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Sistem Dinamiği. Bölüm 5-Blok Diyagramlar, Durum-Değişken Modelleri ve Simülasyon Metodları. Doç.Dr. Erhan AKDOĞAN

Sistem Dinamiği. Bölüm 5-Blok Diyagramlar, Durum-Değişken Modelleri ve Simülasyon Metodları. Doç.Dr. Erhan AKDOĞAN Sistem Dinamiği Bölüm 5-Blok Diyagramlar, Durum-Değişken Modelleri ve Simülasyon Metodları Sunumlarda kullanılan semboller: El notlarına bkz. Yorum Soru MATLAB Bolum No.Alt Başlık No.Denklem Sıra No Denklem

Detaylı

Sistem Dinamiği. Bölüm 2- Dinamik Cevap ve Laplace Dönüşümü. Doç.Dr. Erhan AKDOĞAN

Sistem Dinamiği. Bölüm 2- Dinamik Cevap ve Laplace Dönüşümü. Doç.Dr. Erhan AKDOĞAN Sistem Dinamiği - Dinamik Cevap ve Laplace Dönüşümü Doç. Sunumlarda kullanılan semboller: El notlarına bkz. Yorum Soru MATLAB Bolum No.Alt Başlık No.Denklem Sıra No Denklem numarası Şekil No Şekil numarası

Detaylı

MATLAB'A GİRİŞ. Contents

MATLAB'A GİRİŞ. Contents MATLAB'A GİRİŞ Contents Genel bakış Basit hesaplamalar Değişken atama ve bunlarla işlemler Yardım komutları Değişkenleri görme ve silme Ekranı temizleme Matris işlemleri Matrisler için dört işlem, üst

Detaylı

MATLAB de GRAFİK İŞLEMLERİ

MATLAB de GRAFİK İŞLEMLERİ MATLAB de GRAFİK İŞLEMLERİ MATLAB güçlü bir grafik araç kutusuna (toolbox) a sahip bir programlama dilidir. Matlab da 2 boyutlu grafik çizdirmek için plot komutu kullanılır. Örnek: aşağıdaki gibi yazılır.

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER

İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER 1.1. Fiziksel Kanunlar ve Diferensiyel Denklemler Arasındaki İlişki... 1 1.2. Diferensiyel Denklemlerin Sınıflandırılması ve Terminoloji...

Detaylı

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI

DEVRE VE SİSTEM ANALİZİ ÇALIŞMA SORULARI DEVRE VE SİSTEM ANALİZİ 01.1.015 ÇALIŞMA SORULARI 1. Aşağıda verilen devrede anahtar uzun süre konumunda kalmış ve t=0 anında a) v 5 ( geriliminin tam çözümünü diferansiyel denklemlerden faydalanarak bulunuz.

Detaylı

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir.

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. 1 DENKLEMLER: Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. Bir denklemde eşitliği sağlayan(doğrulayan) değerlere; verilen denklemin kökleri veya

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I.

TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 301 Kontrol Sistemleri I. TOBB Ekonomi ve Teknoloji Üniversitesi Mühendislik Fakültesi Elektrik ve Elektronik Mühendisliği Bölümü ELE 3 Kontrol Sistemleri I Ara Sınav 8 Haziran 4 Adı ve Soyadı: Bölüm: No: Sınav süresi dakikadır.

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

Kesirli Türevde Son Gelişmeler

Kesirli Türevde Son Gelişmeler Kesirli Türevde Son Gelişmeler Kübra DEĞERLİ Yrd.Doç.Dr. Işım Genç DEMİRİZ Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü 6-9 Eylül, 217 Kesirli Türevin Ortaya Çıkışı Gama ve Beta Fonksiyonları Bazı

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK SORU 1: Aşağıdaki grafik, bir okuldaki spor yarışmasına katılan öğrencilerin yaşa göre dağılışını göstermektedir. Öğrenci sayısı 5 3 9 10 1 14 Yaş 1.1: Yukarıdaki

Detaylı

Math 322 Diferensiyel Denklemler Ders Notları 2012

Math 322 Diferensiyel Denklemler Ders Notları 2012 1 Genel Tanımlar Bir veya birden fazla fonksiyonun türevlerini içeren denklemlere diferensiyel denklem denmektedir. Diferensiyel denklemler Adi (Sıradan) diferensiyel denklemler ve Kısmi diferensiyel denklemler

Detaylı

DÜZCE ÜN IVERS ITES I FEN-EDEB IYAT FAKÜLTES I

DÜZCE ÜN IVERS ITES I FEN-EDEB IYAT FAKÜLTES I DÜZCE ÜN IVERS ITES I FEN-EDEB IYAT FAKÜLTES I MATEMAT IK BÖLÜMÜ 203-204 BAHAR YARIYILI D IFERANS IYEL DENKLEMLER II ARA SINAV 2 Nisan 204 Süre: 90 dakika CEVAP ANAHTARI. (5p) Belirsiz katsay lar yöntemini

Detaylı

Algoritmalar ve Programlama. DERS - 4 Yrd. Doç. Dr. Ahmet SERBES

Algoritmalar ve Programlama. DERS - 4 Yrd. Doç. Dr. Ahmet SERBES Algoritmalar ve Programlama DERS - 4 Yrd. Doç. Dr. Ahmet SERBES Geçen Derste Değişken oluşturma Skaler Diziler, vektörler Matrisler Aritmetik işlemler Bazı fonksiyonların kullanımı Operatörler İlk değer

Detaylı

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır? 017 LYS MATEMATİK DENEMESİ Soru Sayısı: 50 Sınav Süresi: 75 ı 1. 4. (1+ 5 ) 1+ 5 işleminin sonucu kaçtır? A) 5 B)3 5 C)+ 5 işleminin sonucu kaçtır? D)3+ 5 E)1+ 5 A) B) 1 C) 1 D) E) 3. 4 0,5.16 0,5 işleminin

Detaylı

x 0 = A(t)x + B(t) (2.1.2)

x 0 = A(t)x + B(t) (2.1.2) ÖLÜM 2 LİNEER SİSTEMLER Genel durumda diferansiyel denklemlerin çözümlerini açık olarak elde etmek veya çözümlerin bazı önemli özelliklerini araştırmak için genel yöntemler yoktur, çoğu zaman denkleme

Detaylı

SAYISAL ÇÖZÜMLEME Yrd. Doç. Dr. Adnan SONDAŞ Sayısal Çözümleme

SAYISAL ÇÖZÜMLEME Yrd. Doç. Dr. Adnan SONDAŞ Sayısal Çözümleme SAYISAL ÇÖZÜMLEME Yrd. Doç. Dr. Adnan SONDAŞ asondas@kocaeli.edu.tr 0262-303 22 58 1 SAYISAL ÇÖZÜMLEME 1. Hafta SAYISAL ANALİZE GİRİŞ 2 AMAÇ Mühendislik problemlerinin çözüm aşamasında kullanılan sayısal

Detaylı

Diferansiyel denklemler uygulama soruları

Diferansiyel denklemler uygulama soruları . Aşağıdaki diferansiyel denklemleri sınıflandırınız. a) d y d d + y = 0 b) 5 d dt + 4d + 9 = cos 3t dt Diferansiyel denklemler uygulama soruları 0.0.3 c) u + u [ ) ] d) y + = c d. y + 3 = 0 denkleminin,

Detaylı

Yrd. Doç. Dr. A. Burak İNNER

Yrd. Doç. Dr. A. Burak İNNER Yrd. Doç. Dr. A. Burak İNNER Kocaeli Üniversitesi Bilgisayar Mühendisliği Yapay Zeka ve Benzetim Sistemleri Ar-Ge Lab. http://yapbenzet.kocaeli.edu.tr DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

1. Hafta SAYISAL ANALİZE GİRİŞ

1. Hafta SAYISAL ANALİZE GİRİŞ SAYISAL ANALİZ 1. Hafta SAYISAL ANALİZE GİRİŞ 1 AMAÇ Mühendislik problemlerinin çözümünde kullanılan sayısal analiz yöntemlerinin algoritmik olarak çözümü ve bu çözümlemelerin MATLAB ile bilgisayar ortamında

Detaylı

Ders İçerik Bilgisi. Sistem Davranışlarının Analizi. Dr. Hakan TERZİOĞLU. 1. Geçici durum analizi. 2. Kalıcı durum analizi. MATLAB da örnek çözümü

Ders İçerik Bilgisi. Sistem Davranışlarının Analizi. Dr. Hakan TERZİOĞLU. 1. Geçici durum analizi. 2. Kalıcı durum analizi. MATLAB da örnek çözümü Dr. Hakan TERZİOĞLU Ders İçerik Bilgisi Sistem Davranışlarının Analizi 1. Geçici durum analizi 2. Kalıcı durum analizi MATLAB da örnek çözümü 2 Dr. Hakan TERZİOĞLU 1 3 Geçici ve Kalıcı Durum Davranışları

Detaylı

k ise bir gerçek sayı olsun. Buna göre aşağıdaki işlemler Matlab da yapılabilir.

k ise bir gerçek sayı olsun. Buna göre aşağıdaki işlemler Matlab da yapılabilir. MATRİS TRANSPOZU: Bir matrisin satırlarını sütun, sütunlarınıda satır yaparak elde edilen matrise transpoz matris denilir. Diğer bir değişle, eğer A matrisi aşağıdaki gibi tanımlandıysa bu matrisin transpoz

Detaylı

İşaret ve Sistemler. Ders 11: Laplace Dönüşümleri

İşaret ve Sistemler. Ders 11: Laplace Dönüşümleri İşaret ve Sistemler Ders 11: Laplace Dönüşümleri Laplace Dönüşüm Tanımı Bir f(t) fonksiyonunun Laplace alındığında oluşan fonksiyon F(s) yada L[f(t)] olarak gösterilir. Burada tanımlanan s: İşaret ve Sistemler

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

MATLAB. Temel işlemler, Vektörler, Matrisler DOÇ. DR. ERSAN KABALCI

MATLAB. Temel işlemler, Vektörler, Matrisler DOÇ. DR. ERSAN KABALCI MATLAB Temel işlemler, Vektörler, Matrisler DOÇ. DR. ERSAN KABALCI İçerik Matlab Nedir? Matlab ın Kullanım Alanları Matlab Açılış Ekranı Matlab Programı İle Temel İşlemlerin Gerçekleştirilmesi Vektör İşlemleri

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

Şekilde görülen integralin hesaplanmasında, fonksiyonun her verilen bir noktası için kümülatif alan hesabı yapılır.

Şekilde görülen integralin hesaplanmasında, fonksiyonun her verilen bir noktası için kümülatif alan hesabı yapılır. NÜMERİK İNTEGRASYON Şekilde görülen integralin hesaplanmasında, onksiyonun her verilen bir noktası için kümülati alan hesabı yapılır. Nümerik integrasyonda, integralin analitik değerine, çeşitli yöntemlerle

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

1. ÇÖZÜM YOLU: (15) 8 = = 13 13:2 = :2 = :2 = 1.2+1

1. ÇÖZÜM YOLU: (15) 8 = = 13 13:2 = :2 = :2 = 1.2+1 . ÇÖZÜM YOLU: (5) 8 =.8+5 = 3 3:2 = 6.2+ 6:2 = 3.2+0 3:2 =.2+ En son bölümden başlayarak kalanları sıralarız. (5) 8 = (0) 2 2. ÇÖZÜM YOLU: 8 sayı tabanında verilen sayının her basamağını, 2 sayı tabanında

Detaylı

S4 u(x, y) = ln ( sin y. S5 u(x, y) = 2α 2 sec(α(x 4α 2 t)) fonksiyonunun

S4 u(x, y) = ln ( sin y. S5 u(x, y) = 2α 2 sec(α(x 4α 2 t)) fonksiyonunun Kısmi Türevli Denklemler Problem Seti-I S1 u = u(x, y ve a, b, c R olmak uzere, ξ = ax + by ve η = bx ay degisken degistirmesi yaparak n cozunuz. au x + bu y + cy = 0 S2 Aşa gidaki denklemleri Adi Diferensiyel

Detaylı

Bilgisayar Programlama MATLAB

Bilgisayar Programlama MATLAB Bilgisayar Programlama MATLAB Grafik İşlemleri Doç. Dr. İrfan KAYMAZ MATLAB Ders Notları MATLAB de GRAFİK İŞLEMLERİ MATLAB diğer programlama dillerine nazaran oldukça güçlü bir grafik araçkutusuna (toolbox)

Detaylı

Birden Fazla RDnin Bileşik Olasılık Fonksiyonları

Birden Fazla RDnin Bileşik Olasılık Fonksiyonları Birden Fazla RDnin Bileşik Olasılık Fonksiyonları Birden fazla x 1, x 2,..., x n gibi RDlerimiz olsun. Bunların bileşik olasılık fonksiyonları kesikli ve rastgele RDler için sırasıyla şu şekilde tanımlanır

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ DENİZ HARP OKULU TEMEL BİLİMLER BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf/Y.Y. Ders Saati (T+U+L) Kredi AKTS DİFERANSİYEL DENKLEMLER FEB-211 2/ 1.YY 3+0+0 3 3 Dersin Dili Dersin Seviyesi

Detaylı

Zaman Domeninde Modelleme Transfer Fonksiyonu Durum Uzay Dönüşümü Durum Uzay Transfer Fonksiyonu DönüşümÜ

Zaman Domeninde Modelleme Transfer Fonksiyonu Durum Uzay Dönüşümü Durum Uzay Transfer Fonksiyonu DönüşümÜ DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ MM306 SİSTEM DİNAMİĞİ Zaman Domeninde Modelleme Transfer Fonksiyonu Durum Uzay Dönüşümü Durum Uzay Transfer Fonksiyonu DönüşümÜ 1 EEM304 MM306

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 4 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur.

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Üç Boyutlu Geometri Nokta (Point,Vertex) Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Kartezyen Koordinat Sistemi Uzayda bir noktayı tanımlamak

Detaylı

NĐĞDE ÜNĐVERSĐTESĐ Elektrik Elektronik Mühendisliği Bölümü. Devre Tasarımı Ders Notları MATLAB. Arş. Gör. Salim ÇINAR. salim çınar

NĐĞDE ÜNĐVERSĐTESĐ Elektrik Elektronik Mühendisliği Bölümü. Devre Tasarımı Ders Notları MATLAB. Arş. Gör. Salim ÇINAR. salim çınar NĐĞDE ÜNĐVERSĐTESĐ Elektrik Elektronik Mühendisliği Bölümü Devre Tasarımı Ders Notları MATLAB Arş. Gör. Salim ÇINAR Atamalar: a=5 MATLAB ÖRNEKLERĐ a = 5 Çıkan sonucun görünmesi istenmiyorsa atamadan sonra

Detaylı

CEVAP ANAHTARI. Tempo Testi D 2-B 3-A 4-A 5-C 6-B 7-B 8-C 9-B 10-D 11-C 12-D 13-C 14-C

CEVAP ANAHTARI. Tempo Testi D 2-B 3-A 4-A 5-C 6-B 7-B 8-C 9-B 10-D 11-C 12-D 13-C 14-C 01. BÖLÜM: FONKSİYONLARLA İLGİLİ UYGULAMALAR - 1 1-E 2-D 3-C 4-E 5-B 6-C 7-C 8-B 9-C 10-D 11-C - 2 1-D 2-E 3-C 4-D 5-E 6-E 7-C 8-D 9-E 10-B - 3 1-E 2-A 3-B 4-D 5-A 6-E 7-E 8-C 9-C 10-C 11-C 1-A 2-B 3-E

Detaylı

Elektrik Mühendisliği Elektrik Makinaları Güç Sistemleri (Elektrik Tesisleri) Kontrol Sistemleri

Elektrik Mühendisliği Elektrik Makinaları Güç Sistemleri (Elektrik Tesisleri) Kontrol Sistemleri Elektrik Mühendisliği Elektrik Makinaları Güç Sistemleri (Elektrik Tesisleri) Kontrol Sistemleri Elektronik Mühendisliği Devreler ve Sistemler Haberleşme Sistemleri Elektromanyetik Alanlar ve Mikrodalga

Detaylı

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür. ÖZDEĞER VE ÖZVEKTÖRLER A n n tipinde bir matris olsun. AX = λx (1.1) olmak üzere n 1 tipinde bileşenleri sıfırdan farklı bir X matrisi için λ sayıları için bu denklemi sağlayan bileşenleri sıfırdan farklı

Detaylı

14 Şubat 2011 Pazartesi günü uygulamada çözdüğümüz 2. Soruyu, aynı sıra ile bu defa MATLAB kullanarak çözelim.

14 Şubat 2011 Pazartesi günü uygulamada çözdüğümüz 2. Soruyu, aynı sıra ile bu defa MATLAB kullanarak çözelim. 4 Şubat 2 Pazartesi günü uygulamada çözdüğümüz 2. Soruyu, aynı sıra ile bu defa MATLAB kullanarak çözelim. MATLAB programı sembolik çözümler yapabilmekle birlikte, problemleri numerik olarak çözmeye yarar.

Detaylı

Chapter 9. Elektrik Devreleri. Principles of Electric Circuits, Conventional Flow, 9 th ed. Floyd

Chapter 9. Elektrik Devreleri. Principles of Electric Circuits, Conventional Flow, 9 th ed. Floyd Elektrik Devreleri Eşanlı Denklemler Bölüm 9 daki devre analizi yöntemleri eşanlı (paralel) denklem kullanımını gerektirmektedir. Eşanlı denklemlerin çözümünü basitleştirmek için, denklemler genelde standart

Detaylı

FİNAL SORULARI GÜZ DÖNEMİ A A A A A A A

FİNAL SORULARI GÜZ DÖNEMİ A A A A A A A AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ BİTİRME ÖDEVİ FİNAL SORULARI 25-26 GÜZ DÖNEMİ ADI SOYADI :... NO :... SINAV TARİHİ VE SAATİ : A A A A A A A Bu sınav 4 sorudan oluşmaktadır ve sınav süresi 9 dakikadır.

Detaylı

ARASINAV SORULARININ ÇÖZÜMLERİ GÜZ DÖNEMİ A A A A A A A

ARASINAV SORULARININ ÇÖZÜMLERİ GÜZ DÖNEMİ A A A A A A A AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ BİTİRME ÖDEVİ I ARASINAV SORULARININ ÇÖZÜMLERİ - 6 GÜZ DÖNEMİ ADI SOYADI :... NO :... A A A A A A A SINAV TARİHİ VE SAATİ : Bu sınav 4 sorudan oluşmaktadır ve sınav

Detaylı

DİFERANSİYEL DENKLEMLER-2

DİFERANSİYEL DENKLEMLER-2 DİFERANSİYEL DENKLEMLER- SINIR DEĞER ve ÖZDEĞER PROBLEMLERİ Bu bölümde adi diferansiyel denklemlerde sınır ve özdeğer problemleri ( n) ( n1) incelenecektir. F( y, y,..., y, x) 0 şeklinde verilen bir diferansiyel

Detaylı

LĐMĐT ÖSS ÖYS YILLAR SAĞDAN VE SOLDAN LĐMĐT. ÇÖZÜM: x=2 f(x) de yerine yazılır cevap:7

LĐMĐT ÖSS ÖYS YILLAR SAĞDAN VE SOLDAN LĐMĐT. ÇÖZÜM: x=2 f(x) de yerine yazılır cevap:7 YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS ÖYS LĐMĐT Tanım : Bir x0 A = [ a,b ] alalım, f: A R ye veya f: A - { x 0 } R ye bir fonksiyon olsun. Terimleri A - { x 0 } kümesine ait ve x

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İçerik. TBT 1003 Temel Bilgi Teknolojileri

İçerik. TBT 1003 Temel Bilgi Teknolojileri TBT 1003 Temel Bilgi Teknolojileri İçerik H0. Giriş ve Ders İçeriği Tanıtım H1. Donanım ve bilgisayarlar. H2. Donanım uygulamaları ve işletim sistemleri. H3. Kelime İşlemciler H4. Kelime İşlemci Uygulama

Detaylı

ÇEV 2006 Mühendislik Matematiği (Sayısal Analiz) DEÜ Çevre Mühendisliği Bölümü Doç.Dr. Alper ELÇĐ

ÇEV 2006 Mühendislik Matematiği (Sayısal Analiz) DEÜ Çevre Mühendisliği Bölümü Doç.Dr. Alper ELÇĐ Giriş ÇEV 2006 Mühendislik Matematiği (Sayısal Analiz) DEÜ Çevre Mühendisliği Bölümü Doç.Dr. Alper ELÇĐ Sayısal Analiz Nedir? Mühendislikte ve bilimde, herhangi bir süreci tanımlayan karmaşık denklemlerin

Detaylı

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır.

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır. 1. GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir., ) cebirsel 1) a b cg,, için a( bc) ( ab) c (Birleşme özelliği)

Detaylı

Mühendislik Matematiği 2- Hafta 2-3. Arş. Gör. Dr. Sıtkı AKKAYA

Mühendislik Matematiği 2- Hafta 2-3. Arş. Gör. Dr. Sıtkı AKKAYA Mühendislik Matematiği 2- Hafta 2-3 Arş. Gör. Dr. Sıtkı AKKAYA İÇİNDEKİLER BÖLÜM 2 2.1. GİRİŞ 2.2. BİRİNCİ MERTEBE DİFERANSİYEL DENKLEMLERE GENEL BAKIŞ 2.3. BİRİNCİ MERTEBE LİNEER DİFERANSİYEL DENKLEMLER

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocm.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocm.mit.edu/terms veya http://tuba.açık ders.org.tr adresini ziyaret

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 9. Tanım 2. Kompleks düzlemin tamamında analitik olan bir fonksiyona tam fonksiyon denir.

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 9. Tanım 2. Kompleks düzlemin tamamında analitik olan bir fonksiyona tam fonksiyon denir. .7. Analitik ve Harmonik Fonksiyonlar Tanım 1. f(z) nin z 0 da f (z 0 ) türevi mevcut ve z 0 ın bir D ε (z 0 ) = {z : z z 0 < ε} komşuluğundaki her noktada türevi varsa bu durumda f ye z 0 da analitiktir

Detaylı

Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT

Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT Ünite 10: Regresyon Analizi Öğr. Elemanı: Dr. Mustafa Cumhur AKBULUT 10.Ünite Regresyon Analizi 2 Ünitede Ele Alınan Konular 10. Regresyon Analizi 10.1. Basit Doğrusal regresyon 10.2. Regresyon denklemi

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ EĞİTİM ÖĞRETİM YILI FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BİRİNCİ VE İKİNCİ ÖĞRETİM DERSLERİ

KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ EĞİTİM ÖĞRETİM YILI FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BİRİNCİ VE İKİNCİ ÖĞRETİM DERSLERİ I. YARIYIL Adı Teori Uygulama KSU MT101 Analiz I 6 4 2 5 7 MT107 Soyut Matematik I 4 4 0 4 5 MT109 Analitik Geometri I 4 4 0 4 5 FZ173 Fizik I 4 4 0 4 4 OZ101 Türk Dili I 2 2 0 2 2 OZ121 Ingilizce I 2

Detaylı

Öğrenci Seçme Sınavı (Öss) / 18 Haziran Matematik II Soruları ve Çözümleri. = 1 olur.

Öğrenci Seçme Sınavı (Öss) / 18 Haziran Matematik II Soruları ve Çözümleri. = 1 olur. Öğrenci Seçme Sınavı (Öss) / 8 Haziran 6 Matematik II Soruları ve Çözümleri x, x. f(x) x ise fonksiyonu için,, x olduğuna göre, a b kaçtır? lim + x f ( x) a ve lim x f ( x) b A) B) C) D) E) Çözüm x x için

Detaylı