Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın."

Transkript

1 KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin karşılıklı olarak birbirini etkilemeleri Mevsim dalgalanmalarının ölçülmesinde kukla değişkenler Parçalı Doğrusal Regresyon 1 Bir Kukla Değişkenli Modeller (Varyans Analiz Modelleri) Harcama Devlet Lisesi Meslek Lisesi Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın. 2

2 Bir Kukla Değişkenli Modeller (Varyans Analiz Modelleri) Devlet Lisesi Meslek Lisesi Birleştirilmiş Denklem Yıllık Okul Harcaması = + β 2 ML + u ML = 0 Devlet Lisesi Yıllık Okul Harcaması = ML= 1 Meslek Lisesi Yıllık Okul Harcaması = + β 2 3 Bir Kukla Değişkenli Modeller (Varyans Analiz Modelleri) β Devlet Lisesi Meslek Lisesi 4

3 Bir Kukla Değişkenli Modeller (Varyans Analiz Modelleri) Y i = α + β D i +u i Y i = Öğretim Üyelerinin Yıllık Maaşları D i = 1 Öğretim Üyesi Erkekse = 0 Diğer Durumlar (yani Kadın Öğretim Üyesi) Varyans Analiz Modelleri (ANOVA) Kadın Öğretim Üyelerinin Ortalama Maaşları: E( Y i D i = 0 ) = α Erkek Öğretim Üyelerinin Ortalama Maaşları : E ( Y i D i = 1) = α + β 5 Örnek Y i = D i (0.32) (0.44) t (57.74)(7.44), R 2 =

4 KUKLA DEĞİŞKENLERİN DİĞER KANTİTATİF DEĞİŞKENLERLE ALINDIĞI MODELLER (KOVARYANS ANALİZİ MODELLER) BİR KUKLA ve BİR KANTİTATİF DEĞİŞKENLİ MODELLER Harcama Meslek Lisesi Devlet Lisesi Harcama:Okul harcaması N:Öğrenci sayısı N Bu kukla değişkenlerin açıklayıcı değişken olarak regresyon denkleminde nasıl yer aldıkları incelenecektir. 7 1 BİR KUKLA ve BİR KANTİTATİF DEĞİŞKENLİ MODELLER Harcama Meslek Lisesi Devlet Lisesi N Meslek lisesi ve devlet lisesine giden N tane öğrenci olduğu ve bunların yıllık okul harcamalarına ait verilerin olduğu varsayılsın. 8

5 BİR KUKLA ve BİR KANTİTATİF DEĞİŞKENLİ MODELLER Harcama Meslek Lisesi Devlet Lisesi N Meslek lisesindeki öğrenciler belirli meslek dallarında yetenek sahibi olmaya çalışırken her meslek grubuna özgü gerekli olan araç ve gereçlerin temini için devlet lisesinde okuyan öğrencilere göre yıl içerisinde daha fazla harcama yapmaları gerekmektedir. 9 BİR KUKLA ve BİR KANTİTATİF DEĞİŞKENLİ MODELLER Harcama Meslek Lisesi Devlet Lisesi N Her iki lisede okuyan öğrencilerin harcamaları arasındaki farkı görmek için birinci yol iki grup içinde ayrı ayrı regresyon denklemi oluşturmaktır. 10

6 BİR KUKLA ve BİR KANTİTATİF DEĞİŞKENLİ MODELLER Harcama Meslek Lisesi Devlet Lisesi N Bununla birlikte iki ayrı regresyon denklemi kurmanın bazı sakıncaları olmaktadır. Bu sakıncalardan bir tanesi; büyük bir anakütle ile çalışmak yerine ayrı ayrı küçük örneklemler ile çalışmak katsayı tahminlerinin doğruluğu üzerinde ters etki olmasına neden olacaktır. 11 BİR KUKLA ve BİR KANTİTATİF DEĞİŞKENLİ MODELLER Harcama ' Meslek Lisesi Devlet Lisesi N OCC = 0 Devlet Lisesi OCC = 1 Meslek Lisesi + β 2 Harcama= ' + β 2 İki lise harcamaları arasındaki fark için diğer bir yol ise ; meslek lisesi ücret denkleminin sabit terimi ' in devlet lisesinden daha büyük olduğunu varsayan bir hipotez kurmaktır. 12

7 BİR KUKLA ve BİR KANTİTATİF DEĞİŞKENLİ MODELLER Harcama ' Meslek Lisesi Devlet Lisesi N Devlet Lisesi Meslek Lisesi Harcama= + β 2 Harcama= ' + β 2 Aslında, bu varsayım ile her iki lise için yıllık marjinal maliyetlerin aynı fakat sabit maliyetlerin farklı olduğu varsayımı yapılmaktadır. Marjinal maliyet varsayımı görünüşte makul gözükmese de, bu varsayım anlatımı kolaylaştırmak için yapılmaktadır. 13 BİR KUKLA ve BİR KANTİTATİF DEĞİŞKENLİ MODELLER Ücret ' Meslek Lisesi δ Devlet Lisesi N Devlet Lisesi + β 2 Meslek Lisesi ' + β 2 δ İki sabit terim arasındaki fark olarak tanımlanabilir: δ = ' -. 14

8 BİR KUKLA ve BİR KANTİTATİF DEĞİŞKENLİ MODELLER Harcama +δ δ Meslek Lisesi Devlet Lisesi δ = ' - idi. N ' = + δ olacaktır ve meslek lisesine ait harcama fonksiyonu aşağıdaki gibi yazılabilir: ML= 0 Devlet Lisesi ML = 1 Meslek Lisesi + β 2 + δ + β 2 15 BİR KUKLA ve BİR KANTİTATİF DEĞİŞKENLİ MODELLER Harcama +δ δ Meslek Lisesi Devlet Lisesi N Artık iki harcama fonksiyonunu birleştirip kukla değişken ML oluşturulabilir. ML öğrenci devlet lisesine gidiyor ise 0 değerini, meslek lisesine gidiyor ise 1 değerini almaktadır. Birleştirilmiş Denklem ML = 0 Devlet Lisesi ML= 1 Meslek Lisesi + δ ML + β 2 + β 2 + δ + β

9 BİR KUKLA ve BİR KANTİTATİF DEĞİŞKENLİ MODELLER Harcama +δ δ Meslek Lisesi Devlet Lisesi N Her zaman kukla değişkenler sadece iki değer alırlar; 0 yada 1. Eğer ML 0 değerini alır ise harcama fonksiyonu devlet lisesine giden öğrencilerin harcama fonksiyonu olmakta, yada eğer ML 1 değerini alırsa harcama fonksiyonu Meslek lisesine giden öğrencilerin harcama fonksiyonu olmaktadır. Birleştirilmiş Denklem ML = 0 Devlet Lisesi ML= 1 Meslek Lisesi + δ ML + β 2 + β 2 + δ + β 2 17 BİR KUKLA ve BİR KANTİTATİF DEĞİŞKENLİ MODELLER Harcama N Meslek Lisesi Devlet Lisesi Bu aşamada bir şehirdeki 74 lise için gerçek veri setini kullanarak regresyon denklemi oluşturulabilir. 18

10 BİR KUKLA ve BİR KANTİTATİF DEĞİŞKENLİ MODELLER Okul Okul Tipi Okul Harcaması N ML 1 Meslek 345, Meslek 537, Devlet 170, Meslek Devlet 100, Devlet 28, Devlet 160, Meslek 45, Meslek 120, Meslek 61, Tablo ilk 10 okulun verilerini göstermektedir. Yıllık harcama yuan olarak ölçülmüştür. Bir yuan yaklaşık olarak 20 U.S centine eşittir. 19 N okullardaki öğrenci sayısıdır. BİR KUKLA ve BİR KANTİTATİF DEĞİŞKENLİ MODELLER Okul Okul Tipi Okul Harcaması N ML 1 Meslek 345, Meslek 537, Devlet 170, Meslek Devlet 100, Devlet 28, Devlet 160, Meslek 45, Meslek 120, Meslek 61, ML okul tipini gösteren kukla değişkendir

11 BİR KUKLA ve BİR KANTİTATİF DEĞİŞKENLİ MODELLER. reg Harcama N ML F( 2, 71) = Model e e+11 Prob > F = Residual e e+09 R-squared = Adj R-squared = Total e e+10 Root MSE = Harcama Coef. Std. Err. t P> t [95% Conf. Interval] N ML _cons Her ne kadar ML kukla değişken olsa da yeni bir açıklayıcı değişkenmiş gibi düşünülerek; Harcama değişkeni, N ve ML değişkenleri üzerine regresyona tabi tutulmaktadır. 21 BİR KUKLA ve BİR KANTİTATİF DEĞİŞKENLİ MODELLER. reg Harcama N ML F( 2, 71) = Model e e+11 Prob > F = Residual e e+09 R-squared = Adj R-squared = Total e e+10 Root MSE = Harcama Coef. Std. Err. t P> t [95% Conf. Interval] N ML _cons Katsayı yorumları: 22

12 BİR KUKLA ve BİR KANTİTATİF DEĞİŞKENLİ MODELLER Harcama = -34, ,000ML + 331N Regresyon sonuçları eşitlik şeklinde yeniden yazılabilir. ML değişkenine 0 ve 1 değerleri verilerek yeni eşitlikler türetilebilir. 23 BİR KUKLA ve BİR KANTİTATİF DEĞİŞKENLİ MODELLER Harcama = -34, ,000ML + 331N Devlet Lisesi (ML = 0) Harcama = -34, N Eğer ML=0 olursa, devlet lisesine ait eşitlik elde edilir. Buradan yıllık marjinal harcamanın öğrenci başına 331 yuan olduğu ve sabit harcamanın da -34,000 Yuan olduğu ifade edilebilir. 24

13 BİR KUKLA ve BİR KANTİTATİF DEĞİŞKENLİ MODELLER Harcama = -34, ,000ML + 331N Devlet Lisesi (ML = 0) Harcama = -34, N Kukla değişkenin katsayısı δ ile tahminlenmektedir. Meslek lisesindeki öğrenciler için extra yıllık sabit harcamayı ifade etmektedir. 25 BİR KUKLA ve BİR KANTİTATİF DEĞİŞKENLİ MODELLER Harcama = -34, ,000ML + 331N Devlet Lisesi (ML= 0) Harcama = -34, N Meslek Lisesi (ML = 1) Harcama = -34, , N = 99, N Eğer ML yerine 1 değeri konulursa, meslek lisesi öğrencileri için yıllık sabit harcamayı 99,000 yuan olarak hesaplayabiliriz. Meslek lisesindeki öğrencinin marjinal harcaması ise devlet okulundaki öğrenci ile aynıdır. 26

14 BİR KUKLA ve BİR KANTİTATİF DEĞİŞKENLİ MODELLER Harcama Meslek Lisesi Devlet Lisesi Dağılma diyagramı regresyon sonuçlarından elde edilen iki harcama fonksiyonunu göstermektedir. N BİR KUKLA ve BİR KANTİTATİF DEĞİŞKENLİ MODELLER. reg Harcama N ML F( 2, 71) = Model e e+11 Prob > F = Residual e e+09 R-squared = Adj R-squared = Total e e+10 Root MSE = Harcama Coef. Std. Err. t P> t [95% Conf. Interval] N ML _cons Katsayıları hesaplamak için ayrıca regresyon sonuçlarında standart hata, t istatistiği ve tanımlayıcı istatistikler verilebilir. 28

15 . reg Harcama N ML BİR KUKLA ve BİR KANTİTATİF DEĞİŞKENLİ MODELLER F( 2, 71) = Model e e+11 Prob > F = Residual e e+09 R-squared = Adj R-squared = Total e e+10 Root MSE = Harcama Coef. Std. Err. t P> t [95% Conf. Interval] N ML _cons Kukla değişkeninin katsayısını test etmek için; H 0 : δ = 0 ve H 1 : δ 0 hipotezleri t testi yardımı ile test edilebilir. 29 BİR KUKLA ve BİR KANTİTATİF DEĞİŞKENLİ MODELLER.reg Harcama N ML F( 2, 71) = Model e e+11 Prob > F = Residual e e+09 R-squared = Adj R-squared = Total e e+10 Root MSE = Harcama Coef. Std. Err. t P> t [95% Conf. Interval] N ML _cons Bir başka ifadeyle, H 0 hipotezi iki okul türü arasında sabit harcamalar bakımından fark olmadığını ifade etmektedir. ML nin katsayısının prob değeri 0.05 önem düzeyinden küçük olduğu için H 0 hipotezi reddedilebilmektedir. 30

16 BİR KUKLA ve BİR KANTİTATİF DEĞİŞKENLİ MODELLER reg Harcama N ML F( 2, 71) = Model e e+11 Prob > F = Residual e e+09 R-squared = Adj R-squared = Total e e+10 Root MSE = Harcama Coef. Std. Err. t P> t [95% Conf. Interval] N ML _cons Benzer şekilde diğer katsayılar içinde t-testi yapabiliriz. İlk olarak N ele alınırsa; N in katsayısının da istatistiksel olarak anlamlı olduğu söylenebilir. Bu da bize marjinal harcamaların istatistiksel olarak sıfırdan oldukça farklı olduğunu göstermektedir. 31 BİR KUKLA ve BİR KANTİTATİF DEĞİŞKENLİ MODELLER. reg Harcama N ML F( 2, 71) = Model e e+11 Prob > F = Residual e e+09 R-squared = Adj R-squared = Total e e+10 Root MSE = Harcama Coef. Std. Err. t P> t [95% Conf. Interval] N ML _cons = 0 yani sabit terim için t istatistiğine baktığımızda bu katsayının anlamsız olduğu görülmektedir

17 KOVARYANS ANALİZİ MODELLER Y i = α 1 + α 2 D i + β X i + u i Y i = Öğretim Üyelerinin Yıllık Maaşları X i = Öğretim Üyesinin Yıl olarak Tecrübesi D i = 1 Öğretim Üyesi Erkekse = 0 Diğer Durumlar (yani Kadın Öğretim Üyesi) Kadın Öğretim Üyelerinin Ortalama Maaşları : E( Y i X i,d i = 0 ) = α 1 +βx i Erkek Öğretim Üyelerinin Ortalama Maaşları : E ( Y i X i,d i = 1) = (α 1 + α 2 )+βx i 33 Maaş Cinsiyet Tecrübe

18 Y Yıllık Maaş α 2 Erkek Kadın Y= (α 1 + α 2 )+βx i Y=α 1 +βx i α 1 Tecrübe (yıl olarak) X Y i = D i X i s(b) (0.95) (0.44) (0.09) p (0.000) (0.002) (0.020), R 2 = Y i = D i X i s(b) (0.95) (0.44) (0.09) (t) (15.843) (5.088) (3.211) p (0.000) (0.002) (0.020), R 2 =0.949 Y:Yıllık maaş D: 1 erkek 0 kadın, X: Tecrübe Kadınlar birim kadar yıllık maaş alırken,erkekler kadınlardan birim kadar daha fazla yıllık maaş almaktadır. İş deneyimindeki bir yıllık artış maaşı birim kadar arttırmaktadır. Cinsiyete göre yıllık maaşın farklı olduğu t istatistiğinden görülmektedir. Deneyiminde yıllık maaş üzerinde bir etkisi vardır. 36

19 + δ T TEK + δ N NİT + δ Τİ TİC + β 2 Harcama:Okul harcaması Bir önceki modellerde olduğu gibi sadece bir D i kukla değişkenli modelleri yanında, D sayısı iki, üç, hatta yirmiye kadar olan modellerde söz konusu olmaktadır δ T TEK + δ N NİT + δ Τİ TİC + β 2 Bir önceki bölümlerde devlet lisesi ve meslek liseleri arasındaki harcama fonksiyonu arasındaki farkı belirtmek için kukla değişken 38 kullanmıştık.

20 + δ T TEK + δ N NİT + δ Τİ TİC + β 2 Şangay da iki tip devlet okulu bulunmaktadır. Bunlardan bir tanesi olağan akademik eğitimin verildiği genel liseler, diğeri ise akademik eğitim ile birlikte ticaret eğitimi veren ticaret liseleridir δ T TEK + δ N NİT + δ Τİ TİC + β 2 Ticaret okullarının öğretim programı genel liselerden çok az bir farklılık göstermekte, sadece genel liselere göre birkaç ticaret eğitimleri bulunmaktadır. 40

21 + δ T TEK + δ N NİT + δ Τİ TİC + β 2 Aynı şekilde iki tip meslek lisesi bulunmaktadır. Teknik eğitim okulları(tek) ve Nitelikli (NİT) öğrenci yetiştiren liselerdir δ T TEK + δ N NİT + δ Τİ TİC + β 2 Sonuçta kalitatif değişkenimiz dört gruba sahiptir. Uygulamada; bir kategori temel sınıf olarak seçilmektedir ve buna bağlı olarak diğer kukla değişkenler tanımlanmaktadır. 42

22 + δ T TEK + δ N NİT + δ Τİ TİC + β 2 Genellikle, kategoriler içerisinde en basit ve normal olan kategori temel sınıf olarak seçilmektedir δ T TEK + δ N NİT + δ Τİ TİC + β 2 Şangay örneğinde genel liseleri temel sınıf olarak seçmek en uygundur. Çünkü genel liseler sayıca çok olan liselerdir ve diğer liseler genel liselerin birer varyasyonlarıdır. 44

23 + δ T TEK + δ N NİT + δ Τİ TİC + β 2 Dolayısıyla okul tiplerine bağlı olarak üç tane kukla değişken tanımlayabiliriz. TEK : teknik eğitim okulları için kukla değişken; eğer öğrenci teknik okula gidiyorsa 1, diğer durumda 0 değerini alan kukla değişken δ T TEK + δ N NİT + δ Τİ TİC + β 2 Benzer şekilde NİT ve TİC kukla değişkenleri sırasıyla nitelikli öğrenci yetiştiren ve ticaret eğitimi veren okullar için birer kukla değişkenlerdir. 46

24 + δ T TEK + δ N NİT + δ Τİ TİC + β 2 Her bir kukla değişkenin katsayı değeri bulunmaktadır ve bu katsayılar temel kategoriye göre her bir okul için ayrı ayrı ekstra harcama maliyetlerini ifade etmektedir δ T TEK + δ N NİT + δ Τİ TİC + β 2 Dikkat edilirse temel kategori (referans kategori) modelde yer almamaktadır ve çıkarılmış kategori olarak ifade edilir. 48

25 + δ T TEK + δ N NİT + δ Τİ TİC + β 2 Genel Lise + β 2 (TEK = NİT = TİC = 0) Eğer gözlem genel lise ile ilgili ise; diğer kukla değişkenler sıfır değerini almakta ve regresyon modeli en basit duruma indirgenmektedir δ T TEK + δ N NİT + δ Τİ TİC + β 2 Genel Lise Teknik Lise + β 2 (TEK = NİT = TİC = 0) Harcama = ( + δ T ) + β 2 (TEK = 1; NİT= TİC = 0) Eğer gözlem teknik lise ile ilgili ise; TEK değişkeni 1 değerini, diğer kukla değişkenlerde 0 değerini almaktadır. Regresyon denklemi ise yukarıda gösterildiği gibi olmaktadır. 50

26 + δ T TEK + δ N NİT + δ Τİ TİC + β 2 Genel Lise Teknik Lise Nitelikli Öğr. Yet. Lİsesi Ticaret Lisesi + β 2 (TEK = NİT = TİC = 0) Harcama = ( + δ T ) + β 2 (TEK = 1; NİT = TİC = 0) Harcama = ( + δ N ) + β 2 (NİT= 1; TEK = TİC = 0) Harcama = ( + δ Tİ ) + β 2 (TİC = 1; TEK = NİT = 0) Benzer şekilde gözlem nitelikli öğrenci yetiştiren lisesi yada Ticaret lisesi ise, regresyon denklemleri yukarıda gösterildiği gibi oluşturulmaktadır. 51 Harcama Teknik +δ T +δ Ν Nitelikli δ N δ T Ticaret δ Τİ +δ Τİ Genel Yukarıdaki diyagram modeli grafiksel olarak göstermektedir. δ katsayısı; teknik, nitelikli ve ticaret lisesi için genel liseye göre ekstra gider harcamalarını ifade etmektedir. N 52

27 Harcama Teknik +δ T +δ N Nitelikli δ N δ T Ticaret δ Tİ +δ Tİ Genel Dikkat edilecek olurda δ katsayıların büyüklülüğü ve işaretleri için önceden bir varsayımda bulunulmamaktadır. Örnek verilerinden tahminlenecektir. N 53 Okul Tip Harcama N TEK NİT TİC 1 Teknik 345, Teknik 537, Genel 170, Nitelikli Genel 100, Ticaret 28, Ticaret 160, Teknik 45, Teknik 120, Nitelikli 61, Yukarıdaki tabloda 74 liseden 10 tanesine ait veriler gösterilmektedir. Her bir kukla değişken TEK, NİT ve TİC kukla değişkenleri okul tiplerine göre oluşturulmuştur. 54

28 Harcama Teknik Lise Ticaret Lisesi Genel Lise Nitelikli Lisesi N Dağılma diyagramı yeni okulların verilerini göstermektedir. 55. reg Harcama N TEK NİT TİC F( 4, 69) = Model e e+11 Prob > F = Residual e e+09 R-squared = Adj R-squared = Total e e+10 Root MSE = Harcama Coef. Std. Err. t P> t [95% Conf. Interval] N TEK NİT TİC _cons Verilere ait regresyon sonuçları tabloda gösterilmiştir. N in katsayısı her bir öğrenci için marjinal harcamayı ifade etmektedir ve yaklaşık 343 yuandır. 56

29 . reg Harcama N TEK NİT TİC F( 4, 69) = Model e e+11 Prob > F = Residual e e+09 R-squared = Adj R-squared = Total e e+10 Root MSE = Harcama Coef. Std. Err. t P> t [95% Conf. Interval] N TEK NİT TİC _cons TEK, NİT ve TİC değişkenlerinin katsayıları 154,000, 143,000, ve 53,000 sırasıyla genel liselere göre ilave yıllık sabit harcamaları ifade etmektedir. 57. reg Harcama N TEK NİT TİC F( 4, 69) = Model e e+11 Prob > F = Residual e e+09 R-squared = Adj R-squared = Total e e+10 Root MSE = Harcama Coef. Std. Err. t P> t [95% Conf. Interval] N TEK NİT TİC _cons Sabit terim genel liselerde sabit harcamaların yuan olduğunu söylemektedir. Katsayının negatif olması modelde olası tanımlama hataları olabileceğini göstermektedir. 58

30 Harcama = -55, ,000TEK + 143,000NİT+ 53,000TİC + 343N En üsteki regresyon sonuçlarını göstermektedir. Her bir okul için harcama fonksiyonları ayrı ayrı gösterilecektir. 59 Harcama = -55, ,000TEK + 143,000NİT + 53,000TİC + 343N Genel Lise (TEK= NİT = TİC = 0) Harcama= -55, N 60

31 Harcama= -55, ,000TECH + 143,000NİT + 53,000TİC + 343N Genel Lise Harcama = -55, N (TEK= NİT = TİC = 0) Öğrenci başına yıllık marjinal harcama 343 yuandır. Öğrenci başına yıllık sabit harcamalar her bir okul için -55,000 yuan olarak tahmin 61 edilmiştir. Harcama = -55, ,000TEK + 143,000NİT + 53,000TİC + 343N Genel Lise Harcama = -55, N (TEK= NİT = TİC = 0) Teknik Lise Harcama = -55, , N (TEK = 1; NİT = TİC = 0) = 99, N Genel liseye göre teknik lisenin ekstra yıllık sabit harcaması 154,000 yuan olarak tahminlenmiştir. Yani toplam harcama 99,000 yuandır. 62

32 Harcama = -55, ,000TEK + 143,000NİT + 53,000TİC + 343N Genel Lise Harcama = -55, N (TEK= NİT = TİC = 0) Teknik Lise Harcama = -55, , N (TEK = 1; NİT = TİC = 0) = 99, N Nitelikli Lisesi Harcama = -55, , N (NİT = 1; TEK = TİC = 0) = 88, N Ticaret Lisesi Harcama = -55, , N (TİC = 1; TEK = NİT = 0) = -2, N Benzer şekilde nitelikli öğrenci yetiştiren ve ticaret okulunun genel liseye göre yıllık ekstra harcaması 143,000 and 53,000 yuandır.nitelikli lisede okuyanların harcamaları toplam olarak 88,000 yuan ve ticaret lisesinde 63 okuyan öğrencilerin sabit harcamaları genel lisede okuyan öğrencilerden daha fazladır Harcama = -55, ,000TECH + 143,000NİT + 53,000TİC + 343N Genel Lise Harcama = -55, N (TEK = NİT = TİC = 0) Teknik Lise Harcama = -55, , N (TEK = 1; NİT = TİC = 0) = 99, N Nitelikli Lisesi Harcama = -55, , N (NİT = 1; TEK = TİC = 0) = 88, N Ticaret Lisesi Harcama = -55, , N (TİC = 1; TEK = NİT = 0) = -2, N Dikkat edilirse öğrenci başına yıllık marjinal harcama 343 yuan olarak tahmin edilmiştir. 64

33 Harcama N Teknik Lise Ticaret Lisesi Genel Lise Nitelikli Dört harcama grafiği şekilde gösterilmiştir. 65. reg Harcama N TEK NİT TİC F( 4, 69) = Model e e+11 Prob > F = Residual e e+09 R-squared = Adj R-squared = Total e e+10 Root MSE = Harcama Coef. Std. Err. t P> t [95% Conf. Interval] N TEK NİT TİC _cons Bütün katsayılar için t-testi yapabiliriz. N değişkenin katsayısı için t istatistiği 8.52 ve bu da bize beklenildiği gibi marjinal harcamaların istatistiksel olarak sıfırdan oldukça farklı olduğunu göstermektedir. 66

34 . reg Harcama N TEK NİT TİC F( 4, 69) = Model e e+11 Prob > F = Residual e e+09 R-squared = Adj R-squared = Total e e+10 Root MSE = Harcama Coef. Std. Err. t P> t [95% Conf. Interval] N TEK NİT TİC _cons Ayrıca teknik lise t-istatistiği katsayısı da istatistiksel olarak anlamlıdır. Bunun anlamı ise teknik lise yıllık sabit harcamalarının genel liselerin sabit harcamalarından oldukça farklı olduğunu göstermektedir. 67. reg Harcama N TEK NİT TİC F( 4, 69) = Model e e+11 Prob > F = Residual e e+09 R-squared = Adj R-squared = Total e e+10 Root MSE = Harcama Coef. Std. Err. t P> t [95% Conf. Interval] N TEK NİT TİC _cons Benzer şekilde yine nitelikli eleman yetiştirenlerin sabit harcamalarının genel liselerin sabit harcamalarından farklı olduğu t istatistiği ile görülmektedir. (5.15) 68

35 . reg Harcama N TEK NİT TİC F( 4, 69) = Model e e+11 Prob > F = Residual e e+09 R-squared = Adj R-squared = Total e e+10 Root MSE = Harcama Coef. Std. Err. t P> t [95% Conf. Interval] N TEK NİT TİC _cons Bununla birlikte Ticaret lisesinin t istatistiği sadece 1.71 dir ve bu da ticaret lisesi sabit harcamalarının genel lise sabit harcamalarında yeterince farklı olmadığını göstermektedir. 69. reg Harcama N TEK NİT TİC F( 4, 69) = Model e e+11 Prob > F = Residual e e+09 R-squared = Adj R-squared = Total e e+10 Root MSE = Harcama Coef. Std. Err. t P> t [95% Conf. Interval] N TEK NİT TİC _cons Bu sonuç çok şaşırtıcı değil, çünkü ticaret lisesi genel liselerden çok farklı bir eğitime sahip değil. 70

36 . reg Harcama N TEK NİT TİC F( 4, 69) = Model e e+11 Prob > F = Residual e e+09 R-squared = Adj R-squared = Total e e+10 Root MSE = Harcama Coef. Std. Err. t P> t [95% Conf. Interval] N TEK NİT TİC _cons Burada önemli olan sıfır hipotez; diğer liselerin sabit harcamalarının ayrı ayrı olarak genel lise sabit harcamalarından farklı olmadığını ifade etmesidir. 71. reg Harcama N TEK NİT TİC F( 4, 69) = Model e e+11 Prob > F = Residual e e+09 R-squared = Adj R-squared = Total e e+10 Root MSE = Harcama Coef. Std. Err. t P> t [95% Conf. Interval] N TEK NİT TİC _cons Son olarak kukla değişkenlerin ortak açıklayıcısı gücünü test etmek için F testi yapabiliriz. H 0 : δ T = δ N = δ Tİ = 0 olarak tanımlanabilir. Alternatif hipotez ise en az biri δ sıfırdan farklıdır şeklinde kurulmaktadır. 72

37 . reg Harcama N TEK NİT TİC F( 4, 69) = Model e e+11 Prob > F = Residual e e+09 R-squared = Adj R-squared = Total e e+10 Root MSE = Harcama Coef. Std. Err. t P> t [95% Conf. Interval] N TEK NİT TİC _cons Kukla değişkenli modelinde hata kareler toplamı reg Harcama N F( 1, 72) = Model e e+11 Prob > F = Residual e e+10 R-squared = Adj R-squared = Total e e+10 Root MSE = 1.1e+05 Harcama Coef. Std. Err. t P> t [95% Conf. Interval] N _cons Kukla değişkensiz modelin hata kareler toplamı

38 . reg Harcama N F( 1, 72) = Model e e+11 Prob > F = Residual e e+10 R-squared = Adj R-squared = Total e e+10 Root MSE = 1.1e+05. reg Harcama N TEK NİT TİC F( 4, 69) = Model e e+11 Prob > F = Residual e e+09 R-squared = Adj R-squared = Total e e+10 Root MSE = Değişkenlerin katsayılarına 0 sınırlaması konan genel F testi uygulanabilir. 75. reg Harcama N F( 1, 72) = Model e e+11 Prob > F = Residual e e+10 R-squared = Adj R-squared = Total e e+10 Root MSE = 1.1e+05. reg Harcama N TEK NİT TİC F( 4, 69) = Model e e+11 Prob > F = Residual e e+09 R-squared = Adj R-squared = Total e e+10 Root MSE = ( F( 3,69) = / ) / 3 = F istatistiğinin payında hesaplanan RSS(HKT) modeldeki kukla değişken sayısına bölünmektedir. Bir başka ifadeyle, modele eklenen 76 yeni değişken sayısına bölünmektedir.

39 . reg Harcama N F( 1, 72) = Model e e+11 Prob > F = Residual e e+10 R-squared = Adj R-squared = Total e e+10 Root MSE = 1.1e+05. reg Harcama N TEK NİT TİC F( 4, 69) = Model e e+11 Prob > F = Residual e e+09 R-squared = Adj R-squared = Total e e+10 Root MSE = ( F( 3,69) = / ) / 3 = reg Harcama N F( 1, 72) = Model e e+11 Prob > F = Residual e e+10 R-squared = Adj R-squared = Total e e+10 Root MSE = 1.1e+05. reg Harcama N TEK NİT TİC F( 4, 69) = Model e e+11 Prob > F = Residual e e+09 R-squared = Adj R-squared = Total e e+10 Root MSE = ( F( 3,69) = / ) / 3 = F istatistiği değeri olarak hesaplanmaktadır. 78

40 . reg Harcama N F( 1, 72) = Model e e+11 Prob > F = Residual e e+10 R-squared = Adj R-squared = Total e e+10 Root MSE = 1.1e+05. reg Harcama N TEK NİT TİC F( 4, 69) = Model e e+11 Prob > F = Residual e e+09 R-squared = Adj R-squared = Total e e+10 Root MSE = ( ,69) = / 69 ( ) / 3 = F (3,69) F tab, 0.1% = 79. reg Harcama N F( 1, 72) = Model e e+11 Prob > F = Residual e e+10 R-squared = Adj R-squared = Total e e+10 Root MSE = 1.1e+05. reg Harcama N TEK NİT TİC F( 4, 69) = Model e e+11 Prob > F = Residual e e+09 R-squared = Adj R-squared = Total e e+10 Root MSE = ( ) / 3 F( 3,69) = = F( 3,60) 11 crit, 0.1% = / 69 H 0 hipotezi red edilebilir. 80

KUKLA DEĞİŞKENLİ MODELLER. Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller)

KUKLA DEĞİŞKENLİ MODELLER. Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

KUKLA DEĞİŞKENLİ MODELLER

KUKLA DEĞİŞKENLİ MODELLER KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

Kukla Değişken Nedir?

Kukla Değişken Nedir? Kukla Değişken Nedir? Cinsiyet, eğitim seviyesi, meslek, din, ırk, bölge, tabiiyet, savaşlar, grevler, siyasi karışıklıklar (=darbeler), iktisat politikasındaki değişiklikler, depremler, yangın ve benzeri

Detaylı

KUKLA DEĞİŞKENLİ MODELLER

KUKLA DEĞİŞKENLİ MODELLER KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

KUKLA DEĞİŞKENLİ MODELLER

KUKLA DEĞİŞKENLİ MODELLER KUKLA DEĞİŞKENLİ MODELLER Bir kukla değişkenli modeller (Varyans Analiz Modelleri) Kukla değişkenlerin diğer kantitatif değişkenlerle alındığı modeller (Kovaryans Analizi Modeller) Kukla değişkenlerin

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

İÇİNDEKİLER 1. GİRİŞ...

İÇİNDEKİLER 1. GİRİŞ... İÇİNDEKİLER 1. GİRİŞ... 1 1.1. Regresyon Analizi... 1 1.2. Uygulama Alanları ve Veri Setleri... 2 1.3. Regresyon Analizinde Adımlar... 3 1.3.1. Problemin İfadesi... 3 1.3.2. Konu ile İlgili Potansiyel

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

KUKLA DEĞİŞKENLİ MODELLERDE KANTİTATİF DEĞİŞKEN SAYISININ İKİ SINIF İÇİN FARKLI OLMASI DURUMU

KUKLA DEĞİŞKENLİ MODELLERDE KANTİTATİF DEĞİŞKEN SAYISININ İKİ SINIF İÇİN FARKLI OLMASI DURUMU KUKLA DEĞİŞKENLİ MODELLERDE KANTİTATİF DEĞİŞKEN SAYISININ İKİ SINIF İÇİN FARKLI OLMASI DURUMU.HAL: Sabit Terimlerin Farklı Eğimlerin Eşit olması Yi = b+ b2di + b3xi + ui E(Y Di =,X i) = b + b3xi E(Y Di

Detaylı

Regresyon Analizinde Nitel Bilgi. Nitel Değişkenler: Ders Planı. Nitel Bilgi

Regresyon Analizinde Nitel Bilgi. Nitel Değişkenler: Ders Planı. Nitel Bilgi 1 ÇOKLU REGRESYON ANALİZİNDE NİTEL DEĞİŞKENLER Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 2 Regresyon

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

EŞANLI DENKLEM MODELLERİ

EŞANLI DENKLEM MODELLERİ EŞANLI DENKLEM MODELLERİ Eşanlı denklem modelleri, tek denklemli modeller ile açıklanamayan iktisadi olayları açıklamak için kullanılan model türlerinden birisidir. Çift yönlü neden-sonuç ilişkisi söz

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

Korelasyon, Korelasyon Türleri ve Regresyon

Korelasyon, Korelasyon Türleri ve Regresyon Korelasyon, Korelasyon Türleri ve Regresyon İçerik Korelasyon Korelasyon Türleri Korelasyon Katsayısı Regresyon KORELASYON Korelasyon iki ya da daha fazla değişken arasındaki doğrusal ilişkiyi gösterir.

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

7.Ders Bazı Ekonometrik Modeller. Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla.

7.Ders Bazı Ekonometrik Modeller. Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla. 7.Ders Bazı Ekonometrik Modeller Đktisat (ekonomi) biliminin bir kavramı: gayrisafi milli hasıla. Kaynak: TÜĐK dönemler gayri safi yurt içi hasıla düzeyi 1987-1 8680793 1987-2 9929354 1987-3 13560135 1987-4

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Dönem Sonu Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Dönem Sonu Sınavı TOBB Ekonomi ve Teknoloji Üniversitesi Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklama ve uyarılar: Bu sınav toplam 100 puan değerinde 6 sorudan oluşmaktadır. Sınav süresi 90 dakikadır ve tüm

Detaylı

17 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

17 Ekim Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: TAHMİN Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 17 Ekim 2012 Ekonometri

Detaylı

Tek Denklemli Modellerde Uygulanan Testler 1.Yeni Bağımsız Değişkenler Ekleme Testi(s )

Tek Denklemli Modellerde Uygulanan Testler 1.Yeni Bağımsız Değişkenler Ekleme Testi(s ) Tek Denklemli Modellerde Uygulanan Testler 1.Yeni Bağımsız Değişkenler Ekleme Testi(s.285-293) Y=β 1 + β 2 X 2 + β 3 X 3 + u (SR) Y=β 1 + β 2 X 2 + β 3 X 3 + β 4 X 4 + β 5 X 5 + u 1.Aşama (SM) H 0 : β

Detaylı

4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ Katsayıların Yorumu

4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ Katsayıların Yorumu 4. TAHMİN SONUÇLARININ DEĞERLENDİRİLMESİ 4.1. Katsayıların Yorumu Y i = β 0 + β 1 X 1i + β X i + + β k X ki + u i gibi çok açıklayıcı değişkene sahip bir modelde, anakütle regresyon fonksiyonu, E(Y i X

Detaylı

ANADOLU ÜNİVERSİTESİ REGRESYON KATSAYILARININ GÜVEN ARALIĞI = + REGRESYON KATSAYILARININ GÜVEN ARALIĞI

ANADOLU ÜNİVERSİTESİ REGRESYON KATSAYILARININ GÜVEN ARALIĞI = + REGRESYON KATSAYILARININ GÜVEN ARALIĞI ANADOLU ÜNİVERSİTESİ Deney Tasarımı ve Regresyon Analizi Regresyonda Güven Aralıkları ve Hipotez Testleri Doç. Dr. Nihal ERGİNEL-2015 REGRESYON KATSAYILARININ GÜVEN ARALIĞI + in güven aralığı : i-) n 30

Detaylı

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Korelasyon Analizi Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Bir değişkenin değerinin,

Detaylı

PARAMETRİK TESTLER. Tek Örneklem t-testi. 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz.

PARAMETRİK TESTLER. Tek Örneklem t-testi. 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz. PARAMETRİK TESTLER Tek Örneklem t-testi 200 öğrencinin matematik dersinden aldıkları notların ortalamasının 70 e eşit olup olmadığını test ediniz. H0 (boş hipotez): 200 öğrencinin matematik dersinden aldıkları

Detaylı

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI SORU- 1 : ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI X ve Y birbirinden bağımsız iki rasgele değişken olmak üzere, sırasıyla aşağıdaki moment çıkaran fonksiyonlarına sahiptir: 2 2 M () t = e,

Detaylı

İSTATİSTİK VE OLASILIK SORULARI

İSTATİSTİK VE OLASILIK SORULARI İSTATİSTİK VE OLASILIK SORULARI SORU 1 Meryem, 7 arkadaşı ile bir voleybol maçına katılmayı planlamaktadır. Davet ettiği arkadaşlarından herhangi bir tanesinin EVET deme olasılığı 0,8 ise, en az 3 arkadaşının

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

8. BÖLÜM: DEĞİŞEN VARYANS

8. BÖLÜM: DEĞİŞEN VARYANS 8. BÖLÜM: DEĞİŞEN VARYANS Bu bölümde; Değişen Varyans Tespiti için Grafik Çizme Değişen Varyans Testi: Park Testi Değişen Varyans Testi: White Testi Değişen Varyans Probleminin Çözümü: Ağırlıklandırılmış

Detaylı

Üstel modeli, iki tarafın doğal logaritması alınarak aşağıdaki gibi yazılabilir.

Üstel modeli, iki tarafın doğal logaritması alınarak aşağıdaki gibi yazılabilir. 5. FONKSİYON KALIPLARI VE KUKLA DEĞİŞKENLER 5.1. Fonksiyon Kalıpları Bölüm 4.1 de doğrusal bir modelin katsayılarının yorumu ele alınmıştır. Bu bölümde farklı fonksiyon kalıpları olması durumunda katsayıların

Detaylı

ÜSTEL DÜZLEŞTİRME YÖNTEMİ

ÜSTEL DÜZLEŞTİRME YÖNTEMİ ÜSEL DÜLEŞİRME YÖNEMİ ÜSEL DÜLEŞİRME YÖNEMİ Bu bölüme kadar anlatılan yöntemler zaman içinde değişmeyen parametre varsayımına uygun serilerin tahminlerinde kullanılmaktaydı. Bu tür seriler deterministik

Detaylı

DOĞRUSAL ve DOĞRUSAL OLMAYAN SINIRLAMALAR DOĞRUSAL OLMAYAN SINIRLAMALARIN TESTİ

DOĞRUSAL ve DOĞRUSAL OLMAYAN SINIRLAMALAR DOĞRUSAL OLMAYAN SINIRLAMALARIN TESTİ DOĞRUSAL ve DOĞRUSAL OLMAYAN SINIRLAMALAR DOĞRUSAL SINIRLAMALARIN TESTİ t testi F testi Diğer testler: Chow testi MWD testi DOĞRUSAL OLMAYAN SINIRLAMALARIN TESTİ Benzerlik Oranı Testi Lagrange Çarpanı

Detaylı

YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI. Sibel SELİM 1 Efe SARIBAY 2

YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI. Sibel SELİM 1 Efe SARIBAY 2 Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi Cilt 5, Sayı:2, 2003 YABANCI DİL EĞİTİMİ VEREN ÖZEL BİR EĞİTİM KURUMUNDAKİ ÖĞRENCİLERİN BEKLENTİLERİNİN ARAŞTIRILMASI Sibel SELİM 1 Efe SARIBAY

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin

Detaylı

Korelasyon ve Regresyon

Korelasyon ve Regresyon Korelasyon ve Regresyon Korelasyon- (lineer korelasyon) Açıklayıcı (Bağımsız) Değişken x çalışma zamanı ayakkabı numarası İki değişken arasındaki ilişkidir. Günlük sigara sayısı SAT puanı boy Yanıt (Bağımlı)

Detaylı

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler

OLS Yönteminin Asimptotik (Büyük Örneklem) Özellikleri SIRADAN EN KÜÇÜK KARELER (OLS) Asimptotik Özellikler: Tutarlılık. Asimptotik Özellikler 1 SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

ARALIK TAHMİNİ (INTERVAL ESTIMATION):

ARALIK TAHMİNİ (INTERVAL ESTIMATION): YTÜ-İktisat İstatistik II Aralık Tahmini I 1 ARALIK TAHMİNİ INTERVAL ESTIMATION): Nokta tahmininde ilgilenilen anakütle parametresine ilişkin örneklem bilgisinden hareketle tek bir sayı üretilir. Bir nokta

Detaylı

LOJİSTİK REGRESYON ANALİZİ

LOJİSTİK REGRESYON ANALİZİ LOJİSTİK REGRESYON ANALİZİ Lojistik Regresyon Analizini daha kolay izleyebilmek için bazı terimleri tanımlayalım: 1. Değişken (incelenen özellik): Bireyden bireye farklı değerler alabilen özellik, fenomen

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0 YTÜ-İktisat İstatistik II Hipotez Testi 1 HİPOTEZ TESTİ: AMAÇ: Örneklem bilgisinden hareketle anakütleye ilişkin olarak kurulan bir hipotezin (önsavın) geçerliliğinin test edilmesi Genel notasyon: anakütleye

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT352 Ekonometri II, Dönem Sonu Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT352 Ekonometri II, Dönem Sonu Sınavı TOBB Ekonomi ve Teknoloji Üniversitesi Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sınav toplam 100 puan değerinde 5 sorudan oluşmaktadır. Sınav süresi 90 dakikadır ve tüm soruların

Detaylı

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi

14 Ekim 2012. Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge. 1 Yıldız Teknik Üniversitesi ÇOK DEĞİŞKENLİ REGRESYON ANALİZİ: ÇIKARSAMA Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge 14 Ekim 2012 Ekonometri

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık -II Prof. Dr. İrfan KAYMAZ İki Ortalama Farkının Güven Aralığı Anakütle Varyansı Biliniyorsa İki ortalama arasındaki farkın dağılımına ilişkin Z değişkeni: Güven aralığı ifadesinde

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) Aşağıdaki analizlerde lise öğrencileri veri dosyası kullanılmıştır.

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ I Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ II Yayın No : 2845 Teknik Dizisi : 158 1. Baskı Şubat 2013 İSTANBUL ISBN 978-605 - 377 868-4 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları BETA

Detaylı

değiştirdiğini gösterir. Marjinal Hasıla Bir malın satışından elde edilen toplam hasıla (TR), malın fiyatı (P) ile satılan mal miktarının (Q) çarpımına eşittir: Toplam hasıla fonksiyonu monopol piyasasında

Detaylı

BAĞIMLI KUKLA DEĞİŞKENLİ MODELLER A- KADININ İŞGÜCÜNE KATILIM MODELİ NİN DOM İLE E-VIEWS DA ÇÖZÜMÜ

BAĞIMLI KUKLA DEĞİŞKENLİ MODELLER A- KADININ İŞGÜCÜNE KATILIM MODELİ NİN DOM İLE E-VIEWS DA ÇÖZÜMÜ BAĞIMLI KUKLA DEĞİŞKENLİ MODELLER A- KADININ İŞGÜCÜNE KATILIM MODELİ NİN DOM İLE E-VIEWS DA ÇÖZÜMÜ Modeldeki değişken tanımları aşağıdaki gibidir: IS= 1 i.kadının bir işi varsa (ya da iş arıyorsa) 0 Diğer

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Ch. 5: SEKK (OLS) nin Asimptotik Özellikleri

Detaylı

Tekrarlı Ölçümler ANOVA

Tekrarlı Ölçümler ANOVA Tekrarlı Ölçümler ANOVA Repeated Measures ANOVA Aynı veya ilişkili örneklemlerin tekrarlı ölçümlerinin ortalamalarının aynı olup olmadığını test eder. Farklı zamanlardaki ölçümlerde aynı (ilişkili) kişiler

Detaylı

ZAMAN SERİLERİNDE REGRESYON ANALİZİ

ZAMAN SERİLERİNDE REGRESYON ANALİZİ ZAMAN SERİLERİNDE REGRESYON ANALİZİ 1 1. GİRİŞ Trent, serinin genelinde yukarıya ya da aşağıya doğru olan hareketlere denmektedir. Bu hareket bazen düz bir doğru şeklinde olmaktadır. Bu tür harekete sahip

Detaylı

Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur.

Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur. Değişen Varyans Örnek Bu örnekte kullanılan veri 200 gözleme sahiptir ve örnek için özel olarak oluşturulmuştur. 1 Aşağıda yer alan denklemi tahmin edelim; y i = β 0 + β 1 x 1i + β 2 x 2i + u i EViews

Detaylı

6.5 Basit Doğrusal Regresyonda Hipotez Testleri. 6.5.1 İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır.

6.5 Basit Doğrusal Regresyonda Hipotez Testleri. 6.5.1 İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır. 6.5 Basit Doğrusal Regresyonda Hipotez Testleri 6.5.1 İçin Hipotez Testi: 1. Hipotez kurulur. 2. Test istatistiği hesaplanır. olduğu biliniyor buna göre; hipotezinin doğruluğu altında test istatistiği

Detaylı

ÖRNEK BULGULAR. Tablo 1: Tanımlayıcı özelliklerin dağılımı

ÖRNEK BULGULAR. Tablo 1: Tanımlayıcı özelliklerin dağılımı BULGULAR Çalışma tarihleri arasında Hastanesi Kliniği nde toplam 512 olgu ile gerçekleştirilmiştir. Olguların yaşları 18 ile 28 arasında değişmekte olup ortalama 21,10±1,61 yıldır. Olguların %66,4 ü (n=340)

Detaylı

Hipotez Testleri. Mühendislikte İstatistik Yöntemler

Hipotez Testleri. Mühendislikte İstatistik Yöntemler Hipotez Testleri Mühendislikte İstatistik Yöntemler Hipotez Testleri Parametrik Testler ( z ve t testleri) Parametrik Olmayan Testler (χ 2 Testi) Hipotez Testleri Ana Kütle β( µ, σ ) Örnek Kütle b ( µ

Detaylı

SIRADAN EN KÜÇÜK KARELER (OLS)

SIRADAN EN KÜÇÜK KARELER (OLS) SIRADAN EN KÜÇÜK KARELER (OLS) YÖNTEMİNİN ASİMPTOTİK ÖZELLİKLERİ Hüseyin Taştan 1 1 Yıldız Teknik Üniversitesi İktisat Bölümü Ders Kitabı: Introductory Econometrics: A Modern Approach (2nd ed.) J. Wooldridge

Detaylı

Ç.Ü. Sosyal Bilimler Enstitüsü Dergisi, Cilt 20, Sayı 1, 2011, Sayfa ADANA KENTSEL ALANDA HANEHALKI TÜKETİMİ

Ç.Ü. Sosyal Bilimler Enstitüsü Dergisi, Cilt 20, Sayı 1, 2011, Sayfa ADANA KENTSEL ALANDA HANEHALKI TÜKETİMİ ADANA KENTSEL ALANDA HANEHALKI TÜKETİMİ H. Mahir Fisunoğlu Seda Şengül Prof. Dr. Çukurova Üniversitesi İİBF, Doç. Dr. Çukurova Üniversitesi İİBF İktisat Bölümü, 01330 Balcalı, Adana, Ekonometri Bölümü,

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 12 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 7 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 1. Pearson Korelasyon Katsayısı

Detaylı

İSTATİSTİKSEL VERİ ANALİZİ

İSTATİSTİKSEL VERİ ANALİZİ İSTATİSTİKSEL VERİ ANALİZİ Prof. Dr. Gül ERGÜN Hacettepe Üniversitesi Kasım 2013 İstatistik Nedir? İSTATİSTİK Belirli bir konuda toplanan sayısal değerlerdir. Buna göre, 2012 yılında Türkiye de kayıtlı

Detaylı

UYGULAMALAR. Normal Dağılımlılık

UYGULAMALAR. Normal Dağılımlılık UYGULAMALAR EKONOMETRİYE GİRİŞ 0.01.008 1 Normal Dağılımlılık Amerika da 195-1941 yılları arasında sığır eti fiyatı ile kişi başı sığır eti tüketimi arasındaki ilişki incelenmiş ve aşağıdaki sonuç bulunmuştur.

Detaylı

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ

TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ Taşınmaz Değerlemede İstatistiksel Analiz Taşınmaz Değerleme ve Geliştirme Tezsiz Yüksek Lisans Programı TAŞINMAZ DEĞERLEMEDE İSTATİSTİKSEL ANALİZ 1 Taşınmaz Değerlemede İstatistiksel Analiz İçindekiler

Detaylı

(AYIRIM) DENLİ. Emre KUZUGÜDENL. Doç.Dr.Serdar CARUS

(AYIRIM) DENLİ. Emre KUZUGÜDENL. Doç.Dr.Serdar CARUS DİSKRİMİNANT ANALİZİ (AYIRIM) Emre KUZUGÜDENL DENLİ Doç.Dr.Serdar CARUS Bu analiz ile; Bir bireyin hangi gruptan geldiği (p değişkeni kullanarak, bireyi uygun bir gruba atar ) Her bir değişkenin atama

Detaylı

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL

VERİ MADENCİLİĞİ. Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL VERİ MADENCİLİĞİ Karar Ağacı Algoritmaları: SPRINT algoritması Öğr.Gör.İnan ÜNAL SPRINT Algoritması ID3,CART, ve C4.5 gibi algoritmalar önce derinlik ilkesine göre çalışırlar ve en iyi dallara ayırma kriterine

Detaylı

İki Değişkenli Bağlanım Çıkarsama Sorunu

İki Değişkenli Bağlanım Çıkarsama Sorunu İki Değişkenli Bağlanım Çıkarsama Sorunu Aralık Tahmini Ekonometri 1 Konu 15 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

ortalama ve ˆ ˆ, j 0,1,..., k

ortalama ve ˆ ˆ, j 0,1,..., k ÇOKLU REGRESYONDA GÜVEN ARALIKLARI Regresyon Katsayılarının Güven Aralıkları y ( i,,..., n) gözlemlerinin, xi ortalama ve i k ve normal dağıldığı varsayılsın. Herhangi bir ortalamalı ve C varyanslı normal

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A 2Q 10 BS 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek tablolar ve f ormüller bu kita p ç ığın sonunda ver-ilmiştir. 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre cevaplandırılacaktır

Detaylı

10. BÖLÜM: MODEL KURMA: FONKSİYONEL FORM SEÇİMİ

10. BÖLÜM: MODEL KURMA: FONKSİYONEL FORM SEÇİMİ 10. BÖLÜM: MODEL KURMA: FONKSİYONEL FORM SEÇİMİ Bu bölümde; Fonksiyonel Form için EViews Tablosu EViews ta Quasi R 2 Hesaplanması EViews ta Doğrusal ve Log-Lin Modeller için Quasi R 2 Hesaplanması EViews

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 13 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

Eşanlı Denklem Modelleri

Eşanlı Denklem Modelleri Eşanlı Denklem Modelleri Eşanlı Denklem Yöntemleri Ekonometri 2 Konu 23 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike 3.0 Unported (CC

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

KLASİK BULANIK MANTIK DENETLEYİCİ PROBLEMİ : INVERTED PENDULUM

KLASİK BULANIK MANTIK DENETLEYİCİ PROBLEMİ : INVERTED PENDULUM KLASİK BULANIK MANTIK DENETLEYİCİ PROBLEMİ : INVERTED PENDULUM M.Ali Akcayol Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü (Yüksek Lisans Tezinden Bir Bölüm) Şekil 1'

Detaylı

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ

BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ BİYOİSTATİSTİK DERSLERİ AMAÇ VE HEDEFLERİ DÖNEM I-I. DERS KURULU Konu: Bilimsel yöntem ve istatistik Amaç: Biyoistatistiğin tıptaki önemini kavrar ve sonraki dersler için gerekli terminolojiye hakim olur.

Detaylı

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma...

İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii. Ölçme, İstatistik ve Araştırma... İçindekiler İçindekiler vii Yazarların Ön Sözü xiii Çevirenin Ön Sözü xiv Teşekkürler xvi Semboller Listesi xvii BÖLÜM 1 Ölçme, İstatistik ve Araştırma...1 Ölçme Nedir?... 3 Ölçme Süreci... 3 Değişkenler

Detaylı

A. Regresyon Katsayılarında Yapısal Kırılma Testleri

A. Regresyon Katsayılarında Yapısal Kırılma Testleri A. Regresyon Katsayılarında Yapısal Kırılma Testleri Durum I: Kırılma Tarihinin Bilinmesi Durumu Kırılmanın bilinen bir tarihte örneğin tarihinde olduğunu önceden bilinmesi durumunda uygulanır. Örneğin,

Detaylı

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU

YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Marmara Üniversitesi U.B.F. Dergisi YIL 2005, CİLT XX, SAyı 1 YARI LOGARİTMİK MODELLERDE KUKLA DECİşKENLERİN KA TSA YıLARıNIN YORUMU Yrd. Doç. Dr. Ebru ÇACLAYAN' Arş. Gör. Burak GÜRİş" Büyüme modelleri,

Detaylı

İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1

İÇİNDEKİLER ÖNSÖZ... Örneklem Genişliğinin Elde edilmesi... 1 İÇİNDEKİLER ÖNSÖZ... v 1. BÖLÜM Örneklem Genişliğinin Elde edilmesi... 1 1.1. Kitle ve Parametre... 1 1.2. Örneklem ve Tahmin Edici... 2 1.3. Basit Rastgele Örnekleme... 3 1.4. Tabakalı Rastgele Örnekleme...

Detaylı

CHAPTER 6 SIMPLE LINEAR REGRESSION

CHAPTER 6 SIMPLE LINEAR REGRESSION CHAPTER 6 SIMPLE LINEAR REGRESSION Bu bölümdeki amacımız değişkenler arasındaki ilişkiyi gösteren en uygun eşitliği kurmaktır. Konuya giriş için şu örnekle başlayalım; Diyelim ki Mr. Bump adındaki birisi

Detaylı

Appendix B: Olasılık ve Dağılım Teorisi

Appendix B: Olasılık ve Dağılım Teorisi Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir

Oluşturulan evren listesinden örnekleme birimlerinin seçkisiz olarak çekilmesidir Bilimsel Araştırma Yöntemleri Prof. Dr. Şener Büyüköztürk Doç. Dr. Ebru Kılıç Çakmak Yrd. Doç. Dr. Özcan Erkan Akgün Doç. Dr. Şirin Karadeniz Dr. Funda Demirel Örnekleme Yöntemleri Evren Evren, araştırma

Detaylı

1 PAZARLAMA ARAŞTIRMASI

1 PAZARLAMA ARAŞTIRMASI İÇİNDEKİLER ÖNSÖZ III Bölüm 1 PAZARLAMA ARAŞTIRMASI 11 1.1. Pazarlama Araştırması Kavramı ve Kapsamı 12 1.2. Pazarlama Araştırmasının Tarihçesi 14 1.3. Pazarlama Araştırması Pazarlama Bilgi Sistemi ve

Detaylı

ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ

ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ ÇOKLU REGRESYON ANALİZİNDE VARSAYIMLARDAN SAPMALARIN İNCELENMESİ 1. ÇOKLU REGRESYON ANALİZİ VE VARSAYIMALARDAN SAPMALAR 1.1. Çoklu Regresyon modeli Varsayımları 1.2. Tahmincilerin anlamlılığının sınanması

Detaylı

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI

MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI Öğrenci Bilgileri Ad Soyad: İmza: MATE 211 BİYOİSTATİSTİK DÖNEM SONU SINAVI 26 Mayıs, 2014 Numara: Grup: Soru Bölüm 1 10 11 12 TOPLAM Numarası (1-9) Ağırlık 45 15 30 20 110 Alınan Puan Yönerge 1. Bu sınavda

Detaylı

19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I

19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I 19. BÖLÜM BİRBİRİYLE İLİŞKİLİ OLAN İKİ DEĞİŞKENDEN BİRİSİNDEKİ DEĞİŞİME GÖRE DİĞERİNİN ALACAĞI DEĞERİ YORDAMA (KESTİRME) UYGULAMA-I Bir dil dershanesinde öğrenciler talep ettikleri takdirde, öğretmenleriyle

Detaylı

TÜRKİYE DENGELEME GÜÇ PİYASASI TALİMAT MİKTARLARI ÜZERİNE İSTATİSTİKSEL BİR ÇALIŞMA 1. Gökhan Ceyhan Yazılım ARGE Uzmanı, EPİAŞ

TÜRKİYE DENGELEME GÜÇ PİYASASI TALİMAT MİKTARLARI ÜZERİNE İSTATİSTİKSEL BİR ÇALIŞMA 1. Gökhan Ceyhan Yazılım ARGE Uzmanı, EPİAŞ TÜRKİYE DENGELEME GÜÇ PİYASASI TALİMAT MİKTARLARI ÜZERİNE İSTATİSTİKSEL BİR ÇALIŞMA 1 Gökhan Ceyhan Yazılım ARGE Uzmanı, EPİAŞ ÖZET Bu makalede, Türkiye Dengeleme Güç Piyasası (DGP) kapsamında 2015 Ocak

Detaylı

İÇİNDEKİLER. Birinci Bölüm UYGULAMA VERİLERİ

İÇİNDEKİLER. Birinci Bölüm UYGULAMA VERİLERİ İÇİNDEKİLER Birinci Bölüm UYGULAMA VERİLERİ VERİ GRUBU 1. Yüzücü ve Atlet Verileri... 1 VERİ GRUBU 2. Sutopu, Basketbol ve Voleybol Oyuncuları Verileri... 4 VERİ 3. Solunum Yolları Verisi... 7 VERİ 4.

Detaylı

Bir Normal Dağılım Ortalaması İçin Testler

Bir Normal Dağılım Ortalaması İçin Testler Bir Normal Dağılım Ortalaması İçin Testler İÇERİK o Giriş ovaryansı Bilinen Bir Normal Dağılım Ortalaması İçin Hipotez Testler P-değerleri: II. Çeşit hata ve Örnekleme Büyüklüğü Seçimi Örnekleme Büyüklüğü

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

Dependent Variable: Y Method: Least Squares Date: 03/23/11 Time: 16:51 Sample: Included observations: 20

Dependent Variable: Y Method: Least Squares Date: 03/23/11 Time: 16:51 Sample: Included observations: 20 ABD nin 1966 ile 1985 yılları arasında Y gayri safi milli hasıla, M Para Arazı (M) ve r faiz oranı verileri aşağıda verilmiştir. a) Y= b 1 +b M fonksiyonun spesifikasyon hatası taşıyıp taşımadığını Ramsey

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama Doç.

Detaylı

EKONOMETRİ. GRETL Uygulamaları. Prof. Dr. Bülent Miran

EKONOMETRİ. GRETL Uygulamaları. Prof. Dr. Bülent Miran EKONOMETRİ GRETL Uygulamaları Prof. Dr. Bülent Miran Bornova-2015 İÇİNDEKİLER 1. Gretl da veri dosyasını çağırma:... 3 2. Gretl da Excel veri dosyasını açma:... 4 3. Excel den alınmış verilerin Gretl dosyası

Detaylı

2. BASİT DOĞRUSAL REGRESYON 12

2. BASİT DOĞRUSAL REGRESYON 12 1. GİRİŞ 1 1.1 Regresyon ve Model Kurma / 1 1.2 Veri Toplama / 5 1.3 Regresyonun Kullanım Alanları / 9 1.4 Bilgisayarın Rolü / 10 2. BASİT DOĞRUSAL REGRESYON 12 2.1 Basit Doğrusal Regresyon Modeli / 12

Detaylı

İLERİ ARAŞTIRMA SORU HAVUZU

İLERİ ARAŞTIRMA SORU HAVUZU 1 ) Bir ölçümde bağımlı değişkenlerdeki farklılıkların bağımsız değişkenlerdeki farklılıkları nasıl etkilediğini aşağıdakilerden hangisi ölçer? A) Bağımlı Değişken B) Bağımsız Değişken C) Boş Değişken

Detaylı

ADMIT: Öğrencinin yüksek lisans programına kabul edilip edilmediğini göstermektedir. Eğer kabul edildi ise 1, edilmedi ise 0 değerini almaktadır.

ADMIT: Öğrencinin yüksek lisans programına kabul edilip edilmediğini göstermektedir. Eğer kabul edildi ise 1, edilmedi ise 0 değerini almaktadır. Uygulama-2 Bir araştırmacı Amerika da yüksek lisans ve doktora programlarını kabul edinilmeyi etkileyen faktörleri incelemek istemektedir. Bu doğrultuda aşağıdaki değişkenleri ele almaktadır. GRE: Üniversitelerin

Detaylı

AKSARAYLI TEMEL İSTATİSTİK YÖNTEMLER

AKSARAYLI TEMEL İSTATİSTİK YÖNTEMLER TEMEL İSTATİSTİK YÖNTEMLER DERS I - 1/63 İstatistik nedir? 1. 2. tanımı) 3. (En eski tanımı) (Yöntembilim olarak (Kelime anlamı) DERS I - 2/63 İstatistik nedir? 1. Veri toplama Araştırma 2. Verilerin sınıflandırılması

Detaylı

11. BÖLÜM: EŞANLI DENKLEM SİSTEMLERİ

11. BÖLÜM: EŞANLI DENKLEM SİSTEMLERİ 11. BÖLÜM: EŞANLI DENKLEM SİSTEMLERİ Bu bölümde; Yapısal denklemleri kullanarak vergiler ve net ihracatın zaman serilerini oluşturma EKK ile CO tahmini EViews TSLS metodu ile iki aşamalı EKK regresyon

Detaylı

EKONOMETRİK MODEL TANIMLAMADA KULLANILAN SINAMA YÖNTEMLERİ VE

EKONOMETRİK MODEL TANIMLAMADA KULLANILAN SINAMA YÖNTEMLERİ VE EKONOMETRİK MODEL TANIMLAMADA KULLANILAN SINAMA YÖNTEMLERİ VE BU AMAÇLA GELİŞTİRİLMİŞ BİR YAZILIM Bülent Sedef Akgüngör34 1. GİRİŞ Ekonomik bir ilişkinin gerçeğe en uygun bir şekilde modellenmesi için,

Detaylı