Görüntü İyileştirme Teknikleri. Hafta-8

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Görüntü İyileştirme Teknikleri. Hafta-8"

Transkript

1 Görüntü İyileştirme Teknikleri Hafta-8 1

2 Spektral İyileştirme PCA (Principal Component Analysis) Dönüşümü. Türkçesi Ana Bileşenler Dönüşümü Decorrelation Germe Tasseled Cap RGB den IHS ye dönüşüm IHS den RGB ye dönüşüm Indisler Görüntü kaynaştırma yöntemleri 2

3 Ana Bileşenler Dönüşümü Bir çok bantlı görüntüde komşu bantlar arasında yüksek oranda korelasyon olabilir ve bu yüzden nesneler hakkında aynı veya benzer spaktral bilgi içerebilir. Ana bileşenler enler dönüşümü ümü orijinal veri kümesini n boyutlu (n toplam bant sayısı) lineer bir dönüşüm kullanarak öz vektörler uzayına dönüştürür, Böylece orijinal verinin varyansı maksimize edilerek bantlar arasındaki korelasyon ortadan kaldırılmış olur 3

4 Ana Bileşenler Dönüşümü Pixels on band-1 vs. band-2 plane Pixel values in 3-D Space band -2 band-3 PC-1 PC-2 PC-1 PC-3 band-1 Pixels on band-1vs. band-3 plane ban d-3 PC-1 band-2 band-1 band-1 4

5 Ana Bileşenler Dönüşümü Kullanılarak Spektral İyileştirme Öncelikle çok bantlı görüntüye ana bileşenler dönüşümü uygulanır Sadece elde edilen birinci ana bileşene kontrast iyileştirme uygulanır Daha sonra kontrast iyileştirme uygulanmış birinci ana bileşen ve diğer ana bileşenler kullanılarak ters ana bileşenler dönüşümü uygulanır Sonuç görüntü spektral olarak iyileştirilmiş olur Yöntemin esprisi: Birinci ana bileşen tüm bantların içerdiği bilgiyi tek basına içerir, bu yüzden ona yapılan işlem tüm bantlara yapılmış gibi olur 5

6 Ana Bileşenler Dönüşümü Nasıl Yapılır? Çok bantlı bir görüntüde her bir piksel aslında bir vektördür 6

7 Çok bantlı bir görüntüde her bir piksel aslında bir vektördür x i = ( x, x,..., x ) T 1 2 k ( 3, 13, ) T x 5 1 = m satır ve n sütün sayısını gösterirse tüm görüntüde M = mxn tane vektör oluşur Burada k toplam bant sayısıdır!!! 7

8 Ana Bileşenler dönüşümü orijinal görüntüyü öz vektör (eigen vector) uzayına dönüştürür. Amaç bantlar arasındaki korelasyonu ortadan kaldırmaktır Bu yüzden kovaryans matrisi gereklidir. Bütün vektörlerin ortalama vektörü m = M 1 x M = ve m kullanılarak kovaryans matrisi i 1 i hesaplanır. M 1 C = ( x m)( x m) x M i = 1 i i T 8

9 C x simetriktir, boyutu da kxk dır. Ana bileşenler dönüşümü yeni bir kovaryans matrisi yi bulmayı hedefler. C y C y öyle bir matristir ki; C y ( i, j ) = 0 i j olduğunda C y ( i, j ) > 0 i = j olduğunda Bunu bantlar arasındaki korelasyonu kaldırmak için yapar 9

10 Bu amaçla aşağıdaki dönüşüm uygulanır; A y i = T A xi C T matrisi ortogonaldir ve kovaryans matrisine ait öz vektörlerden x oluşturulur. C x kovaryans matrisine ait öz değer ve öz vektörler hesaplanır. En büyük öz değere sahip öz vektör en üstte olacak şekilde öz vektörler sıralanır. Sıralanan bu öz vektörler T matrisi oluşturur A A Yani T nin ilk satırı en yüksek öz değere sahip öz vektördür. İkinci satırı ise ikinci en yüksek öz değere sahip öz vektördür 10

11 Böylece dönüşüm sonrası y i matrisi elde edilmiş olur. y i matrisinin ilk satırı birinci ana bileşendir. İkinci satırı ikinci ana bileşen, vs. Birinci ana bileşene kontrast iyileştirme uygulanır Daha sonra kontrast iyileştirme uygulanmış birinci ana bileşen ve diğer ana bileşenler kullanılarak ters ana bileşenler dönüşümü uygulanır x Ters dönüşüm şeklinde yapılır i = A y i 11

12 Blue band Green band Red band Infra-red band First principal component Second principal component Third principal component Fourth principal component Birinci ana bileşen tüm bantların içerdiği bilgiyi tek baçına içerir, diğer ana bileşenler gittikçe daha az bilgi içermeye başlar 12

13 De-correlation Germe Herhangi bir kontrast germe işleminin amacı görüntüdeki gri değerlerin lineer olarak aralığına gerilmesidir. De-correlation germe orijinal bantlara değil de Ana bileşenlere uygulanır. Ana bileşen dönüşümü sonrasında her ana bileşen bandı aralığında olmayabilir. Bu yüzden her ana bileşen bandındaki gri değerler aralığına gerilir. Böylece ana bileşen bantlarına kontrast germe uygulanmış olur. 13

14 Daha sonra ters ana bileşen dönüşümü uygulanarak orijinal RGB uzayına dönülür. Böylece kontrast germe işlemi bantların arasında korelasyonun olduğu RGB uzayında değil de bantların arasındaki korelasyonun ortadan kaldırıldığı ana bileşenler uzayında yapılmış olur. Daha önce anlatılan ana bileşen dönüşümü kullanılarak spektral iyileştirme yönteminden farkı burada sadece birinci ana bileşene değil de tüm ana bileşenlere kontrast germe işlemi yapılıyor olmasıdır. 14

15 Tasseled Cap Çok bantlı bir görüntüde her piksel N-boyutlu bir vektör olarak temsil edilebilir. Tasseled Cap dönüşümü orijinal Landsat MSS uzayını 4 boyutlu bir uzaya dönüştürür. Bu dönüşüme Tasseled Cap ya da Kauth-Thomas dönüşümü denir 15

16 Dönüşüm sonucu 4 yeni eksen oluşur Toprak gri değer indeksi (B) Yeşil bitki örtüsü endeksi (G) Sarı nesneler indeksi (Y) Diğer nesneler (N) 16

17 Landsat MMS görüntüsünde her bir eksen için katsayılar şu şekilde hesaplanır B = MSS MSS MSS MSS 4 G = MSS MSS MSS MSS 4 Y = MSS MSS MSS MSS 4 N = MSS MSS MSS MSS 4 17

18 Landsat TM için de görülür, yakın kızıl ötesi, orta kızıl ötesi bantlar parlaklık, yeşillik ve nemlilik katsayılarına aşağıdaki şekilde dönüştürülür B = TM TM TM TM TM TM 7 G = TM TM TM TM TM TM 7 W = TM TM TM TM TM TM 7 18

19 Renk Uzayı Renk uzayı renklerin bir nokta olarak temsil edildikleri bir koordinat sistemidir. İnsan renkleri üç ana renk olan mavi, yeşil ve kırmızının değişik ik oranlarda kombinasyonu şeklinde görür. Bu yüzden renk uzayında renkleri temsil etmek için üç sayısal bileşen gereklidir. Literatürde herkes tarafından onaylanmış tek bir renk uzayı yoktur. (20 den fazla tanımlı renk uzayı olduğu bilinir) Farklı amaçlar için farklı renk uzayları tanımlanmıştır. 19

20 RGB Renk Uzayı Görüntü işlemede en yaygın kullanılan renk uzaylarından biridir. RGB renk uzayı üç boyutlu kartezyen bir koordinat sistemi olarak tanımlanabilir Her bir eksen mavi, yeşil ve kırmızı renklerden oluşur. Koordinat sisteminin orijininde siyah vardır ve maksimim mavi, yeşil ve kırmızı beyaz ı oluşturur. Eşit miktarda mavi, yeşil ve kırmızı farklı gri tonları oluşturur, ve bu renkler siyak ve bayaz noktaları birleştiren doğru üzerinde yer alır. Bütün diğer renkler, mavi, yeşil ve kırmızı eksenler üzerinde aldıkları değerlere göre oluşan küpün içerisinde veya küpün üzerinde yer alır. 20

21 RGB Renk Küpü Kaynak: 21

22 Avantaj Dezavantaj RGB renk uzayı renk oluşturmak için idealdir Monitörler renkli görüntüleri RGB renk uzayını kullanarak gösterirler Çoğu görüntü işleme algoritmaları uygulamalar için RGB renk uzayını kullanır Fakat, RGB renk uzayının bazı dezavantajları da vardır RGB renk uzayı insanın renkleri görme mantığına uygun değildir Bu yüzden bir rengi diğer bir renkten sadece RGB renk koordinatları ile ayırmak mümkün olmaz Ayrıca RGB renk uzayı donanım bağımlıdır, farklı monitörler farklı renk sonuçları verir 22

23 IHS Renk Uzayı IHS renk uzayı renkleri Intensity (yoğunluk??), Hue (ton??) ve Saturation (renksel doymuşluk??) olarak üç bileşenle temsil eder. Bu bileşenler enler görseldir ve ressamların bir rengi diğerinden ayırmada kullandığı mantıkla aynıdır. Bu yüzden bir renkten diğerine geçiş veya istenilen rengi elde etmek RGB renk uzayına göre daha kolaydır 23

24 Intensity, Hue ve Saturation Bileşenleri Hue: Gördüğümüz renklerdeki baskın dalga boyudur. Başka bir deyişle bir limona sarı dediğimizde onun hue bileşenini söylemiş oluruz Saturation: Rengin saflık derecesi saturation ile ifade edilir. Rengin beyaz ışık ile ne kadar seyreltildiğinin göstergesidir. Bu yüzden saf renkler %100 saturated denilebilir. Intensity: Rengin parlaklığıdır. Intensity az ise görüntü karanlık çok ise daha aydınlık olur. Dolayısıyla intensity bir renge ait tüm dalga boylarındaki enerji miktarına bağlıdır. Intensity fiziksel bir niceliktir ve ölçülebilir. Uzaktan algılama sensörleri nesnelerden yansıyan enerjinin miktarına göre enerji yoğunluğunu algılar ve siyah beyaz görüntüleri oluşturan sayısal değerlere çevirir. Bu yüzden intensity siyah-beyaz görüntüler için en önemli tanımlayıcıdır. 24

25 Intensity, Hue ve Saturation Bileşenleri Intensity Kaynak: 25

26 Saf ve Saturated Renkler 100% saturated R, G, and B primaries Less saturated primaries 26

27 White (I = 1) Green Yellow Cyan White (I = 1) Red Blue Magenta Intensity Cyan Green I = 0.5 Yellow Red Saturation Hue Red = 0 o Black (I = 0) Blue Inte nsit y Magenta Saturation Hue Black (I = 0) Red = 0 o a) Six Sided Hexcone b) Double Six Sided Hexcone White (I = 1) Intensity Blue Black (I = 0) Hue Red Saturation Green Red White (I = 1) Intensity Blue Black (I = 0) Hue Green Saturation Farklı IHS Renk Uzayları c) Sphere d) Cylinder 27

28 RGB ve IHS Renk Uzayı Arasında Dönüşüm Tanımlı tek bir IHS renk uzayı olmadığı için RGB ve IHS uzayları arasında tanımlı tek bir dönüşüm yoktur Burada örnek olarak RGB ve IHS uzayları arasında sadece üç farklı dönüşüm üm verilmektedir 28

29 Dönüşüm - I R,G,B koordinatları öncelikle lineer bir dönüşümle I,V 1, V 2 uzayına dönüştürülür Daha sonra I,V 1, V 2 kullanılarak H ve S hesaplanır I, H ve S varsa ters dönüşüm ile R,G ve B yandaki şekilde elde edilebilir 29

30 Dönüşüm - 2 RGB den IHS ye Ters Dönüşüm IHS den RGB ye 30

31 Dönüşüm

32 IHS Renk Uzayının Avantajı IHS renk uzayında her bir bileşen kendi başına modifiye edilebildiğinden sadece Intensity bileşeni modifiye edilerek görüntü iyileştirme ve görüntü kaynaştırma uygulamaları için oldukça uygun bir renk uzayı 32

33 RGB den IHS ye dönüşüm ile Görüntü İyileştirme Orijinal görüntüye RGB den IHS ye dönüşümü yapılır Elde edilen Intensity ve saturation bileşenine kontrast iyileştirme yapılır Daha sonra ters IHS den RGB ye dönüşüm gerçekleştirilir Bu sayede renk yapısı bozulmadan çok bantlı görüntüye kontrast iyileştirme yapılmış olur. 33

34 Bant oranlama ve İndeksler NDVI (Normalized Difference Vegitation Index) NDVI = (KÖ - K) / (KÖ + K) Görsel olarak KÖ ve K bantlarının direkt oranı ile NDVI çok yakın sonuçlar üretiyor. Fakat NDVI da bantların farkının ve toplamının kullanılması bir alanın belli bir zaman aralığında değerlendirilmesinin gerektiği durumlarda NDVI ı daha avantajlı yapar, Çünkü bu sayede atmosferik değişkenlerin oran görüntüyü etkileme olasılığı düşürülmüş olur. 34

35 a) SPOT HRV Bant-3 (Yakın kızıl ötesi) b) Aynı görüntü Bant-2 (kırmızı bant) c) Yakın kızıl ötesi / Kırmızı oran görüntü d) NDVI görüntüsü Kaynak: Mather, P. Computer Processing of Remotely-Sensed Images. An Introduction 35

36 Kullanılan Diğer Bitki İndeksleri KÖ/K SQRT (KÖ/K) Bitki İndeksi = KÖ - K TNDVI = SQRT[ (KÖ-K / KÖ+K) + 0.5] Demir Oksit: TM3/TM1 Kil Mineralleri: TM5/TM7 Demir Mineralleri: TM5/TM4 Mineral Bileşikleri: TM5/TM7, TM5/TM4, TM3/TM1 Hidrotermal Bileşikleri: TM5/TM7, TM3/TM1, TM4/TM3 36

37 Bazı Uydulara Ait Kızılötesi ve Kırmızı Bantlar UYDU KÖ K Landsat MSS 7 5 SPOT XS 3 2 Landsat TM 4 3 NOAA AVHRR 2 1 IKONOS 4 3 QuickBird

Görüntü İyileştirme Teknikleri. Hafta-6

Görüntü İyileştirme Teknikleri. Hafta-6 Görüntü İyileştirme Teknikleri Hafta-6 Doç. Dr. Oğuz Güngör Karadeniz Teknik Üniversitesi Harita Mühendisliği Bölümü 618 Trabzon ogungor@ktu.edu.tr 1 İndisler Görüntü İyileştirme Teknikleri Radyometrik

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 8 Multispektral Görüntüleme ve Uygulamaları Alp Ertürk alp.erturk@kocaeli.edu.tr Multispektral Görüntüleme Her piksel için birkaç adet spektral kanalda ölçüm değeri

Detaylı

1. Değişik yeryüzü kabuk tiplerinin spektral yansıtma eğrilerinin durumu oranlama ile ortaya çıkarılabilmektedir.

1. Değişik yeryüzü kabuk tiplerinin spektral yansıtma eğrilerinin durumu oranlama ile ortaya çıkarılabilmektedir. ORAN GÖRÜNTÜLERİ Oran Görüntüsü Oran görüntülerini değişik şekillerde tanımlamak mümkündür; Bir görüntünün belirli bandındaki piksel parlaklık değerleri ile bunlara karşılık gelen ikinci bir banddaki piksel

Detaylı

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında ucuz ve hızlı sonuç alınabilen uzaktan algılama tekniğinin, yenilenebilir

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2015-2016 Öğretim Yılı Bahar Dönemi 1 Ön İşleme-Radyometrik Düzeltme Atmosferik Düzeltme Atmosferik etkilerin giderilmesinde kullanılan radyometrik

Detaylı

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun.

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Doç.Dr.Mehmet MISIR-2013 TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında

Detaylı

Görüntü İyileştirme Teknikleri. Hafta-6

Görüntü İyileştirme Teknikleri. Hafta-6 Görüntü İyileştirme Teknikleri Hafta-6 Doç. Dr. Oğuz Güngör Karadeniz Teknik Üniversitesi Harita Mühendisliği Bölümü 6080 Trabzon ogungor@ktu.edu.tr İndisler Görüntü İyileştirme Teknikleri Radyometrik

Detaylı

Yrd. Doç. Dr. Aycan M. MARANGOZ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ FOTOGRAMETRİ ANABİLİM DALI SUNULARI JDF435 UZAKTAN ALGILAMA DERSİ NOTLARI

Yrd. Doç. Dr. Aycan M. MARANGOZ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ FOTOGRAMETRİ ANABİLİM DALI SUNULARI JDF435 UZAKTAN ALGILAMA DERSİ NOTLARI UZAKTAN ALGILAMA Sayısal Görüntü ve Özellikleri GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ FOTOGRAMETRİ ANABİLİM DALI SUNULARI JDF435 UZAKTAN ALGILAMA DERSİ NOTLARI http://jeodezi.karaelmas.edu.tr/linkler/akademik/marangoz

Detaylı

Görüntü İşleme. K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI. Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003

Görüntü İşleme. K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI. Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003 Görüntü İşleme K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003 İçerik Görüntü İşleme Nedir? Görüntü Tanımlamaları Görüntü Operasyonları Görüntü İşleme

Detaylı

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur.

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur. Görüntü İşleme Görüntü işleme, dijital bir resim haline getirilmiş olan gerçek yaşamdaki görüntülerin bir girdi resim olarak işlenerek, o resmin özelliklerinin ve görüntüsünün değiştirilmesidir. Resimler

Detaylı

GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ

GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ GÖRÜNTÜ İŞLEME HAFTA 2 SAYISAL GÖRÜNTÜ TEMELLERİ GÖRÜNTÜ ALGILAMA Üç temel zar ile kaplıdır. 1- Dış Zar(kornea ve Sklera) 2- Koroid 3- Retina GÖRÜNTÜ ALGILAMA ---Dış Zar İki kısımdan oluşur. Kornea ve

Detaylı

Bilgisayar ne elde eder (görüntüden)? Dijital Görüntü İşleme Fevzi Karslı, KTÜ. 08 Ekim 2013 Salı 51

Bilgisayar ne elde eder (görüntüden)? Dijital Görüntü İşleme Fevzi Karslı, KTÜ. 08 Ekim 2013 Salı 51 Bilgisayar ne elde eder (görüntüden)? 08 Ekim 2013 Salı 51 Zorluk 1: bakış açısı 2012, Selim Aksoy 08 Ekim 2013 Salı 52 Zorluk 2: aydınlatma 08 Ekim 2013 Salı 53 Zorluk 3: oklüzyon (ölü bölge oluşumu)

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Dijital görüntü işlemede temel kavramlar Sayısal Görüntü İşleme; bilgisayar yardımı ile raster verilerin

Detaylı

Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri

Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri Uzaktan Algılama (3) Öğr. Gör. Dr. Özgür ZEYDAN http://cevre.beun.edu.tr/zeydan/ Renk Teorileri Eklemeli renk teorisi Çıkarmalı renk teorisi 1 RGB (Red Green - Blue) Kavramı Red Green - Blue RGB-Mixer

Detaylı

ORM 7420 ORMAN KAYNAKLARININ PLANLANMASINDA UYGU GÖRÜNTÜLERİNİN KULLANILMASI

ORM 7420 ORMAN KAYNAKLARININ PLANLANMASINDA UYGU GÖRÜNTÜLERİNİN KULLANILMASI ORM 7420 ORMAN KAYNAKLARININ PLANLANMASINDA UYGU GÖRÜNTÜLERİNİN KULLANILMASI Yrd. Doç. Dr. Uzay KARAHALİL III. Hafta (Uyduların Detay Tanıtımı Sunum Akışı Doğal Kaynak İzleyen Uygular Hangileri Uyduların

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

Uzaktan algılamada uydu görüntülerine uygulanan işlemler

Uzaktan algılamada uydu görüntülerine uygulanan işlemler Uzaktan algılamada uydu görüntülerine uygulanan işlemler Uzaktan algılama görüntülerine uygulanan işlemler genel olarak; 1. Görüntü ön işleme (Düzeltme) 2. Görüntü İşleme olarak ele alınabilir. GÖRÜNTÜ

Detaylı

TEMEL GÖRÜNTÜ BİLGİSİ

TEMEL GÖRÜNTÜ BİLGİSİ TEMEL GÖRÜNTÜ BİLGİSİ FOTOĞRAF/GÖRÜNTÜ KAVRAMI VE ÖZELLİKLERİ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF345 TEMEL GÖRÜNTÜ BİLGİSİ DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz/ İÇERİK

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 10 Hiperspektral Görüntülerde Öznitelik Çıkarımı ve Boyut Azaltımı Alp Ertürk alp.erturk@kocaeli.edu.tr Öznitelik Çıkarımı Veriden ayırt edici yapıda nitelikler çıkarma

Detaylı

ORM 7420 USING SATELLITE IMAGES IN FOREST RESOURCE PLANNING

ORM 7420 USING SATELLITE IMAGES IN FOREST RESOURCE PLANNING ORM 7420 USING SATELLITE IMAGES IN FOREST RESOURCE PLANNING Asst. Prof. Dr. Uzay KARAHALİL Week IV NEDEN UYDU GÖRÜNTÜLERİ KULLANIRIZ? Sayısaldır (Dijital), - taramaya gerek yoktur Hızlıdır Uçuş planı,

Detaylı

Yrd. Doç. Dr. Caner ÖZCAN

Yrd. Doç. Dr. Caner ÖZCAN Yrd. Doç. Dr. Caner ÖZCAN Grafik Programlama Bilgisayar kullanılırken monitörlerde iki tür ekran moduyla karşılaşılır. Bu ekran modları Text modu ve Grafik modu dur. Text modunda ekran 25 satır ve 80 sütundan

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) Öğretim Yılı Güz Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) Öğretim Yılı Güz Dönemi Uzaktan Algılama (JDF439) Hiperspektral ve termal bantlı uydular Yrd. Doç. Dr. Saygın ABDİKAN (Grup B) 2016-2017 Öğretim Yılı Güz Dönemi 1 3 4 5 SPOT 6 6 Geçen ders: Mikrodalga algılama sistemleri Gündüz

Detaylı

Eyüp Ersan SÜLÜN Photoshop CS4 Kullanım Kursu ADOBE PHOTOSHOP KATMAN HARMANLAMA (KARIŞTIRMA) MODLARI

Eyüp Ersan SÜLÜN Photoshop CS4 Kullanım Kursu ADOBE PHOTOSHOP KATMAN HARMANLAMA (KARIŞTIRMA) MODLARI Eyüp Ersan SÜLÜN Photoshop CS4 Kullanım Kursu ADOBE PHOTOSHOP KATMAN HARMANLAMA (KARIŞTIRMA) MODLARI Photoshop ile çalışırken, katmanlar üzerinde kullanılan nesneleri ve renkleri bir biri ile karıştırarak

Detaylı

Gama ışını görüntüleme: X ışını görüntüleme:

Gama ışını görüntüleme: X ışını görüntüleme: Elektronik ve Hab. Müh. Giriş Dersi Görüntü İşleme Yrd. Doç. Dr. M. Kemal GÜLLÜ Uygulama Alanları Gama ışını görüntüleme: X ışını görüntüleme: Uygulama Alanları Mor ötesi bandı görüntüleme: Görünür ve

Detaylı

Tarımsal Meteorolojik Simülasyon Yöntemleri ve Uzaktan Algılama ile Ürün Verim Tahminleri ve Rekolte İzleme

Tarımsal Meteorolojik Simülasyon Yöntemleri ve Uzaktan Algılama ile Ürün Verim Tahminleri ve Rekolte İzleme Tarımsal Meteorolojik Simülasyon Yöntemleri ve Uzaktan Algılama ile Ürün Verim Tahminleri ve Rekolte İzleme Twente Universitesi ITC Fakultesi, Enschede, Hollanda - 2013 Dr. Ediz ÜNAL Tarla Bitkileri Merkez

Detaylı

UZAKTAN ALGILAMA- UYGULAMA ALANLARI

UZAKTAN ALGILAMA- UYGULAMA ALANLARI UZAKTAN ALGILAMA- UYGULAMA ALANLARI Doç. Dr. Nebiye Musaoğlu nmusaoglu@ins.itu.edu.tr İTÜ İnşaat Fakültesi Jeodezi ve Fotogrametri Mühendisliği Bölümü Uzaktan Algılama Anabilim Dalı UZAKTAN ALGILAMA-TANIM

Detaylı

Uzaktan Algılama Uygulamaları

Uzaktan Algılama Uygulamaları Aksaray Üniversitesi Uzaktan Algılama Uygulamaları Doç.Dr. Semih EKERCİN Harita Mühendisliği Bölümü sekercin@aksaray.edu.tr 2010-2011 Bahar Yarıyılı Uzaktan Algılama Uygulamaları GÖRÜNTÜ İŞLEME TEKNİKLERİ

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 25 Ekim

Detaylı

UYDU VERİLERİ İLE VERİ ENTEGRASYONU VE YÖNTEMLERİ

UYDU VERİLERİ İLE VERİ ENTEGRASYONU VE YÖNTEMLERİ 660 [1016] UYDU VERİLERİ İLE VERİ ENTEGRASYONU VE YÖNTEMLERİ Sakine KANDİL 1, H.Gonca COŞKUN 2 ÖZET 1 Müh., İstanbul Teknik Üniversitesi, Geomatik Mühendisliği Bölümü, 34469, Maslak, İstanbul, kandils@itu.edu.tr

Detaylı

FOTOYORUMLAMA UZAKTAN ALGILAMA

FOTOYORUMLAMA UZAKTAN ALGILAMA FOTOYORUMLAMA VE UZAKTAN ALGILAMA (Photointerpretation and Remote Sensing) 1 Görüntü özellikleri Uzaktan algılamada platformlar Uydu yörüngeleri Şerit genişliği, yeniden ziyaret periyodu 2 Görüntünün özellikleri:

Detaylı

Bilgisayarla Fotogrametrik Görme

Bilgisayarla Fotogrametrik Görme Bilgisayarla Fotogrametrik Görme Dijital Görüntü ve Özellikleri Yrd. Doç. Dr. Mustafa DİHKAN 1 Dijital görüntü ve özellikleri Siyah-beyaz resimler için değer elemanları 0-255 arasındadır. 256 farklı durum

Detaylı

TÜRKİYE NİN BİTKİ ÖRTÜSÜ DEĞİŞİMİNİN NOAA UYDU VERİLERİ İLE BELİRLENMESİ*

TÜRKİYE NİN BİTKİ ÖRTÜSÜ DEĞİŞİMİNİN NOAA UYDU VERİLERİ İLE BELİRLENMESİ* TÜRKİYE NİN BİTKİ ÖRTÜSÜ DEĞİŞİMİNİN NOAA UYDU VERİLERİ İLE BELİRLENMESİ* Determination the Variation of The Vegetation in Turkey by Using NOAA Satellite Data* Songül GÜNDEŞ Fizik Anabilim Dalı Vedat PEŞTEMALCI

Detaylı

Dijital (Sayısal) Fotogrametri

Dijital (Sayısal) Fotogrametri Dijital (Sayısal) Fotogrametri Dijital fotogrametri, cisimlere ait iki boyutlu görüntü ortamından üç boyutlu bilgi sağlayan, sayısal resim veya görüntü ile çalışan fotogrametri bilimidir. Girdi olarak

Detaylı

Ö. Kayman *, F. Sunar *

Ö. Kayman *, F. Sunar * SPEKTRAL İNDEKSLERİN LANDSAT TM UYDU VERİLERİ KULLANILARAK ARAZİ ÖRTÜSÜ/KULLANIMI SINIFLANDIRMASINA ETKİSİ: İSTANBUL, BEYLİKDÜZÜ İLÇESİ, ARAZİ KULLANIMI DEĞİŞİMİ Ö. Kayman *, F. Sunar * * İstanbul Teknik

Detaylı

Uzaktan Algılamanın. Doğal Ekosistemlerde Kullanımı PROF. DR. İ BRAHİM ÖZDEMİR SDÜ ORMAN FAKÜLTESI I S PARTA

Uzaktan Algılamanın. Doğal Ekosistemlerde Kullanımı PROF. DR. İ BRAHİM ÖZDEMİR SDÜ ORMAN FAKÜLTESI I S PARTA Uzaktan Algılamanın Doğal Ekosistemlerde Kullanımı PROF. DR. İ BRAHİM ÖZDEMİR SDÜ ORMAN FAKÜLTESI I S PARTA 1 Uzaktan Algılama Nedir? Arada fiziksel bir temas olmaksızın cisimler hakkında bilgi toplanmasıdır.

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Görüntü Zenginleştirme Spektral Dönüşümler Spektral dönüşümler Kontrast zenginleştirme Doğrusal/Lineer

Detaylı

Digital Görüntü Temelleri Görüntü Oluşumu

Digital Görüntü Temelleri Görüntü Oluşumu Digital Görüntü Temelleri Görüntü Oluşumu Işık 3B yüzeye ulaşır. Yüzey yansıtır. Sensör elemanı ışık enerjisini alır. Yoğunluk (Intensity) önemlidir. Açılar önemlidir. Materyal (yüzey) önemlidir. 06 Kasım

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 5 Görüntü Süzgeçleme ve Gürültü Giderimi Alp Ertürk alp.erturk@kocaeli.edu.tr Motivasyon: Gürültü Giderimi Bir kamera ve sabit bir sahne için gürültüyü nasıl azaltabiliriz?

Detaylı

Doç. Dr. Harun KESENKAŞ Ege Üniversitesi Ziraat Fakültesi Süt Teknolojisi Bölümü

Doç. Dr. Harun KESENKAŞ Ege Üniversitesi Ziraat Fakültesi Süt Teknolojisi Bölümü Doç. Dr. Harun KESENKAŞ Ege Üniversitesi Ziraat Fakültesi Süt Teknolojisi Bölümü İnovasyon Ne Demektir? Latince innovare kökünden türetilmiş yeni ve değişik bir şey yapmak anlamına gelen bir terimdir.

Detaylı

İLERİ GÖRÜNTÜ İŞLEME Ders-1

İLERİ GÖRÜNTÜ İŞLEME Ders-1 İLERİ GÖRÜNTÜ İŞLEME Ders- Elektromanyetik Spektrum Görünür Bölge 7 nm 4 nm Temel Kavramlar (Prof. Dr. Sarp ERTÜRK) 9/24/24 2 Hazırlayan: M. Kemal GÜLLÜ Sayısal İmge Gösterimi f x, y imgesi örneklendiğinde

Detaylı

Makine Öğrenmesi 11. hafta

Makine Öğrenmesi 11. hafta Makine Öğrenmesi 11. hafta Özellik Çıkartma-Seçme Boyut Azaltma PCA LDA 1 Özellik Çıkartma Herhangi bir problemin makine öğrenmesi yöntemleriyle çözülebilmesi için sistemin uygun şekilde temsil edilmesi

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2015-2016 Öğretim Yılı Bahar Dönemi 1 A- Enerji Kaynağı / Aydınlatma B- Işıma ve atmosfer C- Hedef nesneyle etkileşim D- Nesneden yansıyan /

Detaylı

TEMEL GRAFİK TASARIM AÇIK-KOYU, IŞIK-GÖLGE

TEMEL GRAFİK TASARIM AÇIK-KOYU, IŞIK-GÖLGE TEMEL GRAFİK TASARIM AÇIK-KOYU, IŞIK-GÖLGE Öğr. Gör. Ruhsar KAVASOĞLU 23.10.2014 1 Işık-Gölge Işığın nesneler, objeler ve cisimler üzerinde yayılırken oluşturduğu açık orta-koyu ton (degrade) değerlerine

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 4 Pasif - Aktif Alıcılar, Çözünürlük ve Spektral İmza Kavramları Alp Ertürk alp.erturk@kocaeli.edu.tr Pasif Aktif Alıcılar Pasif alıcılar fiziksel ortamdaki bilgileri

Detaylı

UZAKTAN ALGILAMA YÖNTEMİ MADEN ARAŞTIRMA RAPORU

UZAKTAN ALGILAMA YÖNTEMİ MADEN ARAŞTIRMA RAPORU 2014 UZAKTAN ALGILAMA YÖNTEMİ MADEN ARAŞTIRMA RAPORU, İhsanullah YILDIZ Jeofizik Mühendisi UZAKTAN ALGILAMA MADEN UYGULAMASI ÖZET İnceleme alanı Ağrı ili sınırları içerisinde bulunmaktadır.çalışmanın amacı

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

Muğla, Türkiye mermer üretiminde önemli bir yere sahiptir. Muğla da 2008 yılı rakamlarına göre 119 ruhsatlı mermer sahası bulunmaktadır.

Muğla, Türkiye mermer üretiminde önemli bir yere sahiptir. Muğla da 2008 yılı rakamlarına göre 119 ruhsatlı mermer sahası bulunmaktadır. Muğla, Türkiye mermer üretiminde önemli bir yere sahiptir. Muğla da 2008 yılı rakamlarına göre 119 ruhsatlı mermer sahası bulunmaktadır. İldeki madencilik faaliyetlerinin yapıldığı alanların çoğu orman

Detaylı

Renk Yönetimi - 1. Özgür Yazar. EFI Fiery Grubu

Renk Yönetimi - 1. Özgür Yazar. EFI Fiery Grubu Renk Yönetimi - 1 Özgür Yazar EFI Fiery Grubu Seminerler Hakkinda Bu seminerlerin amacı özellikle dijital baskı sektöründe operatör, tasarımcı ve teknisyen olarak çalışan kişilere renk yönetiminin temellerini

Detaylı

T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Özvektörler Kullanılarak IHS Tabanlı Yeni Bir Yaklaşım ile Uydu Görüntülerinin Zenginleştirilmesi İrfan KÖSESOY Bilgisayar Mühendisliği Ana Bilim Dalı Yüksek

Detaylı

RENK İLE İLGİLİ KAVRAMLAR

RENK İLE İLGİLİ KAVRAMLAR RENK İLE İLGİLİ KAVRAMLAR Tanımlar Renk Oluşumu Gökyüzünde yağmur sonrasında olağanüstü bir renk kuşağı ( gökkuşağı ) görülür. Bunun nedeni yağmur damlalarının, cam prizma etkisi ile ışığı yansıtarak altı

Detaylı

8.Konu Vektör uzayları, Alt Uzaylar

8.Konu Vektör uzayları, Alt Uzaylar 8.Konu Vektör uzayları, Alt Uzaylar 8.1. Düzlemde vektörler Düzlemdeki her noktası ile reel sayılardan oluşan ikilisini eşleştirebiliriz. Buna P noktanın koordinatları denir. y-ekseni P x y O dan P ye

Detaylı

HAVADAN LAZER TARAMA ve SAYISAL GÖRÜNTÜ VERİLERİNDEN BİNA TESPİTİ VE ÇATILARIN 3 BOYUTLU MODELLENMESİ

HAVADAN LAZER TARAMA ve SAYISAL GÖRÜNTÜ VERİLERİNDEN BİNA TESPİTİ VE ÇATILARIN 3 BOYUTLU MODELLENMESİ Akdeniz Üniversitesi Uzay Bilimleri ve Teknolojileri Bölümü Uzaktan Algılama Anabilim Dalı HAVADAN LAZER TARAMA ve SAYISAL GÖRÜNTÜ VERİLERİNDEN BİNA TESPİTİ VE ÇATILARIN 3 BOYUTLU MODELLENMESİ Dr.Nusret

Detaylı

ANALOG VİDEO TEMELLERİ

ANALOG VİDEO TEMELLERİ ANALOG VİDEO TEMELLERİ Video sinyali; bir görüntünün kamera vasıtası ile elektriksel hale dönüştürülmesiyle oluşan sinyaldir.video sinyali ilk zamanlarda renksiz (siyah/beyaz) olarak iafade edilebilmiş

Detaylı

GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ

GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ GÖRÜNTÜ İŞLEME HAFTA 1 1.GİRİŞ GÖRÜNTÜ İŞLEME Hafta Hafta 1 Hafta 2 Hafta 3 Hafta 4 Hafta 5 Hafta 6 Hafta 7 Hafta 8 Hafta 9 Hafta 10 Hafta 11 Hafta 12 Hafta 13 Hafta 14 Konu Giriş Digital Görüntü Temelleri-1

Detaylı

FARKLI UYDU VERİ ÇAKIŞTIRMA TEKNİKLERİNİN ANALİZİ

FARKLI UYDU VERİ ÇAKIŞTIRMA TEKNİKLERİNİN ANALİZİ FARKLI UYDU VERİ ÇAKIŞTIRMA TEKNİKLERİNİN ANALİZİ Özge KAYMAN 1, Filiz SUNAR 2, Derya MAKTAV 3 1 İstanbul Teknik Üniversitesi, Geomatik Mühendisliği Bölümü, 34469, Maslak, İstanbul. ozgekayman@gmail.com

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 10 Nesne / Yüz Tespiti ve Tanıma Alp Ertürk alp.erturk@kocaeli.edu.tr Nesne Tespiti Belirli bir nesnenin sahne içindeki konumunun tespitidir Tespit edilecek nesne önceden

Detaylı

Geliştirilmiş Fisher Ayraç Kriteri Kullanarak Hiperspektral Görüntülerde Sınıflandırma

Geliştirilmiş Fisher Ayraç Kriteri Kullanarak Hiperspektral Görüntülerde Sınıflandırma Geliştirilmiş Fisher Ayraç Kriteri Kullanarak Hiperspektral Görüntülerde Sınıflandırma Mustafa TEKE, Dr. Ufuk SAKARYA TÜBİTAK UZAY IEEE 21. Sinyal İşleme, İletişim ve Uygulamaları Kurultayı (SİU 2013),

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 4 Pasif - Aktif Alıcılar, Çözünürlük ve Spektral İmza Alp Ertürk alp.erturk@kocaeli.edu.tr Pasif Aktif Alıcılar Pasif alıcılar fiziksel ortamdaki bilgileri pasif olarak

Detaylı

ArcGIS Raster Veri Yönetimi

ArcGIS Raster Veri Yönetimi 18. Esri Kullanıcıları Konferansı 7-8 Ekim 2013 ODTÜ, Ankara Teknik Atölye ArcGIS Raster Veri Yönetimi Ömer ÜNSAL Sunuma Genel Bakış Mozaik verisetlerine giriş Mozaik verisetlerinin Image Analysis ve ArcToolbox

Detaylı

Ormancılıkta Uzaktan Algılama. 4.Hafta (02-06 Mart 2015)

Ormancılıkta Uzaktan Algılama. 4.Hafta (02-06 Mart 2015) Ormancılıkta Uzaktan Algılama 4.Hafta (02-06 Mart 2015) Hava fotoğrafı; yeryüzü özelliklerinin kuşbakışı görüntüsüdür. Hava fotoğrafları, yersel fotoğraf çekim tekniğinde olduğu gibi ait oldukları objeleri

Detaylı

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem 3.2. DP Modellerinin Simpleks Yöntem ile Çözümü 3.2.1. Primal Simpleks Yöntem Grafik çözüm yönteminde gördüğümüz gibi optimal çözüm noktası, her zaman uygun çözüm alanının bir köşe noktası ya da uç noktası

Detaylı

MMT 106 Teknik Fotoğrafçılık 3 Digital Görüntüleme

MMT 106 Teknik Fotoğrafçılık 3 Digital Görüntüleme MMT 106 Teknik Fotoğrafçılık 3 Digital Görüntüleme 2010-2011 Bahar Yarıyılı Ar. Gör. Dr. Ersoy Erişir 1 Konvansiyonel Görüntüleme (Fotografi) 2 Görüntü Tasarımı 3 Digital Görüntüleme 3.1 Renkler 3.2.1

Detaylı

UZAKTAN ALGILAMA VERİLERİ VE ORMAN MEŞCERELERİNE AİT DENDROMETRİK ELEMANLAR ARASINDAKİ SPEKTRAL İLİŞKİLER

UZAKTAN ALGILAMA VERİLERİ VE ORMAN MEŞCERELERİNE AİT DENDROMETRİK ELEMANLAR ARASINDAKİ SPEKTRAL İLİŞKİLER Eskişehir Osmangazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi Cilt:XXII, Sayı:3, 2009 Journal of Engineering and Architecture Faculty of Eskişehir Osmangazi University, Vol: XXII, No:3, 2009

Detaylı

Görüntü Sınıflandırma

Görüntü Sınıflandırma Görüntü Sınıflandırma Chapter 12 https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0 CBwQFjAA&url=http%3A%2F%2Ffaculty.une.edu%2Fcas%2Fszeeman%2Frs%2Flect%2FCh%2 52012%2520Image%2520Classification.ppt&ei=0IA7Vd36GYX4Uu2UhNgP&usg=AFQjCNE2wG

Detaylı

İçerik. Giriş 1/23/13. Giriş Problem Tanımı Tez Çalışmasının Amacı Metodoloji Zaman Çizelgesi. Doktora Tez Önerisi

İçerik. Giriş 1/23/13. Giriş Problem Tanımı Tez Çalışmasının Amacı Metodoloji Zaman Çizelgesi. Doktora Tez Önerisi İsmail ÇÖLKESEN 501102602 Doktora Tez Önerisi Tez Danışmanı : Prof.Dr. Tahsin YOMRALIOĞLU İTÜ Geoma*k Mühendisliği İçerik Giriş Tez Çalışmasının Amacı Zaman Çizelgesi 1 of 25 Giriş Yeryüzü ile ilgili yapılan

Detaylı

ÖZDEĞERLER- ÖZVEKTÖRLER

ÖZDEĞERLER- ÖZVEKTÖRLER ÖZDEĞERLER- ÖZVEKTÖRLER GİRİŞ Özdeğerler, bir matrisin orijinal yapısını görmek için kullanılan alternatif bir yoldur. Özdeğer kavramını açıklamak için öncelikle özvektör kavramı ele alınsın. Bazı vektörler

Detaylı

Renk Yönetimi 2. Özgür Yazar. Fiery Grubu

Renk Yönetimi 2. Özgür Yazar. Fiery Grubu Renk Yönetimi 2 Özgür Yazar Fiery Grubu Seminer Programı Renk Yönetimine Giriş (LINK) 23.01.2017 Pazartesi 15:00 Renk Yönetimi ve dijital baskı için doğru dosya hazırlama yöntemleri 06.02. 2017 Pazartesi

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2015-2016 Öğretim Yılı Bahar Dönemi 1 Piksel / dpi Piksel en küçük anlamlı birim dpi = dot per inch/ 1 inch teki nokta sayısı 1 inch =25.4 mm

Detaylı

DENİZLİ VE CİVARININ JEOLOJİK ÖZELLİKLERİNİN UZAKTAN ALGILAMA YÖNTEMİ İLE İNCELENMESİ

DENİZLİ VE CİVARININ JEOLOJİK ÖZELLİKLERİNİN UZAKTAN ALGILAMA YÖNTEMİ İLE İNCELENMESİ DENİZLİ VE CİVARININ JEOLOJİK ÖZELLİKLERİNİN UZAKTAN ALGILAMA YÖNTEMİ İLE İNCELENMESİ Nilüfer SARI Ağustos 2005 DENİZLİ DENİZLİ VE CİVARININ JEOLOJİK ÖZELLİKLERİNİN UZAKTAN ALGILAMA YÖNTEMİ İLE İNCELENMESİ

Detaylı

Uzaktan Algılama ve Teknolojik Gelişmeler

Uzaktan Algılama ve Teknolojik Gelişmeler Uzaktan Algılama ve Teknolojik Gelişmeler 1 Uzaktan Algılama Nedir? Uzaktan Algılama Prensipleri Uydu Görüntülerinin Özellikleri ERDAS IMAGINE yazılımının sağladığı imkanlar 2 Uzaktan Algılama Fiziksel

Detaylı

SİSTEM BİRİMİ VE EKRAN KOMUTLARI

SİSTEM BİRİMİ VE EKRAN KOMUTLARI BÖLÜM 6 SİSTEM BİRİMİ VE EKRAN KOMUTLARI Ekran komutları ekrandaki görüntü tasarımı için kullanılan komutlardır. Bu komutların program içinde kullanılabilmesi için, program başlığı satırından sonra USES

Detaylı

YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDE GEOMETRİK DÜZELTMENİN SINIFLANDIRMA SONUÇLARINA ETKİSİ

YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDE GEOMETRİK DÜZELTMENİN SINIFLANDIRMA SONUÇLARINA ETKİSİ YÜKSEK ÇÖZÜNÜRLÜKLÜ UYDU GÖRÜNTÜLERİNDE GEOMETRİK DÜZELTMENİN SINIFLANDIRMA SONUÇLARINA ETKİSİ E. Ayhan 1,G. Atay 1, O. Erden 1 1 Karadeniz Teknik Üniversitesi Jeodezi ve Fotogrametri Mühendisliği Bölümü,

Detaylı

ÖRNEKLER-VEKTÖR UZAYLARI 1. Çözüm: w=k 1 u+k 2 v olmalıdır.

ÖRNEKLER-VEKTÖR UZAYLARI 1. Çözüm: w=k 1 u+k 2 v olmalıdır. ÖRNEKLER-VEKTÖR UZAYLARI. vektör uzayında yer alan w=(9 7) vektörünün, u=( -), v=(6 ) vektörlerinin doğrusal bir kombinasyonu olduğunu ve z=( - 8) vektörünün ise bu vektörlerin doğrusal bir kombinasyonu

Detaylı

HALOJENLER HALOJENLER

HALOJENLER HALOJENLER HALOJENLER HALOJENLER Bu grup bileşimlerinde flor (F), klor (Cl), brom (Br) ve iyot (I) gibi halojen iyonlarının hakim olmaları ile karakterize olurlar. Doğada 85 çeşit halojenli mineral tespit edilmiştir.

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 11 Hiperspektral Görüntülerde Kümeleme ve Sınıflandırma Alp Ertürk alp.erturk@kocaeli.edu.tr Sınıflandırma Sınıflandırma işleminin amacı, her piksel vektörüne bir ve

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Proje

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Bilgisayarla Görme. Proje Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Bilgisayarla Görme Proje Renk ve Şekil Temelli Trafik İşareti Tespiti Selçuk BAŞAK 08501008 1. Not: Ödevi hazırlamak için

Detaylı

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Kümeleme İşlemleri Kümeleme Tanımı Kümeleme Uygulamaları Kümeleme Yöntemleri Kümeleme (Clustering) Kümeleme birbirine

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Piksel / dpi Piksel en küçük anlamlı birim dpi = dot per inch/ 1 inch teki nokta sayısı 1 inch =25.4 mm

Detaylı

GEOMETRİK, MATEMATİK, OPTİK ve FOTOĞRAFİK TEMELLER (HATIRLATMA) Yrd. Doç. Dr. Aycan M. MARANGOZ

GEOMETRİK, MATEMATİK, OPTİK ve FOTOĞRAFİK TEMELLER (HATIRLATMA) Yrd. Doç. Dr. Aycan M. MARANGOZ FOTOGRAMETRİ II GEOMETRİK, MATEMATİK, OPTİK ve FOTOĞRAFİK TEMELLER (HATIRLATMA) Yrd. Doç. Dr. Aycan M. MARANGOZ BEÜ MÜHENDİSLİK FAKÜLTESİ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF336 FOTOGRAMETRİ II DERSi NOTLARI

Detaylı

Hafta 1 Sayısal Görüntü İşlemeye Giriş ve Temel Adımlar

Hafta 1 Sayısal Görüntü İşlemeye Giriş ve Temel Adımlar BLM429 Görüntü İşlemeye Giriş Hafta 1 Sayısal Görüntü İşlemeye Giriş ve Temel Adımlar Yrd. Doç. Dr. Caner ÖZCAN Fall in love with the process, and the results will come. ~ Eric Thomas Derse Giriş Ders

Detaylı

Dijital Görüntü İşleme Teknikleri

Dijital Görüntü İşleme Teknikleri Teknikleri Ders Notları, 2015 Doç. Dr. Fevzi Karslı Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 19 Ekim 2015 Pazartesi 1 Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, temel kavramlar,

Detaylı

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Akış Makine Öğrenmesi nedir? Günlük Hayatımızdaki Uygulamaları Verilerin Sayısallaştırılması Özellik Belirleme Özellik Seçim Metotları Bilgi Kazancı (Informaiton Gain-IG) Sinyalin Gürültüye Oranı: (S2N

Detaylı

BÖLÜM-II ERDAS IMAGINE TEMEL KISIM1: IMAGINE VIEWER 1

BÖLÜM-II ERDAS IMAGINE TEMEL KISIM1: IMAGINE VIEWER 1 BÖLÜM-II ERDAS IMAGINE TEMEL KISIM1: IMAGINE VIEWER 1 KISIM 1 ERDAS IMAGINE VIEWER KULLANIMI KISIM1: IMAGINE VIEWER 2 GİRİŞ TERMİNOLOJİ GÖRÜNTÜ NEDİR? UZAKTAN ALGILAMA GÖRÜNTÜLERİN GÖRÜNÜŞÜ GEOMETRİK DÜZELTME

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2016-2017 Öğretim Yılı Bahar Dönemi 1 Geçen ders Mekansal/Konumsal/Geometrik(Spatial resolution) Radyometrik Spektral Zamansal 2 Dijital /Sayısal

Detaylı

Uzaktan Algılama Teknolojisi. Doç. Dr. Taşkın Kavzoğlu Gebze Yüksek Teknoloji Enstitüsü Gebze, Kocaeli

Uzaktan Algılama Teknolojisi. Doç. Dr. Taşkın Kavzoğlu Gebze Yüksek Teknoloji Enstitüsü Gebze, Kocaeli Uzaktan Algılama Teknolojisi Doç. Dr. Taşkın Kavzoğlu Gebze Yüksek Teknoloji Enstitüsü Gebze, Kocaeli SPOT görüntüsü (Roma) 16-Aralık-2005 Source: earth.eas.int Uzaktan Algılama Dünya yüzeyinin gözlenmesi

Detaylı

6. ÇİZİM İŞLEMLERİ 3 6.1. 2 Boyutlu Eğri Çizimi x ve y vektörleri ayni boyutta ise bu vektörleri ekrana çizdirmek için plot(x,y) komutu kullanılır.

6. ÇİZİM İŞLEMLERİ 3 6.1. 2 Boyutlu Eğri Çizimi x ve y vektörleri ayni boyutta ise bu vektörleri ekrana çizdirmek için plot(x,y) komutu kullanılır. 6. ÇİZİM İŞLEMLERİ 3 6.1. 2 Boyutlu Eğri Çizimi x ve y vektörleri ayni boyutta ise bu vektörleri ekrana çizdirmek için plot(x,y) komutu kullanılır. A =[ 7 2 5 ]; B =[ 5 4 8 ]; plot(a,b); İstenildigi takdirde

Detaylı

MİKROYAPISAL GÖRÜNTÜLEME & TANI

MİKROYAPISAL GÖRÜNTÜLEME & TANI MİKROYAPISAL GÖRÜNTÜLEME & TANI III-Hafta KOÜ METALURJİ & MALZEME MÜHENDİSLİĞİ Fotografik Emulsiyon & Renk Duyarlılığı Şekil 1.9. Göz eğrisi ile değişik film malzemelerinin karşılaştırılması. Fotografik

Detaylı

UA Teknikleri Kullanılarak Taşkın Alanlarının Belirlenmesi ve Bölgesel Taşkın Frekans Analizinin Batı Karadeniz Bölgesinde Uygulanması

UA Teknikleri Kullanılarak Taşkın Alanlarının Belirlenmesi ve Bölgesel Taşkın Frekans Analizinin Batı Karadeniz Bölgesinde Uygulanması UA Teknikleri Kullanılarak Taşkın Alanlarının Belirlenmesi ve Bölgesel Taşkın Frekans Analizinin Batı Karadeniz Bölgesinde Uygulanması Prof. Dr. A. Ünal Şorman Orta Doğu Teknik Üniversitesi, Đnşaat Mühendisliği

Detaylı

Renk kalitesi kılavuzu

Renk kalitesi kılavuzu Sayfa 1 / 6 Renk kalitesi kılavuzu Renk Kalitesi kılavuzu, kullanıcıların renk çıktısını ayarlamak ve özelleştirmek için yazıcının mevcut işlemlerinin nasıl kullanılabileceğini anlamasına yardımcı olur.

Detaylı

Dijital Fotogrametri

Dijital Fotogrametri Dijital Fotogrametri 2016-2017, Bahar YY Fevzi Karslı (Prof. Dr.) Harita Mühendisliği Bölümü Mühendislik Fakültesi KTÜ 20 Mart 2017 Pazartesi Ders Planı ve İçeriği 1. Hafta Giriş, dersin kapsamı, kavramlar,

Detaylı

DİJİTAL UYDU GÖRÜNTÜSÜ Raster Veri

DİJİTAL UYDU GÖRÜNTÜSÜ Raster Veri DİJİTAL UYDU GÖRÜNTÜSÜ Raster Veri DİJİTAL UYDU GÖRÜNTÜSÜ Görüntü boyutu Dijital bir görüntü, elemanları, uzaydaki x,y konumlarına karşılık gelen noktaları n f(x,y) parlaklık değerlerini içeren bir matristir.

Detaylı

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi

Yrd. Doç. Dr. Saygın ABDİKAN Öğretim Yılı Bahar Dönemi Dijital Görüntü İşleme (JDF338) Yrd. Doç. Dr. Saygın ABDİKAN 2014-2015 Öğretim Yılı Bahar Dönemi 1 Yüksek ve düşük spektral çözünürlüğe sahip dijital görüntülerdeki temel avantaj ve dezavantajlar aşağıda

Detaylı

GÖRÜNTÜ İŞLEME UYGULAMALARI. Arş. Gör. Dr. Nergis TURAL POLAT

GÖRÜNTÜ İŞLEME UYGULAMALARI. Arş. Gör. Dr. Nergis TURAL POLAT GÖRÜNTÜ İŞLEME UYGULAMALARI Arş. Gör. Dr. Nergis TURAL POLAT İçerik Görüntü işleme nedir, amacı nedir, kullanım alanları nelerdir? Temel kavramlar Uzaysal frekanslar Örnekleme (Sampling) Aynalama (Aliasing)

Detaylı

Uzaktan Algõlama Ve Yerbilimlerinde Uygulamalarõ

Uzaktan Algõlama Ve Yerbilimlerinde Uygulamalarõ Uzaktan Algõlama Ve Yerbilimlerinde Uygulamalarõ Bölüm 1 Uzaktan Algõlama Prensipleri ve Yerbilimlerinde Bazõ Uygulamalar B.Taner SAN tanersan@mta.gov.tr Engin Ö. SÜMER esumer@mta.gov.tr Mart, 2003 Uzaktan

Detaylı

UZAKTAN ALGILAMADA GÖRÜNTÜ BİRLEŞTİRME İÇİN KALİTE ANALİZLERİ

UZAKTAN ALGILAMADA GÖRÜNTÜ BİRLEŞTİRME İÇİN KALİTE ANALİZLERİ UZAKTAN ALGILAMADA GÖRÜNTÜ BİRLEŞTİRME İÇİN KALİTE ANALİZLERİ Eminnur AYHAN 1, Gülçin ATAY 2 1 Doç. Dr., Karadeniz Teknik Üniversitesi, Harita Mühendisliği Bölümü, 61080, Trabzon, Ayhan.eminnur@gmail.com

Detaylı

ORMANIN YAPISAL ÇEŞİTLİLİĞİNİN UYDU VERİLERİ KULLANILARAK KESTİRİMİ

ORMANIN YAPISAL ÇEŞİTLİLİĞİNİN UYDU VERİLERİ KULLANILARAK KESTİRİMİ DOKTORA TEZİ ORMAN MÜHENDİSLİĞİ ANABİLİM DALI ISPARTA - 2013 ORMANIN YAPISAL ÇEŞİTLİLİĞİNİN UYDU VERİLERİ KULLANILARAK KESTİRİMİ Ahmet MERT Danışman Doç. Dr. İbrahim ÖZDEMİR G İ R İ Ş Yapısal çeşitlilik

Detaylı

Dijital Kameralar (Airborne Digital Cameras)

Dijital Kameralar (Airborne Digital Cameras) Dijital Kameralar (Airborne Digital Cameras) Klasik fotogrametrik görüntü alımındaki değişim, dijital kameraların gelişimi ile sağlanmaktadır. Dijital görüntü, analog görüntü ile kıyaslandığında önemli

Detaylı