Optoelektronik Ara Sınav-Çözümler

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Optoelektronik Ara Sınav-Çözümler"

Transkript

1 Optelektk Aa Sıav-Çöümle s (.57 ) Su : Dğusal laak kutuplamış ışık ç elektk ala 5 π + t + ( + ) 5 velmekted. uada ala gelğ ˆ ˆ se bu ışık dalgasıı, a) aetk alaı (vektöel) ç b fade tüet ( pua) b) Otamı kıılma ds buluu ( pua) şeklde Çöüm: π + t + φ 5 s (.57 ) 5 π π k 7 6 m fafakı k( ) d π e d 5 π 5 sπ (.57 + t + d ) sπ ( t ) 5 π 5 sπ (.57 + t + ed ) sπ ( t ) ˆ ˆ 5 + sπ (.57 + t + φ) ˆ ˆ ˆ 5 ˆ 5 + sπ ( t 7.74) sπ ( t 7.87) lektk Ala bleşe π s( ωt k. + φ) s( πν t ( + ) + φ) ˆ ˆ ˆ 4 π 8 ( k)s 4π t ( + ) + φ) aetk Ala bleşe k t ı k (, ) (, ) ˆ (, ) (, ) ˆ (, ) (, ) ˆ + k Optelektk, Aa Sıav-Çöümle /9

2 ı k (, ) ˆ (, ) ˆ (, ) (, ) ˆ + k π ˆ ˆ ˆ 4 π 8 ( k)s 4π t ( ) φ) t π k ˆ t π dt ˆ ˆ 4 8 ( ) s 4π ( ) φ) π ˆ ˆ ˆ 4 8 ( )s 4 ( ) ) k t π π φ π ˆ ˆ ˆ 4 π 8 ( k)s 4π t ( ) φ) Su : Delektk tesöü + laak vele ptk tamda +-öüde lelee ışık ç ödeğe (kıılma dsle) ve öduumlaı (kutuplama dğultulaı) buluu. ( pua) Çöüm: ( ) ~ ~ ( δ k k ) δ ~ k ~ k kˆ kˆ k% k% () mats luştuulusa Ödeğele: det ( )( ) ( ) ( )( ) Optelektk, Aa Sıav-Çöümle /9

3 ( ) det ± R + R + L L + + ( + ) ( + ) / / R L / / / / ( + ) ( + ) + ( ) ( ) R L + ( ) ( ) / / R L / Öfksla: + R Daesel kutuplu ışık L Optelektk, Aa Sıav-Çöümle /9

4 Daesel kutuplu Su : Kıılma ds şeklde vele tek eksel b kstal ( :,6584, e :,4864) kullaılaak 55 m dalgablu ışığı elektk ala bleşele aasıda kadalık b ptk l fakı luştuulmak ste. u duumda ışık; a) Optk ekse (e) dğultusuda (θ ) (5 pua) b) Optk ekse (e) le 45 (θ45 ) ( pua) ) Optk eksee (e) dk (θ9 ) (5 pua) açıla apaak şeklde lelese kstal kalılığı ve ışığı kstale gmede öe kutuplama dğultusu e lmalıdı? Çöüm: -ışıı le e-ışıı aasıdak l fakıı luşablmes ç fa fakıı π lması geekmekted. ptk fa fakı π L el π π e L bsluk bsluk a) Optk ekse (e) dğultusuda (θ ) Optk ekse dğultusuda gele ışık tek b kıılma ds göeeğde ptk l fakı OLUŞTURULAAZ! b) Optk ekse le (θ45 ) e (a) e (e) θ (b) () Optelektk, Aa Sıav-Çöümle 4/9

5 Optk ekse le (θ45 ) gele ışığı b bleşe göeeğ kıılma ds :,6584, dğe se s (45 ) s (45 ) , 48 ( θ 45 ) (, 6584) (, 4864) e ' e.5654 Işığı bleşele sıası le,6584, ' e,5654 kıılma dsle göeeklede bleşele aasıda fa fakı luştuablmek ç ışığı elektk alaı (kutuplama dğultusu) hem hılı eksede ( e ) hem de avaş eksede ( ) lmalıdı. u duumda ptk fa fakı maksmum lu. şluk dalgabu sde kalılık L bsluk bsluk bsluk L, (, 9) e ) Optk eksee dk (θ9 ) Optk ekse le (θ9 ) gele ışığı bleşele sıası le,6584, e,4864 kıılma dsle göeeklede bleşele aasıda fa fakı luştuablmek ç ışığı elektk alaı (kutuplama) hem hılı eksede hem de avaş eksede lmalıdı. u duumda ptk fa fakı maksmum lu. şluk dalgabu sde kalılık L bsluk buluu. bsluk bsluk L 5,8 (,7) e bsluk Su 4: Optk ekse dğultusuda la tek eksel (, e) LNbO kstal ç; a) Kıılma ds elpsd ç ( pua) b) ptk ekse (-ekse) dğultusuda ugulaa elektk alaı (,, ) suuda kıılma dsde luşaak değşm hesaplaıı. Çöüm: m smetk kstal apıla tek eksel lup (sadee b ptk ekse) elektk alaı kluğuda asal ekse (,,) bua kıılma ds ellpsd ( () (), () (), () () e ) şeklde velebl. + + e e Optelektk, Aa Sıav-Çöümle 5/9

6 lk mats Çelge 9. dek tgal m smet göstee maleme ç ugulaa dış elektk alaı e geel duumu ç kıılma ds elpsd elde edl. ( ) l lk k 5 k 5 > e (9.7) (a) lektk ala (,, ) dğultusuda uguladığıda alıı kıılma ds elpsdde bu katsaıla kullaılısa e hal le kıılma ds elpsd e (9.8) şekl alı. u fadede çapa temle (,, ) lmadığı ç kdat döüşümüe geek kalmada e kıılma ds değele buluabl. Asal ekse bua la kıılma ds değele + ( ) + ( ) + ( ) e şeklde lk kada değşmşt. lektk alaa bağlı laak kıılma dsdek değşm, elekt-ptk sabtle küçük lduğuda (m açılımı (+) -/ -) kıılma dsle bast fmda Optelektk, Aa Sıav-Çöümle 6/9

7 ( ) ( ) ( ) e e elektk ala sde fade edlebl. Göüldüğü gb ptk ekse bua ugulaa elektk ala kstal tek eksellk öellğ değştmede sadee mal ( ) ve amal ( e ) kıılma ds değele sıası le ve kada aalmıştı. (e) (e) (½) e e (½) (½) e (a) (b) Su 5: A dülemde düşe ekse le φ45 lk açı apa ve dğusal laak kutuplamış ışık sıası le, ugu şeklde eleştlmş tam dalga plakası, hılı ekse ata (-dğultusu) dğultuda la çeek dalga plakası ve sağ el öüde daesel kutuplaııda geçeek D düleme gelmekted. A D φ C tam dalga plakası ua göe a), C ve D ktalaıda ışığı kutupluluk duumu ed? ( pua) Optelektk, Aa Sıav-Çöümle 7/9 çeek dalga plakası sağ el daesel kutuplaıı

8 b) Optk elemalaı eşdeğe Jes mats ed? ( pua) Çöüm: a) ktasıda ışığı kutupluluk duumu ed? A dülemdek dalgaı Jes vektö göstem A Tam dalga plakası ışığı kutuplama dğultusuu değştmeeeğde A dülemdek dalgaı kutuplama dğultusu le aı laaktı. Tam dalga plakası ç Jes mats. A +. + C ktasıda ışığı kutupluluk duumu ed? C dülemdek ışığı kutupluluk duumu ışığı plakaa gmede öek Jes vektöü le çeek dalga plakasıı temsl ede ugu Jes mats le çapılaak elde edlebl C Çeek dalga plakasıı hılı ekse ata dğultuda (-dğultusu) lduğuu duumda Jes mats 4. 4 C. Dalga C ktasıda sl el dğultusuda daesel kutuplamıştı. b) Işığı D dülemdek s kutuplama duumu e lu? Daesel kutuplaıı ç Jes mats Sagl Daesel D. + Göüldüğü gb D dülemde ışığı hçb ala bleşe ktu! A Optelektk, Aa Sıav-Çöümle 8/9 C D φ

9 D ktasıda elektk alaı hç b bleşe buluma a D dülemde ışık şddet sıfıdı! ) Optk elemalaı eşdeğe Jes mats ed? ( ).( ).( ) sdeğe Sagl Daesel / 4 sdeğe... + şdeğe Jes mats le ukadak suçu elde etmee çalışısak. D sdeğe A D ( sdeğe )( ). + Yukaıdak suç le aı! Optelektk, Aa Sıav-Çöümle 9/9

FZM450 Elektro-Optik. 7.Hafta. Fresnel Eşitlikleri

FZM450 Elektro-Optik. 7.Hafta. Fresnel Eşitlikleri FZM45 leko-ok 7.Hafa Feel şlkle 28 HSaı 1 7. Hafa De İçeğ Feel şlkle Yaıma Kıılma lekomayek dalgaı dalga özellkle kullaaak ışığı faklı kıılma de ah yüzeydek davaışı celeecek 28 HSaı 2 Feel şlkle-1 Şekldek

Detaylı

Fresnel Denklemleri. 2008 HSarı 1

Fresnel Denklemleri. 2008 HSarı 1 Feel Deklemle 8 HSaı 1 De İçeğ Aa Yüzeyde Mawell Deklemle Feel şlkle Yaıma Kıılma 8 HSaı Kayak(la Oc ugee Hech, Alfed Zajac Addo-Weley,199 Kuaum leko-diamğ (KDİ, Rchad Feyma, (Çev. Ömü Akyuz, NAR Yayılaı,

Detaylı

FZM450 Elektro-Optik. 6.Hafta. Işığın Kutuplanması

FZM450 Elektro-Optik. 6.Hafta. Işığın Kutuplanması FZM450 lektr-optk 6.Hafta Işığın Kutuplanması 008 HSarı 6. Hafta Ders İçerğ Dalga Plakaları Çerek Dalga Plakası Yarım Dalga Plakası Tam Dalga Plakası Işığın Kutuplanması Dğrusal Kutupluluk Daresel Kutuplanma

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER 4 TANIMLAYICI İSTATİSTİKLER 4.. Mekez Eğlm Ölçüle 4... Atmetk Otalama 4... Ağılıklı Atmetk Otalama 4... Geometk Otalama 4..4. Hamok Otalama 4..5 Kuadatk Otalama 4..6. Medya 4..7. Katlle 4..8. Decle ve

Detaylı

8. Ders Kristal Ortamda Işık

8. Ders Kristal Ortamda Işık 8. Des Kistal Otamda Işı (e) - φ 1 Bu bölümü bitidiğinide, Opti istalle, Kistal tamda Mawell denlemlei, Nmal ve anmal ıılma indisi, Çiftıılma, Opti esen, Dalga plaalaı nulaında bilgi sahibi lacasını. Seiinci

Detaylı

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007)

MEKANİK TİTREŞİMLER. (Dynamics of Machinery, Farazdak Haideri, 2007) MEKANİK TİTREŞİMLER TİTREŞİM ÖLÇÜMÜ: Titeşim ölçümü oldukça kapsamlı bi koudu ve mekaik, elektik ve elektoik bilgisi içeiklidi. Titeşim ölçümleide titeşim geliği (ye değiştime-displacemet, hız-velocity

Detaylı

ZAMAN DOMENİNDE SONLU FARKLAR METODU İLETEK BOYUTLU YAPILARDA ELEKTROMANYETİK DALGA YAYILIMININ SİMÜLASYONU

ZAMAN DOMENİNDE SONLU FARKLAR METODU İLETEK BOYUTLU YAPILARDA ELEKTROMANYETİK DALGA YAYILIMININ SİMÜLASYONU UBMK :. ULUSAL BİLİŞİM-MULTİMDYA KONFRANSI 76 ZAMAN DOMNİND SONLU FARKLAR MTODU İLTK BOYUTLU YAPILARDA LKTROMANYTİK DALGA YAYILIMININ SİMÜLASYONU Yavu ROL asa. BALIK eol@fia.edu. balik@fia.edu. Fıa Üivesiesi

Detaylı

ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK

ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK ÖABT ÖĞRETMENLİK ALAN BİLGİSİ MATEMATİK DENEME SINAVI ÇÖZÜMLERİ ÖĞRETMENLİK ALAN BİLGİSİ DENEME SINAVI / çözümlei. DENEME. Veile öemelede yalız III kesi olaak doğudu. Bu edele doğu cevap seçeeği B di..

Detaylı

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B-Grubu 2014-2015 Bahar Yarıyılı Bölüm-II 25.02.2015 Ankara. Aysuhan OZANSOY

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B-Grubu 2014-2015 Bahar Yarıyılı Bölüm-II 25.02.2015 Ankara. Aysuhan OZANSOY FİZ10 FİZİK-II Ankaa Ünvestes Fen Fakültes Kmya Bölümü B-Gubu 014-015 Baha Yaıyılı Bölüm-II 5.0.015 Ankaa Aysuhan OZANSOY Bölüm : Elektk Alan 1. Elektk Alan. Elektk Alan Çzgle 3. Süekl Yük Dağılımlaı 4.

Detaylı

FZM450 Elektro-Optik. 2. Hafta. Işığın Elektromanyetik Tanımlanması-1: Boşlukta Elektromanyetik Dalgalar

FZM450 Elektro-Optik. 2. Hafta. Işığın Elektromanyetik Tanımlanması-1: Boşlukta Elektromanyetik Dalgalar FZM45 lektr-optik. Hafta Işığın lektrmanetik Tanımlanması-1: Bşlukta lektrmanetik Dalgalar 8 HSarı 1 . Hafta Ders İçeriği Mawell Denklemleri Bşlukta Mawell denklemleri ve çöümleri Işığı luşturan elektrik

Detaylı

Faiz oranının rastlantı değişkeni olması durumunda tam hayat ve dönem sigortaları

Faiz oranının rastlantı değişkeni olması durumunda tam hayat ve dönem sigortaları wwwsascleog İsasçle Degs 009-8 İsasçle Degs Fa oaıı aslaı değşe olması duumuda am haya ve döem sgoalaı sa Saıcı Haceee Üveses Fe Faüles İsas Bölümü eelago@haceeeedu Cea dem Haceee Üveses Fe Faüles üeya

Detaylı

Nesrin ALPTEKĐN 1, Emel ŞIKLAR 2

Nesrin ALPTEKĐN 1, Emel ŞIKLAR 2 Tük Hsse Seed Emekllk Yatıım Folaıı Çok Ktel Pefomas Değeledmes: Topsıs Metodu N.Alptek, E.Şıkla Tük Hsse Seed Emekllk Yatıım Folaıı Çok Ktel Pefomas Değeledmes: Topsıs Metodu Nes ALPTEKĐN 1, Emel ŞIKLAR

Detaylı

BÖLÜM 2 D YOT MODELLER

BÖLÜM 2 D YOT MODELLER BÖLÜM YOT MOELLER.1. Bi diyodu liee olmaya davaıı lei yöde kutulamı bi joksiyouu akım-geilim kaakteistii gei bi bölgede ekil-.1 deki gibi üstel bi deiim göstei. cak, geek küçük geekse büyük akımlaa dou

Detaylı

KARMAŞIK SAYILAR. Derse giriş için tıklayın...

KARMAŞIK SAYILAR. Derse giriş için tıklayın... KARMAŞIK SAYILAR Derse grş çn tıklayın A Tanım B nn Kuvvetler C İk Karmaşık Sayının Eştlğ D Br Karmaşık Sayının Eşlenğ E Karmaşık Sayılarda Dört İşlem Toplama - Çıkarma Çarpma Bölme F Karmaşık Dülem ve

Detaylı

AB YE ÜYE ÜLKELERİN VE TÜRKİYE NİN EKONOMİK PERFORMANSLARINA GÖRE VIKOR YÖNTEMİ İLE SIRALANMASI

AB YE ÜYE ÜLKELERİN VE TÜRKİYE NİN EKONOMİK PERFORMANSLARINA GÖRE VIKOR YÖNTEMİ İLE SIRALANMASI İstabul Tcaet Üvestes Sosyal Blmle Degs Yıl: Sayı: Baha 0 / s.455-468 AB YE ÜYE ÜLKELERİN VE TÜRKİYE NİN EKONOMİK PERFORMANSLARINA GÖRE VIKOR YÖNTEMİ İLE SIRALANMASI Üal H. ÖZDEN 6 ÖZET Çalışmada, AB ye

Detaylı

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTİ

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTİ ĞLK MEKEZİ VE LN TLET MMENTİ 1 1. ĞLK MEKEZİ (CENTD) ğılık meke paalel kuvvetleen otaa çıkan geometk kavamı. Yalnıca paalel kuvvetle ağılık meke vaı. ğılık meke fksel csmn vea paçacıkla sstemnn tüm ağılığının

Detaylı

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER Bölüm 5 Olasılık ve Olasılık Dağılışlaı Doç.D. Suat ŞAHİNLE Olasılık ve Olasılık Dağılışlaı Olasılık: Eşit saşla meydaa gele tae olayda A taesi A olayı olsu. Bu duumda A olayıı meydaa gelme olasılığı;

Detaylı

Sonlu Elemanlar Yöntemini Kullanarak Asenkron Motorun Hız-Moment Karakteristiğinin Elde Edilmesi

Sonlu Elemanlar Yöntemini Kullanarak Asenkron Motorun Hız-Moment Karakteristiğinin Elde Edilmesi Fıat Ünv. Fen ve üh. Bl. De. Scence and Eng. J. of Fıat Unv. 7 (4), 699-707, 005 7 (4), 699-707, 005 Sonlu Elemanla Yöntemn Kullanaak Aenkon otoun Hız-oment Kaaktetğnn Elde Edlme A. Gökhan YETGİN ve A.

Detaylı

VEKTÖRLER 1. BÖLÜM. Vektörel Büyüklüğün Matematiksel Tanımı : u = AB yada u ile gösterilir.

VEKTÖRLER 1. BÖLÜM. Vektörel Büyüklüğün Matematiksel Tanımı : u = AB yada u ile gösterilir. . BÖLÜM VEKTÖRLER Tanım:Matematik, istatistik, mekanik, gibi çeşitli bilim dallaında znlk, alan, hacim, yoğnlk, kütle, elektiksel yük, gibi büyüklükle, cebisel kallaa göe ifade edilile. B tü çoklklaa Skale

Detaylı

Nokta (Skaler) Çarpım

Nokta (Skaler) Çarpım Nokta (Skale) Çapım Statikte bazen iki doğu aasındaki açının, veya bi kuvvetin bi doğuya paalel ve dik bileşenleinin bulunması geeki. İki boyutlu poblemlede tigonometi ile çözülebili, ancak 3 boyutluda

Detaylı

Bölüm 30. Biot-Savart Yasası Giriş. Biot-Savart Yasası Gözlemler. Biot-Savart Yasası Kurulum. Serbest Uzayın Geçirgenliği. Biot-Savart Yasası Denklem

Bölüm 30. Biot-Savart Yasası Giriş. Biot-Savart Yasası Gözlemler. Biot-Savart Yasası Kurulum. Serbest Uzayın Geçirgenliği. Biot-Savart Yasası Denklem it-savat Yasası Giiş ölüm 30 Manyetik Alan Kaynaklaı it ve Savat, elektik akımının yakındaki bi mıknatısa uyguladığı kuvvet hakkında deneyle yaptı Uzaydaki bi nktada akımdan ilei gelen manyetik alanı veen

Detaylı

Başlangıç değerleri. olduğundan iterasyona devam!

Başlangıç değerleri. olduğundan iterasyona devam! ESKİŞEHİR OSMANGAZİ ÜNİVERSİESİ Mühedl Mmlı Fülte İşt Mühedlğ Bölümü E-Pot: ogu.hmet.topcu@gml.com Web: http://mmf.ogu.edu.t/topcu Blgy Detel Nüme Alz De otlı Ahmet OPÇU m X X X.5.5.5.5.75 -.5.5.875.75

Detaylı

HOMOJEN OLMAYAN MALZEMEDEN YAPILMIŞ İÇİ DOLU DÖNEN DİSKLERİN ELASTİK-PLASTİK GERİLME ANALİZİ

HOMOJEN OLMAYAN MALZEMEDEN YAPILMIŞ İÇİ DOLU DÖNEN DİSKLERİN ELASTİK-PLASTİK GERİLME ANALİZİ Gaz Ünv. Müh. Mm. Fa. De. J. Fac. ng. Ach. Gaz Unv. Clt 3 No 3 67-635 8 Vol 3 No 3 67-635 8 HOMOJN OLMAAN MALZMDN APLMŞ İÇİ DOLU DÖNN DİSKLRİN LASTİK-PLASTİK GRİLM ANALİZİ Ahmet N. RASLAN Tunç APATA* ve

Detaylı

ATOM MODELLER THOMSON ATOM MODEL. -parçacığının sapma açısı, ( ) ; tan θ = k. q α.q ç 1. 2 2.E k b

ATOM MODELLER THOMSON ATOM MODEL. -parçacığının sapma açısı, ( ) ; tan θ = k. q α.q ç 1. 2 2.E k b ATOM MODLLR THOMSON ATOM MODL TOR ; Bu modele göe atom yaklaşık 10 10 mete çaplı bi küe şeklidedi. Pozitif yükle bu küe içie düzgü olaak Dağıtılmıştı. Negatif yüklü elektola ise küe içide atomu leyecek

Detaylı

GaAs-TABANLI FİBER GLAS VE LAZERLERDE KILAVUZLANMIŞ ELEKTROMANYETİK ALAN MODLARININ ÖZELLİKLERİNİN İNCELENMESİ

GaAs-TABANLI FİBER GLAS VE LAZERLERDE KILAVUZLANMIŞ ELEKTROMANYETİK ALAN MODLARININ ÖZELLİKLERİNİN İNCELENMESİ P A M U K K A L Ü N İ V R S İ T S İ M Ü H N D İ S L İ K F A K Ü L T S İ P A M U K K A L U N I V R S I T Y N G I N R I N G C O L L G M Ü H N D İ S L İ K B İ L İ M L R İ D R G İ S İ J O U R N A L O F N G

Detaylı

ANALOG MODÜLASYON BENZETİMİ

ANALOG MODÜLASYON BENZETİMİ ANALOG MODÜLASYON BENZETİMİ Modülasyon: Çeşitli kaynaklar tarafından üretilen temel bant sinyalleri kanalda doğrudan iletim için uygun değildir. Bu nedenle, gönderileek bilgi işareti, iletim kanalına uygun

Detaylı

FIRÇASIZ DOĞRU AKIM MOTORUN SAYISAL İŞARET İŞLEMCİ TABANLI KONUM DENETİMİ

FIRÇASIZ DOĞRU AKIM MOTORUN SAYISAL İŞARET İŞLEMCİ TABANLI KONUM DENETİMİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K B İ L İ MLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 2006 : 12 : 1 : 37-41

Detaylı

θ A **pozitif dönüş yönü

θ A **pozitif dönüş yönü ENT B Kuvvetn B Noktaa Göe oment o o d θ θ d.snθ o..snθ d. **poztf dönüş önü noktasına etk eden hehang b kuvvetnn noktasında medana geteceğ moment o ; ı tanımlaan e vektöü le kuvvet vektöünün vektöel çapımıdı.

Detaylı

İLERLEYEN TÜR TİP-II SAĞDAN SANSÜRLÜ ÖRNEKLEME DAYALI DÜZGÜN DAĞILIMIN PARAMETRELERİNİN JACKKNİFE TAHMİN EDİCİSİ

İLERLEYEN TÜR TİP-II SAĞDAN SANSÜRLÜ ÖRNEKLEME DAYALI DÜZGÜN DAĞILIMIN PARAMETRELERİNİN JACKKNİFE TAHMİN EDİCİSİ ooet ve İtatt Sayı: 5-9 İSTANBUL ÜNİVSİTSİ İKTİSAT FAKÜLTSİ KONOMTİ V İSTATİSTİK DGİSİ İLLYN TÜ TİP-II SAĞDAN SANSÜLÜ ÖNKLM DAYALI DÜZGÜN DAĞILIMIN PAAMTLİNİN JACKKNİF TAHMİN DİCİSİ D. Coşu Kuş Bu aale

Detaylı

ASTRONOTİK DERS NOTLARI 2014

ASTRONOTİK DERS NOTLARI 2014 YÖRÜNGE MEKANİĞİ Yöüngeden Hız Hesabı Küçük bi cismin yöüngesi üzeinde veilen hehangi bi noktadaki hızı ve bu hızın doğultusu nedi? Uydu ve çekim etkisinde bulunan cisim (Ye, gezegen, vs) ikili bi sistem

Detaylı

Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble.

Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble. 1 Rastgele Süreçler Olasılık taması Rastgele Deney Çıktı Örnek Uzay, S (s) Zamanın Fonksiy onu (t, s) Olayları Tanımla Rastgele süreç konsepti (Ensemble) deney (t,s 1 ) 1 t Örnek Fonksiyonlar (t,s ) t

Detaylı

İKTİSATÇILAR İÇİN MATEMATİK

İKTİSATÇILAR İÇİN MATEMATİK Kostadi Teçevski Aeta Gatsovska Naditsa İvaovska Yovaka Teçeva Smileski İKTİSATÇILAR İÇİN MATEMATİK DÖRT YILLIK MESLEKİ OKULLARA AİT SINIF IV İKTİSAT - HUKUK MESLEĞİ EKONOMİ TEKNİSYENİ Deetleyele: D. Bilyaa

Detaylı

DENEY 4: Genlik Modülasyonu Uygulamaları

DENEY 4: Genlik Modülasyonu Uygulamaları DENEY 4: Genlik Mdülasynu Uygulamalaı AMAÇ: Genlik Mdülasynlu işaetlein elde edilmesi ve demdülasyn aşamalaının inelenmesi ÖN ÇALIŞMA Bilgi işaetinin, iletim kanalından veimli iletimi için uygun biçime

Detaylı

BÖLÜM 2 GAUSS KANUNU

BÖLÜM 2 GAUSS KANUNU BÖLÜM GAUSS KANUNU.1. ELEKTRİK AKISI Elektik akısı, bi yüzeyden geçen elektik alan çizgileinin sayısının bi ölçüsüdü. Kapalı yüzey içinde net bi yük bulunduğunda, yüzeyden geçen alan çizgileinin net sayısı

Detaylı

Kutu Poblemlei (Tekalı Kombiasyo) c) faklı dağıtılabili! Özdeş üç kutuya pay, pay, pay dağıtımı yapılısa; pay ala kutuu diğeleiyle ola özdeşliği bozul

Kutu Poblemlei (Tekalı Kombiasyo) c) faklı dağıtılabili! Özdeş üç kutuya pay, pay, pay dağıtımı yapılısa; pay ala kutuu diğeleiyle ola özdeşliği bozul Kutu Poblemlei (Tekalı Kombiasyo) KUTU PROBLEMLERİ Bu kouyu öekle üzeide iceleyeek geellemele elde edelim Öek a) faklı ese, kutuya pay, kutuya pay ve kutuya pay olacak şekilde kaç faklı dağıtılabili? b)

Detaylı

2. Ders Boşlukta Elektromanyetik (Işık) Dalga

2. Ders Boşlukta Elektromanyetik (Işık) Dalga . Des Bşluta letmanyeti (Işı) Dalga (,t) y H(,t), t Bu bölümü bitidiğinide, Mawell denlemleini sağlayan eleti ve manyeti alanlaın lasi dalga denlemini sağladığı; dalganın bşlutai yayılma hıının ışı hıına

Detaylı

KUVVET SİSTEMLERİ KUVVET. Vektörel büyüklük. - Kuvvetin büyüklüğü - Kuvvetin doğrultusu - Kuvvetin uygulama noktası - Kuvvetin yönü. Serbest vektör.

KUVVET SİSTEMLERİ KUVVET. Vektörel büyüklük. - Kuvvetin büyüklüğü - Kuvvetin doğrultusu - Kuvvetin uygulama noktası - Kuvvetin yönü. Serbest vektör. İ.T.Ü. aka akültes ekak Aa Blm Dalı STATİK - Bölüm KUVVET SİSTELEİ KUVVET Vektörel büyüklük - Kuvvet büyüklüğü - Kuvvet doğrultusu - Kuvvet uygulama oktası - Kuvvet yöü S = (,,..., ) = + +... + = Serbest

Detaylı

AC Makinaların armatüründe endüklenen gerilim hesabı:

AC Makinaların armatüründe endüklenen gerilim hesabı: AC Makinalaın amatüünde endüklenen geilim heabı: E m f N temel fmülünü bi iletken için uygulaken N / laak düşünülü ve he hamnik için ayı ayı heaplanı: E nm /iletken f n n lup, buadaki n. hamnik fekanı

Detaylı

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÜÇ CİSİMLİ KABLOLU UYDU SİSTEMİNİN DİNAMİĞİ YÜKSEK LİSANS TEZİ. Müh.

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÜÇ CİSİMLİ KABLOLU UYDU SİSTEMİNİN DİNAMİĞİ YÜKSEK LİSANS TEZİ. Müh. İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÜÇ CİSİMLİ KABLOLU UYDU SİSTEMİNİN DİNAMİĞİ YÜKSEK LİSANS TEZİ Müh. Ehan TOPAL Anablm Dalı : Uçak ve Uzay Mühendslğ Pogamı : Dsplnle Aası Pogam HAZİRAN

Detaylı

FZM450 Elektro-Optik. 9.Hafta

FZM450 Elektro-Optik. 9.Hafta FZM450 Elektr-Optik 9.Hafta şığın Mdülasynu 008 HSarı 1 9. Hafta Ders İçeriği Temel Mdülatör Kavramları LED ışık mdülatörler Elektr-ptik mdülatörler Akust-Optik mdülatörler Raman-Nath Tipi Mdülatörler

Detaylı

ü ü üü ş ş ş Ü ÜÜ ü ü üü ş ü ş ş ö ç ş ş ç ş ü ü ü ç ç ş ü ş ş ü ü ü ö ş ö ş ö ş ş ç ş ü ş ç ş Ç ç Ü öü ü ü üü ü ü üü ç ş ç ş ö ö ü ç ş ç ş ş ö ç ş ö

ü ü üü ş ş ş Ü ÜÜ ü ü üü ş ü ş ş ö ç ş ş ç ş ü ü ü ç ç ş ü ş ş ü ü ü ö ş ö ş ö ş ş ç ş ü ş ç ş Ç ç Ü öü ü ü üü ü ü üü ç ş ç ş ö ö ü ç ş ç ş ş ö ç ş ö ş ü ş ü ü üü ü ş ö ş ş ö Ü ş ş ş ö Ç ö öü ö ö Ç ş ş ş ö ç ç ş ş ş ş ü ç ş ö ü ü ü üü ş ş ş Ü ÜÜ ü ü üü ş ü ş ş ö ç ş ş ç ş ü ü ü ç ç ş ü ş ş ü ü ü ö ş ö ş ö ş ş ç ş ü ş ç ş Ç ç Ü öü ü ü üü ü ü üü ç ş ç

Detaylı

EN KÜÇÜK KARELER VE TOPLAM EN KÜÇÜK KARELER YÖNTEMLERİ İLE DEFORMASYON ANALİZİ

EN KÜÇÜK KARELER VE TOPLAM EN KÜÇÜK KARELER YÖNTEMLERİ İLE DEFORMASYON ANALİZİ MMO Hata ve Kadasto Mühedsle Odası. üke Hata lmsel ve ekk Kuultaı 5 Maıs 9, kaa EN KÜÇÜK KELE VE OPLM EN KÜÇÜK KELE YÖNEMLEİ İLE DEFOMSYON NLİZİ M. ca,. a, O. kılma İÜ, İstabul ekk Üvestes, Jeode ve Fotogamet

Detaylı

GaAs-TABANLI FİBER GLAS VE LAZERLERDE KILAVUZLANMIŞ ELEKTROMANYETİK ALAN MODLARININ ÖZELLİKLERİNİN İNCELENMESİ

GaAs-TABANLI FİBER GLAS VE LAZERLERDE KILAVUZLANMIŞ ELEKTROMANYETİK ALAN MODLARININ ÖZELLİKLERİNİN İNCELENMESİ PMUKKL ÜNİ VRSİ TSİ MÜHNDİ SLİ K FKÜLTSİ PMUKKL UNIVRSITY NGINRING COLLG MÜHNDİ SLİ K Bİ L İ MLRİ DRGİ S İ JOURNL OF NGINRING SCINCS YIL CİLT SYI SYF : 999 : 5 : - : 47-5 Gas-TBNLI FİBR GLS V LZRLRD KILVUZLNMIŞ

Detaylı

MÜHENDİSLİK MEKANİĞİ DİNAMİK DERS NOTLARI

MÜHENDİSLİK MEKANİĞİ DİNAMİK DERS NOTLARI MÜHENDİSLİK MEKNİĞİ DİNMİK DERS NOTLR Ya. Doç. D. Hüsein aıoğlu EKİM 00 İSTNUL İçindekile 1 İRİŞ EKTÖREL NLİZ.1 ektö fonksionu. ektö fonksionunun tüevi.3 ektö fonksionunun integali 3 EĞRİLERDE DİFERNSİYEL

Detaylı

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = 0.100 mm T = 70 C l d. olduğu biliniyor. Buradan

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = 0.100 mm T = 70 C l d. olduğu biliniyor. Buradan ÖRNEK 00 mm çapında, 00 mm uzunluğundaki bi kaymalı yatakta, muylu 900 d/dk hızla dönmekte kn bi adyal yükle zolanmaktadı. Radyal boşluğu 0.00 mm alaak AE 0, 0, 0 40 yağlaı güç kayıplaını hesaplayınız.

Detaylı

Bölüm 6: Dairesel Hareket

Bölüm 6: Dairesel Hareket Bölüm 6: Daiesel Haeket Kaama Soulaı 1- Bi cismin süati değişmiyo ise hızındaki değişmeden bahsedilebili mi? - Hızı değişen bi cismin süati değişi mi? 3- Düzgün daiesel haekette cismin hızı değişi mi?

Detaylı

Özet: Açısal momentumun türetimi. Açısal momentum değiştirme bağıntıları. Artırıcı ve Eksiltici İşlemciler Kuantum Fiziği Ders XXI

Özet: Açısal momentumun türetimi. Açısal momentum değiştirme bağıntıları. Artırıcı ve Eksiltici İşlemciler Kuantum Fiziği Ders XXI Özet: Açısal momentumun türetimi Açısal momentum değiştirme bağıntıları Levi- Civita simgesi Genel olarak, L x, L y, L z, nin eşzamanlı özdurumları yoktur L 2 ve bir bileşeni (L z ) nin eşzamanlı özdurumlarıdır.

Detaylı

IŞIĞIN KIRILMASI BÖLÜM 27

IŞIĞIN KIRILMASI BÖLÜM 27 ŞĞ RAS BÖÜ 7 ODE SORU DE SORUAR ÇÖZÜER 4 9 = = & = 9 5 = = & = 5 = = = 9 5 3 5 olur,, ortamlarıı kırılma idisleri arasıda > > ilişkisi vardır 5 V ESE YAYAR V V,, ortamlarıı kırılma idisleri arasıda > >

Detaylı

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit Karadez Te Üverstes Blgsayar Mühedslğ Bölümü 5-6 Güz Yarıyılı Sayısal Çözümleme Ara Sıav Soruları Tarh: Kasım 5 Perşembe Süre: daa. f ( ( + a e fosyouu sabt otası olmadığı bldğe göre, a 'ı alableceğ e

Detaylı

1. GAZLARIN DAVRANI I

1. GAZLARIN DAVRANI I . GZLRIN DRNI I İdeal Gazlar ç: lm 0 RT İdeal gazlar ç: RT Hacm() basıçla() değşk sıcaklıklarda değşm ekl.. de gösterlmştr. T >T 8 T T T 3 asıç T 4 T T 5 T 7 T 8 Molar Hacm ekl.. Gerçek br gazı değşk sıcaklıklardak

Detaylı

3. EŞPOTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ. Bir çift elektrot tarafından oluşturulan elektrik alan ve eş potansiyel çizgilerini görmek.

3. EŞPOTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ. Bir çift elektrot tarafından oluşturulan elektrik alan ve eş potansiyel çizgilerini görmek. 3. EŞPOTNSİYEL VE ELEKTRİK LN ÇİZGİLERİ MÇ i çift elektot taafından oluştuulan elektik alan ve eş potansiyel çizgileini gömek. RÇLR Güç kaynağı Galvanomete Elektot (iki adet) Pob (iki adet) İletken sıvı

Detaylı

RADYAL EPİTÜREVLERİN BAZI ÖZELLİKLERİ ÜZERİNE BİR ARAŞTIRMA

RADYAL EPİTÜREVLERİN BAZI ÖZELLİKLERİ ÜZERİNE BİR ARAŞTIRMA ISSN:306-3 e-joual of New Wold Scieces Academ 009 Volume: 4 Numbe: 4 Aticle Numbe: 3A006 PHSIAL SIENES eceived: abua 009 Accepted: Septembe 009 Seies : 3A ISSN : 308-7304 009 www.ewwsa.com Goca İceoğlu

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS OR ENGINEERS: STATICS edinand P. Bee E. Russell Johnston, J. Des Notu: Hai ACAR İstanbul Teknik Üniveistesi Tel: 285 31 46 / 116 E-mail: acah@itu.edu.t Web: http://atlas.cc.itu.edu.t/~acah

Detaylı

Evrensel kuvvet - hareket eşitlikleri ve güneş sistemi uygulaması

Evrensel kuvvet - hareket eşitlikleri ve güneş sistemi uygulaması Evensel kuvvet - haeket eşitliklei ve güneş sistemi uygulaması 1. GİRİŞ Ahmet YALÇIN A-Ge Müdüü ESER Taahhüt ve Sanayi A.Ş. Tuan Güneş Bulvaı Cezayi Caddesi 718. Sokak No: 14 Çankaya, Ankaa E-posta: ayalcin@ese.com

Detaylı

T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İKİ BOYUTTA ETKİLEŞEN TUZAKLANMIŞ AŞIRI SOĞUK BOZONLAR

T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İKİ BOYUTTA ETKİLEŞEN TUZAKLANMIŞ AŞIRI SOĞUK BOZONLAR T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İKİ BOYUTTA ETKİLEŞEN TUZAKLANMIŞ AŞIRI SOĞUK BOZONLAR Al hsan MEŞE DOKTORA TEZİ FİZİK ANABİLİM DALI Danışman :. Pof. D. Eol OKAN. Pof.D. Zeha AKDENİZ EDİRNE

Detaylı

DÝFERANSÝYEL DENKLEMLER ( Genel Tekrar Testi-1) KPSS MATEMATÝK

DÝFERANSÝYEL DENKLEMLER ( Genel Tekrar Testi-1) KPSS MATEMATÝK DÝFERANSÝYEL DENKLEMLER ( Genel Teka Testi-). Aşağıdaki difeansiel denklemlein hangisinin mete - besi (basamağı, sıası) tü?. Aşağıdaki difeansiel denklemlein hangisinin mete - besi (basamağı, sıası) ve

Detaylı

5 ÖABT / MTL ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG. 678 ( sin + cos )( sin- cos )( sin+ cos ) lim sin- cos " = lim ( sin+ cos ) = bulunu. ". # # I = sin d = sin sin d sin = u sin d = dv du = sin : cos

Detaylı

11. z = 1 2i karmaşık sayısının çarpmaya göre tersinin eşleniğinin sanal kısmı kaçtır? 14. eşitliğini sağlayan z karmaşık sayısı kaçtır? 15.

11. z = 1 2i karmaşık sayısının çarpmaya göre tersinin eşleniğinin sanal kısmı kaçtır? 14. eşitliğini sağlayan z karmaşık sayısı kaçtır? 15. GD. + se Re() + Im()? www.gkhandemr.rg, 007 Cebr Ntları Gökhan DEMĐR, gdemr@yah.cm.tr Karmaşık sayılar 9. + + sayısı kaça eşttr? 7 890. ( x y) + + ( x + y) se x + y tplamı kaçtır?. x + y ( x) ve se y kaçtır?.

Detaylı

Çok Parçalı Basınç Çubukları

Çok Parçalı Basınç Çubukları Çok Parçalı Basınç Çubukları Çok parçalı basınç çubukları gnl olarak k gruba arılır. Bunlar; a) Sürkl brlşk parçalardan oluşan çok parçalı basınç çubukları b) Parçaları arasında aralık bulunan çok parçalı

Detaylı

IŞIK VE GÖLGE BÖLÜM 24

IŞIK VE GÖLGE BÖLÜM 24 IŞI VE GÖLGE BÖLÜM 24 MODEL SORU 1 DE SORULARIN ÇÖÜMLER MODEL SORU 2 DE SORULARIN ÇÖÜMLER 1 1 Dünya Ay Günefl 2 2 Bu olay ışı ğın fak lı say am o la a fak lı hız la a yayıl ı ğı nı açık la ya maz Şe kil

Detaylı

1. Düğüm noktası ve eleman tabloları hazırlanır.

1. Düğüm noktası ve eleman tabloları hazırlanır. Yapı tatğ - Mats Ye Değştme Yöntemne Gş / Doç DBlgeDOAN Öne : Şelde göülen sstem Mats Deplasman Yöntem le, velen dış yüle çn çözülmüş ve ç uvvetle hesaplanmıştı x Nm N N N/m z N/m m m EI Nm,EA 7 N Düğüm

Detaylı

YÖNETMELİK. N-(2-Nitro-4-aminophenyl)-allylamine (HC Red No 16) ve tuzları. (a) % 12 H 2 O 2 (40volume), mevcut veya açığa çıkan

YÖNETMELİK. N-(2-Nitro-4-aminophenyl)-allylamine (HC Red No 16) ve tuzları. (a) % 12 H 2 O 2 (40volume), mevcut veya açığa çıkan 1 Nsa 2013 PAZARTESİ Resmî Gazete Sayı : 28605 Türkye İlaç ve Tıbb Chaz Kurumu: YÖNETMELİK KOZMETİK YÖNETMELİĞİNDE DEĞİŞİKLİK YAPILMASINA DAİR YÖNETMELİK MADDE 1 23/5/2005 tarhl ve 25823 sayılı Resmî Gazete

Detaylı

Elektromanyetik Dalga Teorisi

Elektromanyetik Dalga Teorisi 84 lkomank Dalga Tos DRS-4 Kapl Oamda Dülm Dalgala Düşük Kapl Dlkkl İ İlknl Gup Güç v n Dülm Dalgalan Dülm Snlaa Dk Glş Kapl Oamda Dülm Dalgala ğ b oam lkn s lkk alann valğndan dola = akm akacak Bu duumda;

Detaylı

BASAMAK TİPİ DEVRE YAPISI İLE ALÇAK GEÇİREN FİLTRE TASARIMI

BASAMAK TİPİ DEVRE YAPISI İLE ALÇAK GEÇİREN FİLTRE TASARIMI BASAMAK TİPİ DEVRE YAPISI İE AÇAK GEÇİREN FİTRE TASARIMI Adnan SAVUN 1 Tugut AAR Aif DOMA 3 1,,3 KOÜ Mühendislik Fakültesi, Elektonik ve abeleşme Müh. Bölümü 41100 Kocaeli 1 e-posta: adnansavun@hotmail.com

Detaylı

Basit Makineler Çözümlü Sorular

Basit Makineler Çözümlü Sorular Basit Makinele Çözümlü Soula Önek 1: x Çubuk sabit makaa üzeinde x kada haeket ettiilise; makaa kaç tu döne? x = n. n = x/ olu. n = sabit makaanın dönme sayısı = sabit makaanın yaıçapı Önek : x Çubuk x

Detaylı

BÖLÜM 2 VİSKOZ OLMAYAN SIKIŞTIRILAMAZ AKIMIN ESASLARI

BÖLÜM 2 VİSKOZ OLMAYAN SIKIŞTIRILAMAZ AKIMIN ESASLARI ÖLÜM İSKOZ OLMAYAN SIKIŞTIRILAMAZ AKIMIN ESASLARI. Açısal hı, otisite e Sikülasyon. otisitenin eğişme Hıı.3 Sikülasyonun eğişme Hıı Kelin Teoemi.4 İotasyonel Akım Hı Potansiyeli.5 ida Üeindeki e Sonsudaki

Detaylı

Dumlupınar Üniversitesi Sosyal Bilimler Dergisi Sayı 36 Nisan 2013

Dumlupınar Üniversitesi Sosyal Bilimler Dergisi Sayı 36 Nisan 2013 Dumlupına Ünvestes Sosyal Blmle Degs Sayı 36 Nsan 23 VERİ ZARFLAMA ANALİZİ İLE TÜRKİYE DE GIDA İMALATI YAPAN FİRMALARIN ETKİNLİKLERİNİN ÖLÇÜLMESİ Selahattn YAVUZ Yd.Doç.D., Ezncan Ünvestes İktsad ve İda

Detaylı

30. Uzay çerçeve örnek çözümleri

30. Uzay çerçeve örnek çözümleri . Ua çerçeve örnek çöümleri. Ua çerçeve örnek çöümleri Ua çerçeve eleman sonlu elemanlar metodunun en karmaşık elemanıdır. Bunun nedenleri: ) Her eleman için erel eksen takımı seçilmesi gerekir. Elemanın

Detaylı

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x. 4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 2. yapılırsa bu durumda θ ya z nin esas argümenti denir ve Argz ile gösterilir. argz = Argz + 2nπ, n Z

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 2. yapılırsa bu durumda θ ya z nin esas argümenti denir ve Argz ile gösterilir. argz = Argz + 2nπ, n Z MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 1.. Kutupsal Formda Gösterim z x + iy vektörünün pozitif reel eksenle yaptığı açıya θ diyelim. cos θ x, sin θ y ve buradan tan θ y θ arctan y olup θ ya z z

Detaylı

Düzlem Elektromanyetik Dalgalar

Düzlem Elektromanyetik Dalgalar Düzlem Elektromanetik Dalgalar Düzgün Düzlem Dalga: E nin, (benzer şekilde H nin) aılma önüne dik sonsuz düzlemlerde, anı öne, anı genliğe ve anı faza sahip olduğu özel bir Maxwell denklemleri çözümüdür.

Detaylı

FİBERGLAS, YARIİLETKEN LAZERLER VE KAZANÇ SABİTİ

FİBERGLAS, YARIİLETKEN LAZERLER VE KAZANÇ SABİTİ P A M U K K A L E Ü N İ V E R S İ T E S İ M Ü H E N D İ S L İ K F A K Ü L T E S İ P A M U K K A L E U N I V E R S I T Y E N G I N E E R I N G C O L L E G E M Ü H E N D İ S L İ K B İ L İ M L E R İ D E R

Detaylı

Havayolu Yolcu Taşıma İşletmelerinin Finansal Etkinliklerinin Ölçümüne İlişkin Bir Araştırma

Havayolu Yolcu Taşıma İşletmelerinin Finansal Etkinliklerinin Ölçümüne İlişkin Bir Araştırma Ulslaaası Alaya İşletme Fakültes Degs Iteatoal Joal of Alaya Faclty of Bsess Yıl:23, C:5, S:2, s. 77-86 Yea:23, Vol:5, No:2, s. 77-86 Haayol Yolc Taşıma İşletmele Fasal Etklkle Ölçümüe İlşk B Aaştıma A

Detaylı

VERĠ ZARFLAMA ANALĠZĠ ĠLE TÜRKĠYE NĠN BÖLGESEL EKO- ETKĠNLĠĞĠNĠN ARAġTIRILMASI. Muğla Üniversitesi, İktisat Bölümü, 48000-Muğla, ckone@mu.edu.

VERĠ ZARFLAMA ANALĠZĠ ĠLE TÜRKĠYE NĠN BÖLGESEL EKO- ETKĠNLĠĞĠNĠN ARAġTIRILMASI. Muğla Üniversitesi, İktisat Bölümü, 48000-Muğla, ckone@mu.edu. VERĠ ZARFLAMA ANALĠZĠ ĠLE TÜRKĠYE NĠN BÖLGESEL EKO- ETKĠNLĠĞĠNĠN ARAġTIRILMASI Al Çğde KÖNE Mğla Üvestes, İktsat Bölüü, 48000-Mğla, ckoe@.ed.t Eko-etklk südüülebllk aalzlede kllaıla ve doğal çeve üzedek

Detaylı

TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2.

TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2. AIŞIRMAAR 8 BÖÜM R ÇÖZÜMER R cos N 4N 0 4sin0 N M 5d d N ve 4N luk kuv vet lein çu bu ğa dik bi le şen le i şekil de ki gi bi olu nok ta sı na gö e top lam tok; τ = 6 4sin0 + cos4 = 4 + 4 = Nm Çubuk yönde

Detaylı

ÇOK FAZLI DEVRELER EBE-212, Ö.F.BAY 1

ÇOK FAZLI DEVRELER EBE-212, Ö.F.BAY 1 ÇOK FAL DERELER EBE-212, Ö.F.BAY 1 Üç Fazlı Devreler EBE-212, Ö.F.BAY 2 Eğer gerilim kaynaklarının genlikleri aynı ve aralarında 12 faz farkı var ise böyle bir kaynağa dengeli üç fazlı gerilim kaynağı

Detaylı

Bir Kompleks Sayının n inci Kökü.

Bir Kompleks Sayının n inci Kökü. Prof.Dr.Hüsy ÇAKALLI Br Komplks Sayıı c Kökü. hrhag br sab doğal sayı olmak ür, br komplks sayıı c kökü, c kuvv bu sayıya ş ola komplks sayıdır. ( r(cos s olsu v (cos s dylm. Bu akdrd ( [ (cos s] dr v

Detaylı

Theoretical Investigation of Water-Gas Shift Reaction with Four Components Using Fick System

Theoretical Investigation of Water-Gas Shift Reaction with Four Components Using Fick System Süleyman emel Ünestes, Fen Blmle Ensttüsü egs, - (00),- Fck Sstemn Kullanaak öt Bleşenl Su-Gaz eğşm Reaksyonunun füzyon Katsayılaının eoksel İncelenmes MURA ÖZÜRK, İBRAHİM ÜÇGÜ, NURİ ÖZEK Süleyman emel

Detaylı

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl aksarayl@deu.edu.tr Yer Ölçüler (Merkez Eğlm Ölçüler)

Detaylı

Akköse, Ateş, Adanur. Matris Yöntemleri ile dış etkilerden meydana gelen uç kuvvetlerinin ve uç yerdeğiştirmelerinin belirlenmesinde;

Akköse, Ateş, Adanur. Matris Yöntemleri ile dış etkilerden meydana gelen uç kuvvetlerinin ve uç yerdeğiştirmelerinin belirlenmesinde; MATRİS ÖNTEMER 1. GİRİŞ Matrs öntemler; gerçek sürekl apının erne, matrs bçmnde ade edleblen blnen atalet (elemslk) ve elastklk öellklerne sahp sonl büüklüktek apısal elemanlardan olşan matematksel br

Detaylı

Bölüm I Sinyaller ve Sistemler

Bölüm I Sinyaller ve Sistemler - Güz Haberleşme Sisemleride emel Bilgiler Güz - uay ERŞ. Haa Bölüm I Siyaller ve Sisemler emel Bilgiler Siyaller ve Sııladırılması Güç ve Eerji Furier Serileri Furier rasrmu ve Özellikleri Dira Dela Fksiyu

Detaylı

Kuadratik Yüzeyler Uzayda İkinci Dereceden Yüzeyler

Kuadratik Yüzeyler Uzayda İkinci Dereceden Yüzeyler İÇİNDEKİLER Kuadratik Yüeler Uada İkinci Dereceden Yüeler 1 0.1. Elipsoid 2 0.2. Hiperboloid 4 0.2.1. Tek Kanatlı Hiperboloid 4 0.2.2. Çift Kanatlı Hiperboloid 4 0.3. Paraboloid 5 0.3.1. Eliptik Paraboloid

Detaylı

BURSA HAFİF RAYLI TAŞIMA SİSTEMİ İÇİN AKIM KAYNAKLI AKTİF GÜÇ FİLTRESİ UYGULAMASI

BURSA HAFİF RAYLI TAŞIMA SİSTEMİ İÇİN AKIM KAYNAKLI AKTİF GÜÇ FİLTRESİ UYGULAMASI BURSA HAFİF RAYLI TAŞIMA SİSTEMİ İÇİN AKIM KAYNAKLI AKTİF GÜÇ FİLTRESİ UYGULAMASI A.Teciyanlı*, O.Uçak*, T.Kılınç*, R.Çına, İ.Özkan *TÜBİTAK-UZAY ODTÜ/ANKARA, BURULAŞ, Nilüfe/BURSA alpe.teciyanli@uzay.tubitak.gov.t

Detaylı

İ İ İ İ İ İ İ İ İ İ İ İ ö ç ç ü Ş ö ö ç ç ö ç Ö ö ç ü Ö ö İ ü ö Ö İ ü ö ç ö ö ç ö ö ö ü ü ü ç ö ö ü ö ü ü ü ü ü ö ü ö ü ö ö Ö ö ü ö ç ü ö ö ö ö Ö Ö ç ç ç ü ö İ İç çü ö ç ü ö ç ö ö ö İ ç ç ç ç ç ö ö ö ç

Detaylı

Adı ve Soyadı : Nisan 2011 No :... Bölümü :... MÜHENDİSLİK FAKÜLTESİ ARA SINAV SORULARI

Adı ve Soyadı : Nisan 2011 No :... Bölümü :... MÜHENDİSLİK FAKÜLTESİ ARA SINAV SORULARI Adı ve Soydı :................ 16 Nisn 011 No :................ Bölümü :................ MÜHENDİSLİK FAKÜLTESİ ARA SINAV SORULARI 1) Aşğıdkile hngisi/hngilei doğudu? I. Coulomb yssındki Coulomb sbiti k

Detaylı

TEBLİĞ. Enerji Piyasası Düzenleme Kurumundan: PERAKENDE SATIŞ HİZMET GELİRİ İLE PERAKENDE ENERJİ SATIŞ FİYATLARININ DÜZENLENMESİ HAKKINDA TEBLİĞ

TEBLİĞ. Enerji Piyasası Düzenleme Kurumundan: PERAKENDE SATIŞ HİZMET GELİRİ İLE PERAKENDE ENERJİ SATIŞ FİYATLARININ DÜZENLENMESİ HAKKINDA TEBLİĞ 30 Aalık 2012 PAZAR Resmî Gazee Sayı : 28513 (2. Mükee) TEBLİĞ Eeji Piyasası Düzeleme Kmda: PERAKENDE SATIŞ HİZMET GELİRİ İLE PERAKENDE ENERJİ SATIŞ FİYATLARININ DÜZENLENMESİ HAKKINDA TEBLİĞ BİRİNCİ BÖLÜM

Detaylı

Ç Ç Ö Ç Ç Ç Ç Ç Ş Ö «Ü Ç Ş Ü Ç Ç

Ç Ç Ö Ç Ç Ç Ç Ç Ş Ö «Ü Ç Ş Ü Ç Ç Ö Ğ Ç Ü Ü Ç Ç Ç Ö Ü Ü Ü Ü ÖÜ» Ç Ş Ş Ö Ç Ğ Ü Ü Ç Ç Ö Ç Ç Ç Ç Ç Ş Ö «Ü Ç Ş Ü Ç Ç Ş Ş «Ş Ö Ü Ü Ü Ş Ş Ş Ç Ç Ş Ç Ş Ç ŞÇ Ö Ü Ç Ç Ş Ç «Ö Ç Ğ Ç Ü Ç Ç Ş Ü Ğ Ş Ç Ş Ç Ö Ç «Ö Ö «Ö Ç Ç Ö Ş Ü Ç Ş Ş Ş Ş «Ç ŞÇ Ö Ü Ş Ş

Detaylı

Temel elektrik ve manyetizma yasaları kullanılarak elde edilmiş olan 4 adet Maxwell denklemi bulunmaktadır.

Temel elektrik ve manyetizma yasaları kullanılarak elde edilmiş olan 4 adet Maxwell denklemi bulunmaktadır. .GİRİŞ Güümüde hıla gelşe eolo ve blg brm saesde her geçe gü e elero chalar ürelmee ve mevcu freas badıı eers alması edele ürecler üse freaslara öelmeedrler. Yüse freas ullaıldığıda se chaları bouları

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde azla dağılışı karşılaştırmak ç kullaıla ve ayrıca örek verlerde hareket le rekas dağılışlarıı sayısal olarak özetleye değerlere taımlayıcı statstkler der. Aalzlerde

Detaylı

UZAY VEKTÖR KONTROL ALGORİTMASI KULLANAN MATRİS ÇEVİRİCİDEN BESLENEN ASENKRON MOTORUN V/F KONTROLÜ

UZAY VEKTÖR KONTROL ALGORİTMASI KULLANAN MATRİS ÇEVİRİCİDEN BESLENEN ASENKRON MOTORUN V/F KONTROLÜ UZAY VEKTÖR KONTROL ALGORİTMASI KULLANAN MATRİS ÇEVİRİCİDEN BESLENEN ASENKRON MOTORUN V/F KONTROLÜ Ebubek ERDEM 1 Yetkn TATAR 2 Sedat SÜNTER 3 1,2 Fıat Ünvestes Mühendslk Fakültes Blgsaya Bölümü, Elazığ.

Detaylı

DÜZ KONİK DİŞLİ ÇARKLARIN GEOMETRİK TEMEL BÜYÜKLÜKLERİ

DÜZ KONİK DİŞLİ ÇARKLARIN GEOMETRİK TEMEL BÜYÜKLÜKLERİ 39 KONİK DİŞLİ ÇRK MEKNİZMLRI DÜZ KONİK DİŞLİ ÇRKLRIN GEOMETRİK TEMEL BÜYÜKLÜKLERİ Yuvalanma mekanzmalaı çnde eksenlen kesşmes k konk eleman le sağlanı. Bunlaın tepele dönme eksenlenn kesşme noktasındadı.

Detaylı

R DEVRESİ L DEVRESİ C DEVRESİ

R DEVRESİ L DEVRESİ C DEVRESİ 6 BÖÜM ATENATİF AKIM AIŞTIMAA - ÇÖÜME DEESİ DEESİ DEESİ f 80 4 A olu 0 snωt snπft 4vsnπ50t 4vsn00πt olu Akıın zaanla dğş dnklndn, (t) snft sn50 400 sn 4 v A olu Gln aksu dğ, 0v 0v olu Gl dnkl, (t) snft

Detaylı

Sonlu kanat Teorisi Açıklık oranıküçük kanatlar etrafındaki akımın fiziksel yapısı

Sonlu kanat Teorisi Açıklık oranıküçük kanatlar etrafındaki akımın fiziksel yapısı Sou kt Teor çıkık orıküçük ktr etrfıdk kımı fke pıı çıkık orı küçük (R < -5 ktr çıkık orı büük (R > -5 ktr UCK5 erodmk der otrı UCK5 erodmk der otrı çıkık orıküçük ktr etrfıdk kımı fke pıı çıkık orıükek

Detaylı

Sistemin derecesi, sistemin karakteristik denkleminin en sade halinde (çarpansız) paydadaki s nin en yüksek derecesidir.

Sistemin derecesi, sistemin karakteristik denkleminin en sade halinde (çarpansız) paydadaki s nin en yüksek derecesidir. 43 BÖLÜM 3 ZAMAN CEVABI Sitemi derecei, itemi karakteritik deklemii e ade halide (çarpaız) paydadaki i e yükek dereceidir. Bir Trafer Fokiyouu Kutupları Trafer fokiyou G() N()/N() şeklide ifade edilire,

Detaylı

Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, Cilt: 26, Sayı: 2, 2012 237

Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, Cilt: 26, Sayı: 2, 2012 237 Atatük Üiesitesi İktisadi e İdai Bilile Degisi Cilt: 6 Sayı: 0 7 AR-GE PROJELERİNİN SEÇİİNDE GRUP ARARINA DAYALI BULANI ARAR VERE YALAŞII Tuba YAICI AYAN ) Selçuk PERÇİN ) Özet: Güüüzde A-Ge poeleii seçii

Detaylı

NÜKLEER FİZİĞİN BORSAYA UYGULANMASI: OPSİYON FİYATLARININ MESH FREE YÖNTEM ile MODELLENMESİ

NÜKLEER FİZİĞİN BORSAYA UYGULANMASI: OPSİYON FİYATLARININ MESH FREE YÖNTEM ile MODELLENMESİ NÜKLEER FİZİĞİN BORAYA UYGULANMAI: OPİYON FİYATLARININ MEH FREE YÖNTEM ile MODELLENMEİ M. Bilge KOÇ ve İsmail BOZTOUN Eciyes Üi. Fe-Ed. Fak. Fizik Bölümü 38039 Kaysei ÖZET Bu çalışmada eoik üklee fiziği

Detaylı

Paralel Enerji Nakil Hatlarında Dengesizlik ve Kayıplar Yününden Optimum Faz Sıralaması ve îranspozisyon Seçimi *

Paralel Enerji Nakil Hatlarında Dengesizlik ve Kayıplar Yününden Optimum Faz Sıralaması ve îranspozisyon Seçimi * UDK : 61.316.7 ;61.817.77 Paalel Eeji Nakil Hatlaıda Degesizlik ve Kayıpla Yüüde Optimum Faz Sıalaması ve îaspzisy Seçimi * Yaza : Yüdiz IKN ODTÜ ÖZET u yazıda etekekte elektik şebekeleie bağlı uzu, çk

Detaylı

Işık İleticiler: Optik Fiberler Yarıiletken Dalga Kılavuzları

Işık İleticiler: Optik Fiberler Yarıiletken Dalga Kılavuzları şık İleticiler: Optik Fiberler Yarıiletken Dalga Kılavuzları Optik Dalga Kılavuzları-Sunuş Dalga kılavuzlarının fnksinu ışığı özelliğini bzmadan ve en az kaıpla bir nktadan başka bir nktaa iletmektir Bu

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ . BÖÜ BASİ AİNEER ODE SORU - DEİ SORUARIN ÇÖÜERİ. Ve im %00 ol du ğun dan sü tün me yok tu. İlk du um da 0 N ile ikin ci du um da 50 N ile den ge sağ la nı yo. İlk du um da ve im % 00 ise ikin ci du um

Detaylı