Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Rastgele Değişkenlerin Dağılımları. Mühendislikte İstatistik Yöntemler"

Transkript

1 Rastgele Değişkenlerin Dağılımları Mühendislikte İstatistik Yöntemler

2 Ayrık Rastgele Değişkenler ve Olasılık Dağılımları Yapılan çalışmalarda elde edilen verilerin dağılışı ve dağılış fonksiyonu her seferinde ampirik olarak belirlenemez. Bu nedenle olayın yapısı ve verilerin özelliği dikkate alınarak uygunluk gösterecekleri teorik populasyon dağılışı tahminlenir. Değerleri sayımla elde edilen değişkene kesikli değişken denir. Başka bir deyişle bir kesikli değişkenin birbirini izleyen değerleri arasında belirli boşluklar vardır. Değerleri ölçüm ya da tartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen bir değişkene sürekli rassal değişken denir. Sürekli bir rassal değişkenin değerleri aralıklar halinde tanımlanır. Önemli bazı kesikli ve sürekli dağılışlarşunlardır:

3 Kesikli Dağı ğılış ışlar Binom Dağılşı Hipergeometrik Dağılış Poisson Dağılışı Negatif Biinom Dağılışı Multinom Dağılış... Sürekli Dağı ğılış ışlar Normal Dağılış Standart Normal Dağılış Üslü Dağılış Lognormal Dağılış Gamma Dağılış...

4 KESİKLİ (AYRIK, SÜREKSİZ) REASTGELE DEĞİKENLERİN DAĞILIMLARI Böyle bir rastgele değişkene ait çeşitli olayların olasılıkları; P( i ) P(X i ) şeklinde i değerlerinin hizasında birer düşey çizgi ile gösterilirse bu değişkenin olasılık kütle fonksiyonu (o.k.f) elde edilmiş olur. Düşey çizgilerin toplamı daima e eşittir. p( ) i i F( i ) P( X i ) Pratikte önem taşıyan bu fonksiyona eklenik dağılım fonksiyonu (e.d.f) denilir. F() fonksiyonu 0 dan e doğru gittikçe artan basamaklı bir fonksiyondur.

5 Örnek Bir trafik ışığında belirli bir anda durmakta olan araç sayısı X ile gösterilirse ve yapılan gözlemler sonucu aşağıdaki olasılıkların belirlenmiş olduğu kabul edilirse, bu değişkene ait olasılık kütle fonksiyonu ve eklenik dağılım fonksiyonunu çiziniz. p (0) 0.0 p () 0.20 p (2) 0.30 p (3) 0.20 p (4) 0.0 p (5) 0.0 p (6) 0.00 p (7) 0.00

6 Çözüm Olasılık Kütle Fonksiyonu (O.K.F.) p (0) 0.0 p () 0.20 p (2) 0.30 p (3) 0.20 p (4) 0.0 p (5) 0.0 p (6) 0.00 p (7) 0.00 F() p() 0,40 0,30 0,20 0,0 0, Eklenik Frekans Dağılımı (E.D.F)

7 Sürekli Rastgele Değişkenlerin Dağı ğılımları Sürekli rastgele değişkenin alabileceği değerlerin sayısı sonsuzdur. Sürekli rastgele değişkenin alabileceği değerlerin sayısı sonsuz, bu değerleri alma olasılıkları toplamı ise e eşit olacağından X şeklindeki basit olayların olasılıkları sıfıra gidecektir. Bu nedenle sürekli rastgele değişkenlerde basit olayların olasılıkları yerine değişkenin ile +d arasındaki bir aralıkta kalmasışeklindeki bileşik olayın olasılığını tanımlamak yoluna gidilir. Bu durumda Olasılık Yoğunluk Fonksiyonu (O.Y.F.): f (). d P ( < X + d)

8 Sürekli Rastgele Değişkenlerin Dağı ğılımları f() f(). d P( < X +d) o.y.f µ +d Olasılık Yoğunluk Fonksiyonu P( < X 2) 2 f ( ). d

9 Sürekli Rastgele Değişkenlerin Dağı ğılımları Değişkenin (-, + ) aralığında bir değer alması kesin (olasılığı olan) bir olay olduğuna göre f() daima f (). d koşuluna uyar. Sürekli değişken halinde eklenik dağılım fonksiyonunun tanımı değişmez: F() P(X ) Eklenik dağılım fonksiyonu daima şu koşulları sağlar: 0 F() F(- ) 0 F( ) ε>0 için F(+ε) F() F(2) - F() P( < X 2)

10 Dağılımların Parametreleri PARAMETRE Ortalama (Beklenen Değer) Varyans Standart Sapma Değişim Katsayısı Sürekli µ.p(). d Var E ( µ ).p(). d 2 Var C v µ Süreksiz Sınıflara Ayrılmamış Sınıflara Ayrılmış µ N m E i µ E i.f ( i ) N i i m 2 Var Var ( ).f ( ) N 2 ( i ) N i i i i

11 Dağılımların Parametreleri PARAMETRE Çarpıklık Katsayısı Basıklık Katsayısı Sürekli C k s ( µ ( µ ) ) p().d.p().d Süreksiz Sınıflara Ayrılmamış Sınıflara Ayrılmış C s k N N N i N i ( ( i 3 i 4 ) ) 3 4 C k s m ( i m ( i i i ) 3 ) f (.f ( i i ) )

12 Örnek Aşağıdaki frekans tablosuna göre, Ortalama, Varyans, Standart Sapma, Çarpıklık Katsayısı ve Basıklık Katsayısını bulunuz. Sınıf % f Tarih Qma

13 Sınıf Sınıf Orta Noktaları (X) % f Ortalama Varyans Çarpıklık Basıklık [] [2] [3] [4][2]*[3] [5][2]-(40.05) 2 *[3] [6][2]-(40.05) 3 *[3] [7][2]-(40.05) 4 *[3] Ortalama Varyans s Varyans Cs 0.0 k 2,

14 ÖNEMLİ OLASILIK DAĞILIM FONKSİYONLARI Binom Dağılımı Bir kesikli rastgele değişken için sadece 2 olay mevcutsa (olmak veya olmamak, ya da gerçekleşmek veya gerçekleşmemek gibi), ve bunların olasılıkları p ve q - p ile gösterilirse; n elemanlı bir örnek için olasılığı p olan olayın defa görülmesi olasılığı: P() n p q n n n(n )...(n + ).2...( )!(n n! )!

15 Rastgele değişkene ait birbirinden bağımsız n deneme yapılması durumunda olasılığı p olan olayın defa görülmesi olasılığı binom dağılımına uyar ve bu denemelere de istatistikte Bağımsız Bernoulli Denemeleri adı verilir.

16 Geometrik Dağılım Bağımsız Bernoulli denemelerinde ilk başarının inci denemede görülmesi olasılığı: P() q.p Bu dağılımın olasılık dağılım fonksiyonu ise: F() q şeklindedir. Parametreleri ise; E ( ) / p, Var( ) q / p 2

17 Dönüş aralığı T/p yıl olan bir olayın T yıllık bir süre içinde hiç görülmemesi olasılığı: ( p ) T Tp + T(T ) 2 p 2... şeklinde yazılabilir. T nin büyük değerleri için eşitliğin sağ tarafı e -Tp ye yaklaşır. Buna göre: P( 0) e -Tp e - p p e T50 yıl içinde hesaplanan değerin bu yaklaşık değere çok yakın olduğu görülmektedir.

18 Poisson Dağılımı Bir kesikli rastgele değişken için sadece 2 olay mevcut olsun(olmak veya olmamak, ya da gerçekleşmek veya gerçekleşmemek gibi), bunların olasılıkları p ve q - p ile gösterilsin. Ancak bu olaslıklardan biri çok küçükse ( p 0 ), buna karşılık n deneme sayısı çok büyükse ( n ) ve np çarpımı sonlu ise: n denemede olasılığı p olan olayın defa görülmesi olasılığı: P( ) µ. e! λ, µ n. p P( ) µ µ e.!

19 Sürekli Rastgele Değişkenlerin Dağı ğılımları Normal Dağılım (Gauss Dağılımı) f f ( ) e 2π 2 2 ( µ ) /(2 ) < < Dağılımın iki parametresi vardır: µ (- < µ < ) (rastgele değişkenin ortalaması) ( > 0) (rastgele değişkenin standart sapması)

20 Normal Dağı ğılım m (Gauss Dağı ğılımı) Normal dağılım simetrik bir dağılımdır. C s 0 (Çarpıklık Katsayısı) k 3 (kurtosis (basıklık) katsayısı) f() f() 2π e ( µ ) 2 /(2 2 ) O.Y.F - µ + X

21 Normal Dağı ğılım m (Gauss Dağı ğılımı) Bir rastgele değişkenin a ve b arasında bir değer alma olasılığı: b a 2 2 ( µ ) /(2 ) e 2π d Bu denklemin normal integrasyon teknikleri ile çözümü oldukça güçtür f() b a 2 2 ( µ ) /(2 ) e 2π d z µ standart normal değişken - a b + µ X Bu durumda normal dağılım, ortalaması µ 0, standart sapması olan standart normal dağılım adını alır. f ( z) e 2π 2 z / 2 < z <

22 Normal Dağılım Tablosu Standart Normal dağılım Eğrisi Altında Kalan Alan F() P (Z z) 0 z p z z z µ 0,03 z p z p z

23 Normal Dağılım z 0 z z 0 z z z 0 z 2 P(X < ) P (Z < z) P(X > ) P (Z > z) P( <X < 2 ) P (z <Z < z 2 )

24 Normal Dağılım z nin (-) negatif değerleri Normal Dağılım tablosundan okunurken, dağılımın simetrikliğinden dolayı z nin (+) değerinin karşılığı tablodan okunur ve den çıkarılır. Alanları eşit z 0,25 p 0,25 0,590 z - 0,25 p -0,25 - z(+0,25) -z z 0 -(+z) P -0,25-0,5900,409

25 Sürekli Rastgele De rekli Rastgele Değişkenlerin Da kenlerin Dağı ğılımlar mları Log-normal Dağılım Rastgele değişkene y ln () şeklinde logaritmik dönüşüm uygulandığında dönüştürülmüş Y değişkeninin dağılımı normal ise X değişkeninin dağılımı lognormaldir Cs > 0 - Normal dağılım tablosu kullanılır 0 + X 0 2 ) ( ) /(2 ] ) [ln( 2 2 e y f y y y µ π + 2 / 2 2 ln y µ µ µ 2 / 2 2 ln + y µ

26 Ekstrem Değer er Dağı ğılımları Dönüş Aralığı (Tekerrür Periyodu) p + q.0 p - q p /Tr q (/Tr) p aşılma olasılığı q aşılmama olasılığı Tr tekerrür periyodu

27 Ekstrem Değer er Dağı ğılımları Proje Periyodu ve Risk Proje hesaplarında gözönüne alınan Tr yıllık taşkın debisinin proje periyodu olan n yıllık bir süre içinde p n ile gösterilen bir aşılma olasılığı vardır ki bu olasılık kabul edilebilecek risk i ifade etmekte olup ekonomik düşüncelerle belirlenecek olan bir proje kriteridir. Dönüş Aralığı Tr yıl olan bir debinin n yıl boyunca hiç aşılmaması olasılığı; n qn Tr aşılması olasılığı ise; p n Tr n

28 Ekstrem Değer er Dağı ğılımları Sıralanmış Örnek Rank Frekans Dönüş Aralığı Risk California Weibull Hazen California Weibull Hazen California Weibull Hazen m/n m/(n+) (2m-)/2n n/m (n+)/m 2n/(2m-) -(-/Tr) N -(-/Tr) N -(-/Tr) N

29 Ekstrem Değer er Dağı ğılımları Log-Normal Dağılım Gumbel Dağılımı Pearson Tip III Dağılımı Log-Pearson Tip III Dağılımı

30 Ekstrem Değer er Dağı ğılımları GUMBEL DAĞILIMI Dağılımın genel OYF u: f ( ) e β µ β e e µ β Dağılımın yer parametresi µ 0 ölçek parametresi β alınırsa STANDART GUMBEL DAĞILIMI nın OYF si: f ( ) e e e

31 Ekstrem Değer er Dağı ğılımları GUMBEL DAĞILIMI Kümülatif Dağılım Fonksiyonu (Minimum) : F ( ) e e Kümülatif Dağılım Fonksiyonu (Maksimum) : F ( ) e e (-) işaretine dikkat et

32 Ekstrem Değer er Dağı ğılımları Gumbel Dağılımı (Fisher Tippett I) Dağılımın OYF u ve Tekerrür periyodu p q e y y e e p q e e y Tr p e y a (X - X o ) Büyük örnekler için (N > 30) a X o µ Küçük örnekler için (N 30) a n X o µ Y n n

33 Gumbel Dağılımı (Fisher Tippett I) N Ÿn n N Ÿn n N Ÿn n N Ÿn n 0 0,495 0, ,539, ,55, ,557,93 0,500 0, ,540, ,55,7 80 0,557,94 2 0,504 0, ,540, ,55,72 8 0,557,95 3 0,507 0, ,54,3 59 0,552, ,557,95 4 0,50, ,542, ,552, ,557,96 5 0,53, ,542,37 6 0,552, ,558,97 6 0,55, ,543, ,553, ,558,97 7 0,58, ,544,4 63 0,553, ,558,98 8 0,520, ,544, ,553, ,558,99 9 0,522, ,545, ,554, ,558, ,524, ,545, ,554,8 89 0,558, ,525, ,546, ,554, ,559, ,527, ,546, ,554,83 9 0,559, ,528, ,547, ,555, ,559, ,530, ,547, ,555, ,559, ,53, ,548,57 7 0,555, ,559, ,532, ,548, ,555, ,559, ,533,0 50 0,549,6 73 0,555, ,559, ,534,05 5 0,549, ,556, ,560, ,535, ,549, ,556, ,560, ,536,2 53 0,550, ,556,9 99 0,560, ,537,6 54 0,550, ,556,9 00 0,560, ,538,9 55 0,550, ,557,92

34 Ekstrem Değer er Dağı ğılımları /p Pearson Tip III Dağılımı X µ + K. Frekans faktörü /T T Dönüş Aralığı (yıl):,00,052 6,, Aşılma Olasılığı (p) (%): ,5 2 0,5 0, Cs 3,0-0,667-0,665-0,660-0,636-0,396 0,420,80 2,003 2,278 2,867 3,52 4,05 4,970 7,52 2,9-0,690-0,688-0,68-0,65-0,390 0,440,95 2,007 2,277 2,855 3,34 4,03 4,909 7,034 2,8-0,74-0,7-0,702-0,666-0,384 0,460,20 2,00 2,275 2,84 3,4 3,973 4,847 6,95 2,7-0,740-0,736-0,724-0,68-0,376 0,479,224 2,02 2,272 2,827 3,093 3,932 4,783 6,794

35 Ekstrem Değer er Dağı ğılımları

36

37

38 Ekstrem Değer Dağılımları Örnek : Bir istasyonda kaydedimiş 0 yıllık maksimum akımlar aşağıda verilmiştir. Normal, Log-Normal, Gumbel, Pearson Tip III ve Log-Pearson Tip III dağılımlarını kullanarak; a) 50 ve 00 yıl tekerrürlü gelmesi muhtemel akımı b) 80 m³/s değerinde bir akımın gelebileceği tekerrür periyodunu belirleyiniz Tarih 2/3/98 6 Qp (m³/s) 3/4/987 5/2/988 5/4/ //99 0 6/3/99 /4/992 6/2/99 3 7/4/99 4 2/3/

39 Ekstrem Değer er Dağı ğılımları Weibull Q Rank p m m/(n+)

40 Ekstrem Değer er Dağı ğılımları T Q ,000 0,00 0,00 0,00 p

41 ÖRNEK Bir istasyonda kaydedimiş 0 yıllık maksimum akımlar aşağıda verilmiştir. Normal, Log-Normal, Gumbel, Pearson Tip III ve Log- Pearson Tip III dağılımlarını kullanarak; 50 ve 00 yıl tekerrürlü gelmesi muhtemel akımı 80 m³/s değerinde bir akımın gelebileceği tekerrür periyodunu belirleyiniz Yıl Qp (m³/s)

42 Farklı yöntemlerle bulunan 50 ve 00 yıl tekerrürlü muhtemel debiler (m³/s) YÖNTEM Tr 50 yıl Tr 00 yıl Normal Log - Normal Gumbel Pearson Tip III Log - Pearson Tip III

43 Log - Normal Dağılım z Y µ y y log(80) µ y 2.023, y z 2.70 için q p q Tr / yıl

44 Gumbel Dağılımı q e e 0.044(X 96.26) e e 0.044( ) e e e Tr q yıl Pearson Tip III Dağılımı µ 07.4, X Cs K X µ X K 3.40 için T 333 yıl Tr / yıl

45 Log - Pearson Tip III Dağılım µ y 2.023, y Cs y 0.49 K Y µ y y log(80) K 2.70 için Tr 200 yıl YÖNTEM Normal Log - Normal Gumbel Pearson Tip III Log - Pearson Tip III Q 80 m³/s 3333 yıl 286 yıl 40 yıl 333 yıl 200 yıl

46

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü umutokkan@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN Hidrolik Anabilim Dalı Balıkesir Üniversitesi Balıkesir Üniversitesi İnşaat

Detaylı

0.04.03 Standart Hata İstatistikte hesaplanan her istatistik değerin mutlaka hatası da hesaplanmalıdır. Çünkü hesaplanan istatistikler, tahmini bir değer olduğu için mutlaka hataları da vardır. Standart

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER

ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER DOÇ. DR. NİHAL ERGİNEL 2015 X beklenen değeri B[X] ile gösterilir. B[X] = BEKLENEN DEĞER Belli bir malzeme taşınan kolilerin ağırlıkları

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli

Detaylı

3/6/2013. Ders 6: Kesikli Olasılık Dağılımları

3/6/2013. Ders 6: Kesikli Olasılık Dağılımları Ders 6: Kesikli Olasılık Dağılımları Kesikli Düzgün (uniform) Dağılım Bernoulli Dağılımı Binom Dağılımı Çok Terimli Dağılım Geometrik Dağılım Negatif Binom Dağılımı Hipergeometrik Dağılım Poisson Dağılımı

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

Simülasyonda İstatiksel Modeller. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Simülasyonda İstatiksel Modeller. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Simülasyonda İstatiksel Modeller Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri

Detaylı

Simülasyonda İstatiksel Modeller

Simülasyonda İstatiksel Modeller Simülasyonda İstatiksel Modeller Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri iyi tanımlayabilir. İlgilenilen olayın örneklenmesi ile uygun

Detaylı

ANADOLU ÜNİVERSİTESİ ÖRNEK: GEOMETRİK DAĞILIM

ANADOLU ÜNİVERSİTESİ ÖRNEK: GEOMETRİK DAĞILIM ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ KESİKLİ DAĞILIMLAR-2 DOÇ. DR. NİHAL ERGİNEL 2015 GEOMETRİK DAĞILIM Bir Bernoulli deneyi ilk olumlu sonuç elde edilmesine kadar tekrarlansın. X: ilk olumlu sonucun

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 5: Rastgele Değişkenlerin Dağılımları II Prof. Dr. İrfan KAYMAZ Sık Kullanılan Dağılımlar Frekans tablolarına dayalı histogram ve frekans poligonları, verilerin dağılımı hakkında

Detaylı

kümeleri sırasıyla n 1, n 2,..., n k eleman içeriyorsa, önce A 1 nin bir elemanını seçmenin n 1

kümeleri sırasıyla n 1, n 2,..., n k eleman içeriyorsa, önce A 1 nin bir elemanını seçmenin n 1 3. Olasılık Hesapları ve Olasılık Dağılımları 3.3. Sayma Teknikleri Olasılık hesapları ve istatistikte birçok problem, verilen küme elemanlarının sayılmasını veya sıralanmasını gerektirir. Eğer bir olayın

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

Başarı olasılığı olan bir Bernoulli denemesinin aynı şartlar altında (bağımsız olarak) n kez tekrarlanması ile oluşan deneye binom deneyi denir.

Başarı olasılığı olan bir Bernoulli denemesinin aynı şartlar altında (bağımsız olarak) n kez tekrarlanması ile oluşan deneye binom deneyi denir. 3.5. Bazı Kesikli Dağılımlar 3.5.1. Bernoulli Dağılımı Bir deneyde başarı ve başarısızlık diye nitelendirilen iki sonuçla ilgilenildiğinde bu deneye (iki sonuçlu) Bernoulli deneyi ya da Bernoulli denemesi

Detaylı

Parametrik Olmayan İstatistik. Prof. Dr. Cenk ÖZLER

Parametrik Olmayan İstatistik. Prof. Dr. Cenk ÖZLER Parametrik Olmayan İstatistik Prof. Dr. Cenk ÖZLER Not: Beklenen Frekansı 5 in altında olan gruplar varsa, bu gruplar bir önceki veya bir sonraki grupla birleştirilir. Hipotezler χ 2 Dağılışa Uyum Testi

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

Tesadüfi Değişken. w ( )

Tesadüfi Değişken. w ( ) 1 Tesadüfi Değişken Tesadüfi değişkenler gibi büyük harflerle veya gibi yunan harfleri ile bunların aldığı değerler de gibi küçük harflerle gösterilir. Tesadüfi değişkenler kesikli veya sürekli olmak üzere

Detaylı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı 1 Bernoulli Dağılımı Bir şans değişkeninin bernoulli dağılımı göstermesi için ilgilenilen süreçte bernoulli

Detaylı

Hipotez Testleri. Mühendislikte İstatistik Yöntemler

Hipotez Testleri. Mühendislikte İstatistik Yöntemler Hipotez Testleri Mühendislikte İstatistik Yöntemler Hipotez Testleri Parametrik Testler ( z ve t testleri) Parametrik Olmayan Testler (χ 2 Testi) Hipotez Testleri Ana Kütle β( µ, σ ) Örnek Kütle b ( µ

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

altında ilerde ele alınacaktır.

altında ilerde ele alınacaktır. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 1 NOKTA TAHMİN YÖNTEMLERİ Şimdiye kadar verilmiş tahmin edicilerin sonlu örneklem ve asimptotik özelliklerini inceledik. Acaba bilinmeyen anakütle parametrelerini

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

MAT 208 İSTATİSTİK ve OLASILIK II ALIŞTIRMALAR-1

MAT 208 İSTATİSTİK ve OLASILIK II ALIŞTIRMALAR-1 MAT 208 İSTATİSTİK ve OLASILIK II ALIŞTIRMALAR-1 şeklinde tanımlanan dağılımın a) Ortalama ve varyans değerlerini bulunuz b) Moment yaratma fonksiyonunu bularak a-şıkkını tekrar çözünüz. Bir tezgahta üretilen

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

RİSK ANALİZİ VE AKTÜERYAL MODELLEME SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla

Detaylı

İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ. Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET

İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ. Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET Bu çalışmada, Celal Bayar Üniversitesi İnşaat Mühendisliği Bölümü öğrencilerinin

Detaylı

IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R

IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R Geçen Ders Envanter yonetımı: Gazetecı problemı Rastsal Rakamlar Üret Talebi hesapla Geliri hesapla Toplam maliyeti hesapla Günlük ve aylık

Detaylı

IE 303T Sistem Benzetimi

IE 303T Sistem Benzetimi IE 303T Sistem Benzetimi 1 L E C T U R E 5 : O L A S I L I K T E K R A R 2 Review of the Last Lecture Random Variables Beklenen Değer ve Varyans Moment Kesikli Dağılımlar Bernoulli Dağılımı Binom Dağılımı

Detaylı

KÖPRÜÇAY YILLIK AKIM VERİLERİNE UYGUN OLASILIK DAĞILIM FONKSİYONU VE KURAKLIK ANALİZİ

KÖPRÜÇAY YILLIK AKIM VERİLERİNE UYGUN OLASILIK DAĞILIM FONKSİYONU VE KURAKLIK ANALİZİ KÖPRÜÇAY YILLIK AKIM VERİLERİNE UYGUN OLASILIK DAĞILIM FONKSİYONU VE KURAKLIK ANALİZİ Aslı ÜLKE, Türkay BARAN Dokuz Eylül Üniversitesi,, İnşaat Mühendisliği Bölümü, İZMİR ÖZET Kuraklık, yağışın normal

Detaylı

BÖLÜM 9 NORMAL DAĞILIM

BÖLÜM 9 NORMAL DAĞILIM 1 BÖLÜM 9 NORMAL DAĞILIM Normal dağılım; 'normal dağılım eğrisi (normaly distribution curve)' ile kavramlaştırılan hipotetik bir evren dağılımıdır. 'Gauss dağılımı' ya da 'Gauss eğrisi' olarak da bilinen

Detaylı

Appendix B: Olasılık ve Dağılım Teorisi

Appendix B: Olasılık ve Dağılım Teorisi Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Notları Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix B: Olasılık ve Dağılım Teorisi

Detaylı

GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI. Prof. Dr. Nezir KÖSE

GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI. Prof. Dr. Nezir KÖSE GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI Prof. Dr. Nezir KÖSE 30.12.2013 S-1) Ankara ilinde satın alınan televizyonların %40 ı A-firması tarafından üretilmektedir.

Detaylı

ARALIK TAHMİNİ (INTERVAL ESTIMATION):

ARALIK TAHMİNİ (INTERVAL ESTIMATION): YTÜ-İktisat İstatistik II Aralık Tahmini I 1 ARALIK TAHMİNİ INTERVAL ESTIMATION): Nokta tahmininde ilgilenilen anakütle parametresine ilişkin örneklem bilgisinden hareketle tek bir sayı üretilir. Bir nokta

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları

ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları. 9 + = 6. A dan B ye 5 farklı şekilde gidebilir. B den C ye 3 farklı şekilde gidebilir. 5.3 = 5. 4.5 = 0 7. 5.3.3.5 = 5 3. kişi için iki durum

Detaylı

OLASILIK ve İSTATİSTİĞE GİRİŞ. Yrd. Doç. Dr. Hüsey n Dem r

OLASILIK ve İSTATİSTİĞE GİRİŞ. Yrd. Doç. Dr. Hüsey n Dem r OLASILIK ve İSTATİSTİĞE GİRİŞ Yrd. Doç. Dr. Hüsey n Dem r Yrd. Doç. Dr. Hüseyin Demir OLASILIK VE İSTATİSTİĞE GİRİŞ ISBN 978-605-318-470-6 DOI 10.14527/9786053184706 Kitap içeriğinin tüm sorumluluğu yazarlarına

Detaylı

KESİKLİ DÜZGÜN DAĞILIM

KESİKLİ DÜZGÜN DAĞILIM KESİKLİ DÜZGÜN DAĞILIM Eğer X kesikli rassal değişkeninin alabileceği değerler (,,..., ) eşit olasılığa sahip ise, kesikli düzgün dağılım söz konusudur. p(x) =, X=,,..., şeklinde gösterilir. Bir kutuda

Detaylı

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

Rastgele değişken nedir?

Rastgele değişken nedir? Rastgele değişken nedir? Şİmdiye kadar hep, kümelerden ve bu kümelerin alt kümelerinden (yani olaylar)dan bahsettik Bu kümelerin elemanları sayısal olmak zorunda değildi. Örneğin, yazı tura, kız erkek

Detaylı

Ders 4: Rastgele Değişkenler ve Dağılımları

Ders 4: Rastgele Değişkenler ve Dağılımları Ders 4: Rastgele Değişkenler ve Dağılımları Rastgele değişken kavramı Kesikli ve sürekli rastgele değişkenler İki boyutlu rastgele değişkenler Beklenen değer Varyans Örnek uzaydaki her elemanı bir sayıyla

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

Bekleme Hattı Teorisi

Bekleme Hattı Teorisi Bekleme Hattı Teorisi Sürekli Parametreli Markov Zincirleri Tanım 1. * +, durum uzayı * +olan sürekli parametreli bir süreç olsun. Aşağıdaki özellik geçerli olduğunda bu sürece sürekli parametreli Markov

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları

ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları ÖABT Olasılık - İstatistik KONU TESTİ Saymanın Temel Kuralları. 9 + = 6. A dan B ye 5 farklı şekilde gidebilir. B den C ye 3 farklı şekilde gidebilir. 5.3 = 5. 4.5 = 0 7. 5.3.3.5 5 3. kişi için iki durum

Detaylı

WEIBULL DAĞILIMI WEIBULL DAĞILIMI ANADOLU ÜNİVERSİTESİ

WEIBULL DAĞILIMI WEIBULL DAĞILIMI ANADOLU ÜNİVERSİTESİ ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ SÜREKLİ DAĞILIMLAR-2 DOÇ. DR. NİHAL ERGİNEL 2015 WEIBULL DAĞILIMI Weibull dağılımı, pek çok farklı sistemlerin bozulana kadar geçen süreleri ile ilgilenir. Dağılımın

Detaylı

SU MÜHENDİSLİĞİNE GİRİŞ YRD. DOÇ. DR. FATİH TOSUNOĞLU

SU MÜHENDİSLİĞİNE GİRİŞ YRD. DOÇ. DR. FATİH TOSUNOĞLU SU MÜHENDİSLİĞİNE GİRİŞ YRD. DOÇ. DR. FATİH TOSUNOĞLU DERS HAKKINDA GENEL BİLGİLER Görüşme Saatleri:---------- Tavsiye edilen kitaplar: 1-Kavramsal su mühendisliği, Prof.Dr. A.Melih Yanmaz, Prof. Dr. Nurunnisa

Detaylı

Olasılık Kuramı ve Bazı Olasılık Dağılımları

Olasılık Kuramı ve Bazı Olasılık Dağılımları KAVRAMLAR Olasılık Kuramı ve Bazı Olasılık Dağılımları Deney: belirli koşullar altında tekrarlanabilen ve her tekrarda farklı sonuçlar elde edilebilen işlemdir. Örneklem uzayı: bir denemenin tüm olası

Detaylı

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz...

1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... 1-2 - * Bu Ders Notları tam olarak emin olmamakla birlikte 2012-2013 yıllarına aiitir.tekrardan Sn.Hakan Paçal'a çoook tsk ederiz... CABİR VURAL BAHAR 2006 Açıklamalar

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 2303

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 2303 Dersi Veren Birim: Endüstri Mühendisliği Dersin Türkçe Adı: İSTATİSTİK I Dersin Orjinal Adı: İSTATİSTİK I Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: END 0 Dersin Öğretim

Detaylı

Probability Density Function (PDF, Sürekli fonksiyon)

Probability Density Function (PDF, Sürekli fonksiyon) Varyans Bir serideki her elemanın ortalamadan farklarının karelerinin toplamının, serideki eleman sayısına bölümü ile elde edilir. Standart Sapma Varyansın kareköküdür. Eğer birçok veri ortalamaya yakın

Detaylı

AST416 Astronomide Sayısal Çözümleme - II. 2. Temel İstatistik Kavramlar ve Dağılımlar

AST416 Astronomide Sayısal Çözümleme - II. 2. Temel İstatistik Kavramlar ve Dağılımlar AST416 Astronomide Sayısal Çözümleme - II 2. Temel İstatistik Kavramlar ve Dağılımlar Bu derste neler öğreneceksiniz? Sıklık Dağılımı ve Olasılık Dağılımı Olasılık ve Kümüatif Dağılım Fonksiyonları Dağılım

Detaylı

İÇİNDEKİLER BÖLÜM 1 KAVRAMLAR VE YÖNTEMBİLİM

İÇİNDEKİLER BÖLÜM 1 KAVRAMLAR VE YÖNTEMBİLİM İÇİNDEKİLER BÖLÜM 1 KAVRAMLAR VE YÖNTEMBİLİM I. İSTATİSTİK KAVRAMI ve TANIMI... 1 A. İSTATİSTİK KAVRAMI... 1 B. İSTATİSTİĞİN TANIMI... 2 C. İSTATİSTİĞİN TARİHÇESİ... 2 D. GÜNÜMÜZDE İSTATİSTİK VE ÖNEMİ...

Detaylı

Bölüm 13. ÖZEL OLASILIK DAĞILIMLARI

Bölüm 13. ÖZEL OLASILIK DAĞILIMLARI SAKARYA UNIVERSITESI Bölüm 13. ÖZEL OLASILIK DAĞILIMLARI Prof. Dr. Mustafa AKAL 1 İÇİNDEKİLER 1. BERNOULLİ DAĞILIMI 2. BİNOM DAĞILIMI 3. POİSSON DAĞILIMI 4. PASCAL DAĞILIMI 5. GEOMETRİK DAĞILIM 6. HİPERGEOMETRİK

Detaylı

2016 YILI AKTÜERLİK SINAVLARI: İSTATİSTİK OLASILIK

2016 YILI AKTÜERLİK SINAVLARI: İSTATİSTİK OLASILIK Soru 1 X rassal değişkeninin olasılık yoğunluk fonksiyonu x x, x> f ( x) = 0, dy. 1 werilmiş ve Y = rassal değişkeni tanımlamış ise, Y değişkenin 0< 1 X 1 y için olasılık yoğunluk fonksiyonu aşağıdaki

Detaylı

ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÜNİTE 5 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI 1 Rassal Değişken Bir deney ya da gözlemin şansa bağlı sonucu bir değişkenin aldığı değer olarak düşünülürse, olasılık ve istatistikte böyle bir

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : SOSYAL BİLİMLERDE İSTATİSTİK Ders No : 000100 Teorik : Pratik : 0 Kredi : ECTS : Ders Bilgileri Ders Türü Öğretim Dili Öğretim

Detaylı

ĐST 474 Bayesci Đstatistik

ĐST 474 Bayesci Đstatistik ĐST 474 Bayesci Đstatistik Ders Sorumlusu: Dr. Haydar Demirhan haydarde@hacettepe.edu.tr Đnternet Sitesi: http://yunus.hacettepe.edu.tr/~haydarde Đçerik: Olasılık kuramının temel kavramları Bazı özel olasılık

Detaylı

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL

ANADOLU ÜNİVERSİTESİ. ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL ANADOLU ÜNİVERSİTESİ ENM 317 MÜHENDİSLİK İSTATİSTİĞİ PARAMETRİK OLMAYAN TESTLER Prof. Dr. Nihal ERGİNEL PARAMETRİK OLMAYAN TESTLER Daha önce incelediğimiz testler, normal dağılmış ana kütleden örneklerin

Detaylı

Sürekli Rastsal Değişkenler

Sürekli Rastsal Değişkenler Sürekli Rastsal Değişkenler Normal Dağılım: Giriş Normal Dağılım: Tamamen ortalaması ve standart sapması ile tanımlanan bir rastsal değişken, X, için oluşturulan sürekli olasılık dağılımına normal dağılım

Detaylı

SÜREKSİZ(DISCRETE) OLASILIK DAĞILIMLARI

SÜREKSİZ(DISCRETE) OLASILIK DAĞILIMLARI SÜREKSİZ(DISCRETE) OLASILIK DAĞILIMLARI Yrd. Doç.Dr. İrfan Yolcubal Kocaeli Üni. Jeoloji Müh. Random Değişken: Nümerik olarak ifade edilen bir deneyin sonuçları Süreksiz(Discrete) Random Değişken: Randomdeğişken

Detaylı

Exponential Distribution. diger. Probability Distributions. Sürekli Şans Değişkenleri. 0 diger. SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI

Exponential Distribution. diger. Probability Distributions. Sürekli Şans Değişkenleri. 0 diger. SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Probability Distributions Probability Distributions SÜREKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Dr. Mehmet AKSARAYLI Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Ekonometri Bölümü

Detaylı

VERİ KÜMELERİNİ BETİMLEME

VERİ KÜMELERİNİ BETİMLEME BETİMLEYİCİ İSTATİSTİK VERİ KÜMELERİNİ BETİMLEME Bir amaç için derlenen verilerin tamamının olduğu, veri kümesindeki birimlerin sayısal değerlerinden faydalanarak açık ve net bir şekilde ilgilenilen özellik

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

009 BS 400- İstatistik sonılannın cevaplanmasında gerekli olabilecek tablolar ve formüller bu kitapçığın sonunda verilmiştir. 1. şağıdakilerden hangisi doğal birimdir? l TV alıcısı Bl Trafik kazası CL

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü umutokkan@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN Hidrolik Anabilim Dalı Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü Bölüm

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar.

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar. 9..03 EME 305 SİSTEM SİMÜLASYONU Simulasyonda İstatistiksel Modeller-II Ders 5 Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar Sürekli Düzgün (Uniform) Dağılım Normal Dağılım Üstel (Exponential)

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatistikler 1 Tanımlayıcı İstatistikler Bir veri setini tanımak veya birden fazla veri setini karşılaştırmak için kullanılan ve ayrıca örnek verilerinden hareket ile frekans dağılışlarını

Detaylı

Normallik Varsayımı ve Ençok Olabilirlik Yöntemi

Normallik Varsayımı ve Ençok Olabilirlik Yöntemi Normallik Varsayımı ve Ençok Olabilirlik Yöntemi EO Açıklayıcı Örnekler Ekonometri 1 Konu 14 Sürüm 2,0 (Ekim 2011) UADMK Açık Lisans Bilgisi İşbu belge, Creative Commons Attribution-Non-Commercial ShareAlike

Detaylı

Finansal Ekonometri. Ders 2 Olasılık Teorisi ve Rasgele Değişkenler

Finansal Ekonometri. Ders 2 Olasılık Teorisi ve Rasgele Değişkenler Finansal Ekonometri Ders 2 Olasılık Teorisi ve Rasgele Değişkenler Tek Değişkenli Rasgele Değişkenler Tanım (rasgele değişken): Bir rasgele değişken, X, SX örneklem uzayından değerler alan ve bu örneklem

Detaylı

Birden Fazla RDnin Bileşik Olasılık Fonksiyonları

Birden Fazla RDnin Bileşik Olasılık Fonksiyonları Birden Fazla RDnin Bileşik Olasılık Fonksiyonları Birden fazla x 1, x 2,..., x n gibi RDlerimiz olsun. Bunların bileşik olasılık fonksiyonları kesikli ve rastgele RDler için sırasıyla şu şekilde tanımlanır

Detaylı

Olasılık ve İstatistik Hatırlatma

Olasılık ve İstatistik Hatırlatma Olasılık ve İstatistik Hatırlatma BSM 445 Kuyruk Teorisi Güz 014 Yrd. Doç. Dr. Ferhat Dikbıyık Bir olayın olasılığı bize ne anlatır? Verilen bir olasılığın manası nedir? Örnek: Tavlada düşeş atma olasılığı

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Rassal Değişken Üretimi

Rassal Değişken Üretimi Rassal Değişken Üretimi Doç. Dr. Mehmet AKSARAYLI GİRİŞ Yaşadığımız ya da karşılaştığımız olayların sonuçları farlılık göstermektedir. Sonuçları farklılık gösteren bu olaylar, tesadüfü olaylar olarak adlandırılır.

Detaylı

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( )

Yapılan alan araştırması sonucunda aşağıdaki sonuçlar elde edilmiştir. ( ) ( ) ( ) ( ) İKİ DEĞİŞKENLİ OLASILIK Rassal bir deneme yapılmakta ve farklı iki olay ile ilgilenilmektedir. A 1, A 2,,A i olayları bağdaşmaz ve bütünü kapsayıcıdır. B 1, B 2,,B j olayları bağdaşmaz ve bütünü kapsayıcıdır.

Detaylı

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER

Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Prof. Dr. Özkan ÜNVER Prof. Dr. Hamza GAMGAM Doç. Dr. Bülent ALTUNKAYNAK SPSS UYGULAMALI TEMEL İSTATİSTİK YÖNTEMLER Gözden Geçirilmiş ve Genişletilmiş 8. Baskı Frekans Dağılımları Varyans Analizi Merkezsel

Detaylı

OLASILIK. P(A) = şeklinde ifade edilir.

OLASILIK. P(A) = şeklinde ifade edilir. OLASILIK Olasılık belirli bir olayın olabilirliğinin sayısal ölçüsüdür. Olasılık bir diğer ifadeyle bir olayın meydana gelme şansının sayısal ifadesidir. 17 yy. da şans oyunlarıyla birlikte kullanılmaya

Detaylı

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ Günümüz simülasyonları gerçek sistem davranışlarını, zamanın bir fonksiyonu olduğu düşüncesine dayanan Monte Carlo yöntemine dayanır. 1.

Detaylı

ENM 316 BENZETİM ÖDEV SETİ

ENM 316 BENZETİM ÖDEV SETİ ENM 16 BENZETİM ÖDEV SETİ Ödev 1. Bir depo ve N adet müşteriden oluşan bir taşımacılık sisteminde araç depodan başlayıp bütün müşterileri teker teker ziyaret ederek depoya geri dönmektedir. Sistemdeki

Detaylı

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri Girdi Analizi 0 Gerçek hayattaki benzetim modeli uygulamalarında, girdi verisinin hangi dağılımdan geldiğini belirlemek oldukça zor ve zaman harcayıcıdır. 0 Yanlış girdi analizi, elde edilen sonuçların

Detaylı

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01 Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin

Detaylı

Mühendislikte İstatistik Metotlar

Mühendislikte İstatistik Metotlar Mühendislikte İstatistik Metotlar Recep YURTAL Çukurova Üniveristesi Mühendislik Mimarlık Fakültesi İnşaat Mühendisliği Bölümü Referans Kitaplar Türkçe : Mühendisler için İstatistik, Mehmetçik Bayazıt,

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları

YTÜ İktisat Bölümü EKONOMETRİ I Ders Notları Yıldız Teknik Üniversitesi İktisat Bölümü Ekonometri I Ders Kitabı: J.M. Wooldridge, Introductory Econometrics A Modern Approach, 2nd. edition, Thomson Learning Appendix C: İstatistiksel Çıkarsama Doç.

Detaylı

Korelasyon, Korelasyon Türleri ve Regresyon

Korelasyon, Korelasyon Türleri ve Regresyon Korelasyon, Korelasyon Türleri ve Regresyon İçerik Korelasyon Korelasyon Türleri Korelasyon Katsayısı Regresyon KORELASYON Korelasyon iki ya da daha fazla değişken arasındaki doğrusal ilişkiyi gösterir.

Detaylı

SAB 101 OLASILIK DERS NOTLARI. Prof.Dr. Fatih TANK. SAB 101 Olasılık. F.Tank. 1. Geometirk Dağılım. 2. Negatif Binom Dağılımı

SAB 101 OLASILIK DERS NOTLARI. Prof.Dr. Fatih TANK. SAB 101 Olasılık. F.Tank. 1. Geometirk Dağılım. 2. Negatif Binom Dağılımı SAB 101 OLASILIK DERS NOTLARI Prof.Dr. Fatih TANK Ankara Üniversitesi Uygulamalı Bilimler Fakültesi Sigortacılık ve Aktüerya Bilimleri Bölümü Prof.Dr. Fatih TANK - Olasılık Ders Notları- Sayfa : 1/7 Haftalık

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

RISK ANALIZI SINAVI WEB EKİM Kasko sigortasından çekilen beş hasarlı bir rassal örneklem aşağıdaki gibi verilmektedir:

RISK ANALIZI SINAVI WEB EKİM Kasko sigortasından çekilen beş hasarlı bir rassal örneklem aşağıdaki gibi verilmektedir: RISK ANALIZI SINAVI WEB EKİM 2017 SORU 1: Kasko sigortasından çekilen beş hasarlı bir rassal örneklem aşağıdaki gibi verilmektedir: 115 240 325 570 750 Hasarların α = 1 ve λ parametreli Gamma(α, λ) dağılıma

Detaylı

OLASILIK OLASILIK. Bireysel belirsizlik ve uzun dönemdeki düzenlilik deneysel bilimlerde de sık sık ortaya çıkar

OLASILIK OLASILIK. Bireysel belirsizlik ve uzun dönemdeki düzenlilik deneysel bilimlerde de sık sık ortaya çıkar OLASILIK OLASILIK İstatistiğin temel araçlarından biri olasılıktır 17. yy daşans oyunları ile başlamıştır Her bir denemenin çıktısı belirsizdir Fakat uzun dönemde çıktı kestirimlenebilir Bireysel belirsizlik

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı