YAYLANMANIN TEMEL ESASLARI. Prof. Dr. N. Sefa KURALAY 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "YAYLANMANIN TEMEL ESASLARI. Prof. Dr. N. Sefa KURALAY 1"

Transkript

1 YAYLANMANIN TEMEL ESASLARI Prof r N Sefa KURALAY 1

2 YAYLANMANIN TEMEL ESASLARI Titreşim hareketleri esas itibariyle düzgün olmayan yollarda ortaya çıkar Yolcuları sarsıntılarla, aracı ve yolu aşırı dinamik yüklerle zorlarlar Ayrıca, titreşimler tekerlek yük değişimlerine sebep oldukları için, sürüş emniyetine de etkide bulunurlar Tekerlek yükünün sıfıra eşit olduğu durumlarda ortaya çıkabilir Resim : ört tekerli aracın serbestlik derecesi Prof r N Sefa KURALAY

3 Her hesaplamadan önce mevcut sistemlerin en az bir modeli, yani ikame bir sistemi seçilir Modelin iyiliği ve hassasiyeti sonuçların gerçeğe yakın olmasını sağlar Resim: Sürücülü bir aracın 3 boyutlu titreşim modeli Prof r N Sefa KURALAY 3

4 Sürücü + Koltuk Karoser estek estek Resim: Tek izli bir aracın düzlemsel titreşim modeli Prof r N Sefa KURALAY 4

5 Karoser Tahrik organları Tekerlek, yataklama ve frenler Şasi Şasi a c Lastik Sürücü kabini Tahrik sistemi Şasi e Şasi b Tekerlek Askı sistemi taşıyıcısı d Resim : arklı kısmi sistemlerin titreşim modelleri a ve b) Şasi üzerindeki karoseri, c ve d) Şasideki tahrik organları, e ve d) Tekerlek askı sistemleri Modelin komplike olması, fazla serbestlik derecesine sahip olması aracın davranışı hakkında kesin sonuçlar vermesinin yanında matematiksel olarak çözümünü de imkansız kılar Prof r N Sefa KURALAY 5 f

6 Aracın titreşim davranışı hakkında fikir sahibi olmak için basit bir model seçerek hesaplamalar yapılabilir En basit titreşim sistemi tek kütleli Yay-Kütle sistemidir şasinin bir parçası için akslar için Resim 3 : Tek kütleli model Resim : Tek kütleli model Resim 4: Yay ve amortisör bağlı iki kütleli model Resim : Yay ve amortisör bağlı iki kütleli model Prof r N Sefa KURALAY 6

7 TEK SERBESTLİK ERECELİ YAY-KÜTLE MOELİ Tek serbestlik dereceli yay-kütle modelinin hareket denklemi Özgül dairesel frekans Sönüm sabiti Sönüm faktörü Sönümlenmiş titreşim dairesel frekansı Prof r N Sefa KURALAY 7

8 Transfer fonksiyonu Şasi düşey salınımı/uyarıcı salınımı Sönüm faktörü rekans [Hz] Resim : Tek serbestlik dereceli yay-kütle modelinin transfer fonksiyonu Prof r N Sefa KURALAY 8

9 İKİ SERBESTLİK ERECELİ YAY - KÜTLE MOELİ Hareket denklemleri Çift kütleli yay modeli yaklaşık frekansları: Karoseri özgül dairesel frekansı Tekerlek özgül dairesel frekansı Prof r N Sefa KURALAY 9

10 Şasi salınımı / Yol uyarısı Yol uyarısının karoser salınımına göre transfer fonksiyonu Yaylandırılmamış kütle= 0 kg Yaylandırılmamış kütle= 40 kg Yaylandırılmamış kütle= 60 kg rekans [Hz] Resim: İki serbestlik dereceli yay-kütle modeli transfer fonksiyonu Prof r N Sefa KURALAY 10

11 Yaylanmaya Etki Eden aktörler Bir aracın yaylanma sisteminde yer alan yaylar ve amortisörler Seyahat konforundan Sürüş emniyetinden ve Aracın viraj davranışından sorumludur Yaylanma özellikleri farklı büyüklüklere ve her bir parçanın birbiri ile etkileşimine bağlıdır Yaylanma özelliği esas itibariyle Yayın tipi ve sertliğine Stabilizatöre Yön verici kolların bağlantılarına, Amortisörlere ve bağlantılarına Aks ağırlıklarına Motor kulakları uygulama şekline Akslar arası mesafeye, İz genişliğine ve Özellikle lastik ölçülerine ve lastiğe bağlıdır Prof r N Sefa KURALAY 11

12 1Yumuşak yay ve büyük yaylanma mesafesi Yüksek seyahat konforu üşük baş sallama hareketi veya titreşimi ve Tekerleklerin yola iyici oturmaları için esas olan ön koşuldur Tekerleklerin yol ile temaslarının iyi olması aynı zamanda sürüş emniyeti içinde geçerlidir Örnek : G = 3000 N ile yüklenen bir tekerlek 8 cm derinlikteki bir çukura düşerse, c = 100 N/cm değerindeki bir yay katsayısına sahip bir yayda yolun düzgün olmaması sonucu G ' G c f N değerinde artık bir kuvvet mevcuttur; buna karşın sert yaylı (c=00 N/cm) spor bir aracın tekerleğinde G = 1400 N luk artık bir kuvvet mevcut olacaktır Büyük artık kuvvet, tekerleğin yola daha iyi oturmasını anlamını taşır G ' G G G G ' G G G Resim : Tekerlek yükünün tekerin çukura girmesi (yayın uzaması) ve engeli aşılması (yayın sıkışması) durumunda değişimi Prof r N Sefa KURALAY 1

13 Benzer incelemeyi yol zeminindeki 4 cm lik bir engelin aşılması için yapalım Sert yayda, akstan şasiye iletilecek olan kuvvet artışı, zaman ve amortisör sönümü ihmal edildiğinde, G = 800 N ; buna karşın yumuşak yay sadece G = 400 N luk bir darbe kuvvetini şasiye aktaracaktır ve tekerlekte de dinamik yük değişimi daha az olacaktır ezavantaj olarak, araç virajlarda daha fazla yana yatacak, bu da lastiklerin yan kuvvet iletimi için düşük bir imkan demektir Yan kuvvetin büyük bir kısmını alacak olan virajın dışındaki tekerlek, büyük bir pozitif kamber açısına sahip olacaktır ve sonuç olarak, lastiğin daha büyük diyagonal hareket açısı oluşturması demektir Her iki aksta veya sadece ön aksta stabilizatör yardımıyla aracın yana yatması (yalpa titreşimi) azaltılabilir Böylece yaylanma tek taraflı olarak sertleşir, yani yol düzgünsüzlüğü ve yoldaki engellerin yutulma imkanı azalır 3 Yayın sertleşmesi askı kolları bağlantı yerlerinin sabit olarak (sert) oturması demektir Söz konusu bağlantı kaymalı bir yatak ise, titreşim dönüm noktalarında, amortisör kuvvetinin artımını gerektiren çözücü bir kuvvet gerektirir Prof r N Sefa KURALAY 13

14 Buna karşın yön verici kolların bağlantı yerleri lastik veya kauçuktan ibaret ise (kauçuk malzeme, iç ve dış boru parçası arasına vulkanize edilmiştir), askı elemanının yaylanma sırasındaki dönme hareketinde ön gerilimli olarak takılmış olan lastik eleman kesmeye zorlanır ve bu sayede de sistemin toplam yay katsayısı artmış olur 0,5 m/s - v max çeki Bası 1000 N 500 N 0,5 m/s + v max 4 Amortisörde aracın yaylanma özelliklerine aynı şekilde tesir etmektedir Sert olarak ayarlanmış amortisörler iyi bir yol teması sağlarlar, fakat seyahat konforunu azaltırlar Yumuşak ayarlanmış olanlar iyi bir konfor sağlarlar, fakat sürüş emniyeti açısından hiçte iyi değillerdir Amortisör bağlantı lastik elemanlarını yumuşak olması yol gürültüsünün izolasyonu ve elastiki bir bağlantı gerçekleştirirler Ama bu bağlantıların yumuşak olması, amortisörün etkinliğinin azalmasına sebep olur Prof r N Sefa KURALAY 14

15 5 Hafif yapıdaki bir aksın titreşiminin giderilmesi, yani tekerleğin sıçrama hareketinin azaltılması için, çoğu kez şasi için ön görülen amortisörler yeterli olmaktadır Buna karşın ağır ve tahrik edilen bir aks yüksek sönümleme kuvvetlerine ihtiyaç duymaktadırbüyük amortisör kuvvetleri ise, seyahat konforunu azaltır 6 Yumuşak ve kendi özgül frekansında askı sistemine iyice uyarlanmamış olan bir motor kulağı, iyi yataklanmamış aktarma organlarını belirli hızlarda özgül frekansa getirebilir 7 Akslar arası mesafesi fazla olan bir araç, küçük aks mesafeli araca oranla daha az baş sallama titreşimine eğimlidir 8 İz genişliği fazla olan aracın yalpaya eğimi ve savrulma sırasında yana takla atması tehlikesi daha azdır 9 Yumuşak bir lastik dalga boyu küçük yol düzgünsüzlüklerini iyi yutma özelliğine sahip olmasına karşın, virajda düşük yan kuvvet bağıntısına sahiptir ve ani direksiyon çevirmelerinde yön verme sisteminin (direksiyon sisteminin) intikal süresini kötüleştirir Prof r N Sefa KURALAY 15

16 Yaylanma davranışı Şasiye göre yaylar aynı, değişken ve tek yönlü şekilde yaylanabilir Resim : Araç karoserisinin çeşitli yaylanma davranışı Prof r N Sefa KURALAY 16

17 Yaylandırılmış ve Yaylandırılmamış Kütleler Aks ağırlıkları G Ö ve G A ve aksların kendi ağırlıkları U Ö ve U A ise, şasinin kütle dağılımı GÖ UÖ G m Ö ve m A g Yaylandırılmamış kütlelere şunlar dahildir: Prof r N Sefa KURALAY 17 A U g Bağımsız askı sisteminde ; askı sistemi ağırlığı ve tekerleğin ağırlığı Sabit askı sisteminde ; aks gövdesi, diferansiyel ve bunlara ilaveten aşağıdaki parçaların yarı ağırlıkları ; - yön verici, - iç tahrik milleri, - Panhard çubuğu, - yaprak ve helisel yaylar, - kardan mili, - amortisörler, - İz çubukları, gibi aks ile şasi ortak bağlantısı olan parçalar Bağımsız askı sisteminde ve tahrik edilmeyen sabit aks ağırlığı büyüklüğüne göre U Ö,A = N arasındadır Tahrik edilen sabit aksta ilave olarak gelen diferansiyel ağırlığı sonucu U Ö,A = N A

18 Araç üşey Titreşimleri 1 Basit bir yay kütle sisteminde, şasi titreşim sayısı yalnızca şasinin ağırlığının daha doğrusu kütlesinin akslara göre dağılımına ve yay katsayısına bağlıdır ve şasi temel titreşim frekansı m Ö,A c Ö,A 1 c Ö,A f Ö,A [Hz] veya n Ö,A 9, 55 m Ö,A C m Ö,A Ö,A [/d] İki serbestlik dereceli yay kütle sistemi şeklinde bir modelin esas alınması durumunda şasinin kütlesinin yaylandırılmamış kütlelere göre oldukça büyük olduğu kabulü ile Tekerlek titreşim frekansı veya yaylandırılmamış kütlelerin temel titreşim frekansı : C Ö,A m 1 Ö,A k c 1 Ö,A k Ö,A f 1Ö,A n 1Ö,A 1 9,55 (k c (k 1Ö,A m c 1Ö,A m c 1Ö,A 1Ö,A Ö,A c Ö,A [Hz] [/d] veya Prof r N Sefa KURALAY 18

19 Burada k lastik yay katsayısı düzeltme faktörüdür ve hıza bağlı olarak lastik yay katsayısındaki değişimi dikkate alır Hızın artmasıyla birlikte lastik yay katsayısı artmaktadır Örneğin : v km/h olarak araç hızı ise iyagonal bir lastikte k = 1+ 1, v Tekstil kuşaklı lastikte k = 1+ 6, v Eğer k lastik yay katsayısı düzeltme bilinmiyorsa, kabaca radiyal lastiklerde lastik statik yay katsayısının her 30 km/h hız değerinde % 1 oranında sertleştiği kabul edilebilir; buna göre 10 km/h hızda k = 104 alınabilir Şasi titreşim frekansı : Aks kütlesi ve lastik yay katsayısı dikkate alınırsa Ö,A Ö,A Ö,A Ö,A k Ö,A 11 c c ff c c m (m1 m) k kc c (m m n 1 c c 99, 55, 55 c m c (m1 m) k k c c 1 m ) ) ) [/d] [/d] ) Hz [Hz] veya veya son formülde görüleceği gibi c /c 1 oranı, yani, ana yayın yay katsayısının lastik yay katsayısına oranı arttıkça şasi titreşim frekansı da o oranda azalmaktadır Bu durum sert yay ve yumuşak lastik durumunda söz konusudur Prof r N Sefa KURALAY 19

20 Binek otomobillerin çelik yayların yaylandırılmış şasisinin frekansı : Ön n Ö,A = 5580 /d ( f Ö,A = 0,91,33 Hz) Arka n Ö,A = /d ( f Ö,A = 1,131,67 Hz ) Konfor nedenlerinden arzulanan değer n = 60 /d ~ 1 Hz Boş ve dolu araç arasındaki yük farkı yayların yumuşak olarak ön görülmesini zorlaştırmaktadır Ön görülen bu titreşim frekansına f Ö,A göre yay katsayısı, basit yay-kütle sistemi için 6 c Ö,A 5,5910 n Ö,A (GÖ,A UÖ, A ) [N/cm] Örnek : Aşağıdaki araç değerlerini kullanarak Audi 100 aracının ön aksındaki yay katsayısı G Ö = 7100 N ; U Ö = 500 N için n Ö = 57 /d seçildiğinde c Ö = 5, ( ) = 119,7 N/cm 10 N/cm 1 N/mm Prof r N Sefa KURALAY 0

21 3 Baş sallama titreşimleri : Bir aracın ön ve arka aks yaylarının indirgenmesi ile elde edilen düşey titreşim sayısı n 9,55 c ÖA c m AA [/d] > n BS 9,55 c ÖA L Ö c I Y AA L A [/d] eğer şasi titreşim frekansı, baş sallama titreşimi sayısından büyük ise (n > n BS ), baş sallama titreşimlerinin düşey titreşimlerden ayrı olarak düşünüldüğü araç teorik olarak baş sallama titreşimlerine sahip olamaz! I Y aracın enine eksenine göre kütlesel atalet momenti için yaklaşık olarak IY m L Baş sallama titreşimlerinin giderilmesi için bazı konstrüktif büyüklükler, kütle dağılımı ve aks mesafesi gibi, belirleyici olmaktadır Baş sallama titreşimlerinin giderilmesi için pratikte ön ve arka akstaki yay katsayıları, aks titreşim frekansları birbirinden % 0 fark olacak şekilde seçilir Yayların dizaynı için kural olarak Ö L A Standart yapı tarzında ve önden tahrikli araçlarda n AA 1,n ÖA ve Arkadan motorlu araçlarda n AA 1,n ÖA geçerlidir Prof r N Sefa KURALAY 1

22 AMORTİSÖR HESABI Bir amortisörün seçiminden önce çapı ve uzunluğu belirlenmelidir Amortisörün çapı sönümleme kuvveti ile bağlantılı olurken, uzunluğu çalışma stroku için belirleyicidir Strok, titreşen parçaların yukarı aşağı yaylanma yoluna eşdeğerdir Aracın titreşim davranışında amortisörün büyük rolü vardır Burada tekerlek temas yüzeyi esas yüzey olarak alınırsa bu noktadan belirli bir v hızında uygulanan kuvvet amortisör kuvveti olarak ifade edilir ve sönüm faktörü k ile şu ifadeler yazılır: Sönüm faktörü k v [Ns/m] k Şasi sönüm faktörü [-] c m Tekerlek sönüm faktörü 1 (k c k 1 c )m 1 [-] veya 1 k c c 1 c m m 1 [-] 1 k [-] veya 1 [-] (k c c )m k c c m Prof r N Sefa KURALAY c m

23 k - sönüm faktörü tekerlek temas noktasını esas almaktadır, fakat amortisörün kendisi askı donanımında daha içeride takılmıştır ve bunun sonucu olarak küçük v hızında büyük kuvvetler uygular v i v x i x yardımıyla sönüm faktörü k v i v i v i x x x Amortisör deney makinesinden amortisör piston hızı v, deney hızı n [/d] ve deney stroku s [m] üzerinden bilinmektedir Amortisör test diyagramından Bilinen piston hızından hareketle amortisör sönüm kuvveti, çekme kuvvetinin çeki ve sıkıştırma esnasında ortaya çıkan Bası kuvvetinin ortalama değeri olarak hesaplanır Ortalama sönümleme kuvveti çeki Çeki Bası Strok s Bası 0-hattı Resim : eney sonucu elde edilen amortisör diyagramından amortisör sönüm kuvvetinin belirlenmesi Prof r N Sefa KURALAY 3

24 Hesaplamalar için gerekli ifadeler : v v max max sn sn 60 Çeki Bası [m/s] [m/s] [N] ; n n / 60 [/d] akat genel olarak amortisörler farklı ayarlandıkları için bası ve çeki durumunda sönümleme kuvvetleri farklıdır Bası durumunda : Çeki durumunda : Burada q, çekme kuvvetinin basma kuvvetine oranıdır Bu değer Bası Çeki 1 q q 1 q otomobiller için q = 3 5 kamyon ve otobüsler için q = 5 10 Prof r N Sefa KURALAY 4

25 Örnek : Standart tahrikli bir aracın arka aksındaki amortisörün sönüm değerinin hesaplanması : Aks yükü G A = 5000 N Lastik hava basıncı p 1 = 1,8 bar Aks ağırlığı U A = 1000 N Araç hızı v = 140 km/h Yay katsayısı c A = 18 N/mm Amortisör değerleri (eney sonucu) : Çevrim oranı i x = 1, Strok s = 100 mm Lastik / 4 PR n = 100 /d Bu değerler sonucunda Çeki = 100 N ; Bası = 400 N v max Bası Çeki sn 0,1100 0,54 m/s Çeki Bası N N 1 q 1 3 q N 1 q 1 3 ve q 3 için Prof r N Sefa KURALAY 5

26 m c A A G A U g A N/m için ,81 04 kg k 800 v i 0,541, max x 1060 Ns/m k 1060 c m ,75 Görüldüğü gibi sonuç, sönüm için istenen bölgede kalmaktadır ( = 0,50,3) Sürüş emniyetinin sağlanması için, amortisörün yeterli tekerlek sönümünü de 1 sağlaması gerekir ve 1 için verilen eşitliklerden, 1 ve arasında bir bağıntı yazılırsa, 1 k c c 1 c G Ö,A U U Ö,A Ö,A [-] Verilen lastik için : c 1A = 174 N/mm ve k = 1,7 (v =140 km/h için ) üretici firma verilerinden Prof r N Sefa KURALAY 6

27 1 0, , ,750,544 0,15 İrdeleme : Tahrik edilen ağır sabit aks, bu değere göre çok düşük sönümlenmiş, yoldaki düzgünsüzlüklerde zıplayabilir Hafif, bağımsız askı sisteminde U A = 500 N için hesaplamalar tekrarlanırsa, 1 =0, bulunmaktadır Bu değerde uygun fakat yeterli bir değer değildir Prof r N Sefa KURALAY 7

28 Yay ve Amortisör Kuvvetinin Tekerlek Temas Noktasına İndirgenmesi Gerekli amortisör ve yay kuvvetlerinin hesaplanabilmesi için tekerlek temas noktası ve her iki elemanın askı noktaları arasındaki çevrim oranına i x ve i Y ye hem yaylanma farkının hem de her iki nokta arasında ortaya çıkan kuvvetlerin farkının dikkate alınması gerekir Bunun basit bir örnekle açıklanması gerekirse,, G Ö,A Resim: Basit bir yön verici kol üzerinde kuvvet ve yol çevrim oranının bulunması Kuvvet tahvil oranı : Yaylanma tahvil oranı : i Y i X Basit bir yön vericide i x ve i Y birbirine eşittir: Prof r N Sefa KURALAY 8 G, Ö,A f f b a b a

29 Bağımsız askı sistemlerinde tek bir yön vericinin kullanılması halinde i X = i Y olmaktadır Buna karşın yön verici çiftler kullanılırsa,yol ve kuvvet çevrim oranları farklı olmaktadır Bu durumda örnek olarak yay kuvveti ; (G Ö,A i X yol çevrimiyle beraber noktasında bulunan yayın yay katsayısı c f (G U Ö,A ) i Ö,A Ö,A0 )i Y (GÖ,A f / i Tekerlek temas noktasına indirgenmiş yay katsayısı c Ö,A : c Ö,A c c G Ö,A Ö,A U X U f Ö,A Y / veya basit halde i X = i Y = i için c = c Ö,A i i X i Y f U Ö,A ) i X i Y Prof r N Sefa KURALAY 9

30 Bu tahvil oranları çok nadir olarak tüm yaylanma sahası boyunca sabit kalırlar Askı sistemindeki açı ve konum değişiklikleri sonucu i X ve i Y değişir Bu yüzden hesaplamalarda i X ve i Y için iki kişi ile yüklü normal pozisyondaki değerler esas alınır Örnek hesaplama için aşağıdaki gibi bir askı sistemi alalım : A X A Y B noktasının kat ettiği yaylanma mesafe yaklaşık olarak tekerlek temas noktasının kat ettiği mesafeye eşit alınırsa, a) i X b acos G Ö b) Buna karşın i Y = / G* Ö oranı A ve B noktalarındaki kuvvetler belirlendikten sonra i Y b(r 0 d tan 0)cos acos( )c tan 0 1 G Ö cos R (G 0 Ö c U Ö d tan 0 / ) 1 tan tan tan 0 Prof r N Sefa KURALAY 30

31 Teşekkür ederim Prof r N Sefa KURALAY Prof r N Sefa KURALAY 31

Süspansiyon elemanları

Süspansiyon elemanları Süspansiyon elemanları Çelik yaylar Helisel yaylar, süspansiyon yayı Yaprak yaylar. süspansiyon yayı Burulma Çubukları, stabilizatör, süspansiyon yayı Helisel yay Yaprak yaylar Otomobillerde nadiren kullanılmaktadır.

Detaylı

YAYLANMA ve METAL YAYLAR. Prof. Dr. N. Sefa KURALAY 1

YAYLANMA ve METAL YAYLAR. Prof. Dr. N. Sefa KURALAY 1 YAYLANMA ve METAL YAYLAR Prof Dr N Sefa KURALAY YAYLANMA VE TEKERLEK ASKI SİSTEMLERİ Yayların Görevi Yol düzgünsüzlüğü sonucu tekerlekler dönme hareketi yapmanın yanı sıra yukarı aşağı hareket ederler

Detaylı

(Mekanik Sistemlerde PID Kontrol Uygulaması - 1) SÜSPANSİYON SİSTEMLERİNİN PID İLE KONTROLÜ. DENEY SORUMLUSU Arş.Gör. Sertaç SAVAŞ

(Mekanik Sistemlerde PID Kontrol Uygulaması - 1) SÜSPANSİYON SİSTEMLERİNİN PID İLE KONTROLÜ. DENEY SORUMLUSU Arş.Gör. Sertaç SAVAŞ T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK LABORATUVARI 1 (Mekanik Sistemlerde PID Kontrol Uygulaması - 1) SÜSPANSİYON SİSTEMLERİNİN PID İLE KONTROLÜ DENEY

Detaylı

BÖLÜM 4 TEK SERBESTLİK DERECELİ SİSTEMLERİN HARMONİK OLARAK ZORLANMIŞ TİTREŞİMİ

BÖLÜM 4 TEK SERBESTLİK DERECELİ SİSTEMLERİN HARMONİK OLARAK ZORLANMIŞ TİTREŞİMİ BÖLÜM 4 TEK SERBESTLİK DERECELİ SİSTEMLERİN HARMONİK OLARAK ZORLANMIŞ TİTREŞİMİ Kaynaklar: S.S. Rao, Mechanical Vibrations, Pearson, Zeki Kıral Ders notları Mekanik veya yapısal sistemlere dışarıdan bir

Detaylı

TEKERLEK ASKI SİSTEMLERİ. Prof. Dr. N. Sefa KURALAY 1

TEKERLEK ASKI SİSTEMLERİ. Prof. Dr. N. Sefa KURALAY 1 TEKERLEK ASKI SİSTEMLERİ Prof Dr N Sefa KURALAY 1 TEKERLEK ASKI SİSTEMLERİ Araç kasisli yollarda kullanıldığında tekerleklerde darbeli kuvvetler ortaya çıkar Bu kuvvetler askı sistemi ve yaylar üzerinden

Detaylı

STABİLİZATÖRLER. Prof. Dr. N. Sefa KURALAY 1

STABİLİZATÖRLER. Prof. Dr. N. Sefa KURALAY 1 STABİLİZATÖRLER Prof Dr N Sefa KURALAY 1 STABİLİZATÖRLER Görevleri ve Uygulama Şekilleri Stabilizatörler, şasi veya karoserinin yalpa hareketini azaltmak ve aracın viraj davranışını iyileştirmek amacıyla

Detaylı

İÇİNDEKİLER. Bölüm 1 GİRİŞ

İÇİNDEKİLER. Bölüm 1 GİRİŞ İÇİNDEKİLER Bölüm 1 GİRİŞ 1.1 TAŞITLAR VE SOSYAL YAŞAM... 1 1.2 TARİHSEL GELİŞİM... 1 1.2.1 Türk Otomotiv Endüstrisi... 5 1.3 TAŞITLARIN SINIFLANDIRILMASI... 8 1.4 TAŞITA ETKİYEN KUVVETLER... 9 1.5 TAŞIT

Detaylı

MAKİNE ELEMANLARI DERS SLAYTLARI

MAKİNE ELEMANLARI DERS SLAYTLARI MAKİNE ELEMANLARI DERS SLAYTLARI AKSLAR VE MİLLER P r o f. D r. İ r f a n K A Y M A Z P r o f. D r. A k g ü n A L S A R A N A r ş. G ör. İ l y a s H A C I S A L İ HOĞ LU Dönen parça veya elemanlar taşıyan

Detaylı

Temel bilgiler-flipped Classroom Akslar ve Miller

Temel bilgiler-flipped Classroom Akslar ve Miller Makine Elemanları I Prof. Dr. İrfan KAYMAZ Temel bilgiler-flipped Classroom Akslar ve Miller İçerik Aks ve milin tanımı Akslar ve millerin mukavemet hesabı Millerde titreşim hesabı Mil tasarımı için tavsiyeler

Detaylı

DİŞLİ ÇARKLAR II: HESAPLAMA

DİŞLİ ÇARKLAR II: HESAPLAMA DİŞLİ ÇARLAR II: HESAPLAMA Prof. Dr. İrfan AYMAZ Atatürk Üniversitesi Mühendislik Fakültesi Makine Mühendisliği Bölümü Giriş Bu bölüm sonunda öğreneceğiniz konular: Dişli Çark uvvetleri Diş Dibi Gerilmeleri

Detaylı

Makine Elemanları I Prof. Dr. Akgün ALSARAN. Temel bilgiler-flipped Classroom Akslar ve Miller

Makine Elemanları I Prof. Dr. Akgün ALSARAN. Temel bilgiler-flipped Classroom Akslar ve Miller Makine Elemanları I Prof. Dr. Akgün ALSARAN Temel bilgiler-flipped Classroom Akslar ve Miller İçerik Giriş Temel kavramlar Sınıflandırma Aks ve mil mukavemet hesabı Millerde titreşim kontrolü Konstrüksiyon

Detaylı

YAYLAR. Bu sunu farklı kaynaklardan derlenmiştir.

YAYLAR. Bu sunu farklı kaynaklardan derlenmiştir. YAYLAR Gerek yapıldıktan malzemelerin elastiktik özellikleri ve gerekse şekillerinden dolayı dış etkenler (kuvvet, moment) altında başka makina elemanlarına kıyasla daha büyük bir oranda şekil değişikliğine

Detaylı

İÇİNDEKİLER. Bölüm 1 GİRİŞ

İÇİNDEKİLER. Bölüm 1 GİRİŞ İÇİNDEKİLER Bölüm 1 GİRİŞ 1.1 TAŞITLAR VE SOSYAL YAŞAM... 1 1.2 TARİHSEL GELİŞİM... 1 1.2.1 Türk Otomotiv Endüstrisi... 11 1.3 TAŞITLARIN SINIFLANDIRILMASI... 14 1.4 TAŞITA ETKİYEN KUVVETLER... 15 1.5

Detaylı

2009 Kasım. www.guven-kutay.ch MUKAVEMET DEĞERLERİ ÖRNEKLER. 05-5a. M. Güven KUTAY. 05-5a-ornekler.doc

2009 Kasım. www.guven-kutay.ch MUKAVEMET DEĞERLERİ ÖRNEKLER. 05-5a. M. Güven KUTAY. 05-5a-ornekler.doc 2009 Kasım MUKAVEMET DEĞERLERİ ÖRNEKLER 05-5a M. Güven KUTAY 05-5a-ornekler.doc İ Ç İ N D E K İ L E R 5. MUKAVEMET HESAPLARI İÇİN ÖRNEKLER...5.3 5.1. 1. Grup örnekler...5.3 5.1.1. Örnek 1, aturalı mil

Detaylı

BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering

BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering Uygulama Sorusu-1 Şekildeki 40 mm çaplı şaft 0 kn eksenel çekme kuvveti ve 450 Nm burulma momentine maruzdur. Ayrıca milin her iki ucunda 360 Nm lik eğilme momenti etki etmektedir. Mil malzemesi için σ

Detaylı

Prof. Dr. İrfan KAYMAZ

Prof. Dr. İrfan KAYMAZ Prof. Dr. İrfan KAYMAZ Mühendislik Fakültesi Makine Mühendisliği Bölümü Giriş Bu bölüm sonunda öğreneceğiniz konular: Kayış-kasnak mekanizmalarının türü Kayış türleri Meydana gelen kuvvetler Geometrik

Detaylı

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ 1 Bir otomobil lastiğinin basıncı, lastik içerisindeki havanın sıcaklığına bağlıdır Hava sıcaklığı 25 C iken etkin basınç 210 kpa dır Eğer lastiğin hacmi 0025

Detaylı

MAKİNE ELEMANLARI DERS SLAYTLARI

MAKİNE ELEMANLARI DERS SLAYTLARI MAKİNE ELEMANLARI DERS SLAYTLARI YORULMA P r o f. D r. İ r f a n K A Y M A Z P r o f. D r. A k g ü n A L S A R A N A r ş. G ör. İ l y a s H A C I S A L İ HOĞ LU Aloha Havayolları Uçuş 243: Hilo dan Honolulu

Detaylı

Disk frenler, kuvvet iletimi, konstrüksiyon, kampanalı frenler, kuvvet iletimi, konstrüksiyon, ısınma, disk ve kampanalı frenlerin karşılaştırılması

Disk frenler, kuvvet iletimi, konstrüksiyon, kampanalı frenler, kuvvet iletimi, konstrüksiyon, ısınma, disk ve kampanalı frenlerin karşılaştırılması Disk frenler, kuvvet iletimi, konstrüksiyon, kampanalı frenler, kuvvet iletimi, konstrüksiyon, ısınma, disk ve kampanalı frenlerin karşılaştırılması Hidrolik Fren Sistemi Sürtünmeli Frenler Doğrudan doğruya

Detaylı

Kuvvetler ve hareketler. Tanımlamalar. Bükülmeyle ilgili olarak esnek üstyapı

Kuvvetler ve hareketler. Tanımlamalar. Bükülmeyle ilgili olarak esnek üstyapı Kuvvetler ve hareketler ile ilgili genel bilgiler Kuvvetler ve hareketler ile ilgili genel bilgiler Şasi çerçevesi sürüş yöntemine ve yol yüzeyinin doğasına bağlı olarak farklı yönlerde güçlere maruz kalır.

Detaylı

Fizik 101: Ders 7 Ajanda

Fizik 101: Ders 7 Ajanda Fizik 101: Ders 7 Ajanda Sürtünme edir? asıl nitelendirebiliriz? Sürtünme modeli Statik & Kinetik sürtünme Sürtünmeli problemler Sürtünme ne yapar? Yeni Konu: Sürtünme Rölatif harekete karşıdır. Öğrendiklerimiz

Detaylı

MAKĠNE ELEMANLARI II REDÜKTÖR PROJESĠ

MAKĠNE ELEMANLARI II REDÜKTÖR PROJESĠ T.C PAMUKKALE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKĠNE ELEMANLARI II REDÜKTÖR PROJESĠ Öğrencinin; Adı: Cengiz Görkem Soyadı: DENGĠZ No: 07223019 DanıĢman: Doç. Dr. TEZCAN ġekercġoğlu

Detaylı

DİŞLİ ÇARKLAR I: GİRİŞ

DİŞLİ ÇARKLAR I: GİRİŞ DİŞLİ ÇARKLAR I: GİRİŞ Prof. Dr. İrfan KAYMAZ Mühendislik Fakültesi Makine Mühendisliği Bölümü Giriş Dişli Çarklar Bu bölüm sonunda öğreneceğiniz konular: Güç ve Hareket İletim Elemanları Basit Dişli Dizileri

Detaylı

Alt çerçeve ile etkileşim. Açıklama PGRT

Alt çerçeve ile etkileşim. Açıklama PGRT Açıklama Açıklama Etkileşimli bir alt çerçeve, dahili çerçevelerin iki farklı çerçeve yerine bir şasi çerçevesinin etkileşimine bağlı olduğu bir yapıdır. Etkileşimli bir alt çerçevenin, etkileşimsiz bir

Detaylı

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi MKM 308 Eşdeğer Noktasal Kütleler Teorisi Eşdeğer Noktasal Kütleler Teorisi Maddesel Nokta (Noktasal Kütleler) : Mekanikte her cisim zihnen maddesel noktalara ayrılabilir yani noktasal kütlelerden meydana

Detaylı

KAYMALI YATAKLAR-II RADYAL YATAKLAR

KAYMALI YATAKLAR-II RADYAL YATAKLAR Makine Elemanları 2 KAYMALI YATAKLAR-II RADYAL YATAKLAR Doç.Dr. Ali Rıza Yıldız 1 Bu Bölümden Elde Edilecek Kazanımlar Radyal yataklama türleri Sommerfield Sayısı Sonsuz Genişlikte Radyal Yatak Hesabı

Detaylı

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır.

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır. Bölüm 5: Hareket Yasaları(Özet) Önceki bölümde hareketin temel kavramları olan yerdeğiştirme, hız ve ivme tanımlanmıştır. Bu bölümde ise hareketli cisimlerin farklı hareketlerine sebep olan etkilerin hareketi

Detaylı

1. ŞASİ VE KAROSERİ TEKNİĞİ

1. ŞASİ VE KAROSERİ TEKNİĞİ 1. ŞASİ VE KAROSERİ TEKNİĞİ 1.1. ARAÇLARDA ŞASİ VE KAROSERİNİN TEMEL GÖREVLERİ VE ÖNEMİ Bu bölümde, otomobili meydana getiren elemanlara veya donanımlara kısaca yer verildikten ve otomobil tümüyle göz

Detaylı

AKM 205 BÖLÜM 6 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut

AKM 205 BÖLÜM 6 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut AKM 205 BÖLÜM 6 - UYGULAMA SORU VE ÇÖZÜMLERİ Doç.Dr. Ali Can Takinacı Ar.Gör. Yük. Müh. Murat Özbulut 1. Bir püskürtücü dirsek, 30 kg/s debisindeki suyu yatay bir borudan θ=45 açıyla yukarı doğru hızlandırarak

Detaylı

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: SORULAR-CEVAPLAR

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: SORULAR-CEVAPLAR MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: 1- (24 Puan) Şekildeki 5.08 cm çaplı 38.1 m uzunluğunda, 15.24 cm çaplı 22.86 m uzunluğunda ve 7.62 cm çaplı

Detaylı

600MG Model Mercedes-Benz OM 926 LA (FAZ III A) Tip 4 zamanlı, turbo şarjlı, direk enjeksiyonlu, intercooler su soğutmalı dizel motor Silindir sayısı 6 Sıra Piston Çapı ve Stroku 106 mm x 136 mm Motor

Detaylı

Şekil. Tasarlanacak mekanizmanın şematik gösterimi

Şekil. Tasarlanacak mekanizmanın şematik gösterimi Örnek : Düz dişli alın çarkları: Bir kaldırma mekanizmasının P=30 kw güç ileten ve çevrim oranı i=500 (d/dak)/ 300 (d/dak) olan evolvent profilli standard düz dişli mekanizmasının (redüktör) tasarlanması

Detaylı

Kuvvet. Kuvvet. Newton un 1.hareket yasası Fizik 1, Raymond A. Serway; Robert J. Beichner Editör: Kemal Çolakoğlu, Palme Yayınevi

Kuvvet. Kuvvet. Newton un 1.hareket yasası Fizik 1, Raymond A. Serway; Robert J. Beichner Editör: Kemal Çolakoğlu, Palme Yayınevi Kuvvet izik 1, Raymond A. Serway; Robert J. Beichner Editör: Kemal Çolakoğlu, Palme Yayınevi 2 Kuvvet Kuvvet ivmelenme kazandırır. Kuvvet vektörel bir niceliktir. Kuvvetler çift halinde bulunur. Kuvvet

Detaylı

DİŞLİ ÇARKLAR II. Makine Elemanları 2 HESAPLAMALAR. Doç.Dr. Ali Rıza Yıldız. BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering

DİŞLİ ÇARKLAR II. Makine Elemanları 2 HESAPLAMALAR. Doç.Dr. Ali Rıza Yıldız. BURSA TECHNICAL UNIVERSITY (BTU) Department of Mechanical Engineering Makine Elemanları 2 DİŞLİ ÇARKLAR II HESAPLAMALAR Doç.Dr. Ali Rıza Yıldız 1 Bu Bölümden Elde Edilecek Kazanımlar Dişli Çark Kuvvetleri Diş Dibi Gerilmeleri Mukavemeti Etkileyen Faktörler Yüzey Basıncı

Detaylı

MAKİNA ELEMANLAR I MAK Bütün Gruplar ÖDEV 2

MAKİNA ELEMANLAR I MAK Bütün Gruplar ÖDEV 2 MAKİNA ELEMANLAR I MAK 341 - Bütün Gruplar ÖDEV 2 Şekilde çelik bir mile sıkı geçme olarak monte edilmiş dişli çark gösterilmiştir. Söz konusu bağlantının P gücünü n dönme hızında k misli emniyetle iletmesi

Detaylı

BURSA TECHNICAL UNIVERSITY (BTU) 2 DİŞLİ ÇARKLAR I: GİRİŞ

BURSA TECHNICAL UNIVERSITY (BTU) 2 DİŞLİ ÇARKLAR I: GİRİŞ Makine Elemanları 2 DİŞLİ ÇARKLAR I: GİRİŞ 1 Bu bölümden elde edilecek kazanımlar Güç Ve Hareket İletim Elemanları Basit Dişli Dizileri Redüktörler Ve Vites Kutuları : Sınıflandırma Ve Kavramlar Silindirik

Detaylı

FRENLER SAKARYA ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-II DERS NOTU

FRENLER SAKARYA ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-II DERS NOTU FRENLER MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-II DERS NOTU Frenler 2 / 20 Frenler, sürtünme yüzeyli kavramalarla benzer prensiplere göre çalışan bir makine elemanı grubunu oluştururlar. Şu şekilde

Detaylı

MAK 4004 BİTİRME ÖDEVİ DERSİ PROJE ÖNERİSİ

MAK 4004 BİTİRME ÖDEVİ DERSİ PROJE ÖNERİSİ - ULUDAĞ ÜNİVERSİTESİ Form BTP-01 (1/) BAHAR 007-008 4/01/008 Taşıt Hareket Denklemlerinin Bilgisayar Yardımıyla Çözümü 1. Taşıta etkiyen kuvvetlerin belirlenmesi. Düz harekette taşıt hareket denklemlerinin

Detaylı

Çözüm: Borunun et kalınlığı (s) çubuğun eksenel kuvvetle çekmeye zorlanması şartından;

Çözüm: Borunun et kalınlığı (s) çubuğun eksenel kuvvetle çekmeye zorlanması şartından; Soru 1) Şekilde gösterilen ve dış çapı D 10 mm olan iki borudan oluşan çelik konstrüksiyon II. Kaliteli alın kaynağı ile birleştirilmektedir. Malzemesi St olan boru F 180*10 3 N luk değişken bir çekme

Detaylı

Değiştirilebilir yük taşıyıcıları

Değiştirilebilir yük taşıyıcıları Genel bilgiler Genel bilgiler Değiştirilebilir yük taşıyıcı, esnekliği arttıran ve araç için durma zamanını azaltan yük taşıyıcıyı hızlıca değiştirmek için kullanılır. Yük değiş tokuşunun en genel türü,

Detaylı

Toprak frezeleri. 15.10.2012 Prof.Dr.Rasim OKURSOY 1

Toprak frezeleri. 15.10.2012 Prof.Dr.Rasim OKURSOY 1 15.10.2012 Prof.Dr.Rasim OKURSOY 1 Toprak frezeleri, titreşimli dipkazanlar ve kuyruk mili tırmıkları ile birlikte hareketini traktörün kuyruk milinden alarak çalışan toprak işleme aletlerindendir. Birçok

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 3 Parçacık Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 3 Parçacık Dengesi Bu bölümde,

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 4

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY 4 BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK - 0 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY İÇİNDE SABİT SICAKLIKTA SİLİNDİRİK ISITICI BULUNAN DİKDÖRTGEN PRİZMATİK SAC KUTU YÜZEYLERİNDEN ZORLANMIŞ TAŞINIM

Detaylı

Devrilme stabilitesi ve damperli devrilme stabilitesi

Devrilme stabilitesi ve damperli devrilme stabilitesi Genel Genel Devrilme stabilitesi ve damperli devrilme stabilitesinin farklı tüleri vardır. Özellikle şunlar yer alır: Sürüş sırasında devrilme stabilitesi Devrilme sırasında devrilme stabilitesi Bir vinç

Detaylı

Sıkma sırasında oluşan gerilmeden öngerilme kuvvetini hesaplarız. Boru içindeki basınç işletme basıncıdır. Buradan işletme kuvvetini buluruz.

Sıkma sırasında oluşan gerilmeden öngerilme kuvvetini hesaplarız. Boru içindeki basınç işletme basıncıdır. Buradan işletme kuvvetini buluruz. Ø50 Şekilde gösterilen boru bağlantısında flanşlar birbirine 6 adet M0 luk öngerilme cıvatası ile bağlanmıştır. Cıvatalar 0.9 kalitesinde olup, gövde çapı 7,mm dir. Cıvatalar gövdelerindeki akma mukavemetinin

Detaylı

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ

OTOMATİK KONTROL SİSTEMLERİ. DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ OTOMATİK KONTROL SİSTEMLERİ DİNAMİK SİSTEMLERİN MODELLENMESİ ve ANALİZİ 1) İdeal Sönümleme Elemanı : a) Öteleme Sönümleyici : Mekanik Elemanların Matematiksel Modeli Basit mekanik elemanlar, öteleme hareketinde;

Detaylı

3. ŞASİ HASARLARININ ONARIM METOTLARI 3.1. ŞASİ YAPISINDAKİ DEFORMASYONLAR 1 Şasi çerçevelerinde başlangıçtan bu güne çok değişimler olmuştur.

3. ŞASİ HASARLARININ ONARIM METOTLARI 3.1. ŞASİ YAPISINDAKİ DEFORMASYONLAR 1 Şasi çerçevelerinde başlangıçtan bu güne çok değişimler olmuştur. 3. ŞASİ HASARLARININ ONARIM METOTLARI 3.1. ŞASİ YAPISINDAKİ DEFORMASYONLAR 1 Şasi çerçevelerinde başlangıçtan bu güne çok değişimler olmuştur. Bunda temel amaç şasinin dayanımını artırmaktır. Bu değişimler;

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

MİLLER ve AKSLAR SAKARYA ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-I DERS NOTU

MİLLER ve AKSLAR SAKARYA ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-I DERS NOTU MİLLER ve AKSLAR MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE ELEMANLARI-I DERS NOTU Miller ve Akslar 2 / 40 AKS: Şekil olarak mile benzeyen, ancak döndürme momenti iletmediği için burulmaya zorlanmayan, sadece eğilme

Detaylı

ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ OTOMOTİV MÜHENDİSLİĞİ BÖLÜMÜ

ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ OTOMOTİV MÜHENDİSLİĞİ BÖLÜMÜ ULUDAĞ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ OTOMOTİV MÜHENDİSLİĞİ BÖLÜMÜ OTO4003 OTOMOTİV MÜHENDİSLİĞİ LABORATUVARI DENEY FÖYÜ LAB. NO:.. DENEY ADI : SES İLETİM KAYBI DENEYİ 2017 BURSA 1) AMAÇ Bir malzemenin

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 14 Parçacık Kinetiği: İş ve Enerji Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 14 Parçacık

Detaylı

ASİSTAN ARŞ. GÖR. GÜL DAYAN

ASİSTAN ARŞ. GÖR. GÜL DAYAN ASİSTAN ARŞ. GÖR. GÜL DAYAN VİSKOZİTE ÖLÇÜMÜ Viskozite, bir sıvının iç sürtünmesi olarak tanımlanır. Viskoziteyi etkileyen en önemli faktör sıcaklıktır. Sıcaklık arttıkça sıvıların viskoziteleri azalır.

Detaylı

2009 Kasım. BANTLI FRENLER. 40-4d. M. Güven KUTAY. 40-4d-bantli-frenler.doc

2009 Kasım.  BANTLI FRENLER. 40-4d. M. Güven KUTAY. 40-4d-bantli-frenler.doc 009 Kasım BANTI RENER 40-4d M. Güven KUTAY 40-4d-bantli-frenler.doc İ Ç İ N D E K İ E R 4 renler... 4.3 4. ntlı frenlerler... 4.3 4..1 ntlı basit frenler... 4.3 4.. Çıkarmalı frenler... 4.6 4..3 Toplamalı

Detaylı

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele alınmıştı. Bu bölümde ise, eksenel yüklü elemanların şekil

Detaylı

YABANCI KUVVETLİ FREN SİSTEMLERİ

YABANCI KUVVETLİ FREN SİSTEMLERİ YABANCI KUVVETLİ FREN SİSTEMLERİ MEKANİK ve HAVALI FRENLER Prof. Dr. N. Sefa KURALAY 1 YABANCI KUVVETLİ FREN SİSTEMLERİ 1. Çarpmalı Mekanik Frenler ve Tasarım Esasları Çarpmalı fren sistemleri ağırlıklı

Detaylı

Kar Mücadelesi. Prof.Dr.Mustafa KARAŞAHİN

Kar Mücadelesi. Prof.Dr.Mustafa KARAŞAHİN Kar Mücadelesi Prof.Dr.Mustafa KARAŞAHİN Yüzey Kaplaması Yüzey Dokusu Kaplamanın yüzeysel dokusu ve pürüzlülüğü hem sürüş konforunu hem de sürüş emniyetini belirler. Kaplama yeterince düzgün ama gerekli

Detaylı

Beton pompalama kamyonları

Beton pompalama kamyonları Genel bilgiler Genel bilgiler Beton pompalama kamyonları hidrolik olarak kontrol edilen bir kol ile genellikle araçtan belirli bir mesafede olan yerlere beton pompalamak için kullanılır. Üstyapı torsiyonel

Detaylı

MEKANĠK TĠTREġĠMLER DENEYĠ

MEKANĠK TĠTREġĠMLER DENEYĠ MK-LB00 MEKNĠK TĠTREġĠMLER DENEYĠ. DENEYĠN MCI Mekanik titreşimler deneyi titreşim teorisi bilgilerinin daha iyi kavranmasına yardımcı olmak ve deneysel beceri kazandırmak amacıyla yapılmaktadır.. DENEY

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 kışkan Statiğine Giriş kışkan statiği (hidrostatik, aerostatik), durgun haldeki akışkanlarla

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 8 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 14 Kasım 1999 Saat: 18.20 Problem 8.1 Bir sonraki hareket bir odağının merkezinde gezegenin

Detaylı

METİN SORULARI. Hareket Cıvataları. Pim ve Perno Bağlantıları

METİN SORULARI. Hareket Cıvataları. Pim ve Perno Bağlantıları Hareket Cıvataları METİN SORULARI. Hareket cıvatalarını bağlama cıvataları ile karşılaştırınız ve özelliklerini anlatınız. 2. Hareket vidalarının verimi hangi esaslara göre belirlenir? Açıklayınız ve gereken

Detaylı

RULMANLI VE KAYMALI YATAKLARDA SÜRTÜNME VE DİNAMİK DAVRANIŞ DENEY FÖYÜ

RULMANLI VE KAYMALI YATAKLARDA SÜRTÜNME VE DİNAMİK DAVRANIŞ DENEY FÖYÜ T.C. ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ RULMANLI VE KAYMALI YATAKLARDA SÜRTÜNME VE DİNAMİK DAVRANIŞ DENEY FÖYÜ HAZIRLAYANLAR Prof. Dr. Erdem KOÇ Arş.Gör. Mahmut

Detaylı

2. Basınç ve Akışkanların Statiği

2. Basınç ve Akışkanların Statiği 2. Basınç ve Akışkanların Statiği 1 Basınç, bir akışkan tarafından birim alana uygulanan normal kuvvet olarak tanımlanır. Basıncın birimi pascal (Pa) adı verilen metrekare başına newton (N/m 2 ) birimine

Detaylı

WL32. Güçlü ufaklık: WL32

WL32. Güçlü ufaklık: WL32 WL32 Özel Tekerlekli Yükleyiciler Güçlü ufaklık: WL32 WL32 tekerlek yükleyici, dar makine eni sayesinde özellikle tüm dar alanlarda birinci sınıf iç sonuçları sağlar. Düşük geçit yüksekliği de onu yapı

Detaylı

BTÜ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI DERSİ

BTÜ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI DERSİ 1 BTÜ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI DERSİ ROTORLARDA STATİK VE DİNAMİKDENGE (BALANS) DENEYİ 1. AMAÇ... 2 2. GİRİŞ... 2 3. TEORİ... 3 4. DENEY TESİSATI... 4 5. DENEYİN YAPILIŞI... 7 6.

Detaylı

2. POTANSİYEL VE KİNETİK ENERJİ 2.1. CİSİMLERİN POTANSİYEL ENERJİSİ. Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir.

2. POTANSİYEL VE KİNETİK ENERJİ 2.1. CİSİMLERİN POTANSİYEL ENERJİSİ. Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir. BÖLÜM POTANSİYEL VE KİNETİK ENERJİ. POTANSİYEL VE KİNETİK ENERJİ.1. CİSİMLERİN POTANSİYEL ENERJİSİ Konumundan dolayı bir cismin sahip olduğu enerjiye Potansiyel Enerji denir. Mesela Şekil.1 de görülen

Detaylı

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.

Detaylı

TĠCARĠ ARAÇ GELĠġTĠRME PROJESĠ KAPSAMINDA DĠNAMĠK MODELĠN TESTLER ĠLE DOĞRULANMASI

TĠCARĠ ARAÇ GELĠġTĠRME PROJESĠ KAPSAMINDA DĠNAMĠK MODELĠN TESTLER ĠLE DOĞRULANMASI TĠCARĠ ARAÇ GELĠġTĠRME PROJESĠ KAPSAMINDA DĠNAMĠK MODELĠN TESTLER ĠLE DOĞRULANMASI Baki Orçun ORGÜL, Mustafa Latif KOYUNCU, Sertaç DĠLEROĞLU, Harun GÖKÇE Hexagon Studio Araç Mühendisliği Bölümü OTEKON

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

KAYIŞ-KASNAK MEKANİZMALARI

KAYIŞ-KASNAK MEKANİZMALARI KAYIŞ-KASNAK MEKANİZMALARI Müh.Böl. Makina Tasarımı II Burada verilen bilgiler değişik kaynaklardan derlemedir. Bir milden diğerine güç ve hareket iletmek için kullanılan mekanizmalardır. Döndürülen Eleman

Detaylı

TİCARİ ARAÇ GELİŞTİRME PROJESİ KAPSAMINDA DİNAMİK MODELİN TESTLER İLE DOĞRULANMASI

TİCARİ ARAÇ GELİŞTİRME PROJESİ KAPSAMINDA DİNAMİK MODELİN TESTLER İLE DOĞRULANMASI TİCARİ ARAÇ GELİŞTİRME PROJESİ KAPSAMINDA DİNAMİK MODELİN TESTLER İLE DOĞRULANMASI Baki Orçun ORGÜL, Mustafa Latif KOYUNCU, Sertaç DİLEROĞLU, Harun GÖKÇE Hexagon Studio Araç Mühendisliği Bölümü OTEKON

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

Kar Mücadelesi-Siperler. Prof.Dr.Mustafa KARAŞAHİN

Kar Mücadelesi-Siperler. Prof.Dr.Mustafa KARAŞAHİN Kar Mücadelesi-Siperler Prof.Dr.Mustafa KARAŞAHİN Yüzey Kaplaması Yüzey Dokusu Kaplamanın yüzeysel dokusu ve pürüzlülüğü hem sürüş konforunu hem de sürüş emniyetini belirler. Kaplama yeterince düzgün ama

Detaylı

3.1. Basınç 3. BASINÇ VE AKIŞKAN STATİĞİ

3.1. Basınç 3. BASINÇ VE AKIŞKAN STATİĞİ 3. BASINÇ VE AKIŞKAN STATİĞİ Doç.Dr. Serdar GÖNCÜ (Ağustos 2011) 3.1. Basınç Bir akışkan tarafından birim alana uygulanan normal kuvvete basınç denir Basınç birimi N/m 2 olup buna pascal (Pa) denir. 1

Detaylı

Hareket Kontrol Sistemleri Ders Notları. Namık Kemal Üniversitesi Hayrabolu Meslek Yüksek Okulu Öğretim Görevlisi Ahmet DURAK

Hareket Kontrol Sistemleri Ders Notları. Namık Kemal Üniversitesi Hayrabolu Meslek Yüksek Okulu Öğretim Görevlisi Ahmet DURAK Hareket Kontrol Sistemleri Ders Notları Namık Kemal Üniversitesi Hayrabolu Meslek Yüksek Okulu Öğretim Görevlisi Ahmet DURAK 1 Şasi ve Karoser Şasi ve Karoseri, otomobilin gövdesini oluşturur. Şasi çerçevesi

Detaylı

Fizik 101: Ders 23 Gündem

Fizik 101: Ders 23 Gündem Fizik 101: Ders 3 Gündem Basit Harmonik Hereket Yatay yay ve kütle Sinus ve cosinus lerin anlamı Düşey yay ve kütle Enerji yaklaşımı Basit sarkaç Çubuk sarkaç Basit Harmonik Hareket (BHH) Ucunda bir kütle

Detaylı

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu)

BÖLÜM I GİRİŞ (1.1) y(t) veya y(x) T veya λ. a t veya x. Şekil 1.1 Dalga. a genlik, T peryod (veya λ dalga boyu) BÖLÜM I GİRİŞ 1.1 Sinyal Bir sistemin durum ve davranış bilgilerini taşıyan, bir veya daha fazla değişken ile tanımlanan bir fonksiyon olup veri işlemde dalga olarak adlandırılır. Bir dalga, genliği, dalga

Detaylı

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ

T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ T.C. BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MIM331 MÜHENDİSLİKTE DENEYSEL METODLAR DERSİ 3 NOKTA EĞME DENEY FÖYÜ ÖĞRETİM ÜYESİ YRD.DOÇ.DR.ÖMER KADİR

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

Karayolu İnşaatı Çözümlü Örnek Problemler

Karayolu İnşaatı Çözümlü Örnek Problemler Karayolu İnşaatı Çözümlü Örnek Problemler 1. 70 km/sa hızla giden bir aracın emniyetle durabileceği mesafeyi bulunuz. Sürücünün intikal-reaksiyon süresi 2,0 saniye ve kayma-sürtünme katsayısı 0,45 alınacaktır.

Detaylı

Rijit Cisimlerin Dengesi

Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Rijit Cisimlerin Dengesi Bu bölümde, rijit cisim dengesinin temel kavramları ele alınacaktır: Rijit cisimler için denge denklemlerinin oluşturulması Rijit cisimler için serbest

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Öğr. Gör. Adem ÇALIŞKAN TEKNOLOJİNİN BİLİMSEL İLKELERİ 3 Malzemelerin esnekliği Gerilme Bir cisme uygulanan kuvvetin, kesit alanına bölümüdür. Kuvvetin yüzeye dik olması halindeki gerilme "normal gerilme" adını alır ve şeklinde

Detaylı

Beşinci tekerleğin takılması. Sabit beşinci tekerleğin takılması

Beşinci tekerleğin takılması. Sabit beşinci tekerleğin takılması Sabit beşinci tekerleğin takılması Sabit beşinci tekerleğin takılması Traktör fabrikadan gönderildiğinde, beşinci tekerlek 10.9 cıvatalarla montaj plakasına takılmıştır. Cıvatalar özel bir torka sıkılır.

Detaylı

OTOMOTİV TEKNOLOJİLERİ

OTOMOTİV TEKNOLOJİLERİ OTOMOTİV TEKNOLOJİLERİ Prof. Dr. Atatürk Üniversitesi, Mühendislik Fakültesi, Makina Mühendisliği Bölümü, Erzurum Bu hafta Şasi Sistemleri Tekerlekler ve Lastikler Süspansiyonlar Direksiyon Sistemleri

Detaylı

MA İNAL NA ARI A NDA ELE E K LE TRİK

MA İNAL NA ARI A NDA ELE E K LE TRİK 3.0.01 KALDIRMA MAKİNALARINDA ELEKTRİK DONANIMI VE ELEKTRİK MOTORU SEÇİMİ Günümüzde transport makinalarının bir çoğunda güç sistemi olarak elektrik tahrikli donanımlar kullanılmaktadır. 1 ELEKTRİK TAHRİKİNİN

Detaylı

Makine Elemanları I. Yorulma Analizi. Prof. Dr. İrfan KAYMAZ. Erzurum Teknik Üniversitesi. Mühendislik Fakültesi Makine Mühendisliği Bölümü

Makine Elemanları I. Yorulma Analizi. Prof. Dr. İrfan KAYMAZ. Erzurum Teknik Üniversitesi. Mühendislik Fakültesi Makine Mühendisliği Bölümü Makine Elemanları I Prof. Dr. İrfan KAYMAZ Mühendislik Fakültesi Makine Mühendisliği Bölümü Yorulma hasarı Aloha Havayolları Uçuş 243: Hilo dan Honolulu (Havai) Uçuşu Tarih: 28 Nisan 1988 Makine elemanlarının

Detaylı

TORNA TEZGAHINDA KESME KUVVETLERİ ANALİZİ

TORNA TEZGAHINDA KESME KUVVETLERİ ANALİZİ İMALAT DALI MAKİNE LABORATUVARI II DERSİ TORNA TEZGAHINDA KESME KUVVETLERİ ANALİZİ DENEY RAPORU HAZIRLAYAN Osman OLUK 1030112411 1.Ö. 1.Grup DENEYİN AMACI Torna tezgahı ile işlemede, iş parçasına istenilen

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ

BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNA MÜHENDİSLİĞİ LABORATUVARI DENEY - 3 ÜÇ NOKTALI EĞİLME DENEYİ GİRİŞ Yapılan herhangi bir mekanik tasarımda kullanılacak malzemelerin belirlenmesi

Detaylı

Alt şasi tasarım. Genel bilgiler. Alt şasi aşağıdaki amaçlar için kullanılabilir:

Alt şasi tasarım. Genel bilgiler. Alt şasi aşağıdaki amaçlar için kullanılabilir: Alt şasi aşağıdaki amaçlar için kullanılabilir: Yükü şasi çerçevesi üzerine düzgün bir şekilde dağıtmak için Tekerlekler ve çerçeve üzerinde dik duran diğer parçalar için boşluk sağlamak amacıyla Üstyapıyı

Detaylı

δ / = P L A E = [+35 kn](0.75 m)(10 ) = mm Sonuç pozitif olduğundan çubuk uzayacak ve A noktası yukarı doğru yer değiştirecektir.

δ / = P L A E = [+35 kn](0.75 m)(10 ) = mm Sonuç pozitif olduğundan çubuk uzayacak ve A noktası yukarı doğru yer değiştirecektir. A-36 malzemeden çelik çubuk, şekil a gösterildiği iki kademeli olarak üretilmiştir. AB ve BC kesitleri sırasıyla A = 600 mm ve A = 1200 mm dir. A serbest ucunun ve B nin C ye göre yer değiştirmesini belirleyiniz.

Detaylı

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM

YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM YAVAŞ DEĞİŞEN ÜNİFORM OLMAYAN AKIM Yavaş değişen akımların analizinde kullanılacak genel denklem bir kanal kesitindeki toplam enerji yüksekliği: H = V g + h + z x e göre türevi alınırsa: dh d V = dx dx

Detaylı

FL 3 DENEY 4 MALZEMELERDE ELASTĐSĐTE VE KAYMA ELASTĐSĐTE MODÜLLERĐNĐN EĞME VE BURULMA TESTLERĐ ĐLE BELĐRLENMESĐ 1. AMAÇ

FL 3 DENEY 4 MALZEMELERDE ELASTĐSĐTE VE KAYMA ELASTĐSĐTE MODÜLLERĐNĐN EĞME VE BURULMA TESTLERĐ ĐLE BELĐRLENMESĐ 1. AMAÇ Malzemelerde Elastisite ve Kayma Elastisite Modüllerinin Eğme ve Burulma Testleri ile Belirlenmesi 1/5 DENEY 4 MAZEMEERDE EASTĐSĐTE VE KAYMA EASTĐSĐTE MODÜERĐNĐN EĞME VE BURUMA TESTERĐ ĐE BEĐRENMESĐ 1.

Detaylı

Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ. Bölüm 4: Kapalı Sistemlerin Enerji Analizi

Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ. Bölüm 4: Kapalı Sistemlerin Enerji Analizi Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ 1 Amaçlar Özellikle otomobil motoru ve kompresör gibi pistonlu makinelerde yaygın olarak karşılaşılan hareketli sınır işi veya PdV işi olmak üzere değişik iş biçimlerinin

Detaylı

ÖDEV SETİ 4. 1) Aşağıda verilen şekillerde her bir blok 5 kg olduğuna göre yaylı ölçekte ölçülen değerler kaç N dir.

ÖDEV SETİ 4. 1) Aşağıda verilen şekillerde her bir blok 5 kg olduğuna göre yaylı ölçekte ölçülen değerler kaç N dir. ÖDEV SETİ 4 1) Aşağıda verilen şekillerde her bir blok 5 kg olduğuna göre yaylı ölçekte ölçülen değerler kaç N dir. 2) a) 3 kg lık b) 7 kg lık blok iki ip ile şekildeki gibi bağlanıyor, iplerdeki gerilme

Detaylı

MAK 305 MAKİNE ELEMANLARI-1

MAK 305 MAKİNE ELEMANLARI-1 MAK 305 MAKİNE ELEMANLARI-1 5.BÖLÜM Bağlama Elemanları Kaynak Bağlantıları Doç.Dr. Ali Rıza Yıldız 1 BU SLAYTTAN EDİNİLMESİ BEKLENEN BİLGİLER Bağlama Elemanlarının Tanımı ve Sınıflandırılması Kaynak Bağlantılarının

Detaylı

OTOMOTİV TEKNOLOJİLERİ

OTOMOTİV TEKNOLOJİLERİ OTOMOTİV TEKNOLOJİLERİ Prof. Dr. Atatürk Üniversitesi, Mühendislik Fakültesi, Makina Mühendisliği Bölümü, Erzurum Bu bölümde 1. Direnç a. Aerodinamik b. Dinamik, yuvarlanma c. Yokuş 2. Tekerlek tahrik

Detaylı

MAKİNE ELEMANLARI - II ÖRNEK SORULAR VE ÇÖZÜMLERİ

MAKİNE ELEMANLARI - II ÖRNEK SORULAR VE ÇÖZÜMLERİ MAKİNE ELEMANLARI - II ÖRNEK SORULAR VE ÇÖZÜMLERİ KAYMALI YATAKLAR ÖRNEK: Bir buhar türbininde kullanılan eksenel Michell yatağına gelen toplam yük F=38000 N, n=3540 dev/dk, d=210 mm, D=360 mm, lokma sayısı

Detaylı

R d N 1 N 2 N 3 N 4 /2 /2

R d N 1 N 2 N 3 N 4 /2 /2 . SÜREKLİ TEELLER. Giriş Kolon yüklerinin büyük ve iki kolonun birbirine yakın olmasından dolayı yapılacak tekil temellerin çakışması halinde veya arsa sınırındaki kolon için eksantrik yüklü tekil temel

Detaylı

Makine Elemanları II Prof. Dr. Akgün ALSARAN. Konik Dişli Çarklar DİŞLİ ÇARKLAR

Makine Elemanları II Prof. Dr. Akgün ALSARAN. Konik Dişli Çarklar DİŞLİ ÇARKLAR Makine Elemanları II Prof. Dr. Akgün ALSARAN Konik Dişli Çarklar DİŞLİ ÇARKLAR İçerik Giriş Konik dişli çark mekanizması Konik dişli çark mukavemet hesabı Konik dişli ark mekanizmalarında oluşan kuvvetler

Detaylı

Aks ağırlığı hesaplamaları. Aks ağırlık hesaplamaları hakkında genel bilgiler

Aks ağırlığı hesaplamaları. Aks ağırlık hesaplamaları hakkında genel bilgiler Aks ağırlık hesaplamaları hakkında genel bilgiler Kamyonları kullanan tüm taşıma tipleri, fabrikadan tedarik edilen şasinin belli bir üstyapı tarafından desteklenmesini gerektirir. Aks ağırlık hesaplamaları

Detaylı