BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1"

Transkript

1 BMT 206 Ayrık Matematik Yük. Müh. Köksal GÜNDOĞDU 1

2 Kümeler Yük. Müh. Köksal GÜNDOĞDU 2

3 Kümeler Kümeler Ayrık Matematiğin en temel konularından biridir Sayma problemleri için önemli Programlama dillerinin kümelerle ilgili fonksiyonları bulunur Yük. Müh. Köksal GÜNDOĞDU 3

4 Kümeler Bir küme, nesnelerin sırasız bir topluluğudur sınıftaki öğrenciler odadaki sandalyeler Bir kümedeki nesnelere elemanlar ya da üyeler denir. Bu kümeye de bu elemanları içeriyor denir. a A gösterimi a nesnesinin A kümesinin bir elemanı olduğunu ifade eder. Eğer a nesnesi A kümesinin elemanı değilse a A yazılır Yük. Müh. Köksal GÜNDOĞDU 4

5 Kümeyi Tanımlama / Listeleme Yöntemi S = {a,b,c,d} Sıra önemli değil S = {a,b,c,d} = {b,c,a,d} Her bir ayrık nesne üyedir ya da değildir. Birden fazla yazmak birşeyi değiştirmez. S = {a,b,c,d} = {a,b,c,b,c,d} Eğer bir kümenin deseni biliniyorsa bazı elemanları göstermek için ( ) kullanılabilir S = {a,b,c,d,,z } Yük. Müh. Köksal GÜNDOĞDU 5

6 Listeleme Yöntemi İngiliz alfabesindeki sesli harflerin kümesi: V = {a,e,i,o,u} 10 dan küçük tek pozitif tamsayıların kümesi: O = {1,3,5,7,9} 100 den küçük bütün pozitif tamsayıların kümesi: S = {1,2,3,..,99} 0 dan küçük bütün tamsayıların kümesi: S = {., -3,-2,-1} Yük. Müh. Köksal GÜNDOĞDU 6

7 Bazı Önemli Kümeler N = doğal sayılar = {0,1,2,3.} Z = tamsayılar = {,-3,-2,-1,0,1,2,3, } Z = pozitif tamsayılar = {1,2,3,..} R = gerçek sayılar kümesi R+ = pozitif gerçek sayılar kümesi C = karmaşık sayılar kümesi Q = rasyonel sayılar kümesi Yük. Müh. Köksal GÜNDOĞDU 7

8 Küme Kurma Gösterimi Her bir üyenin saplaması gereken özellikleri belirt: S = {x x 100 den küçük pozitifi tamsayıdır} O = {x x 10 dan küçük pozitif tek tamsayıdır} O = {x Z x tektir ve x < 10} Bir yüklem de kullanılabilir: S = {x P(x)} Örnek: S = {x Asal(x)} Pozitif rasyonel sayılar: Q+ = {x R x = p/q, bazı pozitif tamsayılar p,q için} Yük. Müh. Köksal GÜNDOĞDU 8

9 [a,b] = {x a x b} [a,b) = {x a x < b} (a,b] = {x a < x b} (a,b) = {x a < x < b} Kapalı aralık [a,b] Açık aralık (a,b) Aralık Gösterimi Yük. Müh. Köksal GÜNDOĞDU 9

10 Evrensel Küme ve Boş Küme Evrensel küme U, üzerinde çalışılan bütün nesneleri içeren kümedir. Hiçbir elemanı olmayan küme Boş kümedir. ile gösterilir, bazen {} kullanılır. Yük. Müh. Köksal GÜNDOĞDU 10

11 Bilinmesi Gerekenler Kümeler bir başka kümenin elemanı olabilir {{1,2,3},a, {b,c}} {N,Z,Q,R} Boş küme, boş kümeyi içeren bir küme ile aynı şey değildir. { } Yük. Müh. Köksal GÜNDOĞDU 11

12 Küme Eşitliği Tanım: Ancak ve ancak iki küme aynı elemanlara sahipse eşittir. A ve B iki küme olsun, A ve B eşit kümelerse A = B yazılır. {1,3,5} = {3, 5, 1} {1,5,5,5,3,3,1} = {1,3,5} Yük. Müh. Köksal GÜNDOĞDU 12

13 Alt Küme Tanım: A kümesinin bütün elemanları B kümesinin de elemanıysa, A kümesi B kümesinin alt kümesidir. Gösterim A B ise A B gösterimi sağlanır. Yük. Müh. Köksal GÜNDOĞDU 13

14 Alt Küme A kümesinin B kümesinin alt kümesi olması: A kümesinin bütün elemanlarının B kümesinin de elemanları olduğunu göstermek yeterli. A kümesinin B kümesinin alt kümesi olmaması : A kümesinin elemanı olup, B kümesinin elemanı olmayan en az bir eleman bulmak yeterli. (x A x B) önermesi için ters örnek bulmak gibi Yük. Müh. Köksal GÜNDOĞDU 14

15 Küme Eşitliğine Bakış İki kümenin eşitliğinin gösterimi A = B, eğer Mantıksal denklikleri kullanalım Sonuç: A B ve B A Yük. Müh. Köksal GÜNDOĞDU 15

16 Öz Alt Küme Tanım: Eğer A B ise, fakat A B ise A kümesi B kümesinin öz alt kümesidir denir ve A B ile gösterilir. A B ise ; Yük. Müh. Köksal GÜNDOĞDU 16

17 Küme Büyüklüğü Tanım: n, negatif olmayan tamsayı olmak üzere eğer S kümesinde n adet farklı eleman varsa S kümesi sonludur. Diğer durumda ise sonsuzdur. Tanım: Sonlu bir A kümesinin büyüklüğü, A, A kümesindeki farklı elemanların sayısıdır. Örneğin; 1. ø = 0 2. S kümesi İngiliz alfabesinin harflerinin kümesi olsun. S = {1,2,3} = 3 2. {ø} = 1 3. Tamsayılar kümesi sonsuzdur. Yük. Müh. Köksal GÜNDOĞDU 17

18 Kuvvet Kümeleri Tanım: Bir A kümesinin bütün alt kümelerini içeren küme. P(A) ile gösterilir ve A nın kuvvet kümesi olarak okunur. Örnek: A = {a,b} P(A) = {ø, {a},{b},{a,b}} Eğer bir küme n elamana sahipse kuvvet kümesinin büyüklüğü 2ⁿ olur. Yük. Müh. Köksal GÜNDOĞDU 18

19 Demetler (Tuples) Sıralı n-demet (a1,a2,..,an) a1 in ilk eleman olduğu, a2 nin ikinci eleman olduğu ve an in n. eleman olduğu sıralı bir yapıdır. İki n-demet ancak ve ancak ilgili bütün elemanları eşitse birbirine eşittir. 2-demet sıralı çift olarak anılır. Sıralı çiftler(a,b) ve (c,d) ancak ve ancak a = c ve b = d ise eşittir. Yük. Müh. Köksal GÜNDOĞDU 19

20 Kartezyen Çarpım Tanım: A ve B kümelerinin kartezyen çarpımı A B ile gösterilir ve (a,b) sıralı çiftlerinin kümesidir. Burada a A ve b B. Örnek: A = {a,b} B = {1,2,3} A B = {(a,1),(a,2),(a,3), (b,1),(b,2),(b,3)} Tanım: A B kartezyen çarpımının bir alt kümesi olan R, A kümesinden B kümesine bir ilişki olarak Yük. Müh. Köksal GÜNDOĞDU 20 tanımlanır.

21 Kartezyen Çarpım Tanım: A1,A2,,An kümelerinin kartezyen çarpımı A1 A2 An şeklinde gösterilir ve sıralı (a1,a2,,an) n-demetlerin bir kümesidir. Burada ai nesnesi i = 1, n için Ai kümesinin bir elemanıdır Örnek: A B C kartezyen çarpımını bulunuz. A = {0,1}, B = {1,2} ve C = {0,1,2} Çözüm: A B C = {(0,1,0), (0,1,1), (0,1,2),(0,2,0), (0,2,1), (0,2,2),(1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), Yük. Müh. Köksal GÜNDOĞDU 21 (1,1,2)}

22 Doğruluk Kümeleri ve Niceleyiciler P yüklemi ve D alanı için, P nin doğruluk kümesi D nin içinde P(x) in doğru olduğu x elemanlarının kümesi olarak tanımlanır. P(x) in doğruluk kümesi şu şekilde gösterilir. Örnek: D alanı bütün tamsayılarsa ve P(x) x = 1 ise P(x) in doğruluk kümesi {-1,1} olur. Yük. Müh. Köksal GÜNDOĞDU 22

23 Doğruluk Kümeleri ve Niceleyiciler P yüklemi ve D alanı için, P nin doğruluk kümesi D nin içinde P(x) in doğru olduğu x elemanlarının kümesi olarak tanımlanır. P(x) in doğruluk kümesi şu şekilde gösterilir. Örnek: D alanı bütün tamsayılarsa ve P(x) x = 1 ise P(x) in doğruluk kümesi {-1,1} olur. Yük. Müh. Köksal GÜNDOĞDU 23

24 Küme İşlemleri Yük. Müh. Köksal GÜNDOĞDU 24

25 Birleşim Tanım: A ve B iki küme olsun. A ve B kümelerinin birleşimi A B ile gösterilir. Örnek: {1,2,3} {3, 4, 5}? Çözüm: {1,2,3,4,5} Yük. Müh. Köksal GÜNDOĞDU 25

26 Kesişim Tanım: A veb, kümelerinin kesişimi A B ile gösterilir Örnek: {1,2,3} {3,4,5}? Çözüm: {3} Örnek: {1,2,3} {4,5,6}? Çözüm : Yük. Müh. Köksal GÜNDOĞDU 26

27 Tümleyen Tanım: A bir küme ise, A kümesinin tümleyeni (U ya göre), Ā ile gösterilir ve U A ya eşittir. Ā = {x U x A} Örnek: Eğer U 100 den küçük pozitif tam sayılar ise, {x x > 70} kümesinin tümleyeni nedir? Çözüm: {x x 70} Yük. Müh. Köksal GÜNDOĞDU 27

28 Fark Tanım: Bir kümede olup diğerinde olmayan elemanlar iki kümenin fark kümesini oluşturur. Yük. Müh. Köksal GÜNDOĞDU 28

29 Birleşim Kümesinin Büyüklüğü A B = A + B - A B Yük. Müh. Köksal GÜNDOĞDU 29

30 Sorular Örnek: U = {0,1,2,3,4,5,6,7,8,9,10} A = {1,2,3,4,5}, B ={4,5,6,7,8} 1. A B Çözüm: 2. A B Çözüm : 3.Ā Çözüm : 4. Çözüm : 5.A B Çözüm : 6.B A Çözüm : Yük. Müh. Köksal GÜNDOĞDU 30

31 Sorular Örnek: U = {0,1,2,3,4,5,6,7,8,9,10} A = {1,2,3,4,5}, B ={4,5,6,7,8} 1. A B Çözüm: {1,2,3,4,5,6,7,8} 2. A B Çözüm : {4,5} 3.Ā Çözüm : {0,6,7,8,9,10} 4. Çözüm : {0,1,2,3,9,10} 5.A B Çözüm : {1,2,3} 6.B A Çözüm : {6,7,8} Yük. Müh. Köksal GÜNDOĞDU 31

32 Simetrik Fark Örnek: U = {0,1,2,3,4,5,6,7,8,9,10} A = {1,2,3,4,5} B ={4,5,6,7,8} Çözüm: {1,2,3,6,7,8} Yük. Müh. Köksal GÜNDOĞDU 32

33 Eşdeğerlikler Yük. Müh. Köksal GÜNDOĞDU 33

34 Eşdeğerlikler Yük. Müh. Köksal GÜNDOĞDU 34

35 De Morgan Kuralı Yük. Müh. Köksal GÜNDOĞDU 35

36 Üyelik Tablosu Olduğunu üyelik tablosu ile ispatlayınız? Yük. Müh. Köksal GÜNDOĞDU 36

37 Genelleştirilmiş Birleşim ve Kesişim Yük. Müh. Köksal GÜNDOĞDU 37

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a

Detaylı

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c

0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c 0. Küme Cebri Bu bölümde verilen keyfikümeler üzerinde birleşim, kesişim, fark, tümleyen,...gibi özellikleri sağlayan eşitliklerle ilgilenceğiz. İlk olarak De Morgan kurallarıdiye bilinen bir Teoremi ifade

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni

Detaylı

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye

sayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye KÜME AİLELERİ GİRİŞ Bu bölümde, bir çoğu daha önceden bilinen incelememiz için gerekli olan bilgileri vereceğiz. İlerde konular işlenirken karşımıza çıkacak kavram ve bilgileri bize yetecek kadarı ile

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 2. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

A { x 3 x 9, x } kümesinin eleman sayısı A { x : x 1 3,x } kümesinin eleman sayısı KÜMELER

A { x 3 x 9, x } kümesinin eleman sayısı A { x : x 1 3,x } kümesinin eleman sayısı KÜMELER KÜMELER Küme, nesnelerin iyi tanımlanmış bir listesidir. Kümeyi oluşturan nesnelerin her birine kümenin elemanı denir. Kümeler genellikle A, B, C,... gibi büyük harflerle gösterilir. x nesnesi A kümesinin

Detaylı

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1

BMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1 BMT 206 Ayrık Matematik Yük. Müh. Köksal GÜNDOĞDU 1 Fonksiyonlar Yük. Müh. Köksal GÜNDOĞDU 2 Fonksiyonlar Tanım: A ve B boş olmayan kümeler. A dan B ye bir f fonksiyonu f: A B ile gösterilir ve A nın her

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

ÜNİTE 11 ÜNİTE 9 MATEMATİK. Kümeler. 1. Bölüm: Kümelerde Temel Kavramlar 2. Bölüm: Kümelerde İşlemler. 9. Sınıf Matematik

ÜNİTE 11 ÜNİTE 9 MATEMATİK. Kümeler. 1. Bölüm: Kümelerde Temel Kavramlar 2. Bölüm: Kümelerde İşlemler. 9. Sınıf Matematik ÜNİTE 11 ÜNİTE Kümeler 1. Bölüm: Kümelerde Temel Kavramlar 2. Bölüm: Kümelerde İşlemler 9 MATEMATİK 1. ÜNİTEDE HEDEFLENEN KAZANIMLAR 1. BÖLÜM: KÜMELERDE TEMEL KAVRAMLAR Kazanım 9.1.1.1: Küme kavramını

Detaylı

Bu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz.

Bu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz. Bölüm 3 Gruplar Bu bölümde ilk olarak bir küme üzerinde tanımlı işlem kavramını ele alıp işlemlerin bazı özelliklerini inceleyeceğiz. Daha sonra kümeler ve üzerinde tanımlı işlemlerden oluşan cebirsel

Detaylı

MATEMATİK. Doç Dr Murat ODUNCUOĞLU

MATEMATİK. Doç Dr Murat ODUNCUOĞLU MATEMATİK Doç Dr Murat ODUNCUOĞLU Mesleki Matematik 1 TEMEL KAVRAMLAR RAKAM Sayıları yazmak için kullandığımız işaretlere rakam denir. Sayıları ifade etmeye yarayan sembollere rakam denir. Rakamlar 0,1,2,3,4,5,6,7,8,9

Detaylı

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b

Temel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b Bölüm 1 Temel Kavramlar Bu bölümde bağıntı ve fonksiyon gibi bazı temel kavramlar üzerinde durulacak, tamsayıların bazı özellikleri ele alınacaktır. Bu çalışma boyunca kullanılacak bazı kümelerin gösterimleri

Detaylı

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar

TEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c

Detaylı

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84

TEMEL KAVRAMLAR. a Q a ve b b. a b c 4. a b c 40. 7a 4b 3c. a b c olmak üzere a,b ve pozitif. 2x 3y 5z 84 N 0,1,,... Sayı kümesine doğal sayı kümesi denir...., 3,, 1,0,1,,3,... sayı kümesine tamsayılar kümesi denir. 1,,3,... saı kümesine sayma sayıları denir.pozitif tamsayılar kümesidir. 15 y z x 3 5 Eşitliğinde

Detaylı

KÜMELER VE MANTIK KESİLİ MATEMATİKSEL YAPILAR

KÜMELER VE MANTIK KESİLİ MATEMATİKSEL YAPILAR KÜMELER VE MANTIK KESİLİ MATEMATİKSEL YAPILAR Kümeler Koşullu ve Mantıksal Denklik Kümeler Kümeler Ayrık Kümeler De-Morgan Kuralı Z (Zahlen; alm.) tamsayılar kümesi Z negatif tamsayılar kümesi, Z nonneg

Detaylı

Tanım Bir A kümesinin her elemanı, bir B kümesinin de elamanı ise, A kümesine B kümesinin alt kümesi denir.

Tanım Bir A kümesinin her elemanı, bir B kümesinin de elamanı ise, A kümesine B kümesinin alt kümesi denir. BÖLÜM 1 KÜMELER CEBİRİ Küme, iyi tanımlanmış ve farklı olan nesneler topluluğudur. Yani küme, belli bir kurala göre verilmiş nesnelerin listesidir. Nesneler reel veya kavramsal olabilir. Kümede bulunan

Detaylı

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa

olsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)

Detaylı

KÜMELER. İyi tanımlanmış nesneler topluluğuna küme denir. Bir küme, birbirinden farklı nesnelerden oluşur. Bu nesneler somut veya soyut olabilir.

KÜMELER. İyi tanımlanmış nesneler topluluğuna küme denir. Bir küme, birbirinden farklı nesnelerden oluşur. Bu nesneler somut veya soyut olabilir. 1 KÜMELER İyi tanımlanmış nesneler topluluğuna küme denir. ir küme, birbirinden farklı nesnelerden oluşur. u nesneler somut veya soyut olabilir. Kümeyi oluşturan nesnelerin her birine eleman(öğe) denir.

Detaylı

13.Konu Reel sayılar

13.Konu Reel sayılar 13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık

Detaylı

10.Konu Tam sayıların inşası

10.Konu Tam sayıların inşası 10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir

Detaylı

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır.

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır. 1. GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir., ) cebirsel 1) a b cg,, için a( bc) ( ab) c (Birleşme özelliği)

Detaylı

MATEMATİK ADF. Önermeler - I ÜNİTE 1: MANTIK. Önerme. örnek 2. Bir önermenin değili (olumsuzu) örnek 3. Doğruluk Tablosu. örnek 1.

MATEMATİK ADF. Önermeler - I ÜNİTE 1: MANTIK. Önerme. örnek 2. Bir önermenin değili (olumsuzu) örnek 3. Doğruluk Tablosu. örnek 1. MATEMATİK ÜNİTE 1: MANTIK Önermeler - I ADF 01 Önerme Doğru ya da yanlış kesin bir hüküm bildiren ifadelere... denir. R Doğru hüküm bildiren önermeye..., Yanlış hüküm bildiren önermeye... denir. R Önermelerin

Detaylı

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar

8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 1. Eşit güçlü kümeler 2. Sonlu ve sonsuz kümeler 3. Doğal sayılar kümesi 4. Sayılabilir kümeler 5. Doğal sayılar kümesinde toplama 6. Doğal sayılar kümesinde

Detaylı

İÇİNDEKİLER. Mantık Kurallarının Elektrik Devrelerine Uygulanması... 14

İÇİNDEKİLER. Mantık Kurallarının Elektrik Devrelerine Uygulanması... 14 İÇİNDEKİLER 1. BÖLÜM MANTIK Giriş... 1 Genel Olarak Mantık... 1 Mantığın Tarihçesi ve Modern Mantığın Doğuşu... 1 Mantık Öğretimin Önemi ve Amacı... 2 Önerme... 3 VE İşlemi (Birlikte Evetleme, Mantıksal

Detaylı

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK

YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK YENİ ORTAÖĞRETİM MATEMATİK PROGRAMINA UYGUNDUR. YGS MATEMATİK 3. KİTAP MERVE ÇELENK FİKRET ÇELENK İÇİNDEKİLER Kümeler 5 44 Fonksiyonlar 1 45 88 Fonksiyonlar 2 89 124 Sayma Kuralları 125 140 Faktöriyel

Detaylı

Örnek...4 : A = { a, b, c, d, {a}, {b,c}} kümesi veriliyor. Aşağıdakilerin doğru mu yanlış mı olduğunu yazınız.

Örnek...4 : A = { a, b, c, d, {a}, {b,c}} kümesi veriliyor. Aşağıdakilerin doğru mu yanlış mı olduğunu yazınız. KÜME KAVRAMI Küme matematiğin tanımsız bir kavramıdır. Ancak kümeyi, iyi tanımlanmış kavram veya nesneler topluluğu diye tarif edebiliriz. Kümeler A, B, X, K,... gibi büyük harflerle gösterilir. Bir kümeyi

Detaylı

Küme Temel Kavramları

Küme Temel Kavramları Kümeler Kümeler Küme, matematiksel anlamda tanımsız bir kavramdır. Bu kavram "nesneler topluluğu veya yığını" olarak yorumlanabilir. Bu tanımdaki "nesne" soyut ya da somut bir şeydir; fakat her ne olursa

Detaylı

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT

KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT KÜMELER ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİTE 1. ÜNİT Kümelerde Temel Kavramlar 1. Kazanım : Küme kavramını açıklar; liste, Venn şeması ve ortak özellik yöntemleri ile gösterir. 2. Kazanım : Evrensel küme,

Detaylı

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Kümeler Kümeler ve küme işlemleri olasılığın temellerini oluşturmak için çok önemlidir Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Sonlu sayıda, sonsuz sayıda, kesikli

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

L İ S E S İ MATEMATİK. Kümeler. Üzerine Kısa Çalışmalar

L İ S E S İ MATEMATİK. Kümeler. Üzerine Kısa Çalışmalar MTEMTİK T T Ü R K N D O L U L İ S E S İ M T E M T İ K Üzerine Kısa Çalışmalar KONY \ SELÇUKLU 017 MTEMTİK KÜMELER (CÜMLELER).1 Küme (Cümle) Kavramı Matematiğin dili mantıktır., matematiğin kendisini anlatabilmesini

Detaylı

1 BAĞINTILAR VE FONKSİYONLAR

1 BAĞINTILAR VE FONKSİYONLAR 1 BAĞINTILAR VE FONKSİYONLAR Bu bölümde ilk olarak Matematikte çok önemli bir yere sahip olan Bağıntı kavramnı verip daha sonra ise Fonksiyon tanımı verip genel özelliklerini inceleyeceğiz. Tanım 1 A B

Detaylı

Lisans. Ayrık Matematik Yüklemler ve Kümeler. Konular. Tanım. Tanım çalışma evreni: U izin verilen seçenekler kümesi örnekler:

Lisans. Ayrık Matematik Yüklemler ve Kümeler. Konular. Tanım. Tanım çalışma evreni: U izin verilen seçenekler kümesi örnekler: Lisans Ayrık Matematik Yüklemler ve Kümeler H. Turgut Uyar Ayşegül Gençata Yayımlı Emre Harmancı 2001-2013 You are free: to Share to copy, distribute and transmit the work to Remix to adapt the work c

Detaylı

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır.

Buna göre, eşitliği yazılabilir. sayılara rasyonel sayılar denir ve Q ile gösterilir. , -, 2 2 = 1. sayıdır. 2, 3, 5 birer irrasyonel sayıdır. TEMEL KAVRAMLAR RAKAM Bir çokluk belirtmek için kullanılan sembollere rakam denir. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembolleri birer rakamdır. 2. TAMSAYILAR KÜMESİ Z = {..., -3, -2, -1, 0, 1, 2, 3, 4,... }

Detaylı

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada,

TAMSAYILAR. 9www.unkapani.com.tr. Z = {.., -3, -2, -1, 0, 1, 2, 3, } kümesinin her bir elemanına. a, b, c birer tamsayı olmak üzere, Burada, TAMSAYILAR Z = {.., -, -, -, 0,,,, } kümesinin her bir elemanına tamsayı denir. Burada, + Z = {,,,...} kümesine, pozitif tamsayılar kümesi denir. Z = {...,,,,} kümesine, negatif tamsayılar kümesi denir.

Detaylı

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48

İÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48 İÇİNDEKİLER Önsöz...2 Önermeler ve İspat Yöntemleri...3 Küme Teorisi...16 Bağıntı...26 Fonksiyon...38 İşlem...48 Sayılabilir - Sonlu ve Sonsuz Kümeler...56 Genel Tarama Sınavı...58 Önermeler ve İspat Yöntemleri

Detaylı

Sivas Fen Lisesi Ortaokul 2. Matematik Olimpiyatı Sınavı A A) 55 B) 50 C) 45 D) 40 E) 35

Sivas Fen Lisesi Ortaokul 2. Matematik Olimpiyatı Sınavı A A) 55 B) 50 C) 45 D) 40 E) 35 Sivas Fen Lisesi Ortaokul 2. Matematik Olimpiyatı Sınavı A 1. ABC üçgeninde BF BD, EC CD olacak şekilde AC kenarı üzerinde E noktası, o BC m(ba C) 70 ise m(fd E) kaç derecedir? AB kenarı üzerinde F noktası,

Detaylı

SAYILAR DOĞAL VE TAM SAYILAR

SAYILAR DOĞAL VE TAM SAYILAR 1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği

Detaylı

Örnek...1 : Örnek...2 : A = { a, {a}, b, c, {b, d}, d }, B = { {a}, {c, d}, c, d, x, Δ } k ümeleri için s( AUB) kaçtır?

Örnek...1 : Örnek...2 : A = { a, {a}, b, c, {b, d}, d }, B = { {a}, {c, d}, c, d, x, Δ } k ümeleri için s( AUB) kaçtır? KÜMELER 2 İKİ KÜMENİN BİRLEŞİMİ A ve B gibi iki kümeden, A' ya veya B' ye ait olan elemanlardan oluşan yeni kümeye A ile B' nin birleşimi denir ve AUB ile gösterilir. Bu gösterim A birleşim B di ye okunur.

Detaylı

ab H bulunur. Şu halde önceki önermenin i) koşulu da sağlanır ve H G bulunur.

ab H bulunur. Şu halde önceki önermenin i) koşulu da sağlanır ve H G bulunur. 3.ALT GRUPLAR HG, Tanım 3.. (G, ) bir grup ve nin boş olmayan bir alt kümesi olsun. Eğer (H, ) bir grup ise H ye G nin bir alt grubu denir ve H G ile gösterilir. Not 3.. a)(h, ), (G, ) grubunun alt grubu

Detaylı

harfi almanca kökenli (Zahlen) Z X bir sonlu küme ise, X = X deki öğelerin sayısını gösterir

harfi almanca kökenli (Zahlen) Z X bir sonlu küme ise, X = X deki öğelerin sayısını gösterir BÖLÜM 1 Kümeler harfi almanca kökenli (Zahlen) Z X bir sonlu küme ise, X = X deki öğelerin sayısını gösterir Tanım 1.1.1: X ve Y herhangi iki küme olsunlar. Eğer X Y= ise, X ve Y kümelerine ayrıktırlar

Detaylı

Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir.

Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir. 2. SİMETRİK GRUPLAR Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir. Tanım 2.2. boş olmayan bir küme olsun. ile den üzerine bire-bir fonksiyonlar kümesini

Detaylı

Rakam : Sayıları yazmaya yarayan sembollere rakam denir.

Rakam : Sayıları yazmaya yarayan sembollere rakam denir. A. SAYILAR Rakam : Sayıları yazmaya yarayan sembollere rakam denir. Sayı : Rakamların çokluk belirten ifadesine sayı denir.abc sayısı a, b, c rakamlarından oluşmuştur.! Her rakam bir sayıdır. Fakat bazı

Detaylı

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir.

TABAN ARĠTMETĠĞĠ. ÇÖZÜM (324) 5 = = = = 89 bulunur. Doğru Seçenek C dir. TABAN ARĠTMETĠĞĠ Kullandığımız 10 luk sayma sisteminde sayılar {0,1,2,3,4,5,6,7,8,9} kümesinin elemanları (Rakam) kullanılarak yazılır. En büyük elemanı 9 olan, 10 elemanlı bir kümedir. Onluk sistemde;

Detaylı

TEMEL SAYMA. Bill Gates

TEMEL SAYMA. Bill Gates Bölüm 1 TEMEL SAYMA YÖNTEMLERİ Firmamızın sahip olduğu tek şey insan düş gücüdür. Bill Gates Bu bölümde fazla kuramsal bilgi gerektirmeyen sayma problemleri üzerinde duracağız. Bu tür problemlerde sayma;

Detaylı

Özet. Kümelerle İlgili Tanımlar Kümelerin Gösterimi

Özet. Kümelerle İlgili Tanımlar Kümelerin Gösterimi Bölüm Özeti Kümeler Kümelerin Dili Küme İşlemleri Küme Özdeşlikleri Fonksiyonlar Fonksiyon Tipleri Fonksiyonlar Üzerindeki İşlemler Hesaplanabilirlik Diziler ve Toplamlar Dizilerin Tipleri Toplamları Formülleştirme

Detaylı

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM EŞİTSİZLİKLER A. TANIM f(x)>0, f(x) - eşitsizliğinin

Detaylı

MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13. TANIM Z tam sayılar kümesinde tanımlı

MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13. TANIM Z tam sayılar kümesinde tanımlı MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13 TANIM Z tam sayılar kümesinde tanımlı ={(x,y): x ile y nin farkı n ile tam bölünür} = {(x,y): n x-y, n N + } bağıntısı bir denklik bağıntısıdır. (x,y) ise x y (mod

Detaylı

12.Konu Rasyonel sayılar

12.Konu Rasyonel sayılar 12.Konu Rasyonel sayılar 1. Rasyonel sayılar 2. Rasyonel sayılar kümesinde toplama ve çarpma 3. Rasyonel sayılar kümesinde çıkarma ve bölme 4. Tam rayonel sayılar 5. Rasyonel sayılar kümesinde sıralama

Detaylı

7. BAZI MATEMATİKSEL TEMELLER:

7. BAZI MATEMATİKSEL TEMELLER: 7. BAZI MATEMATİKSEL TEMELLER: Bilindiği üzere, matematikte ortaya konan her yeni kavram, kendinden önceki tanımlanmış kavramlar cinsinden, herhangi bir tereddüt veya muğlâklığa mahal bırakmayacak resmî

Detaylı

Bulanık Küme Kavramı BULANIK KÜME. Sonlu ve Sonsuz Bulanık Kümeler. Sonlu ve Sonsuz Bulanık Kümeler

Bulanık Küme Kavramı BULANIK KÜME. Sonlu ve Sonsuz Bulanık Kümeler. Sonlu ve Sonsuz Bulanık Kümeler ULNIK KÜME ulanık Küme Kavramı Elemanları x olan bir X evrensel (universal küme düșünelim. u elemanların ÌX alt kümesine aitliği, yani bu altkümelerin elemanı olup olmadığı X in {0,1} de olan karakteristik

Detaylı

MAT 302 SOYUT CEBİR II SORULAR. (b) = ise =

MAT 302 SOYUT CEBİR II SORULAR. (b) = ise = MAT 302 SOYUT CEBİR II SORULAR 1. : bir dönüşüm, olsunlar. a) ( ) = ( ) ( ) b) ( ) ( ) ( ) olduğunu c) ( ) nin eşitliğinin sağlanması için gerekli ve yeterli bir koşulun nin 1 1 olması ile mümkün olduğunu

Detaylı

ÜNİTE 1: TEMEL KAVRAMLAR

ÜNİTE 1: TEMEL KAVRAMLAR MATEMATİK ÜNİTE : TEMEL KAVRAMLAR Temel Kavramlar ADF 0 RAKAM Sayı oluşturmak için kullanılan sembollere... denir. 0 luk sayma düzenindeki rakamlar 0,,,... 8 ve 9 olup 0 tanedir. örnek a, b, c sıfırdan

Detaylı

Atatürk Anadolu. Temel Kavramlar Üzerine Kısa Çalışmalar

Atatürk Anadolu. Temel Kavramlar Üzerine Kısa Çalışmalar Atatürk Anadolu Lisesi M A T E M A T İ K Temel Kavramlar Üzerine Kısa Çalışmalar KONYA \ SELÇUKLU 01 MATEMATİK 1. TEMEL KAVRAMLAR 1.1. RAKAM Sayıların yazılmasında kullanılan sembollere rakam denir. Onluk

Detaylı

SONUÇ YAYINLARI. 9. Sınıf Kümeler

SONUÇ YAYINLARI. 9. Sınıf Kümeler 9. SINIF SONUÇ YYINLRI 9. Sınıf Kümeler Bu kitabın tamamının ya da bir kısmının, kitabı yayımlayan şirketin önceden izni olmaksızın elektronik, mekanik, fotokopi ya da herhangi bir kayıt sistemiyle çoğaltılması,

Detaylı

DERS 2 : BULANIK KÜMELER

DERS 2 : BULANIK KÜMELER DERS 2 : BULNIK KÜMELER 2.1 Gİriş Klasik bir küme, kesin sınırlamalarla verilen bir kümedir. Örneğin, klasik bir küme aşağıdaki gibi belirtilebilir: = { x x > 6 }, Kapalı sınır noktası burada 6 dır.burada

Detaylı

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ

AYRIK YAPILAR ARŞ. GÖR. SONGÜL KARAKUŞ- FIRAT ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ, ELAZIĞ AYRIK YAPILAR P r o f. D r. Ö m e r A k ı n v e Y r d. D o ç. D r. M u r a t Ö z b a y o ğ l u n u n Ç e v i r i E d i t ö r l ü ğ ü n ü ü s t l e n d i ğ i «A y r ı k M a t e m a t i k v e U y g u l a

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

Matematik Ders Föyü. Uygulayalım. Terim. Önerme. Doğruluk Değeri. Ortaöğretim Alanı MF - 01 NOT NOT. 1. Aşağıdaki tabloyu tanımlı veya tanımsız

Matematik Ders Föyü. Uygulayalım. Terim. Önerme. Doğruluk Değeri. Ortaöğretim Alanı MF - 01 NOT NOT. 1. Aşağıdaki tabloyu tanımlı veya tanımsız Ortaöğretim Alanı MF - 01 Matematik Ders Föyü Terim Bir sözcüğün bilim, spor, sanat, meslek vb. içerisinde kazandığı özel anlama terim denir. NOT Küp Matematik Ova Coğrafya Asit Kimya Mercek Fizik Sol

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents Rasyonel Fonksiyonlar 5 Bibliography 35 Inde 39 Rasyonel Fonksiyonlar Polinomlar Yetmez! Bölme

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi

Detaylı

Matematik A A ile B nin Kartezyen Çarpımı: A Kümesinden B nin Farkı: A Kümesinden B ye Fonksiyon: Açı: Açık Önerme: Açıortay: Açısal Bölge: Aksiyom:

Matematik A A ile B nin Kartezyen Çarpımı: A Kümesinden B nin Farkı: A Kümesinden B ye Fonksiyon: Açı: Açık Önerme: Açıortay: Açısal Bölge: Aksiyom: Matematik A A ile B nin Kartezyen Çarpımı: Birinci bileşeni A dan, ikinci bileşeni B den alınarak elde edilen ikililerin kümesidir. A Kümesinden B nin Farkı: A kümesinin B kümesi ile ortak olmayan elemanlarından

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A

T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 Kümeler Cebiri 5 1 Kümeler Cebiri 1 Doğa olaylarının ya da sosyal olayların açıklanması için,

Detaylı

Mustafa Sezer PEHLİVAN. Yüksek İhtisas Üniversitesi Beslenme ve Diyetetik Bölümü

Mustafa Sezer PEHLİVAN. Yüksek İhtisas Üniversitesi Beslenme ve Diyetetik Bölümü * Yüksek İhtisas Üniversitesi Beslenme ve Diyetetik Bölümü SAYILAR Doğal Sayılar, Tam Sayılar, Rasyonel Sayılar, N={0,1,2,3,,n, } Z={,-3,-2,-1,0,1,2,3, } Q={p/q: p,q Z ve q 0} İrrasyonel Sayılar, I= {p/q

Detaylı

SAYILAR SAYI KÜMELERİ

SAYILAR SAYI KÜMELERİ SAYILAR SAYI KÜMELERİ 1.Sayma Sayıları Kümesi: S=N =1,2,3,... 2. Doğal Sayılar Kümesi : N=0,1,2,... 3. Tamsayılar Kümesi : Z=..., 2, 1,0,1,2,... Sıfırın sağında bulunan 1,2,3,. tamsayılarına pozitif tamsayılar

Detaylı

SAYILAR SAYI KÜMELERİ

SAYILAR SAYI KÜMELERİ 1 SAYILAR SAYI KÜMELERİ 1.Sayma Sayıları Kümesi: S=N =1,2,3,... 2. Doğal Sayılar Kümesi : N=0,1,2,... 3. Tamsayılar Kümesi : Z=..., 2, 1,0,1,2,... Sıfırın sağında bulunan 1,2,3,. tamsayılarına pozitif

Detaylı

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler

1. BÖLÜM Mantık BÖLÜM Sayılar BÖLÜM Rasyonel Sayılar BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler ORGANİZASYON ŞEMASI 1. BÖLÜM Mantık... 7. BÖLÜM Sayılar... 13 3. BÖLÜM Rasyonel Sayılar... 93 4. BÖLÜM I. Dereceden Denklemler ve Eşitsizlikler... 103 5. BÖLÜM Mutlak Değer... 113 6. BÖLÜM Çarpanlara Ayırma...

Detaylı

Örnek...2 : Örnek...3 : Örnek...1 : MANTIK 1. p: Bir yıl 265 gün 6 saattir. w w w. m a t b a z. c o m ÖNERMELER- BİLEŞİK ÖNERMELER

Örnek...2 : Örnek...3 : Örnek...1 : MANTIK 1. p: Bir yıl 265 gün 6 saattir. w w w. m a t b a z. c o m ÖNERMELER- BİLEŞİK ÖNERMELER Terim: Bir bilim dalı içerisinde konuşma dilinden farklı anlamı olan sözcüklerden her birine o bilim dalının bir terimi denir. Önermeler belirtilirler. p,q,r,s gibi harflerle Örneğin açı bir geometri terimi,

Detaylı

Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz.

Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz. 1 BİR İŞLEMLİ SİSTEMLER Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz. 1.1 İŞLEMLER Bir kümeden kendisine tanımlı olan her fonksiyona birli işlem denir. Örneğin Z

Detaylı

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur?

p sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur? 07.10.2006 1. Kaç p asal sayısı için, x 3 x + 2 (x r) 2 (x s) (mod p) denkliğinin tüm x tam sayıları tarafından gerçeklenmesini sağlayan r, s tamsayıları bulunabilir? 2. Aşağıdaki ifadelerin hangisinin

Detaylı

Her türlü görüş, öneri ve eleştirilerinize açık olduğumu bilmenizi ister çalışmalarınızda ve sınavlarınızda başarılar dilerim.

Her türlü görüş, öneri ve eleştirilerinize açık olduğumu bilmenizi ister çalışmalarınızda ve sınavlarınızda başarılar dilerim. Önsöz Değerli Öğrenciler, u fasikül ortaöğretimde başarınızı yükseltmeye, üniversite giriş sınavlarında yüksek puan almanıza yardımcı olmak için özenle hazırlanmıştır. Konular anlamlı bir bütün oluşturacak

Detaylı

Otomata Teorisi (BIL 2114)

Otomata Teorisi (BIL 2114) Otomata Teorisi (BIL 2114) Hafta 1: Amaç ve Genel Kavramlar bas kapa aç bas 1 Hafta 1 Plan 1. İletişim ve Ders Bilgisi 2. Otomata Teorisi Genel Bakış 3. Hedeflenen Kazanımlar 4. Matematiksel Nosyonlar

Detaylı

ÜNİVERSİTEYE HAZIRLIK 9. SINIF OKULA YARDIMCI KONU ANLATIMLI SORU BANKASI MATEMATİK MANTIK - KÜMELER

ÜNİVERSİTEYE HAZIRLIK 9. SINIF OKULA YARDIMCI KONU ANLATIMLI SORU BANKASI MATEMATİK MANTIK - KÜMELER ÜNİVERSİTEYE HAZIRLIK 9. SINIF OKULA YARDIMCI KONU ANLATIMLI SORU BANKASI MATEMATİK MANTIK - KÜMELER ÜNİVERSİTEYE HAZIRLIK 9. SINIF OKULA YARDIMCI KONU ANLATIMLI SORU BANKASI ISBN 978 605 2273-66 - Editörler

Detaylı

Olasılık Kavramı. Recep YURTAL. Mühendislikte İstatistik Metotlar. Çukurova Üniversitesi İnşaat Mühendisliği Bölümü

Olasılık Kavramı. Recep YURTAL. Mühendislikte İstatistik Metotlar. Çukurova Üniversitesi İnşaat Mühendisliği Bölümü Olasılık Kavramı Mühendislikte İstatistik Metotlar Çukurova Üniversitesi İnşaat Mühendisliği ölümü OLSILIK KVRMI KÜME KVRMI irlikte ele alınan belirli nesneler topluluğuna küme, Kümede içerilen nesnelere

Detaylı

Tanım Bir X kümesi üzerinde bir karakter dizgisi (string) X kümesindeki. boş karakter dizgisi (null string) denir ve l ile gösterilir.

Tanım Bir X kümesi üzerinde bir karakter dizgisi (string) X kümesindeki. boş karakter dizgisi (null string) denir ve l ile gösterilir. BÖLÜM 3 Karakter Dizgileriil i Tanım 3.1.1 Bir X kümesi üzerinde bir karakter dizgisi (string) X kümesindeki öğelerden oluşan bir sonlu dizidir. Hiç bir öğesi olmayan bir karakter dizgisine boş karakter

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

KARAKTER DİZGİLERİ, BAĞINTILAR, FONKSİYONLAR KESİKLİ MATEMATİKSEL YAPILAR

KARAKTER DİZGİLERİ, BAĞINTILAR, FONKSİYONLAR KESİKLİ MATEMATİKSEL YAPILAR KARAKTER DİZGİLERİ, BAĞINTILAR, FONKSİYONLAR KESİKLİ MATEMATİKSEL YAPILAR 2012-2013 Karakter Dizgisi Karakter Dizgisi Üzerine İşlemler Altdizgi Tanım 3.1.1: Bir X kümesi üzerinde bir karakter dizgisi (string)

Detaylı

MUTLAK DEĞER. Örnek...6 : 1 x > 1 y > 1 z. Örnek...7 : x=1 5, y= 5 2, ise x+y y x x =? Örnek...1 : =? Örnek...8 : Örnek...2 : =?

MUTLAK DEĞER. Örnek...6 : 1 x > 1 y > 1 z. Örnek...7 : x=1 5, y= 5 2, ise x+y y x x =? Örnek...1 : =? Örnek...8 : Örnek...2 : =? TANIM MUTLAK DEĞER Örnek...6 : 1 x > 1 y > 1 z ise x y x z z y =? Bir x reel sayısına karşılık gelen noktanın sayı doğrusunda 0 (sıf ır) a olan uzaklığına x sayısının mutlak değeri denir ve x şeklinde

Detaylı

Sayılar Kuramına Giriş Özet

Sayılar Kuramına Giriş Özet Eğer bir b noktası bir a noktasının sağındaysa, o zaman a, b den küçük ve b, a dan büyük olarak sayılır, ve Sayılar Kuramına Giriş Özet David Pierce a < b, b > a yazılır. Tanıma göre a a, a < b a b, a

Detaylı

RASYONEL SAYILAR. ÖRNEK: Aşağıda verilen eşitliklerde verilmeyen harflere karşılık gelen tamsayıları bulunuz. RASYONEL SAYILAR A =?

RASYONEL SAYILAR. ÖRNEK: Aşağıda verilen eşitliklerde verilmeyen harflere karşılık gelen tamsayıları bulunuz. RASYONEL SAYILAR A =? Kazanım : Rasyonel sayıları tanır ve sayı doğrusunda gösterir. RASYONEL SAYILAR a bir tamsayı ve b sıfırdan farklı bir tamsayı olmak üzere a b biçiminde yazılabilen sayılara rasyonel sayılar denir. Rasyonel

Detaylı

TAM SAYILAR. Tam Sayılarda Dört İşlem

TAM SAYILAR. Tam Sayılarda Dört İşlem TAM SAYILAR Tam Sayılarda Dört İşlem Pozitif ve negatif tam sayılar konu anlatımı ve örnekler içermektedir. Tam sayılarda dört işlem ve bu konuyla ilgili örnek soru çözümleri bulunmaktadır. Grup_09 29.11.2011

Detaylı

1.DERECEDEN DENKLEMLER. (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz)

1.DERECEDEN DENKLEMLER.  (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) .DERECEDEN DENKLEMLER Rüstem YILMAZ 546 550 86 48 destek@sinavdestek.com www.sinavdestek.com (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) JET Yayınları 8 Ağustos 07 0. Bir Bilinmeyenli

Detaylı

Olasılık Kuramı ve İstatistik. Konular Olasılık teorisi ile ilgili temel kavramlar Küme işlemleri Olasılık Aksiyomları

Olasılık Kuramı ve İstatistik. Konular Olasılık teorisi ile ilgili temel kavramlar Küme işlemleri Olasılık Aksiyomları Olasılık Kuramı ve İstatistik Konular Olasılık teorisi ile ilgili temel kavramlar Küme işlemleri Olasılık Aksiyomları OLASILIK Olasılık teorisi, raslantı ya da kesin olmayan olaylarla ilgilenir. Raslantı

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 KÜMELER 11 1.1. Küme 12 1.2. Kümelerin Gösterimi 13 1.3. Boş Küme 13 1.4. Denk Küme 13 1.5. Eşit Kümeler 13 1.6. Alt Küme 13 1.7. Alt Küme Sayısı 14 1.8. Öz Alt Küme 16 1.9.

Detaylı

FONKSİYONLAR. Örnek: (2x-2,y-3)=(10,-3) olduğuna göre x ve y sayılarını bulunuz.

FONKSİYONLAR. Örnek: (2x-2,y-3)=(10,-3) olduğuna göre x ve y sayılarını bulunuz. 1 FONKSİYONLAR Sıralı İkili: A ve B boş olmayan iki küme olmak üzere, aa ve bb iken (a, b) ifadesine bir sıralı ikili denir. Burada a ya, sıralı ikilinin birinci bileşeni, b ye de ikinci bileşeni denir.

Detaylı

BM202 AYRIK İŞLEMSEL YAPILAR. Yrd. Doç. Dr. Mehmet ŞİMŞEK

BM202 AYRIK İŞLEMSEL YAPILAR. Yrd. Doç. Dr. Mehmet ŞİMŞEK BM202 AYRIK İŞLEMSEL YAPILAR Yrd. Doç. Dr. Mehmet ŞİMŞEK Önermelerin Eşdeğerlikleri Section 1.3 Totoloji, Çelişkiler, ve Tesadüf Bir totoloji her zaman doğru olan bir önermedir. Örnek: p p Bir çelişki

Detaylı

9. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları

9. Sınıf Matemat k Ders İşleme Defter. Altın Kalem Yayınları 9. Sınıf Matemat k Ders İşleme Defter KÜMELER - 1 Altın Kalem Yayınları Küme: B rb r nden farklı nesneler n oluşturduğu topluluklar küme şekl nde adlandırılır. Kümey oluşturan nesneler n y bel rlenm ş

Detaylı

Ders 2: Küme Teorisi, Örnek Uzay, Permütasyonlar ve Kombinasyonlar

Ders 2: Küme Teorisi, Örnek Uzay, Permütasyonlar ve Kombinasyonlar Ders 2: Küme Teorisi, Örnek Uzay, Permütasyonlar ve Kombinasyonlar Küme Kavramı Küme İşlemleri Deney, Örnek Uzay, Örnek Nokta ve Olay Kavramları Örnek Noktaları Sayma Permütasyonlar Kombinasyonlar Parçalanmalar

Detaylı

Kümeler ve Küme İşlemleri

Kümeler ve Küme İşlemleri Kümeler ve Küme İşlemleri ÜNİTE 2 Amaçlar Bu üniteyi çalıştıktan sonra; küme kavramını, küme işlemlerini, küme işlemlerinin özelliklerini ve kullanılan simgeleri tanıyacaksınız. küme ailelerini, kümelerin

Detaylı

TEMEL KAVRAMLAR A: SAYI Sayıları ifade etmeye yarayan sembollere rakam denir. Ör: 0,1,2,3,4,5,6 Rakamların çokluk belirtecek şekilde bir araya getirilmesiyle oluşturulan ifadeler ifadesine sayı denir.

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 4.KONU Latisler, Boole Cebri 1. Kısmi sıralı kümeler 2. Hasse Diyagramı 3. Infimum, Supremum 4. Latis (Kafes Lattice) 5. Latis (Kafes) Yapıları ve Özellikleri

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

1. ÜNİTE: MANTIK. Bölüm 1.1. Önermeler ve Bileşik Önermeler

1. ÜNİTE: MANTIK. Bölüm 1.1. Önermeler ve Bileşik Önermeler . ÜNİTE: MANTIK . ÜNİTE: MANTIK... Önerme Tanım (Önerme) BÖLÜM.. - Doğru ya da yanlış kesin bir hüküm bildiren ifadelere önerme adı veriler. Örneğin Bir hafta 7 gündür. (Doğru) Eskişehir Türkiye'nin başkentidir.

Detaylı

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek:

PERMÜTASYON, KOMBİNASYON. Örnek: Örnek: Örnek: SAYMANIN TEMEL KURALLARI Toplama Kuralı : Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin eleman sayısına eşittir. Mesela, sonlu ve ayrık iki küme A ve B olsun. s(a)=

Detaylı

KÜMELER KÜMELER. Ortak Özellik Yöntemi: Kümenin içindeki elemanlar ortak bir özelliğe yazılır.

KÜMELER KÜMELER. Ortak Özellik Yöntemi: Kümenin içindeki elemanlar ortak bir özelliğe yazılır. Küme: elirli nesneler topluluğuna küme adını veriyoruz. n iyi sanatçı ( - ) n güzel şarkı ( - ) Sınıftaki en güzel kız ( - ) Sınıftaki mavi gözlü erkekler ( + ) Uçan insanlar ( + ) oş Küme: lemanı olmayan

Detaylı

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev

MATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 5.KONU Cebiresel yapılar; Grup, Halka 1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri

Detaylı

MateMito AKILLI MATEMATİK DEFTERİ

MateMito AKILLI MATEMATİK DEFTERİ Ar tık Matematiği Çok Seveceksiniz! MateMito AKILLI MATEMATİK DEFTERİ Artık matematikten korkmuyorum. Artık matematiği çok seviyorum. Artık az yazarak çok soru çözüyorum. Artık matematikten sıkılmıyorum.

Detaylı

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9

OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 2015 2016 DERSİN ADI : MATEMATİK SINIFLAR : 9 OKUL ADI : ÖMER ÇAM ANADOLU İMAM HATİP LİSESİ EĞİTİM VE ÖĞRETİM YILI : 015 01 1 Eylül 18 Eylül Kümelerde Temel Kavramlar 1. Küme kavramını örneklerle açıklar ve kümeleri ifade etmek için farklı gösterimler.

Detaylı