Çoklu Unutma Faktörleri ile Uyarlı Kalman Filtresi İçin İyileştirme

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Çoklu Unutma Faktörleri ile Uyarlı Kalman Filtresi İçin İyileştirme"

Transkript

1 Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi Cilt 33, Sayı, 7 Erciyes University Journal of Natural and Applied Sciences Volume 33, Issue, 7 Çolu Unutma Fatörleri ile Uyarlı Kalman Filtresi İçin İyileştirme Cener Biçer *, Levent Özbe Kırıale Üniversitesi Fen Edb. Fa. İstatisti Bölümü Anara Üniversitesi Fen Faültesi İstatisti Bölümü (Alınış / Received: 3..6, Kabul / Accepted:.3.7, Online Yayınlanma / Published Online:.4.7) Anahtar Kelimeler Dinami Sistemler, Durum ahmini, Kalman Filtresi, Unutma Fatörü, Uyarlı Kalman Filtresi Öz: Kalman filtresi dinami sistemlerde durum tahmin probleminin çözümü için ullanılan popüler bir tahmin yöntemidir. Fen, mühendisli, eonomi, aseri vb. olma üzere birço alandan probleme olayca uygulanabilir. Sistem arateristileri doğru olara bilindiği sürece Kalman filtresi en iyi tahmin performansı ile çalışır. Anca sistem arateristilerinin ısmen bilindiği durumlarda veya yanlış bilindiği durumlarda filtrenin tahmin performansında ciddi ayıplar olması açınılmazdır. Kalman filtresindei performans aybı probleminin üstesinden gelebilme için şu ana adar ço sayıda çalışma yayınlanmıştır. Bir ısım araştırmacı tarafından Sistem arateristilerinin ısmen veya tamamen hatalı bilinmesi durumunda, filtrelemede bazı güçlendirmelerin yapılmasını sağlayaca unutma fatörü ile uyarlanmış Kalman Filtresi tanıtılmıştır. Adaptive estimation of multiple fading factors in Kalman filter for navigation applications (AEMFFKF) bu çalışmalardan bir tanesidir. Bu çalışmada, çolu unutma fatörüyle uyarlı Kalman filtresi incelenmiş ve AEMFFKF yönteminde belirlenemeyen unutma fatörlerini belirleyebilme için adaptif bir tahmin algoritması önerilmiştir. Ayrıca yapılan simülasyon çalışmasıyla Kalman filtresinin performansı ile uyarlı filtrenin tahmin performansı arşılaştırılmıştır. Improvement for the Adaptive Kalman Filter with Multiple Fading Factors Keywords Dynamical Systems, State Estimation, Kalman Filter, Fading Factors, Adaptive Kalman Filter Abstract: hekalman filter is most popular estimation technique for solving state estimation problems of dynamical systems and it has been the most frequently used algorithm in applications from different areas such as science, military and economics etc. he Kalman filter wors best with predictive performance as long as system characteristics are nown correctly. However, the performance of the Kalman filter will dramatically decrease when system characteristics are either unnown or partially nown. Numerous studies have been published so far to get over the problem of performance loss in the Kalman filter. Some researchers introduced a fading factor to improve the performance of the Kalman filter under unnown or partially nown initial information. Adaptive estimation of multiple fading factors in Kalman filter for navigation applications (AEMFFKF) is one of these studies. In this paper, adaptive fading Kalman filter with the multiple forgetting factors is considered and an adaptive estimation algorithm is proposed to determine forgetting factors which can not be determined in the AEMFFKF. In addition, A Monte Carlo simulation is performed to compare the estimation performances of the Kalman filter with the adaptive filters. 4

2 Çolu Unutma Fatörleri ile Uyarlı Kalman Filtresi için İyileştirme. Giriş Kalman filtresi; fen, mühendisli, eonomi, aseri vb. birço alandan dinami sistemin durum tahmin probleminde sılıla ullanılan bir yöntemdir. Filtreleme problemi oluşturuluren sistem gürültü süreçlerinin ovaryans matrislerinin ve modelde yer alan matrislerin tam olara bilindiği varsayımı yapılır. Bu matrisler tam olara bilindiğinde Kalman Filtresi en iyi sonucu verir [,]. Anca uygulamada bu matrisler tam olara bilinmez. Bu durum filtrenin başarımını olumsuz yönde etileyebilir ve filtre tahminlerinde ırasama meydana gelebilir [3]. Bu sorunun üstesinden gelebilme için çeşitli uyarlı filtrelerin önerildiği ço sayıda çalışma yapılmıştır. Yapılan bu çalışmalara örne Yang vd. [4], Ding vd. [5], Yang vd. [6], Jwo ve Weng [7], Geng ve Wang [8], Biçer [9], Biçer vd. [], Özbe ve Efe[5] şelinde verilebilir. Önerilen bu uyarlama yöntemlerinden bir tanesi filtrenin bir unutma fatörüyle uyarlanmasıdır. Fagin [] tarafından yeni gözlemlerin esi gözlemlere göre daha ço bilgi içerdiğini göz önünde bulundurara gözlemlerin üstel olara ağırlılandırılabileceği bildirilmiştir. Xia vd. [], Fagin [] in önerdiği bu yöntemi dinami sistemlere uyarlayara, modelin hatalı veya esi bilgiyle oluşturulması durumunda filtre tahminlerinde bazı güçlendirmelerin yapılmasını sağlayaca, saler unutma fatörünün hesaplanması için çeşitli algoritmalar önermiştir. Kalman filtresinin unutma fatörü ullanılara uyarlanmasında amaç hata ovaryansının unutma fatörü aracılığıyla yeniden ölçelenmesiyle filtrenin gelen veri ile uyum içinde çalışmasını sağlamatır. Böylece filtre esi bilgiyle çalıştırıldığında veya sistem parametrelerinde bilinmeyen bir değişimle arşılaşıldığı anlarda unutma fatörü hata ovaryansını yeniden ölçelendirece ve tahmin ırasamasının önüne geçilebilecetir. Unutma fatörü ullanılara uyarlanan Kalman filtresinin en iyi başarımla çalışması, unutma fatörünün en iyi olara belirlenmesine bağlıdır. Her ne adar Kalman filtresinin saler bir unutma fatörüyle uyarlanması te değişenli sistemler için bir başarım artışı sağlasada, ço değişenli ve daha armaşı sistemlerde modelleme hatası her değişen için farlı oranlarda olabileceğinden, saler unutma fatörü yerine çolu unutma fatörü ullanılması daha uygun görünmetedir. Geng ve Wang [8] bu durumu göz önünde bulundurara, hata ovaryansını çolu unutma fatörüyle ölçelendiren ve filtreleme aşamasında hesaplanan inovasyon sürecini Normal dağılımlı olaca şeilde ayarlayan AEMFFKF yöntemini önermişlerdir. Anca, AEMFFKF yönteminde sadece üzerinden gözlem alınabilen durum değişenlerine arşılı gelen unutma fatörleri hesaplanabilmetedir. Her ne adar AEMFFKF saler unutma fatörüyle uyarlanmış filtre tahminlerine göre bir başarım artışı sağlasada, ço değişenli sistemlerde en iyi filtre tahminlerine ulaşabilme için bütün durum değişenlerine arşılı gelen unutma fatörlerinin belirlenmesi daha uygun olacatır. Çünü arşı arşıya alınan bilgi esiliği, sistem parametrelerindei değişim veya hata bütün değişenler için söz onusu olabilir ve etileri bertaraf edilmelidir. Bu çalışmada, ço değişenli sistemlerde farlı nedenlerden aynalanabilece ırasama probleminin üstesinden gelebilme için Kalman filtresinin çolu unutma fatörüyle uyarlanması ele alınmıştır. Bu amaç doğrultusunda çalışmanın iinci bölümünde Kalman filtresi ile birlite AEMFFKF yöntemi ısaca açılanmıştır. 3. bölümde AEMFFKF yönteminde belirlenemeyen unutma fatörlerini belirleyebilme için yeni bir tahmin algoritması önerilmiştir. Ayrıca yine üçüncü bölümde, Kalman filtresi, AEMFFKF ve önerilen adaptif yöntemin tahmin performanslarını arşılaştırma için bir ompartman modeli üzerinde yapılan simülasyon çalışması ve çalışma neticesinde elde edilen sonuçlar üzerinde durulmuştur.. Materyal ve Metot.. Kalman Filtresi ve Kalman Filtresinde Çolu Unutma Fatörlerinin Adaptif ahmini Bir lineer dinami sistem olara x x w () / z H x v () alınsın. Burada n x durum vetörü y m gözlem vetörü, nn durum geçiş matrisi, n m gözlem tasarım matrisi w ve v ilişisiz ve sırasıyla Q, R ovaryans matrislerine sahip beyaz gürültü süreçleridir. Bu gösterimler altında Kalman filtresi, xˆ xˆ (3) / / H mn

3 Çolu Unutma Fatörleri ile Uyarlı Kalman Filtresi için İyileştirme P P Q (4) / / / K P / H H P H R / / xˆ xˆ K z H xˆ (6) / P I KH P (7) eşitlileri ile verilir [9]. Burada xˆ durum vetörünün bir öngörüsünü, P durum öngörüsüne ait hata ovaryans matrisini, K Kalman azancını, ˆ göstermetedir. Ayrıca inovasyon süreci x durum tahminini ve (5) P tahmine ait hata ovaryans matrisini v ˆ z H x / (8) dır [,3]. Eğer w ve v gürültü terimleri normal dağılımlı beyaz gürültü süreçleri ve filtre ararlı durumda ise H P H R (8) eşitliği ile verilen inovasyon süreci sıfır ortalamalı ve / ovaryanslı Normal dağılımlı beyaz gürültü süreci olur. Yani, v N, H P / H R (9) Ayrıca, (7) eşitliğinin ullanılmasıyla inovasyon sürecine ait ovaryans / / Cov v H P Q H R () olara yazılabilir. Geng and Wang [8] filtrenin uyarlanıp uyarlanmamasına arar verebilme için, uyarlama işleminin il aşamasında, inovasyon sürecinin sıfır ortalma ve H P / H R ovaryans ile Normal dağılıma sahip olup olamadığının test edilmesi geretiğini belirtmiş ve bir test istatistiği olara araştırmacılar tarafından / v H P Q H R v m () önerilmiştir. est için arar uralı ise test red () test abul (3) şelindedir. Burada m, anında gözlemlenebilir olan değişenlerin sayısı, test istatistiği için bir ölçe, istenen güven düzeyindei Ki-are dağılımına ait riti değerdir. Eğer test reddedilememiş ise (9) eşitliği ile verilen varsayım doğrudur, asi tadirde (9) varsayımı sağlanmamış demetir. Bu durumda (9) varsayımının sağlanabilmesi için Geng ve Wang [8], (4) ile verilen öngörü hata ovaryans matrisinin yerine P S / P / S Q (4) alınması ile Kalman filtresinin uyarlanmasını önermiştir. Burada S ösegen s, s,..., s biçiminde çolu unutma fatörüdür ve filtre en iyi tahminleri üretece şeilde S çolu unutma fatörünün belirlenmesi gereir. Geng ve Wang [8] tarafından sadece ölçe fatörlerinin hesaplanmasında ullanılaca ve n H, mm m n m nm mn (5) 43

4 Çolu Unutma Fatörleri ile Uyarlı Kalman Filtresi için İyileştirme oşulunu sağlayaca şeilde yeni bir gözlem matrisi göz önüne alınmıştır. Burada ösegen,, dır. (4) ve (5) eşitlilerinden () ile verilen aresel form, mm m / / v H S P S Q H R v m (6) biçiminde yazılabilir. Ayrıca A H S P S H (7) / / B H Q H R (8) J P (9) / / biçiminde tanımlanırsa,,..., a s j i m () ii i i ii aii ve ii eşitliği sağlanır. Burada j sırasıyla A ve fatörüdür. Eğer filtre en iyi tahminleri üretiyor ise inovasyon süreci eşitliği sağlanır [4]. J matrislerinin i. ve j. elemanı, si ise i. unutma v (9) ile verilen dağılıma uyar ve () i ii vi a b ii () burada düzenlenirse bii, (8) eşitliği ile tanımlanan B matrisinin i. öşegen elemanıdır. () ile verilen eşitli ii vi a b ii i () elde edilir. Burada unutma fatörü vi, v nın i. elemanı ve i, r dir. () eşitliğinin () de ullanılmasıyla. andai s i vi max, bii vi bii, ii jii i jii ii jii i jii vi bii ii jii i jii (3) biçiminde seçilebilir. Geng ve Wang [8] tarafından geliştirilen bu yalaşım ile sadece üzerinden gözlem alınabilen durum değişenlerine arşılı gelen unutma fatörleri elde edilebilir. Üzerinden gözlem alınamayan durumlara arşılı gelen unutma fatörleri ise olara ayarlanır. Böylece. andai çolu unutma fatörü S diag s, s... s,,..., (4) olur [8]. m.. Belirlenemeyen Unutma Fatörlerinin Adaptif ahmini Bu ısımda AEMFFKF yöntemindei belirlenemeyen unutma fatörlerinin belirlenebilmesi üzerinde durulmatadır. 44

5 Çolu Unutma Fatörleri ile Uyarlı Kalman Filtresi için İyileştirme İl olara, belirlenemeyen unutma fatörlerinin belirlenebilmesi için (8) eşitliği ile verilen inovasyon süreci göz önüne alınsın. Optimal filtrede inovasyon süreci bir beyaz gürültü sürecidir ve P H K C (5) / z eşitliği sağlanır []. (5) eşitliğinin sağlanmadığı anlarda ise inovasyon süreci beyaz gürültü süreci özelliğini sağlamaz, yani filtre tahminleri optimal değildir ve filtre uyarlanmalıdır. Bu özelli göz önünde bulundurulara AEMFFKF yöntemindei belirlenemeyen unutma fatörleri belirlenebilir. Belirlenemeyen unutma fatörlerini tahmin etme sürecinin il aşamasında unutma fatörlerini S ösegen s, s... s, s, s..., s m m m n (6) s, s... s m (4) eşitliği ile tahmin edilen unutma fatörleridir. s, s..., s olara düşünelim. Burada m m n ise n mtane bilinmeyen unutma fatörüdür. (4) ve (6) eşitlileri (5) eşitliğinde yerine yazılırsa; z S P S Q H K C (7) olur. Burada Cˆ z z z j j j C z ovaryans matrisi gözlenmiş verilerden ardışı biçimde eşitliği ullanılara tahmin edilebilir. S matrisinin bilinmeyen n m tane elemanı tahmin etme için,,,, F s s s m m n ij, i j n m (8) fonsiyonunu tanımlayalım. Burada ij, (7) eşitliğinin sol tarafı olara tanımlanan z S P S Q H K C (9) matrisinin i, j. elemanıdır. (8) eşitliği ile tanımlanan F sm, sm,, sn, adar üçü olursa filtre en iyi tahmine o adar yalaşır. F sm, sm,, sn, filtre en iyi tahmini verir. Böylece en iyi matris unutma fatörü S, F s, s,, s, minimize edece biçimde, l l fonsiyonunun değeri ne nın mutla minimumunda ise m m n fonsiyonunu F l,,, (3) iteratif yöntemi ullanılara hesaplanabilir. Bu yöntem gradient yöntemi olara bilinir. Burada sm, sm,, sn ve 45

6 F sm, sm,, sn, sm F sm, sm,, sn, F sm F s, s,, sn, sn Çolu Unutma Fatörleri ile Uyarlı Kalman Filtresi için İyileştirme, l, anındai iterasyon indisi, ise gradiyent metodundai adım uzunluğudur. Ayrıca her anındai başlangıç değeri olara,,, değeri için, F l l F değeri seçilebilir. İterasyon işlemi yeterince üçü bir (3) şartı sağlandığında durdurulur. Böylece anındai i. i,, n unutma fatörü s i,, s l i, i, (3) olara seçilebilir. Burada, anındai l i, l. iterasyon sonucunda elde edilen. tahminidir. anındai en iyi matris unutma fatörü ise (3) eşitliğinden i unutma fatörünün S s, s, sq, (33) olara elde edilir [9]. 3. Bulgular Bu ısımda, bir öncei ısımda önerilen uyarlı yöntemin başarımını standart Kalman filtresi ve Geng ve Wang [8] tarafından önerilen uyarlı yönteme arşı değerlendirebilme amacı ile bir simülasyon çalışması yapılmıştır. Bu amaç doğrultusunda x x, c x, w x c c x,, y x v (34) (35) eşitlileri ile verilen ompartman modeli göz önüne alınsın. Burada x ve x sırasıyla bir ilacın sindirim sistemindei mitarı ve an dolaşım sistemindei mitarı olara tanımlansın. Sindirim sistemine verilen ilaç belli bir oranda azalara an dolaşım sistemine geçer. Aynı şeilde an dolaşım sistemine geçen ilaç mitarı da belli oranda metabolizmaya geçer veya boşaltım süreci yoluyla aybolur. Burada c sindirim sistemini araterize eden, c ise metaboli ve boşaltım sürecini araterize eden pozitif sabitlerdir. Çıtı değişeni bireyin an dolaşım sistemindei ilaç mitarıdır [9,]. Simülasyon çalışması ablo de verilen başlangıç değerleri ullanılara terarlı olara işletilmiş ve elde edilen sonuçlar şeil -5 de verilmiştir. 46 y

7 Çolu Unutma Fatörleri ile Uyarlı Kalman Filtresi için İyileştirme Değişenler ablo. Simülasyon çalışmasında ullanılan başlangıç değerleri. Sayıların üretilmesinde ullanılan Filtrelerin işletilmesinde ullanılan başlangıç başlangıç değerleri değerleri x, 7 x, 7 c c 37 c.9 37 c.6 37 c. 37 c.4 I 9 5 Q I.7.3 I I 6 R Ayrıca simülasyon çalışmasında örneleme zaman aralığı. ve n m ˆ i, j i, j HK x x i j olara alınmıştır. Şeillerde verilen KF: Kalman filtresi, Filtre : AEMFFKF, Filtre : Kısım. önerilen adaptif yöntem ile hesaplanan unutma fatörlerinin ullanılmasıyla oluşturulan uyarlı Kalman filtresi anlamındadır. Şeil. ve Şeil. filtrelerin sırasıyla birinci ve iinci ompartmanda yaptıları tahmin hatalarını göstermetedir. 3. Kompartman KF Filtre Filtre ahmin Hatası(x ) Zaman () Şeil. Birinci ompartmandai tahmin hatası. 47

8 Çolu Unutma Fatörleri ile Uyarlı Kalman Filtresi için İyileştirme.5. Kompartman KF Filtre Filtre ahmin Hatası(x ) Zaman () Şeil. İinci ompartmandai tahmin hatası. Büyü başlangıç tahmin hataları ile durum tahminine başlayan filtrelerde gözlenen tahmin hataları aynı oranda yüse olmala birlite uyarlı filtrelerin güncel durumlara daha hızlı yaınsadığı görülmetedir. Gerçe durumlara en hızlı yaınsayan filtre ise Kısım. de önerilen yöntemle unutma fatörlerinin hesaplandığı Filtre olmuştur bnz. Şeil-. Şeil3. ve Şeil4. de Filtre ve Filtre tarafından hesaplanan unutma fatörleri görülmetedir Zaman () Zaman () Şeil 3. Filtre tarafından hesaplanan unutma fatörleri. 48

9 Çolu Unutma Fatörleri ile Uyarlı Kalman Filtresi için İyileştirme Zaman () Zaman () Şeil 4. Filtre tarafından hesaplanan unutma fatörleri. Büyü tahmin hatası ile tahmine başlayan uyarlı filtreler, optimal filtre tahminlerine ulaşma için başlangıç anından itibaren gereli unutma fatörlerini hesaplamaya başlamışlardır. Anca ullanılan modelde birinci durum değişeni üzerinden gözlem alınamadığından Filtre için birinci unutma fatörü hesaplanamamatadır ve olara seçilmetedir bnz. Şeil3. Bununla birlite Filtre inovasyon sürecini bir beyaz gürültü süreci olaca şeilde ayarlayan unutma fatörlerini hesaplamıştır bnz. Şeil4. Özellile başlangıç tahmin hatasının ve parametrelerin değişim anının olduğu ısımlarda değişim gösteren unutma fatörleri (bnz. Şeil3-4.) filtrenin gerçe durumlara daha hızlı yaınsamasını sağlamıştır bnz. Şeil -. Ayrıca simülasyon çalışmasında elde edilen en üçü hata areler toplamının Filtre ye ait olduğu görülmetedir bnz. Şeil5. 4 Hata Kareler oplamı 35 3 KF Filtre Filtre artışma ve Sonuç Zaman (s) Şeil 5. Filtre tahminlerine ait hata areler toplamı. Bu çalışmada lineer dinami sistemlerdei tahmin problemlerinde ullanılan Kalman filtresi ve Kalman filtresinde arşılaşılan ırasama problemi üzerinde duruldu. Irasama probleminin önüne geçebilme için Geng ve Wang [8] tarafından önerilen uyarlama yöntemi açılanmış, uyarlı filtrenin güçlendirilmesi için üzerinden gözlem alınamayan değişenlere arşılı gelen ve belirlenmemiş unutma fatörlerinin belirlenmesi için bir tahmin algoritması önerilmiştir. Önerilen yöntem ile elde edilen unutma fatörlerinin tahmin performansına atısı ise yapılan teni bir simülasyon çalışması ile değerlendirilmiştir. Simülasyon çalışması sonuçları göstermiştir i; önerilen yöntemle elde edilen unutma fatörlerinin ullanılmasıyla uyarlanan filtre gerçe 49

10 Çolu Unutma Fatörleri ile Uyarlı Kalman Filtresi için İyileştirme durumlara diğer filtrelerden daha hızlı yaınsamatadır ve filtre daha iyi bir tahmin performansı ile çalışmatadır. Kaynaça [] Anderson B. D. O., Moore J. B. 979.Optimal Filtering, Prentice Hall. Englewood Cliffs, NJ., 367s. [] Bar-Shalom Y., Li X. R., Kirubarajan.. Estimation with Applications to racing and Navigation: heory Algorithms and Software, John Wiley & Sons, Inc. USA, 584s. [3] Mehra, R.K. 97. Approaches to Adaptive Filtering. IEEE rans. Auto. Control, 7(97), [4] Yang J. N., Lin S., Huang H., Zhou L. 6. An Adaptive Extended Kalman Filter for Structural Damage Identification, Struct. Control And Health Monit. 3(6), [5] Ding, W., Wang, J., Rizos, C., & Kinlyside, D. 7. Improving adaptive Kalman estimation in GPS/INS integration. Journal of Navigation, 6(7), [6] Yang J. N., Pan S., Huang H. 7. An Adaptive Extended Kalman Filter for Structural Damage Identification II: Unnown Inputs, Struct. Control And Health Monit. 4(7), [7] Jwo D., Weng. 8. An Adaptive Sensor Fusion Method with Applications in Integrated Navigation, he Journal of Navigation, 6(8), [8] Geng, Y., & Wang, J. 8. Adaptive estimation of multiple fading factors in Kalman filter for navigation applications. GPS Solutions, (8), [9] Biçer, C.. Uyarlı Kalman Filtresinin Başarım ve Kararlılı Analizi, Anara Üniversitesi Fen Bilimleri Enstitüsü, Dotora ezi, 67s, Anara. [] Bicer, C., Babacan, E. K., & Özbe, L.. Stability of the adaptive fading extended Kalman filter with the matrix forgetting factor, urish Journal of Electrical Engineering & Computer Sciences, (), [] Fagin S. L Recursive linear regression theory: optimal filter theory and error analysis. IEEE Int Conv Rec.,(964), 6 4. [] Xia Q., Rao M., Ying Y., Shen X Adaptive Fading Kalman Filter with an Application, Automatica, 3(994), [3] Grewal S., Andrews A. P. 8. Kalman Filtering heory and Practice Using Matlab, John Wiley & Sons Inc. USA, 59s. [4] Da R Failure detection of dynamical systems with the state Chi-square test, J Guid Control Dyn., 7(994), 7 77 [5] Ozbe, L., & Efe, M. 4. An adaptive extended Kalman filter with application to compartment models, Communications in Statistics-Simulation and Computation, 33(4),

Matris Unutma Faktörü İle Uyarlanmış Kalman Filtresinin Başarım Değerlendirmesi

Matris Unutma Faktörü İle Uyarlanmış Kalman Filtresinin Başarım Değerlendirmesi Fırat Üniv. Fen Bilimleri Dergisi Fırat Unv. Journal of Science 25(), 7-76, 23 25(), 7-76, 23 Matris Unutma Fatörü İle Uyarlanmış Kalman Filtresinin Başarım Değerlendirmesi Özet Cener BİÇER * Esin KÖKSAL

Detaylı

MIXED REGRESYON TAHMİN EDİCİLERİNİN KARŞILAŞTIRILMASI. The Comparisions of Mixed Regression Estimators *

MIXED REGRESYON TAHMİN EDİCİLERİNİN KARŞILAŞTIRILMASI. The Comparisions of Mixed Regression Estimators * MIXED EGESYON TAHMİN EDİCİLEİNİN KAŞILAŞTIILMASI The Comparisions o Mixed egression Estimators * Sevgi AKGÜNEŞ KESTİ Ç.Ü.Fen Bilimleri Enstitüsü Matemati Anabilim Dalı Selahattin KAÇIANLA Ç.Ü.Fen Edebiyat

Detaylı

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-2 Yıl: 2010 199-206

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-2 Yıl: 2010 199-206 99 EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3- Yıl: 99-6 İKİNCİ MERTEBEDEN BİR DİFERENSİYEL DENKLEM SINIFI İÇİN BAŞLANGIÇ DEĞER PROBLEMİNİN DİFERENSİYEL DÖNÜŞÜM YÖNTEMİ İLE TAM ÇÖZÜMLERİ THE

Detaylı

KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES

KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES Mehmet YÜCEER, İlnur ATASOY, Rıdvan BERBER Anara Üniversitesi Mühendisli Faültesi Kimya Mühendisliği Bölümü Tandoğan- 0600 Anara (berber@eng.anara.edu.tr)

Detaylı

OCAK HAVALANDIRMA ŞEBEKE ANALİZİ İÇİN KOMBİNE BİR YÖNTEM (A COMBINED METHOD FOR THE ANALYSIS OF MINE VENTILATION NETWORKS)

OCAK HAVALANDIRMA ŞEBEKE ANALİZİ İÇİN KOMBİNE BİR YÖNTEM (A COMBINED METHOD FOR THE ANALYSIS OF MINE VENTILATION NETWORKS) ÖZET/ABSTRACT DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 2 Sayı: 2 sh. 49-54 Mayıs 2000 OCAK HAVALANDIRMA ŞEBEKE ANALİZİ İÇİN KOMBİNE BİR YÖNTEM (A COMBINED METHOD FOR THE ANALYSIS OF MINE

Detaylı

İstatistikçiler Dergisi

İstatistikçiler Dergisi www.istatisticiler.org İstatistiçiler Dergisi (008) 68-79 İstatistiçiler Dergisi BAĞIMLI RİSKLER İÇİ TOPLAM HASAR MİKTARII DAĞILIMI Mehmet PIRILDAK Hacettepe Üniversitesi Fen Faültesi, Atüerya Bilimleri

Detaylı

Ders 2 : MATLAB ile Matris İşlemleri

Ders 2 : MATLAB ile Matris İşlemleri Ders : MATLAB ile Matris İşlemleri Kapsam Vetörlerin ve matrislerin tanıtılması Vetör ve matris operasyonları Lineer denlem taımlarının çözümü Vetörler Vetörler te boyutlu sayı dizileridir. Elemanlarının

Detaylı

KRONĐK BÖBREK YETMEZLĐĞĐ HASTALIĞINDA ÖNEMLĐ FAKTÖRLERĐN BELĐRLENMESĐ

KRONĐK BÖBREK YETMEZLĐĞĐ HASTALIĞINDA ÖNEMLĐ FAKTÖRLERĐN BELĐRLENMESĐ ISSN:0- e-journal of New World Sciences Academy 009, Volume:, Number:, Article Number: A000 PHYSICAL SCIENCES Received: November 00 Acceted: June 009 Series : A ISSN : 0-0 009 www.newwsa.com Yüsel Öner,

Detaylı

Kollektif Risk Modellemesinde Panjér Yöntemi

Kollektif Risk Modellemesinde Panjér Yöntemi Douz Eylül Üniversitesi İtisadi ve İdari Bilimler Faültesi Dergisi, Cilt:6, Sayı:, Yıl:, ss.39-49. olletif Ris Modellemesinde anér Yöntemi ervin BAYAN İRVEN Güçan YAAR Özet Hayat dışı sigortalarda, olletif

Detaylı

Bulanık Mantık Tabanlı Uçak Modeli Tespiti

Bulanık Mantık Tabanlı Uçak Modeli Tespiti Bulanık Mantık Tabanlı Uçak Modeli Tespiti Hüseyin Fidan, Vildan Çınarlı, Muhammed Uysal, Kadriye Filiz Balbal, Ali Özdemir 1, Ayşegül Alaybeyoğlu 2 1 Celal Bayar Üniversitesi, Matematik Bölümü, Manisa

Detaylı

Ufuk Ekim Accepted: January 2011. ISSN : 1308-7231 yunal@selcuk.edu.tr 2010 www.newwsa.com Konya-Turkey

Ufuk Ekim Accepted: January 2011. ISSN : 1308-7231 yunal@selcuk.edu.tr 2010 www.newwsa.com Konya-Turkey ISSN:1306-3111 e-journal of New World Sciences Academy 011, Volume: 6, Number: 1, Article Number: 1A0156 ENGINEERING SCIENCES Yavuz Ünal Received: October 010 Ufu Eim Accepted: January 011 Murat Kölü Series

Detaylı

GÜNEŞ ENERJİSİ SİSTEMLERİNDE KANATÇIK YÜZEYİNDEKİ SICAKLIK DAĞILIMININ SONLU FARKLAR METODU İLE ANALİZİ

GÜNEŞ ENERJİSİ SİSTEMLERİNDE KANATÇIK YÜZEYİNDEKİ SICAKLIK DAĞILIMININ SONLU FARKLAR METODU İLE ANALİZİ TEKNOLOJİ, Cilt 7, (2004), Sayı 3, 407-414 TEKNOLOJİ GÜNEŞ ENERJİSİ SİSTEMLERİNDE KANATÇIK YÜZEYİNDEKİ SICAKLIK DAĞILIMININ SONLU FARKLAR METODU İLE ANALİZİ ÖZET Himet DOĞAN Mustafa AKTAŞ Tayfun MENLİK

Detaylı

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI Hatice YANIKOĞLU a, Ezgi ÖZKARA a, Mehmet YÜCEER a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği

Detaylı

Dinamik Sistem Karakterizasyonunda Averajlamanın Hurst Üsteli Üzerinde Etkisi

Dinamik Sistem Karakterizasyonunda Averajlamanın Hurst Üsteli Üzerinde Etkisi Uluslararası Katılımlı 7. Maina eorisi Sempozyumu, Izmir, 4-7 Haziran 205 Dinami Sistem Karaterizasyonunda Averalamanın Hurst Üsteli Üzerinde Etisi Ç. Koşun * S. Özdemir İzmir Institute of echnology İzmir

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 13 Sayı: 1 sh. 55-74 Ocak 2011

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 13 Sayı: 1 sh. 55-74 Ocak 2011 DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 13 Sayı: 1 sh. 55-74 Oca 2011 STOKASTİK KULLANICI DENGESİ TRAFİK ATAMA PROBLEMİNİN SEZGİSEL METOTLAR KULLANILARAK ÇÖZÜLMESİ (HEURISTIC METHODS

Detaylı

İNSANSIZ HAVA ARAÇLARI İÇİN RADAR KAPLAMA ALANLARINDAN KAÇINACAK EN KISA ROTANIN HESAPLANMASI

İNSANSIZ HAVA ARAÇLARI İÇİN RADAR KAPLAMA ALANLARINDAN KAÇINACAK EN KISA ROTANIN HESAPLANMASI İNSANSIZ HAVA ARAÇLARI İÇİN RADAR KAPLAMA ALANLARINDAN KAÇINACAK EN KISA ROTANIN HESAPLANMASI Hamdi DEMİREL (a), Halil SAVURAN (b), Murat KARAKAYA (c) (a) Mühendisli Faültesi, Yazılım Mühendisliği Bölümü,

Detaylı

FİNANSAL RİSK ANALİZİNDE KARMA DAĞILIM MODELİ YAKLAŞIMI * Mixture Distribution Approach in Financial Risk Analysis

FİNANSAL RİSK ANALİZİNDE KARMA DAĞILIM MODELİ YAKLAŞIMI * Mixture Distribution Approach in Financial Risk Analysis FİNANSAL RİSK ANALİZİNDE KARMA DAĞILIM MODELİ YAKLAŞIMI * Mixture Distribution Approach in Financial Risk Analysis Keziban KOÇAK İstatistik Anabilim Dalı Deniz ÜNAL İstatistik Anabilim Dalı ÖZET Son yıllarda

Detaylı

Dijital Sinyal İşleme (COMPE 463) Ders Detayları

Dijital Sinyal İşleme (COMPE 463) Ders Detayları Dijital Sinyal İşleme (COMPE 463) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Dijital Sinyal İşleme COMPE 463 Bahar 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin

Detaylı

RASGELE SÜREÇLER. Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk fonksiyonu aşağıdaki gibi olmalıdır.

RASGELE SÜREÇLER. Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk fonksiyonu aşağıdaki gibi olmalıdır. RASGELE SÜREÇLER Eğer bir büyülüğün her t anında alacağı değeri te bir şeilde belirleyen matematisel bir ifade verilebilirse bu büyülüğün deterministi bir büyülü olduğu söylenebilir. Haberleşmeden habere

Detaylı

Basitleştirilmiş Kalman Filtresi ile Titreşimli Ortamda Sıvı Seviyesinin Ölçülmesi

Basitleştirilmiş Kalman Filtresi ile Titreşimli Ortamda Sıvı Seviyesinin Ölçülmesi Basitleştirilmiş Kalman Filtresi ile Titreşimli Ortamda Sıvı Seviyesinin Ölçülmesi M. Ozan AKI Yrd.Doç Dr. Erdem UÇAR ABSTRACT: Bu çalışmada, sıvıların seviye ölçümünde dalgalanmalardan aynalı meydana

Detaylı

MOBİLYA ENDÜSTRİSİNDE AŞAMALAR ARASINDA FİRE BULUNAN ÇOK AŞAMALI TEDARİK ZİNCİRİ AĞININ OPTİMİZASYONU. Ercan ŞENYİĞİT 1, *

MOBİLYA ENDÜSTRİSİNDE AŞAMALAR ARASINDA FİRE BULUNAN ÇOK AŞAMALI TEDARİK ZİNCİRİ AĞININ OPTİMİZASYONU. Ercan ŞENYİĞİT 1, * Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25 (1-2) 168-182 (2009) http://fbe.erciyes.edu.tr/ ISSN 1012-2354 MOBİLYA ENDÜSTRİSİNDE AŞAMALAR ARASINDA FİRE BULUNAN ÇOK AŞAMALI TEDARİK ZİNCİRİ AĞININ

Detaylı

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa ELECO '2012 Eletri - Eletroni ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 ralı 2012, Bursa Lineer Olmayan Dinami Sistemlerin Yapay Sinir ğları ile Modellenmesinde MLP ve RBF Yapılarının Karşılaştırılması

Detaylı

SERVOVALF VE HİDROLİK SİSTEMDEN OLUŞAN ELEKTROHİDROLİK BİR DÜMEN SİSTEMİNİN KONUM KONTROLÜ

SERVOVALF VE HİDROLİK SİSTEMDEN OLUŞAN ELEKTROHİDROLİK BİR DÜMEN SİSTEMİNİN KONUM KONTROLÜ GEMİ İNŞAATI VE DENİZ TEKNOLOJİSİ TEKNİK KONGRESİ 08 BİLDİRİLER KİTABI SERVOVALF VE HİDROLİK SİSTEMDEN OLUŞAN ELEKTROHİDROLİK BİR DÜMEN SİSTEMİNİN KONUM KONTROLÜ Fevzi ŞENLİTÜRK, Fuat ALARÇİN ÖZET Bu çalışmada

Detaylı

CRYSTAL BALL Eğitimi

CRYSTAL BALL Eğitimi CRYSTAL BALL Eğitimi İki günlük bu kursun ilk yarısında, Crystal Ball Fusion Edition kullanılarak Excel tablolarına dayalı risk analizi öğretilecektir. Monte Carlo simülasyonu, tornado analizi ve Crystal

Detaylı

Farklı Madde Puanlama Yöntemlerinin ve Farklı Test Puanlama Yöntemlerinin Karşılaştırılması

Farklı Madde Puanlama Yöntemlerinin ve Farklı Test Puanlama Yöntemlerinin Karşılaştırılması Eğitimde ve Psiolojide Ölçme ve Değerlendirme Dergisi, Yaz 200, (), -8 Farlı Madde Puanlama Yöntemlerinin ve Farlı Test Puanlama Yöntemlerinin Karşılaştırılması Halil YURDUGÜL * Hacettepe Üniversitesi

Detaylı

Malzeme Bağıyla Konstrüksiyon

Malzeme Bağıyla Konstrüksiyon Shigley s Mechanical Engineering Design Richard G. Budynas and J. Keith Nisbett Malzeme Bağıyla Konstrüsiyon Hazırlayan Prof. Dr. Mehmet Fırat Maine Mühendisliği Bölümü Saarya Üniversitesi Çözülemeyen

Detaylı

FARKLI YAPIM SİSTEMLERİ VE KONUT MALİYETLERİ

FARKLI YAPIM SİSTEMLERİ VE KONUT MALİYETLERİ FARKLI YAPIM SİSTEMLERİ VE KONUT MALİYETLERİ ESRA BOSTANCIOĞLU 1, EMEL DÜZGÜN BİRER 2 ÖZET Bir binanın fonsiyon ve performansının değerlendirilmesinde; diğerlerinin yanında maliyet önemli bir parametredir.

Detaylı

ANKARA İLİ DELİCE İLÇESİ KÖPRÜSÜNÜN CPM METODU İLE MÜHENDİSLİK KRİTERLERİNİN BELİRLENMESİ

ANKARA İLİ DELİCE İLÇESİ KÖPRÜSÜNÜN CPM METODU İLE MÜHENDİSLİK KRİTERLERİNİN BELİRLENMESİ P A M U K K A L E Ü N İ V E R S İ T E S İ M Ü H E N D İ S L İ K F A K Ü L T E S İ P A M U K K A L E U N I V E R S I T Y E N G I N E E R I N G C O L L E G E M Ü H E N D İ S L İ K B İ L İ M L E R İ D E R

Detaylı

Türkiye de Enflasyon ve Döviz Kuru Arasındaki Nedensellik İlişkisi: 1984-2003

Türkiye de Enflasyon ve Döviz Kuru Arasındaki Nedensellik İlişkisi: 1984-2003 Türiye de Enflasyon ve Döviz Kuru Arasındai Nedenselli İlişisi: 1984-2003 The Causal Relationship Between Exchange Rates and Inflation in Turey:1984-2003 Yrd.Doç.Dr. Erem GÜL* Yrd.Doç.Dr. Ayut EKİNCİ**

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 14 Sayı: 1 sh Ocak 2012

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 14 Sayı: 1 sh Ocak 2012 DEÜ MÜHENDİSLİ FAÜLTESİ MÜHENDİSLİ BİLİMLERİ DERGİSİ Cilt: 4 Sayı: sh. 39-47 Oca 202 ARIŞIMLI İİLİ LOJİSTİ REGRESYON MODELİNE İLİŞİN BİR UYGULAMA (AN APPLIACTION FOR MIXTURE BINARY LOGISTIC REGRESSION

Detaylı

ÇEVRESEL TEST HİZMETLERİ 2.ENVIRONMENTAL TESTS

ÇEVRESEL TEST HİZMETLERİ 2.ENVIRONMENTAL TESTS ÇEVRESEL TEST HİZMETLERİ 2.ENVIRONMENTAL TESTS Çevresel testler askeri ve sivil amaçlı kullanılan alt sistem ve sistemlerin ömür devirleri boyunca karşı karşıya kalabilecekleri doğal çevre şartlarına dirençlerini

Detaylı

ANKARA İLİ DELİCE İLÇESİ KÖPRÜSÜNÜN CPM METODU İLE MÜHENDİSLİK KRİTERLERİNİN BELİRLENMESİ

ANKARA İLİ DELİCE İLÇESİ KÖPRÜSÜNÜN CPM METODU İLE MÜHENDİSLİK KRİTERLERİNİN BELİRLENMESİ PAMUKKALE ÜNÝVERSÝTESÝ MÜHENDÝSLÝK YIL FAKÜLTESÝ PAMUKKALE UNIVERSITY ENGINEERING CÝLT COLLEGE MÜHENDÝSLÝK BÝLÝMLERÝ SAYI DERGÝSÝ JOURNAL OF ENGINEERING SAYFA SCIENCES : 1995 : 1 : 2-3 : 95-103 ANKARA

Detaylı

PERFORMANCE COMPARISON OF KARATSUBA AND NIKHILAM MULTIPLICATION ALGORITHMS FOR DIFFERENT BIT LENGTHS

PERFORMANCE COMPARISON OF KARATSUBA AND NIKHILAM MULTIPLICATION ALGORITHMS FOR DIFFERENT BIT LENGTHS İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Yıl:14 Sayı: 27 Bahar 2015 s. 55-64 Araştırma Makalesi KARATSUBA VE NIKHILAM ÇARPMA İŞLEMİ ALGORİTMALARININ FARKLI BİT UZUNLUKLARI İÇİN PERFORMANSLARININ

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 5 Sayı: 1 sh. 89-101 Ocak 2003

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 5 Sayı: 1 sh. 89-101 Ocak 2003 DEÜ MÜENDİSLİK FAKÜLTESİ FEN ve MÜENDİSLİK DERGİSİ Cilt: 5 Sayı: 1 sh. 89-101 Oca 00 PERDE ÇERÇEVELİ YAPILARDA a m PERDE KATKI KATSAYISININ DİFERANSİYEL DENKLEM YÖNTEMİ İLE BULUNMASI VE GELİŞTİRİLEN BİLGİSAYAR

Detaylı

Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı. Mehmet Ali Çavuşlu

Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı. Mehmet Ali Çavuşlu Geriye Yayılım ve Levenberg Marquardt Algoritmalarının YSA Eğitimlerindeki Başarımlarının Dinamik Sistemler Üzerindeki Başarımı Mehmet Ali Çavuşlu Özet Yapay sinir ağlarının eğitiminde genellikle geriye

Detaylı

Doç.Dr. M. Mengüç Öner Işık Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü oner@isikun.edu.tr

Doç.Dr. M. Mengüç Öner Işık Üniversitesi Elektrik-Elektronik Mühendisliği Bölümü oner@isikun.edu.tr Doç.Dr. M. Mengüç Öner Işık Üniversitesi Elektrik-Elektronik Bölümü oner@isikun.edu.tr 1. Adı Soyadı : Mustafa Mengüç ÖNER 2. Doğum Tarihi : 01.02.1977 3. Unvanı : Doçent Dr. 4. Öğrenim Durumu : ÖĞRENİM

Detaylı

Sigma 27, 190-196, 2009 Research Article / Araştırma Makalesi EFFECT OF INSULATION MATERIAL THICKNESS ON THERMAL INSULATION

Sigma 27, 190-196, 2009 Research Article / Araştırma Makalesi EFFECT OF INSULATION MATERIAL THICKNESS ON THERMAL INSULATION Journal of Engineering and Natural Sciences Mühendisli ve Fen Bilimleri Dergisi Sigma 7, 19-19, 9 Research Article / Araştırma Maalesi EFFECT OF INSULATION MATERIAL THICKNESS ON THERMAL INSULATION Derya

Detaylı

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB 405 KİMYA MÜHENDİSLİĞİ LABORATUVARI - 3

ONDOKUZ MAYIS ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ KİMYA MÜHENDİSLİĞİ BÖLÜMÜ KMB 405 KİMYA MÜHENDİSLİĞİ LABORATUVARI - 3 ONOKUZ MAYIS ÜNİVERSİESİ MÜHENİSLİK FAKÜLESİ KİMYA MÜHENİSLİĞİ BÖLÜMÜ KMB 405 KİMYA MÜHENİSLİĞİ LABORAUVARI - 3 ENEY 5: KABUK ÜP ISI EĞİŞİRİCİ ENEYİ (SHALL AN UBE HEA EXCHANGER) EORİ ISI RANSFERİ Isı,

Detaylı

28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR.

28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR. 28/5/2009 TARİHLİ VE 2108/30 SAYILI KURUL KARARI 11 HAZİRAN 2009 TARİHLİ VE 27255 SAYILI RESMİ GAZETEDE YAYIMLANMIŞTIR. Enerji Piyasası Düzenleme Kurumundan: ELEKTRĠK PĠYASASI DENGELEME VE UZLAġTIRMA YÖNETMELĠĞĠ

Detaylı

Üniversitesi. {g.karatas, Library, Science Direct ve Wiley veri içerisinde

Üniversitesi. {g.karatas, Library, Science Direct ve Wiley veri içerisinde :, Üniversitesi 34156, stanbul, {g.karatas, c.catal}@iku.edu.tr Özet. sistematik ebilmek üzere, yöntemlerini in n veri belirlemek, ortaya konulan. IEEE Explorer, ACM Digital Library, Science Direct ve

Detaylı

Eğitim ve Bilim. Cilt 40 (2015) Sayı 177 31-41. Türkiye deki Vakıf Üniversitelerinin Etkinlik Çözümlemesi. Anahtar Kelimeler.

Eğitim ve Bilim. Cilt 40 (2015) Sayı 177 31-41. Türkiye deki Vakıf Üniversitelerinin Etkinlik Çözümlemesi. Anahtar Kelimeler. Eğitim ve Bilim Cilt 40 (2015) Sayı 177 31-41 Türiye dei Vaıf Üniversitelerinin Etinli Çözümlemesi Gamze Özel Kadılar 1 Öz Oran analizi ve parametri yöntemlerin eğitim urumlarını ıyaslaren yetersiz alması

Detaylı

alphanumeric journal The Journal of Operations Research, Statistics, Econometrics and Management Information Systems

alphanumeric journal The Journal of Operations Research, Statistics, Econometrics and Management Information Systems Available online at www.alphanumericournal.com alphanumeric ournal Volume 3, Issue 1, 2015 2015.03.01.OR.02 MATEMATİKSEL PROGRAMLAMA İLE TEDARİK ZİNCİRİ YÖNETİMİNDE ETKİNLİK PLANLAMASI Murat ATAN * Sibel

Detaylı

İŞARETLİ SIRA İSTATİSTİĞİNİ KULLANAN PARAMETRİK OLMAYAN KONTROL DİYAGRAMIYLA SÜRECİN İZLENMESİ

İŞARETLİ SIRA İSTATİSTİĞİNİ KULLANAN PARAMETRİK OLMAYAN KONTROL DİYAGRAMIYLA SÜRECİN İZLENMESİ V. Ulusal Üretim Araştırmaları Sempozyumu, İstanbul Ticaret Üniversitesi, 25-27 Kasım 2005 İŞARETLİ SIRA İSTATİSTİĞİNİ KULLANAN PARAMETRİK OLMAYAN KONTROL DİYAGRAMIYLA SÜRECİN İZLENMESİ Metin ÖNER Celal

Detaylı

Kalman Filtresi ve Bir Navigasyon Uygulaması

Kalman Filtresi ve Bir Navigasyon Uygulaması Number: 2012-2 SCIENCE AND TECHNOLOGY INFORMATION SHARING Article Web Page: www.ibrahimcayiroglu.com Kalman Filtresi ve Bir Navigasyon Uygulaması Kalman Filter and a Navigation Application İbrahim ÇAYIROĞLU

Detaylı

ile plakalarda biriken yük Q arasındaki ilişkiyi bulmak, bu ilişkiyi kullanarak boşluğun elektrik geçirgenlik sabiti ε

ile plakalarda biriken yük Q arasındaki ilişkiyi bulmak, bu ilişkiyi kullanarak boşluğun elektrik geçirgenlik sabiti ε Farlı Malzemelerin Dieletri Sabiti maç Bu deneyde, ondansatörün plaalarına uygulanan gerilim U ile plaalarda birien yü Q arasındai ilişiyi bulma, bu ilişiyi ullanara luğun eletri geçirgenli sabiti ı belirleme,

Detaylı

Yüz Tanımaya Dayalı Uygulamalar. (Özet)

Yüz Tanımaya Dayalı Uygulamalar. (Özet) 4 Yüz Tanımaya Dayalı Uygulamalar (Özet) Günümüzde, teknolojinin gelişmesi ile yüz tanımaya dayalı bir çok yöntem artık uygulama alanı bulabilmekte ve gittikçe de önem kazanmaktadır. Bir çok farklı uygulama

Detaylı

T.C. Hitit Üniversitesi. Sosyal Bilimler Enstitüsü. İşletme Anabilim Dalı

T.C. Hitit Üniversitesi. Sosyal Bilimler Enstitüsü. İşletme Anabilim Dalı T.C. Hitit Üniversitesi Sosyal Bilimler Enstitüsü İşletme Anabilim Dalı X, Y, Z KUŞAĞI TÜKETİCİLERİNİN YENİDEN SATIN ALMA KARARI ÜZERİNDE ALGILANAN MARKA DENKLİĞİ ÖĞELERİNİN ETKİ DÜZEYİ FARKLILIKLARININ

Detaylı

ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU

ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU T.C. MARMARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ELEKTRİK ENERJİ SİSTEMLERİNDE OLUŞAN HARMONİKLERİN FİLTRELENMESİNİN BİLGİSAYAR DESTEKLİ MODELLENMESİ VE SİMÜLASYONU Mehmet SUCU (Teknik Öğretmen, BSc.)

Detaylı

Selçuk Üniversitesi ISSN 1302/6178 Journal of Technical-Online BİLGİSAYAR DESTEKLİ İNŞAAT MALİYET ANALİZLERİ

Selçuk Üniversitesi ISSN 1302/6178 Journal of Technical-Online BİLGİSAYAR DESTEKLİ İNŞAAT MALİYET ANALİZLERİ BİLGİSAYAR DESTEKLİ İNŞAAT MALİYET ANALİZLERİ Mustafa ALTIN Novruz ALLAHVERDI Selçuk Üniversitesi, Teknik Bilimler Meslek Yüksek Okulu, Selçuklu, KONYA, maltin@selcuk.edu.tr Selcuk Üniversitesi, Teknik

Detaylı

PI KONTROLÖR TASARIMI ÖDEVİ

PI KONTROLÖR TASARIMI ÖDEVİ PI ONTROLÖR TASARIMI ÖDEVİ ONTROLÖR İLE TASARIM ontrolör Taarım riterleri Taarım riterleri genellile itemine yapmaı geretiğini belirtme ve naıl yaptığını değerlendirme için ullanılır. Bu riterler her bir

Detaylı

Kablosuz Algılayıcı Ağlarda Karınca Koloni Optimizasyonu Kullanılarak Yapılan Optimum Yönlendirme İşlemi

Kablosuz Algılayıcı Ağlarda Karınca Koloni Optimizasyonu Kullanılarak Yapılan Optimum Yönlendirme İşlemi Kablosuz Algılayıcı Ağlarda Karınca Koloni Optimizasyonu Kullanılara Yapılan Optimum Yönlendirme İşlemi Derviş Karaboğa 1 Selçu Ödem 2 1,2 Bilgisayar Mühendisliği Bölümü, Mühendisli Faültesi, Erciyes Üniversitesi,

Detaylı

Prof.Dr.. ERGÜN ÖZTÜRK JEODEZİ KOLLOKYUMU ÜÇ BOYUTLU AĞLARIN DENGELENMESİ

Prof.Dr.. ERGÜN ÖZTÜRK JEODEZİ KOLLOKYUMU ÜÇ BOYUTLU AĞLARIN DENGELENMESİ Prof.Dr.. ERGÜN ÖZTÜRK JEODEZİ KOLLOKYUMU ÜÇ BOYUTLU AĞLARIN DENGELENMESİ Yrd.Doç.Dr Doç.Dr.. Orhan KURT Kocaeli Üniversitesi Mühendisli Faültesi, Harita Mühendisliği Bölümü 15 Mart 13, Kocaeli SUNUŞ GİRİŞ

Detaylı

ENDEKS SAYILAR. fiyat, üretim, yatırım, ücret ve satış değişimlerinin belirlenmesi. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör.

ENDEKS SAYILAR. fiyat, üretim, yatırım, ücret ve satış değişimlerinin belirlenmesi. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. ENDEKS SLAR Bir değişenin farlı birimler üzerinde veya zaman içerisindei değişimini oransal olara ifade sayılara ENDEKS SLAR adı verilir. Endes sayılar ısaca endesler olara ifade edilir. Kullanım alanları;

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR

ÖZGEÇMİŞ. 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR Resim ÖZGEÇMİŞ 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR Telefon : 386 280 45 50 Mail : kskula@ahievran.edu.tr

Detaylı

Degree Department Üniversity Year B.S. Statistics Gazi University 1993 M.s. Statistics Gazi University 1998 Ph.D. Statistics Gazi University 2005

Degree Department Üniversity Year B.S. Statistics Gazi University 1993 M.s. Statistics Gazi University 1998 Ph.D. Statistics Gazi University 2005 Gazi University Faculty of Science Department of Statistics 06500 Teknikokullar ANKARA/TURKEY Tel:+903122021479 e-mail: yaprak@gazi.edu.tr Web site: www.gazi.edu.tr/yaprak EDUCATION Degree Department Üniversity

Detaylı

Üzerinde birden fazla yay-kütle sistemi bulunan eksenel yük etkisi altındaki kirişlerin serbest titreşim analizi

Üzerinde birden fazla yay-kütle sistemi bulunan eksenel yük etkisi altındaki kirişlerin serbest titreşim analizi Makine Teknolojileri Elektronik Dergisi Cilt: 8, No: 3, 011 (1-11) Electronic Journal of Machine Technologies Vol: 8, No: 3, 011 (1-11) TEKNOLOJĐK ARAŞTIRMALAR www.teknolojikarastirmalar.com e-issn:1304-4141

Detaylı

2016 - YAZ ÖĞRETİMİ İLE İLGİLİ ÖNEMLİ DUYURU

2016 - YAZ ÖĞRETİMİ İLE İLGİLİ ÖNEMLİ DUYURU FİZ 101 Fizik I FİZ 102 Fizik II FİZ 224 Modern Fizik I MATE 111 Matematik I MATE 112 Matematik II MATE 213 Lineer Cebir MATH 111 Calculus I MATH 112 Calculus II MATH 213 Linear Algebra FEN - EDEBİYAT

Detaylı

COGRAFI BILGI SISTEMI DESTEKLI TRAFIK KAZA ANALIZI ÖZET

COGRAFI BILGI SISTEMI DESTEKLI TRAFIK KAZA ANALIZI ÖZET COGRAFI BILGI SISTEMI DESTEKLI TRAFIK KAZA ANALIZI Darçin AKIN *, Yasasin ERYILMAZ ** ÖZET Bu maalede cografi bilgi sistemi (CBS) desteli bir trafi aza analizinin nasil yapilabilecegi ve aza verilerinin

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 3- LİNEER DENKLEM SİSTEMLERİNİN ÇÖZÜMÜ Doç. Dr. Ali Rıza YILDIZ 1 LİNEER DENKLEM SİSTEMLERİ Bilimsel ve teknolojik çalışmalarda karşılaşılan matematikle ilgili belli başlı

Detaylı

Gümüşhane Üniversitesi Sosyal Bilimler Elektronik Dergisi Sayı 12 Ocak 2015

Gümüşhane Üniversitesi Sosyal Bilimler Elektronik Dergisi Sayı 12 Ocak 2015 Gümüşhane Üniversitesi Sosyal Bilimler Eletroni Dergisi Sayı 12 Oca 2015 TÜRKİYE DE EKONOMİK BÜYÜME, ENERJİ TÜKETİMİ VE İTHALAT İLİŞKİSİ ÖZET Canan SANCAR 1 Melie ATAY POLAT 2 Bu çalışmada Türiye de eonomi

Detaylı

İKİ İDEMPOTENT MATRİSİN BAZI KOMBİNASYONLARININ GRUP TERSİNİ BULAN BİR ALGORİTMA

İKİ İDEMPOTENT MATRİSİN BAZI KOMBİNASYONLARININ GRUP TERSİNİ BULAN BİR ALGORİTMA BEYKENT ÜNİVERSİTESİ FEN VE MÜHENDİSLİK BİLİMLERİ DERGİSİ Sayı 7(1) 2014, 25-36 İKİ İDEMPOTENT MATRİSİN BAZI KOMBİNASYONLARININ GRUP TERSİNİ BULAN BİR ALGORİTMA Tuğba PİŞTOFOGLU (tugbapistofoglu@gmail.com)

Detaylı

BİR FAZ BEŞ SEVİYELİ İNVERTER TASARIMI VE UYGULAMASI

BİR FAZ BEŞ SEVİYELİ İNVERTER TASARIMI VE UYGULAMASI BİR FAZ BEŞ SEVİYELİ İNVERTER TASARIMI VE UYGULAMASI Sabri ÇAMUR 1 Birol ARİFOĞLU 2 Ersoy BEŞER 3 Esra KANDEMİR BEŞER 4 Elektrik Mühendisliği Bölümü Mühendislik Fakültesi Kocaeli Üniversitesi, 41100, İzmit,

Detaylı

EGE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ (YÜKSEK LİSANS TEZİ) KUANTUM BİLGİ-İŞLEM ALGORİTMALARI ÜZERİNE BİR İNCELEME.

EGE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ (YÜKSEK LİSANS TEZİ) KUANTUM BİLGİ-İŞLEM ALGORİTMALARI ÜZERİNE BİR İNCELEME. EGE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ (YÜKSEK LİSANS TEZİ) KUANTUM BİLGİ-İŞLEM ALGORİTMALARI ÜZERİNE BİR İNCELEME Gürkan Aydın ŞEN Uluslararası Bilgisayar Anabilim Dalı Bilim Dalı Kodu : 619.03.03 Sunuş

Detaylı

Markov Zinciri Monte Carlo Yaklaşımı. Aktüeryal Uygulamaları

Markov Zinciri Monte Carlo Yaklaşımı. Aktüeryal Uygulamaları Markov Zinciri Monte Carlo Yaklaşımı ve Aktüeryal Uygulamaları ŞİRZAT ÇETİNKAYA Aktüer Sistem Araştırma Geliştirme Bölümü AKTÜERLER DERNEĞİ 2.0.20080 2008 - İSTANBUL Sunum Planı. Giriş 2. Bayesci Metodun

Detaylı

Bilgisayar Mühendisliği Bölümü Lisans Ders Programı / Computer Engineering Undergraduate Curriculum

Bilgisayar Mühendisliği Bölümü Lisans Ders Programı / Computer Engineering Undergraduate Curriculum Bilgisayar Mühendisliği Bölümü Lisans Ders Programı / Undergraduate Curriculum 2014-2015 ve Öncesi Girişli Öğrenciler için Uygulanan Ders Program 1.Yıl / I.Dönem (First Year / First Semester) FIZ115 Fizik

Detaylı

VİNÇTE ÇELİK KONSTRÜKSİYON

VİNÇTE ÇELİK KONSTRÜKSİYON 01 Mayıs VİNÇTE ÇELİK KONSTRÜKSİYON KİRİŞTE BURUŞMA 1-03 Güven KUTAY Semboller ve Kaynalar için "1_00_CeliKonstrusiyonaGiris.doc" a baınız. Koordinat esenleri "GENEL GİRİŞ" de belirtildiği gibi DIN 18800

Detaylı

VII. BÖLÜM İÇME SUYU ŞEBEKELERİ

VII. BÖLÜM İÇME SUYU ŞEBEKELERİ VII. BÖÜM İÇME SUYU ŞEBEKEERİ İsale hattı ile haznelere getirilen suları sarfiyat yerlerine dağıtan oru sistemine içme suyu şeeesi adı verilir. İçme suyu şeeesi her inada yeteri adar asınçlı suyu ulunduraca

Detaylı

ULUSLARARASI SCI / SCI-Expanded KAPSAMINDAKİ DERGİLERDEKİ MAKALELER. Yayın NO. Yazarlar Başlık Dergi Adı Yıl

ULUSLARARASI SCI / SCI-Expanded KAPSAMINDAKİ DERGİLERDEKİ MAKALELER. Yayın NO. Yazarlar Başlık Dergi Adı Yıl ULUSLARARASI SCI / SCI-Expanded KAPSAMINDAKİ DERGİLERDEKİ MAKALELER Yazarlar Başlık Dergi Adı Yıl Barbaros Preveze, Aysel Şafak 2 Barbaros Preveze Effects of Routing Algorithms on Novel Throughput Improvement

Detaylı

Electronic Letters on Science & Engineering 6(1) (2010) Available online at www.e-lse.org

Electronic Letters on Science & Engineering 6(1) (2010) Available online at www.e-lse.org Electronic Letters on Science & Engineering 6(1) (2010) Available online at www.e-lse.org FUZZY Control Strategy Adapting to ISPM-15 Standarts Aydın Mühürcü 1, Gülçin Mühürcü 2 1 Saarya University, Electrical-Electronical

Detaylı

Lineer Bağımlılık ve Lineer Bağımsızlık

Lineer Bağımlılık ve Lineer Bağımsızlık Lineer Bağımlılık ve Lineer Bağımsızlık Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayı ve alt uzay yapısını daha iyi tanıyacak, Bir vektör uzayındaki vektörlerin

Detaylı

= + ise bu durumda sinüzoidal frekansı. genlikli ve. biçimindeki bir taşıyıcı sinyalin fazının modüle edildiği düşünülsün.

= + ise bu durumda sinüzoidal frekansı. genlikli ve. biçimindeki bir taşıyıcı sinyalin fazının modüle edildiği düşünülsün. 4.2. çı Modülasyonu Yüse reanslı bir işaret ile bilgi taşıa, işaretin genliğinin, reansının veya azının bir esaj işareti ile odüle edilesi ile gerçeleştirilebilir. Bu üç arlı odülasyon yöntei sırasıyla,

Detaylı

FİBONACCİ ARAMA YÖNTEMİ KULLANILARAK BROWN'UN TEK PARAMETRELİ ÜSTEL DÜZGÜNLEŞTİRME YÖNTEMİ'NDE OPTİMUM DÜZGÜNLEŞTİRME SABİTİNİN SEÇİMİ

FİBONACCİ ARAMA YÖNTEMİ KULLANILARAK BROWN'UN TEK PARAMETRELİ ÜSTEL DÜZGÜNLEŞTİRME YÖNTEMİ'NDE OPTİMUM DÜZGÜNLEŞTİRME SABİTİNİN SEÇİMİ /. 0. İsletme Fakültesi Dergisi Nisan 2006 C:35 Sayı: I Sayfa 69-83 FİBONACCİ ARAMA YÖNTEMİ KULLANILARAK BROWN'UN TEK PARAMETRELİ ÜSTEL DÜZGÜNLEŞTİRME YÖNTEMİ'NDE OPTİMUM DÜZGÜNLEŞTİRME SABİTİNİN SEÇİMİ

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

MATRİS DEPLASMAN YÖNTEMİ

MATRİS DEPLASMAN YÖNTEMİ SAARYA ÜNİVERSİTESİ M İNŞAAT MÜHENİSİĞİ BÖÜMÜ epartment of Civil Engineering İNM YAI STATIĞI II MATRİS EASMAN YÖNTEMİ Y.OÇ.R. MUSTAA UTANİS tanis@saarya.ed.tr Saarya Üniversitesi, İnşaat Mühendisliği Bölümü

Detaylı

SAĞLIK TEKNOLOJİ DEĞERLENDİRME (STD) İÇİN MODELLEME VE BENZETİM. Dr. Murat Günal

SAĞLIK TEKNOLOJİ DEĞERLENDİRME (STD) İÇİN MODELLEME VE BENZETİM. Dr. Murat Günal 1 SAĞLIK TEKNOLOJİ DEĞERLENDİRME (STD) İÇİN MODELLEME VE BENZETİM Dr. Murat Günal SAĞLIK TEKNOLOJİ DEĞERLENDİRME (STD) Sekröte sunulacak Yeni Ürün (veya Teknoloji) Mevcut ve gelecekteki demografik durum

Detaylı

BİR FONKSİYONUN FOURİER SERİSİNE AÇILIMI:

BİR FONKSİYONUN FOURİER SERİSİNE AÇILIMI: FOURIER SERİERİ GİRİŞ Elastisite probleminin çözümünde en büyü zorlu sınır şartlarının sağlatılmasındadır. Bu zorluğu gidermenin yollarından biride sınır yülerini Fourier serilerine açmatır. Fourier serilerinin

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

MAK341 MAKİNA ELEMANLARI I 2. Yarıyıl içi imtihanı 24/04/2012 Müddet: 90 dakika Ögretim Üyesi: Prof.Dr. Hikmet Kocabas, Doç.Dr.

MAK341 MAKİNA ELEMANLARI I 2. Yarıyıl içi imtihanı 24/04/2012 Müddet: 90 dakika Ögretim Üyesi: Prof.Dr. Hikmet Kocabas, Doç.Dr. MAK3 MAKİNA EEMANARI I. Yarıyıl içi imtihanı /0/0 Müddet: 90 daia Ögretim Üyesi: Prof.Dr. Himet Kocabas, Doç.Dr. Cemal Bayara. (0 puan) Sıı geçmelerde sürtünme orozyonu nasıl ve neden meydana gelir? Geçmeye

Detaylı

ANKARA ÜNİVERSİTESİ ÖĞRENCİ İŞLERİ DAİRE BAŞKANLIĞI

ANKARA ÜNİVERSİTESİ ÖĞRENCİ İŞLERİ DAİRE BAŞKANLIĞI Sıra Numarası Dersin ön koşulu var mı? *** Dersin önceki eğitim programında eşdeğer bir dersi var mı? **** Kuramsal Uygulama ve Laboratuvar TOPLAM SAAT Ulusal kredi AKTS Kredisi ANKARA ÜNİVERSİTESİ ANADAL

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

KONTEYNER YÜKLEME PROBLEMLERİ İÇİN KARINCA KOLONİSİ OPTİMİZASYONU YAKLAŞIMI

KONTEYNER YÜKLEME PROBLEMLERİ İÇİN KARINCA KOLONİSİ OPTİMİZASYONU YAKLAŞIMI Gazi Üniv. Müh. Mim. Fa. Der. J. Fac. Eng. Arch. Gazi Univ. Cilt 5, No 4, 881-894, 010 Vol 5, No 4, 881-894, 010 KONTEYNER YÜKLEME PROBLEMLERİ İÇİN KARINCA KOLONİSİ OPTİMİZASYONU YAKLAŞIMI Türay DERELİ

Detaylı

AKARSULARDA KİRLENME KONTROLÜ İÇİN BİR DİNAMİK BENZETİM YAZILIMI

AKARSULARDA KİRLENME KONTROLÜ İÇİN BİR DİNAMİK BENZETİM YAZILIMI AKARSULARDA KİRLENME KONTROLÜ İÇİN BİR DİNAMİK BENZETİM YAZILIMI *Mehmet YÜCEER, **Erdal KARADURMUŞ, *Rıdvan BERBER *Ankara Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği Bölümü Tandoğan - 06100

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ

ÖZGEÇMİŞ VE ESERLER LİSTESİ 1. Adı Soyadı : Mehmet Karay 2. Doğum Tarihi : 18 Mart 1979 3. Ünvanı : Assist. Prof. Dr. ÖZGEÇMİŞ VE ESERLER LİSTESİ 4. e-posta : mehmet_karay@hotmail.com mehmet.karay@ufu.university 5. Öğrenim Durumu:

Detaylı

Endüstri Mühendisliği - 1. yarıyıl. Academic and Social Orientation. 441000000001101 Fizik I Physics I 3 0 1 4 4 6 TR

Endüstri Mühendisliği - 1. yarıyıl. Academic and Social Orientation. 441000000001101 Fizik I Physics I 3 0 1 4 4 6 TR - - - - - Bölüm Seçin - - - - - Gönder Endüstri Mühendisliği - 1. yarıyıl 141000000001101 Akademik ve Sosyal Oryantasyon Academic and Social Orientation 1 0 0 1 0 1 TR 441000000001101 Fizik I Physics I

Detaylı

2. TRANSFORMATÖRLER. 2.1 Temel Bilgiler

2. TRANSFORMATÖRLER. 2.1 Temel Bilgiler . TRANSFORMATÖRLER. Temel Bilgiler Transformatörlerde hareet olmadığından dolayı sürtünme ve rüzgar ayıpları mevcut değildir. Dolayısıyla transformatörler, verimi en yüse (%99 - %99.5) olan eletri maineleridir.

Detaylı

Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-2

Ç.Ü Fen ve Mühendislik Bilimleri Dergisi Yıl:2012 Cilt:28-2 SERBEST LİE CEBİRLERİNİN ALT MERKEZİ VE POLİSENTRAL SERİLERİNİN TERİMLERİNİN KESİŞİMLERİ * Intersections of Terms of Polycentral Series and Lower Central Series of Free Lie Algebras Zeynep KÜÇÜKAKÇALI

Detaylı

Olasılık ve İstatistik (IE 220) Ders Detayları

Olasılık ve İstatistik (IE 220) Ders Detayları Olasılık ve İstatistik (IE 220) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Olasılık ve İstatistik IE 220 Her İkisi 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin

Detaylı

91-03-01-529 SAYISAL GÖRÜNTÜ İŞLEME (Digital Image Processing)

91-03-01-529 SAYISAL GÖRÜNTÜ İŞLEME (Digital Image Processing) 91-03-01-529 SAYISAL GÖRÜNTÜ İŞLEME (Digital Image Processing) Dersi Veren Öğretim Üyesi Doç. Dr. Aybars UĞUR Ders Web Sayfası : http://yzgrafik.ege.edu.tr/~ugur 1 Amaçlar Öğrencileri Matlab gibi teknik

Detaylı

ÜSTEL DÜZLEŞTİRME YÖNTEMİ

ÜSTEL DÜZLEŞTİRME YÖNTEMİ ÜSEL DÜLEŞİRME YÖNEMİ ÜSEL DÜLEŞİRME YÖNEMİ Bu bölüme kadar anlatılan yöntemler zaman içinde değişmeyen parametre varsayımına uygun serilerin tahminlerinde kullanılmaktaydı. Bu tür seriler deterministik

Detaylı

İZMİR DEKİ ÖZEL VE DEVLET ÜNİVERSİTELERİNDEKİ ÖĞRENCİLERİN BAŞARILARINI ETKİLEYEN FAKTÖRLERİN BELİRLENMESİ VE KARŞILAŞTIRILMASI ÖZET

İZMİR DEKİ ÖZEL VE DEVLET ÜNİVERSİTELERİNDEKİ ÖĞRENCİLERİN BAŞARILARINI ETKİLEYEN FAKTÖRLERİN BELİRLENMESİ VE KARŞILAŞTIRILMASI ÖZET Muğla Üniversitesi Sosyal Bilimler Enstitüsü Dergisi (İLKE) Bahar 2007 Sayı 18 İZMİR DEKİ ÖZEL VE DEVLET ÜNİVERSİTELERİNDEKİ ÖĞRENCİLERİN BAŞARILARINI ETKİLEYEN FAKTÖRLERİN BELİRLENMESİ VE KARŞILAŞTIRILMASI

Detaylı

AKADEMİK YAKLAŞIMLAR DERGİSİ JOURNAL OF ACADEMIC APPROACHES

AKADEMİK YAKLAŞIMLAR DERGİSİ JOURNAL OF ACADEMIC APPROACHES Uluslararası Ham Petrol ve Altın Fiyatlarının Amerian Doları ile İlişisi: Amiri Bir Uygulama Mehmet Şentür 1 Yusuf Erem Abaş 2 Uğur Adıguzel 3 Özet Bu çalışmada, uluslararası altın ve etrol fiyatlarının

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

Biyomedikal Resimlerdeki Rastgele Değerli Darbe Gürültüsünün Çift Gürültü Kontrollü Hızlı Adaptif Medyan Filtre ile Azaltılması

Biyomedikal Resimlerdeki Rastgele Değerli Darbe Gürültüsünün Çift Gürültü Kontrollü Hızlı Adaptif Medyan Filtre ile Azaltılması URSI-TÜRKİYE 214 VII. Bilimsel Kongresi, 28-3 Ağustos 214, ELAZIĞ Biyomedikal Resimlerdeki Rastgele Değerli Darbe Gürültüsünün Çift Gürültü Kontrollü Hızlı Adaptif Medyan Filtre ile Azaltılması Cafer Budak

Detaylı

PİEZOELEKTRİK YAMALARIN AKILLI BİR KİRİŞİN TİTREŞİM ÖZELLİKLERİNİN BULUNMASINDA ALGILAYICI OLARAK KULLANILMASI ABSTRACT

PİEZOELEKTRİK YAMALARIN AKILLI BİR KİRİŞİN TİTREŞİM ÖZELLİKLERİNİN BULUNMASINDA ALGILAYICI OLARAK KULLANILMASI ABSTRACT PİEZOELEKTRİK YAMALARIN AKILLI BİR KİRİŞİN TİTREŞİM ÖZELLİKLERİNİN BULUNMASINDA ALGILAYICI OLARAK KULLANILMASI Uğur Arıdoğan (a), Melin Şahin (b), Volkan Nalbantoğlu (c), Yavuz Yaman (d) (a) HAVELSAN A.Ş.,

Detaylı

İstatistikçiler Dergisi

İstatistikçiler Dergisi www.istatistikciler.org İstatistikçiler Dergisi (28) 6-22 İstatistikçiler Dergisi COX REGRESYON MODELİ VE AKCİĞER KANSERİ VERİLERİ İLE BİR UYGULAMA Durdu KARASOY Hacettepe Üniversitesi Fen Fakültesi İstatistik

Detaylı

ELEKTRİK GÜÇ SİSTEMLERİNDE SALINIM DİNAMİKLERİNİN KAOTİK OLAYLARININ İNCELENMESİ

ELEKTRİK GÜÇ SİSTEMLERİNDE SALINIM DİNAMİKLERİNİN KAOTİK OLAYLARININ İNCELENMESİ ELEKTRİK GÜÇ SİSTEMLERİNDE SALINIM DİNAMİKLERİNİN KAOTİK OLAYLARININ İNCELENMESİ Yılmaz Uyaroğlu M. Ali Yalçın Saarya Üniversitesi, Mühendisli Faültesi, Eletri Eletroni Mühendisliği Bölümü, Esentepe Kampüsü,

Detaylı

altında ilerde ele alınacaktır.

altında ilerde ele alınacaktır. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 1 NOKTA TAHMİN YÖNTEMLERİ Şimdiye kadar verilmiş tahmin edicilerin sonlu örneklem ve asimptotik özelliklerini inceledik. Acaba bilinmeyen anakütle parametrelerini

Detaylı

KADASTRO HARİTALARININ SAYISALLAŞTIRILMASINDA KALİTE KONTROL ANALİZİ

KADASTRO HARİTALARININ SAYISALLAŞTIRILMASINDA KALİTE KONTROL ANALİZİ KADASTRO HARİTALARININ SAYISALLAŞTIRILMASINDA KALİTE KONTROL ANALİZİ Yasemin ŞİŞMAN, Ülkü KIRICI Sunum Akış Şeması 1. GİRİŞ 2. MATERYAL VE METHOD 3. AFİN KOORDİNAT DÖNÜŞÜMÜ 4. KALİTE KONTROL 5. İRDELEME

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 5 Sayı: 2 sh. 27-35 Mayıs 2003

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 5 Sayı: 2 sh. 27-35 Mayıs 2003 DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 5 Sayı: sh. 7-35 Mayıs 003 FATURALI CTP LEVHALARDA GERİLME KONSANTRASYONUNUN ARAŞTIRILMASI (AN INVESTIGATION OF STRESS CONCENTRATION IN FILLETED

Detaylı

Kalman Filtresinin Radar Hedef İzlemedeki Performans Analizi. The Performance Analysis of Kalman Filter on Radar Target Tracking

Kalman Filtresinin Radar Hedef İzlemedeki Performans Analizi. The Performance Analysis of Kalman Filter on Radar Target Tracking F. Ü. Fen ve Mühendislik Bilimleri Dergisi, 16(4), 679-686, 2004 Kalman Filtresinin Radar Hedef İzlemedeki Performans Analizi Engin AVCI, İbrahim TÜRKOĞLU ve Mustafa POYRAZ * Fırat Üniversitesi Teknik

Detaylı