ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir.

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ÜSTEL DAĞILIM. üstel dağılımın parametresidir. Birikimli üstel dağılım fonksiyonu da, olarak bulunur. olduğu açık olarak görülmektedir."

Transkript

1 ÜSTL DAĞILIM Tanım : X > olma üzr sürli bir rasgl dğişn olsun. ğr a > için X rassal dğişni aşağıdai gibi bir dağılıma sahip olursa X rasgl dğişnin üsl dağılmış rassal dğişn v onsiyonuna da üsl dağılım dnir. icin digr durumlarda üsl dağılımın paramrsidir. Biriimli üsl dağılım onsiyonu da P X PX d olara bulunur. X X olduğu açı olara görülmdir. için için için 78 5 = = Örn : X Pr olan üsl dağılım sahip bir sadüi olsun. 5 X Pr X v PrX /X Çözüm : X in biriimli olasılı onsiyonunu bulalım. 5 /5 /5 d olasılılarını bulunuz. dir. Şu hald aranılan olasılılar;

2 Pr X 8 /5 Ya da aynı olasılı 5 Pr /5 d 5 /5. /5. dn d bulunabilir. Pr X / Pr Pr /5. /5. / olara bulunur. 67 Üsl Dağılımın Arimi Oralaması X μ d d şiir. T paramry sahip üsl dağılımın arimi oralaması b paramrnin rsin Üsl Dağılımın Varyansı a. Arimi Oralama Kavramı il; d d u v d dv olara l alındığında d d

3 olduğundan X X VX bulunur. b. Momn Çıaran onsiyon M M" X. M' X v X V bulunur. Üsl Dağılımın Momn Çıaran onsiyonu d M d lim Burada momn çıaran onsiyonun mvcu olabilmsi için lim dolayısıyla da < olması grir. Böylc M bulunur.

4 Örn : X rassal dğişni blirli bir müzi sinin ömrünü yıl olara gösrsin v aşağıdai gibi bir olasılı onsiyonuna sahip olsun. 6 /6 digr durumlarda a. Bu müzi sinin n az 6 yıl dayanma olasılığını bulunuz. b. Bu müzi sinin yıl dayandığı bilindiğin gör n az dayanma olasılığını bulunuz. c. Oralama dayanma sürsini bulunuz. Çözüm : a. P X 6 6 /6 d /6 67 b. PrX 6/ c. X 6 yıl 6 Pr X 6 v X Pr X Pr X 6 Pr X Örn : X mara vidoların oralama ullanım sürsinin yalaşı olara 5 yıl olan bir üsl dağılımla msil dcği bilindiğin gör bu vido cihazlarından bir an saın alan bir müşrinin cihazını 5 yıl ullanabilm olasılığını bulunuz. Çözüm : X=5 Üsl dağılımın blnn dğr anımından X dan olara bulunur. 5 olasılı yoğunlu onsiyonu is;

5 5 dir. 5 Pr d = - = Örn : İsanbul Aaür Havalimanında hr daiada oralama olara uçağın indiği bilinmdir. a. İniş gçn uçalar arasındai sürnin dağılım onsiyonunu bulunuz. b. daia içind hiç uçağın inmmsi c. Birbirini izlyr iniş gçn ii uça arasındai zamanın n azla 5 daia olması d. İi uça arasında gçn sürnin 5 daia vya daha azla olması olasılılarını bulunuz. Çözüm : a. Zaman birimi daia olara l alınırsa havalimanına daiada oralama olara P / = uça inmdir. O zaman in dağılımı.!... olur. daiada oralama uçağın iniş yapması bilindiğindn daiada oralama sayıda uça [] aralığında havalimanına incir. O zaman olasılı yoğunlu onsiyonu olur. b. PX= = 8! 5 P d vya c. T P T 5

6 = d. P T 5 5 GAMA DAĞILIMI Tanım : = - = 6 ld dilir. d şlind anımlanan onsiyona Gamma onsiyonu dnir. Yuarıdai ingral ısmi ingrasyon modu uygulanırsa d dv v u olma üzr; bulunur. d d pozii am sayı is;... ld dilir. Burada; d dir. Böylc;! olara bulunur. Gamma onsiyonunun şu özllilr sahipir : i. ii. 6

7 7 iii.! n n iv. v. n n n n vi. s du u u s s Tanım : X > için bir sürli rassal dğişn olsun. ğr X in olasılı onsiyonu aşağıdai gibi anımlanmış is X bir Gamma olasılı onsiyonu na sahipir. digr durumlarda icin X/ Gamma olasılı onsiyonu > v > olma üzr paramry sahipir. Biriimli Gamma Dağılım onsiyonu is şöyldir: d. X P d / Y = / olara anımlanırsa dy = d olur..dy y y y y y - dy y y - -! - -y! y

8 Örn : = - / şlind anımlanan in bir olasılı yoğunlu onsiyonu gösriniz Çözüm : > v > v > olduğunda > olur. ; d olmalıdır. - / d y diylim = y olur. d = dy y - y dy O hald ; bir olasılı yoğunlu onsiyonudur. y - y y - dy y dy Gamma Dağılımının Arimi Oralaması X / - d. / d 8

9 = v / d dv dönüşümü yapıldığında - -/ /. d d = y v d = dy dönüşümü il y X - y.dy y dy. bulunur. Gamma Dağılımının Varyansı X - / d / d u v / d dv dönüşümü yapılırsa y / y d dy y y y -!! bulunur. VX X X 9

10 VX olara ld dilir. Momn Çıaran onsiyonu is; M. - d - / d y / dönüşümü yapılırsa -. y y y dy dy bulunur. y - y olur. - dy d Şimdi d M aracılığıyla X v VX i bulalım - X M' - -. " -- X M VX X X = bulunur. Örn : X sadüi dğişni aşağıdai biçimd gamma dağılım gösriyorsa; X in = = v = = için - / icin

11 a. Pr{ } b. Pr{ > } olasılılarını bulunuz. Çözüm : a. = = için gamma onsiyonu Şu hald / / olur. / / Pr d / Şu hald isnn olasılı Pr{ } Pr{ } b. = = için Pr bulunur. / / olur / d / d v / d dv dönüşümü il d= du / v 8 / 8 / d

12 bulunur d / / / Buradan; bulunur..8 P 8 r.886}.585 { } 6 { } { 8 bulunur P r 8. } { ÖRNK : Aşağıdai gamma onsiyonunun onsiyonunu bulunuz. dağağıl b dğğrlri V a için dğğrl v / ÇÖZÜM: onsiyonu gamma için dğğrl v bulunur. V d d bulunur. d { d { d d olur. / ] [ } } b- için o { { d P r } } } {

13 Kİ-KAR DAĞILIMI Tanım: gamma dağılmış bir rassal dğişn in > v amsayı olma üzr =/ v =/ is özl olara Ki-Kar dağılmış rassal dğişn dnir. Ki-Kar dağılmış bir rassal dğişn is bunun yoğunlu onsiyonu gamma dağılımında =/ v =/ için yada ş şal olur. Gamma dağılımının özl bir durumu olan Ki-ar dağılımının il gösriln v pozii amsayı dğr alabiln paramrsi vardır. Dağılımın bu paramrsin srbsli drcsi K dnir. X paramrsi olan Ki-ar dağılmış bir rassal dğişn in şlind yazılır v srbsli drcsi olan Ki-ar dağılmış bir rassal dğişn olara ounur. ÖRNK : 5 İKN P.6 P>. P.5< 5.9 olasılılarıyla 8 in P = 95 şiliğini grçlyn dğrini bulunuz. ÇÖZÜM : P.6 = P>. = - P. = = 8 P.5< 5.9 = 99 5 = 9 olara bulunur. 8 in P = 95 şiliğini sağlayan dğri; = 7 dir. in Arimi Oralama v Varyansı v olduğldgörülür. 8 in Momn Çıaran onsiyonu

14 M M yada olur. Örn : X rassal dğişninin olasılı yoğunlu onsiyonu ; 6 / şlind is; v M yi bulunuz Çözüm : şiliğindn = 6 olup / 8 v! / dir. / 6 /. olduğundan X ~ X 6 dır. Böylc / = = 6 = = v M is Örn : X rassal dğişninin dir. X 5 olduğu bilindiğin gör bunun olasılı yoğunlu onsiyonunu yazıp arimi oralama varyans v momn çıaran onsiyonunu bulunuz. / 5/ Çözüm : = 5 in özlliğiyl 5.. olduğundan X in yoğunlu onsiyonu Π digr durumlarda olara bulunur. = 5 olduğuna gör X in arimi oralama v varyansı; = 5 = olup momn çıaran onsiyonu; M 5 z>/ şlinddir.

Makine Öğrenmesi 4. hafta

Makine Öğrenmesi 4. hafta ain Öğrnmsi 4. hafta Olasılı v Koşullu Olasılı ays Tormi Naïv ays Sınıflayıcı Olasılı Olasılı ifadsinin birço ullanım şli vardır. Rasgl bir A olayının hrhangi bir olaydan bağımsız olara grçlşm ihtimalini

Detaylı

Tanım : Bir rassal deney yapıldığında bir deneyin sonucu sadece iki sonuç içeriyorsa bu deneye Bernoulli deneyi denir.

Tanım : Bir rassal deney yapıldığında bir deneyin sonucu sadece iki sonuç içeriyorsa bu deneye Bernoulli deneyi denir. BRNOULLİ DAĞILIMI Broulli dağılımı bir rassal dy yaıldığıda yalızca iyi öü olumlu-olumsuz başarılı-başarısız gibi sadc ii souç ld dildiğid ullaılır. Taım : Bir rassal dy yaıldığıda bir dyi soucu sadc ii

Detaylı

GABOR TABANLI AYRIK EVRİMSEL DÖNÜŞÜM KULLANILARAK GÖRÜNTÜ DAMGALAMA

GABOR TABANLI AYRIK EVRİMSEL DÖNÜŞÜM KULLANILARAK GÖRÜNTÜ DAMGALAMA GABOR TABANL AYRK EVRİSEL DÖNÜŞÜ KULLANLARAK GÖRÜNTÜ DAGALAA ahmu ÖZTÜRK (), Aydın AKAN (),, Yalçın ÇEKİÇ () Elri-Elroni ühndisliği Bölümü () İsanbul Ünivrsisi, Avılar, 343, İsanbul mahmuoz@isanbul.du.r,

Detaylı

e sayısı. x için e. x x e tabanında üstel fonksiyona doğal üstel fonksiyon (natural exponential function) denir. (0,0)

e sayısı. x için e. x x e tabanında üstel fonksiyona doğal üstel fonksiyon (natural exponential function) denir. (0,0) DERS 4 Üstl v Logaritik Fonksionlar 4.. Üstl Fonksionlar(Eponntial Functions). > 0, olak üzr f ( ) = dnkli il tanılanan fonksiona taanında üstl fonksion (ponntial function with as ) dnir. Üstl fonksionun

Detaylı

DOĞUŞ ÜNİVERSİTESİ MATEMATİK KLÜBÜ FEN LİSELERİ TAKIM YARIŞMASI 2007 SORULARI

DOĞUŞ ÜNİVERSİTESİ MATEMATİK KLÜBÜ FEN LİSELERİ TAKIM YARIŞMASI 2007 SORULARI DOĞUŞ ÜNİVERSİTESİ MATEMATİK KLÜBÜ FEN LİSELERİ TAKIM YARIŞMASI 007 SORULARI Doğuş Ünivrsitsi Matmatik Kulübü tarafından düznlnn matmatik olimpiyatları, fn lislri takım yarışması sorularından bazıları

Detaylı

BÖLÜM 7. Sürekli hal hatalarının değerlendirilmesinde kullanılan test dalga şekilleri: Dalga Şekli Giriş Fiziksel karşılığı. Sabit Konum.

BÖLÜM 7. Sürekli hal hatalarının değerlendirilmesinde kullanılan test dalga şekilleri: Dalga Şekli Giriş Fiziksel karşılığı. Sabit Konum. 9 BÖLÜM 7 SÜRELİ HAL HATALARI ontrol itmlrinin analizind v dizaynında üç özlliğ odaklanılır, bunlar ; ) İtniln bir gçici hal cvabı ürtmk. ( T, %OS, ζ, ω n, ) ) ararlı olmaı. ıaca kutupların diky knin olunda

Detaylı

RASGELE SÜREÇLER. Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk fonksiyonu aşağıdaki gibi olmalıdır.

RASGELE SÜREÇLER. Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk fonksiyonu aşağıdaki gibi olmalıdır. RASGELE SÜREÇLER Eğer bir büyülüğün her t anında alacağı değeri te bir şeilde belirleyen matematisel bir ifade verilebilirse bu büyülüğün deterministi bir büyülü olduğu söylenebilir. Haberleşmeden habere

Detaylı

DERS 9. Grafik Çizimi, Maksimum-Minimum Problemleri. 9.1. Grafik çiziminde izlenecek adımlar. y = f(x) in grafiğini çizmek için

DERS 9. Grafik Çizimi, Maksimum-Minimum Problemleri. 9.1. Grafik çiziminde izlenecek adımlar. y = f(x) in grafiğini çizmek için DERS 9 Grafik Çizimi, Maksimum-Minimum Problmlri 9.. Grafik çizimind izlnck adımlar. y f() in grafiğini çizmk için Adım. f() i analiz diniz. (f nin tanım kümsi, f() in tanımlı olduğu tüm rl sayıların oluşturduğu

Detaylı

DERS 9. Grafik Çizimi, Maksimum Minimum Problemleri

DERS 9. Grafik Çizimi, Maksimum Minimum Problemleri DERS 9 Grafik Çizimi, Maksimum Minimum Problmlri Bundan öncki drst bir fonksiyonun grafiğini çizmk için izlnbilck yol v yapılabilck işlmlr l alındı. Bu drst, grafik çizim stratjisini yani grafik çizimind

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 18 Haziran Matematik Soruları ve Çözümleri

Lisans Yerleştirme Sınavı 1 (Lys 1) / 18 Haziran Matematik Soruları ve Çözümleri Lisans Yrlşirm Sınavı (Lys ) 8 Haziran Mamaik Soruları v Çözümlri. (,5) işlminin sonucu kaçır?, A) 5 B) C) 5 D) E) Çözüm (,5), 5 ( ) ( ) 5 ( ) ( ).( ) 5 ( ) 5 5 6 . < < olduğuna gör, aşağıdakilrdn hangisi

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişeni: Bir dağılışı olan ve bu dağılışın yaısına uygun freansta oluşum gösteren değişendir. Şans Değişenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesili Şans

Detaylı

İ.T.Ü. Makina Fakültesi Mekanik Ana Bilim Dalı Bölüm 7. Seviye Düzlemi

İ.T.Ü. Makina Fakültesi Mekanik Ana Bilim Dalı Bölüm 7. Seviye Düzlemi İTÜ Makina Fakültsi Ağırlığın Potansiyl Enrjisi W=, δh kadar yukarıya doğru yr dğiştirsin, Virtül iş, δu = Wδh= δh NOT: Eğr cisi aşağıya doğru δh yr dğişii yapıyorsa v +h aşağıya doğru is δu = Wδh= δh

Detaylı

Anaparaya Dönüş (Kapitalizasyon) Oranı

Anaparaya Dönüş (Kapitalizasyon) Oranı Anaparaya Dönüş (Kapitalizasyon) Oranı Glir gtirn taşınmazlar gnl olarak yatırım aracı olarak görülürlr. Alıcı, taşınmazı satın almak için kullandığı paranın karşılığında bir gtiri bklr. Bundan ötürü,

Detaylı

5. Ders. Dağılımlardan Rasgele Sayı Üretilmesi Ters Dönüşüm Yöntemi

5. Ders. Dağılımlardan Rasgele Sayı Üretilmesi Ters Dönüşüm Yöntemi 5. Drs Dağılımlarda Rasgl Sayı Ürtilmsi Trs Döüşüm Yötmi sürkli bir rasgl dğişk v bu rasgl dğişki dağılım foksiyou olsu. Dağılımı dstk kümsi üzrid dağılım foksiyou arta v bir-bir bir foksiyo olmaktadır.

Detaylı

Bölüm V Darbe Kod Modülasyonu

Bölüm V Darbe Kod Modülasyonu - Güz Bölüm V Dare Kod Modülasyonu emel Bilgiler Bi nerjisi Gürülü Gücü İlinisel lıcı Uygun Süzgeçli lıcı Bi Haa Olasılığı Semoller rası Girişim DKM ve Ha Kodlama DC veya Bilgisayardan sayısal daa k Semol

Detaylı

FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EMÜ-419 OTOMATİK KONTROL LABORATUARI DENEY 5

FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EMÜ-419 OTOMATİK KONTROL LABORATUARI DENEY 5 FIRT ÜNİVERSİTESİ MÜHENDİSLİK FKÜLTESİ ELEKTRİKELEKTRONİK MÜHENDİSLİĞİ ÖLÜMÜ EMÜ419 OTOMTİK KONTROL LORTURI DENEY 5 PID KONTROLÖR KRKTERİSTİKLERİNİN İNELENMESİ VE NLOG OLRK POZİSYON KONTROL SİSTEMLERİNDE

Detaylı

ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER

ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER DOÇ. DR. NİHAL ERGİNEL 2015 X beklenen değeri B[X] ile gösterilir. B[X] = BEKLENEN DEĞER Belli bir malzeme taşınan kolilerin ağırlıkları

Detaylı

Bir Kompleks Sayının n inci Kökü.

Bir Kompleks Sayının n inci Kökü. Prof.Dr.Hüsy ÇAKALLI Br Komplks Sayıı c Kökü. hrhag br sab doğal sayı olmak ür, br komplks sayıı c kökü, c kuvv bu sayıya ş ola komplks sayıdır. ( r(cos s olsu v (cos s dylm. Bu akdrd ( [ (cos s] dr v

Detaylı

KESİKLİ DÜZGÜN DAĞILIM

KESİKLİ DÜZGÜN DAĞILIM KESİKLİ DÜZGÜN DAĞILIM Eğer X kesikli rassal değişkeninin alabileceği değerler (,,..., ) eşit olasılığa sahip ise, kesikli düzgün dağılım söz konusudur. p(x) =, X=,,..., şeklinde gösterilir. Bir kutuda

Detaylı

OLASILIK ve ÝSTATÝSTÝK ( Genel Tekrar Testi-1) KPSS MATEMATÝK. Bir anahtarlıktaki 5 anahtardan 2 si kapıyı açmak - tadır.

OLASILIK ve ÝSTATÝSTÝK ( Genel Tekrar Testi-1) KPSS MATEMATÝK. Bir anahtarlıktaki 5 anahtardan 2 si kapıyı açmak - tadır. OLASILIK v ÝSTATÝSTÝK ( Gnl Tkrar Tsti-1) 1. Bir anahtarlıktaki 5 anahtardan si kapıyı açmak - tadır. Açmayan anahtar bir daha dnnmdiğin gör, bu kapının n çok üçüncü dnmd açılma olasılığı kaçtır? 5 6 7

Detaylı

kirişli döşeme Dört tarafından kirişlere oturan döşemeler Kenarlarının bazıları boşta olan döşemeler Boşluklu döşemeler Düzensiz geometrili döşemeler

kirişli döşeme Dört tarafından kirişlere oturan döşemeler Kenarlarının bazıları boşta olan döşemeler Boşluklu döşemeler Düzensiz geometrili döşemeler Kirişli döşmlr Dört tarafından irişlr oturan döşmlr Knarlarının bazıları boşta olan döşmlr Boşlulu döşmlr Düznsiz gomtrili döşmlr bir tarafı irişli üç tarafı boşta döşm (Konsol döşm) Đi tarafı irişli ii

Detaylı

ISI GERİ KAZANIMI (Çapraz Akış) DENEY FÖYÜ

ISI GERİ KAZANIMI (Çapraz Akış) DENEY FÖYÜ ISI GERİ KAZANIMI (Çapraz Akış) DENEY FÖYÜ (Dny Yürüücüsü: Arş. Gör. Doğan ERDEMİR) Dnyin Amacı v Dny Hakkında Gnl Bilgilr Dnyin amacı sı gri kazanımı (çapraz akış) sismlrind;. Sıcaklık dğişimlrinin ölçümü

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

RİSK ANALİZİ VE AKTÜERYAL MODELLEME SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla

Detaylı

4) Seyrek rastlanılan bir hastalık için belli bir zaman araalığında bu hastalığa yakalananların sayısının gözlenmesi,

4) Seyrek rastlanılan bir hastalık için belli bir zaman araalığında bu hastalığa yakalananların sayısının gözlenmesi, POĐSSON DAĞILIMI Poisson Dağılımı sürekli oramlarda (zaman, alan, hacim, ) kesikli sonuçlar veren ve aşağıda a),b),c) şıklarında belirilen özelliklere sahip deneylerin modellenmesinde kullanılan bir dağılım

Detaylı

Kollektif Risk Modellemesinde Panjér Yöntemi

Kollektif Risk Modellemesinde Panjér Yöntemi Douz Eylül Üniversitesi İtisadi ve İdari Bilimler Faültesi Dergisi, Cilt:6, Sayı:, Yıl:, ss.39-49. olletif Ris Modellemesinde anér Yöntemi ervin BAYAN İRVEN Güçan YAAR Özet Hayat dışı sigortalarda, olletif

Detaylı

WEIBULL DAĞILIMI WEIBULL DAĞILIMI ANADOLU ÜNİVERSİTESİ

WEIBULL DAĞILIMI WEIBULL DAĞILIMI ANADOLU ÜNİVERSİTESİ ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ SÜREKLİ DAĞILIMLAR-2 DOÇ. DR. NİHAL ERGİNEL 2015 WEIBULL DAĞILIMI Weibull dağılımı, pek çok farklı sistemlerin bozulana kadar geçen süreleri ile ilgilenir. Dağılımın

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir.

LOGARİTMA. Örnek: çizelim. Çözüm: f (x) a biçiminde tanımlanan fonksiyona üstel. aşağıda verilmiştir. LOGARİTMA I. Üstl Fonksiyonlr v Logritmik Fonksiyonlr şitliğini sğlyn dğrini bulmk için ypıln işlm üs lm işlmi dnir. ( =... = 8) y şitliğini sğlyn y dğrini bulmk için ypıln işlm üslü dnklmi çözm dnir.

Detaylı

Bilgi Tabanı (Uzman) Karar Verme Kontrol Kural Tabanı. Bulanık. veya. Süreç. Şekil 1 Bulanık Denetleyici Blok Şeması

Bilgi Tabanı (Uzman) Karar Verme Kontrol Kural Tabanı. Bulanık. veya. Süreç. Şekil 1 Bulanık Denetleyici Blok Şeması Bulanık Dntlyicilr Bilgi Tabanı (Uzman) Anlık (Kskin) Girişlr Bulandırma Birimi Bulanık µ( ) Karar Vrm Kontrol Kural Tabanı Bulanık µ( u ) Durulama Birimi Anlık(Kskin) Çıkış Ölçklm (Normali zasyon) Sistm

Detaylı

Hafta 8: Ayrık-zaman Fourier Dönüşümü

Hafta 8: Ayrık-zaman Fourier Dönüşümü Hafta 8: Ayrı-zama ourir Döüşümü El Alıaca Aa Koular Ayrı-zama ourir döüşümü Ayrı-zama priyodi işartlr içi ourir döüşümü Ayrı-zama ourir döüşümüü özllilri Doğrusal, sabit atsayılı far dlmlriyl taımlaa

Detaylı

İyon Kaynakları ve Uygulamaları

İyon Kaynakları ve Uygulamaları İyon Kaynakları v Uygulamaları E. RECEPOĞLU TAEK-Sarayköy Nüklr Araştırma v Eğitim Mrkzi rdal.rcpoglu rcpoglu@tak.gov.tr HPFBU-2012 2012-KARS KONULAR İyon kaynakları hakkında gnl bilgi İyon kaynaklarının

Detaylı

Sönümlü Serbest Titreşim

Sönümlü Serbest Titreşim .5.. Söülü Srbs Tirşi Sosza kadar dva d sabi glikli irşilrl grçk hayaa karşılaşılaakadır. Bilidiği gibi, sis irşi harki başladıka bir sür sora hark yavaş yavaş zayıflar. olayısıyla hark dklii aşağıdaki

Detaylı

( ) ( ) Be. β - -bozunumu : +β - + ν + Q - Atomik kütleler cinsinden : (1) β + - bozunumu : nötral atom negatif iyon leptonlar

( ) ( ) Be. β - -bozunumu : +β - + ν + Q - Atomik kütleler cinsinden : (1) β + - bozunumu : nötral atom negatif iyon leptonlar 6.. BETA BOZUUU Çkirdğin pozitif vya ngatif lktron yayması vya atomdan bir lktron yakalaması yolu il atom numarası ± 1 kadar dğişir. β - -bozunumu : ( B 4 4 ( B 4 nötral atom Atomik kütllr insindn : (

Detaylı

= + ise bu durumda sinüzoidal frekansı. genlikli ve. biçimindeki bir taşıyıcı sinyalin fazının modüle edildiği düşünülsün.

= + ise bu durumda sinüzoidal frekansı. genlikli ve. biçimindeki bir taşıyıcı sinyalin fazının modüle edildiği düşünülsün. 4.2. çı Modülasyonu Yüse reanslı bir işaret ile bilgi taşıa, işaretin genliğinin, reansının veya azının bir esaj işareti ile odüle edilesi ile gerçeleştirilebilir. Bu üç arlı odülasyon yöntei sırasıyla,

Detaylı

DESTEK DOKÜMANI. Mali tablo tanımları menüsüne Muhasebe/Mali tablo tanımları altından ulaşılmaktadır.

DESTEK DOKÜMANI. Mali tablo tanımları menüsüne Muhasebe/Mali tablo tanımları altından ulaşılmaktadır. Mali Tablolar Mali tablo tanımları mnüsün Muhasb/Mali tablo tanımları altından ulaşılmatadır. Mali tablolarla ilgili yapılabilc işlmlr ii gruba ayrılır. Mali Tablo Tanımları Bu bölümd firmanın ullanacağı

Detaylı

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar.

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar. 9..03 EME 305 SİSTEM SİMÜLASYONU Simulasyonda İstatistiksel Modeller-II Ders 5 Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar Sürekli Düzgün (Uniform) Dağılım Normal Dağılım Üstel (Exponential)

Detaylı

- BANT TAŞIYICILAR -

- BANT TAŞIYICILAR - - BANT TAŞIYICILAR - - YAPISAL ÖZELLİKLER Bir bant taşıyıcının nl örünümü aşağıdaki şkild vrilmiştir. Bant taşıyıcıya ismini vrn bant (4) hm taşınacak malzmyi için alan bir kap örvi örn, hm d harkt için

Detaylı

Simülasyonda İstatiksel Modeller

Simülasyonda İstatiksel Modeller Simülasyonda İstatiksel Modeller Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri iyi tanımlayabilir. İlgilenilen olayın örneklenmesi ile uygun

Detaylı

MENKUL KIYMET DEĞERLEMESİ

MENKUL KIYMET DEĞERLEMESİ MENKUL KIYMET EĞERLEMESİ.. Hiss Sdii Tk ömlik Gtirisii Hsaplaması Bir mkul kıymti gtirisi, bkl akit akımlarıı, şimdiki piyasa fiyatıa şitly iskoto oraıdır. Mkul kıymti özlliği gör bu akit akımları faiz

Detaylı

Bu malzemelere atıfta bulunmak veya kullanım şartlarını öğrenmek için http://ocw.mit.edu/terms sitesini ziyaret ediniz

Bu malzemelere atıfta bulunmak veya kullanım şartlarını öğrenmek için http://ocw.mit.edu/terms sitesini ziyaret ediniz MIT OpnoursWar http://ocw.mt.du 5.6 Thrmodnamk v Kntk Bahar 8 Bu malzmlr atıfta bulunmak vya kullanım şartlarını öğrnmk çn http://ocw.mt.du/trms stsn zyart dnz MODEL SİSTEMLER Molkülr gçş, dönm v rşm çn

Detaylı

Kirişli döşemeler (plaklar)

Kirişli döşemeler (plaklar) Kirişli döşmlr (plaklar) Dört tarafından kirişlr oturan döşmlr Knarlarının bazıları boşta olan döşmlr Boşluklu döşmlr Düznsiz gomtrili döşmlr Üç tarafı kirişli bir tarafı boşta döşm Bir tarafı kirişli

Detaylı

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01 Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin

Detaylı

DERS 7. Türev Hesabı ve Bazı Uygulamalar II

DERS 7. Türev Hesabı ve Bazı Uygulamalar II DERS 7 Türv Hsabı v Bazı Uygulamalar II Bu rst bilşk fonksiyonlarının türvi il ilgili zincir kuralını, üstl v logaritmik fonksiyonların türvlrini, ortalama v marjinal ortalama ğrlri; rsin sonuna oğru,

Detaylı

SİGORTA MATEMATİĞİ SINAV SORULARI WEB. Belirli yaşlar için hesaplanan kommütasyon tablosu aşağıda verilmiştir.

SİGORTA MATEMATİĞİ SINAV SORULARI WEB. Belirli yaşlar için hesaplanan kommütasyon tablosu aşağıda verilmiştir. SORU 1 SİGORTA MATEMATİĞİ SINAV SORULARI WEB Şimdiki yaşı 56 olan Ahmet, Bireysel Emeklilik Sistemi (BES) ile biriktirmiş olduğu 250.000 TL yi yaşam süresi boyunca sabit ödemeli dönem başı yıllık maaş

Detaylı

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS

YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 ÖSS-YGS MTEMTĐK ĐM YILLR 00 003 00 005 006 007 008 009 00 0 ÖSS-YGS - - - HREKET PROLEMLERĐ Hız msaa verildiğinden süre de saa olmalıdır lınan yol : x Hız: Zaman : ir araç x yolunu hızıyla sürede alır Yol Hız

Detaylı

Yoksulun Kazanabildiği Bir Oyun Ali Nesin

Yoksulun Kazanabildiği Bir Oyun Ali Nesin Yosulun Kazanabildiği Bir Oyun Ali Nesin B u yazıda yosulu azandıracağız. Küçü bir olasılıla da olsa, yosul azanabilece. Oyunu açılamadan önce, Sonlu Oyunlar adlı yazımızdai oyunu anımsayalım: İi oyuncu

Detaylı

BÖLÜM 3 LAMİNER SINIR TABAKANIN DİFERANSİYEL DENKLEMLERİ VE TAM ÇÖZÜMLERİ

BÖLÜM 3 LAMİNER SINIR TABAKANIN DİFERANSİYEL DENKLEMLERİ VE TAM ÇÖZÜMLERİ BÖLÜM 3 LAMİNER SINIR TABAKANIN DİFERANSİYEL DENKLEMLERİ VE TAM ÇÖZÜMLERİ - Nair Stos dnlmlri - Nair Stos dnlmlrinin tam çözümlri - Daimi, ii-botl, laminr sınır tabaa dnlmlri - Daimi, ii-botl, laminr sınır

Detaylı

UFUK ÖZERMAN- 2012-2013 Page 1

UFUK ÖZERMAN- 2012-2013 Page 1 - GÜZ P,Q,R fokiolrı poliom olmk üzr d d P Q R d d v P d d Q d P d R P p q dklmi içi P şrıı ğl = okı di ok dir, çözümlri di okıı civrıd şklid rrız. =+-+- +... = = okı; p=q/ P, q= R/ P fokiolrı okıd liik

Detaylı

Yatrm getirileri bir gecikmeli hareketli ortalama modeline uyduunda performans kriterine dayal optimal amortisman süresinin belirlenmesi

Yatrm getirileri bir gecikmeli hareketli ortalama modeline uyduunda performans kriterine dayal optimal amortisman süresinin belirlenmesi www.isaisikcilr.org saisikçilr Drgisi (9) 7-8 saisikçilr Drgisi Yarm girilri bir gcikmli harkli oralama modlin uyduunda prformans kririn dayal opimal amorisman sürsinin blirlnmsi Yasmin Gnçürk Hacp Ünivrsisi

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matmatk Dnm Sınavı. Bir saıı,6 il çarpmak, bu saıı kaça bölmktir? 6. a, b, c saıları sırasıla,, saıları il trs orantılı a b oranı kaçtır? a c 7. v pozitif tamsaılardır.! ifadsi bir asal saıa şittir.

Detaylı

metal (bakır) metaloid (silikon) metal olmayan (cam) iletken yar ı iletken yalıtkan

metal (bakır) metaloid (silikon) metal olmayan (cam) iletken yar ı iletken yalıtkan 1 YARI İLETKENLER Enstrümantal Analiz ir yarı iltkn, iltknliği bir iltkn il bir yalıtkan arasında olan kristal bir malzmdir. Çok çşitli yarıiltkn malzm vardır, silikon v grmanyum, mtalimsi bilşiklr (silikon

Detaylı

Simülasyonda İstatiksel Modeller. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Simülasyonda İstatiksel Modeller. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Simülasyonda İstatiksel Modeller Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri

Detaylı

İstatistik I Ders Notları

İstatistik I Ders Notları İstatistik I Ders Notları Sürekli Rassal Değişkenler Hüseyin Taştan Kasım 2, 26 İçindekiler Sürekli Rassal Değişkenlerin Özellikleri 2 2 Olasılık Yoğunluk Fonksiyonu 2 Birikimli Olasılık Fonksiyonu 6 4

Detaylı

GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI. Prof. Dr. Nezir KÖSE

GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI. Prof. Dr. Nezir KÖSE GAZİ ÜNİVERSİTESİ, İ.İ.B.F, İSTATİSTİK VE OLASILIĞA GİRİŞ I, UYGULAMA SORULARI Prof. Dr. Nezir KÖSE 30.12.2013 S-1) Ankara ilinde satın alınan televizyonların %40 ı A-firması tarafından üretilmektedir.

Detaylı

SİSTEM DİNAMİĞİ VE KONTROL

SİSTEM DİNAMİĞİ VE KONTROL ABANT İZZET BAYSA ÜNİVERSİTESİ MÜHENDİSİK MİMARIK FAKÜTESİ MAKİNE MÜHENDİSİĞİ BÖÜMÜ SİSTEM DİNAMİĞİ VE KONTRO. aplac Dönüşümli Yd. Doç. D. Tuan ŞİŞMAN - BOU . APACE DÖNÜŞÜMERİ.. Giiş Doğual dianiyl dnklmlin

Detaylı

ÇAPRAZ AKIŞLI ISI DEĞİŞTİRİCİ

ÇAPRAZ AKIŞLI ISI DEĞİŞTİRİCİ ÇAPRAZ AKIŞLI ISI DEĞİŞTİRİCİ MAK-LAB012 1. DENEY DÜZENEĞİNİN TANITILMASI Düznk sas olarak dikdörtgn ksitli bir kanaldan ibarttir. 1 hp gücündki lktrik motorunun çalıştırdığı bir vantilatör il kanal içind

Detaylı

ANADOLU ÜNİVERSİTESİ ÖRNEK: GEOMETRİK DAĞILIM

ANADOLU ÜNİVERSİTESİ ÖRNEK: GEOMETRİK DAĞILIM ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ KESİKLİ DAĞILIMLAR-2 DOÇ. DR. NİHAL ERGİNEL 2015 GEOMETRİK DAĞILIM Bir Bernoulli deneyi ilk olumlu sonuç elde edilmesine kadar tekrarlansın. X: ilk olumlu sonucun

Detaylı

{ } { } Ters Dönüşüm Yöntemi

{ } { } Ters Dönüşüm Yöntemi KESĐKLĐ DAĞILIMLARDAN RASGELE SAYI ÜRETME Trs Dönüşüm Yöntmi F dağılım fonksiyonuna sahip bir X rasgl dğişknin dağılımından sayı ürtmk için n çok kullanılan yöntmlrdn biri, F dağılım fonksiyonunun gnllştirilmiş

Detaylı

TG 12 ÖABT İLKÖĞRETİM MATEMATİK

TG 12 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞREMENLİK ALAN İLGİSİ ESİ İLKÖĞREİM MAEMAİK ÖĞREMENLİĞİ G ÖA İLKÖĞREİM MAEMAİK u tstlrin hr hakkı saklıdır. Hangi amaçla olursa olsun, tstlrin tamamının va bir kısmının İhtiaç

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

Negatif Binom Dağılımı

Negatif Binom Dağılımı Ngatif Binom Dağılımı Brnoulli dnyinin tüm varsayımları ngatif binom dağılımı içind gçrlidir. Binom dağılımında n dnmd adt başarı olasılığı l ğ il ilgilnilirkn, ili ngatif binom dağılımındağ d is şans

Detaylı

IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R

IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R Geçen Ders Envanter yonetımı: Gazetecı problemı Rastsal Rakamlar Üret Talebi hesapla Geliri hesapla Toplam maliyeti hesapla Günlük ve aylık

Detaylı

YÖNEYLEM ARAŞTIRMASI-II Hafta 14

YÖNEYLEM ARAŞTIRMASI-II Hafta 14 9.0.07 YÖNEYLEM ARAŞTIRMASI-II Hafta ERT ANALİZİ Olasılıksal roje Değerlendirme ve Gözden Geçirme Tekniği ERT (robabilistic Evaluation and Review Technique) Eğer projenin faaliyetlerinin tamamlanma süresi

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir. Şans Değişkenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesikli

Detaylı

ELM207 Analog Elektronik

ELM207 Analog Elektronik ELM7 Alog Elkroik Giriş Bir Fourir srisi priyodik bir ) oksiyouu, kosiüs v siüslri sosuz oplmı biçimid bir çılımdır. ) cos b si ) Bşk dyişl, hrhgi bir priyodik oksiyo sbi bir dğr, kosiüs v siüs oksiyolrıı

Detaylı

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları

Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları Kesikli Şans Değişkenleri İçin; Olasılık Dağılımları Beklenen Değer ve Varyans Olasılık Hesaplamaları 1 Şans Değişkeni: Bir dağılışı olan ve bu dağılışın yapısına uygun frekansta oluşum gösteren değişkendir.

Detaylı

IKTI 102 25 Mayıs, 2010 Gazi Üniversitesi-İktisat Bölümü

IKTI 102 25 Mayıs, 2010 Gazi Üniversitesi-İktisat Bölümü DERS NOTU 10 (Rviz Edildi, kısaltıldı!) ENFLASYON İŞSİZLİK PHILLIPS EĞRİSİ TOPLAM ARZ (AS) EĞRİSİ TEORİLERİ Bugünki drsin içriği: 1. TOPLAM ARZ, TOPLAM TALEP VE DENGE... 1 1.1 TOPLAM ARZ EĞRİSİNDE (AS)

Detaylı

z Hertz dipolü, çok küçük ve ince olduğu için üzerindeki akım sabit kabul edilir. jkr d R l / 2 l / 2 jkr z jkr z jkr z

z Hertz dipolü, çok küçük ve ince olduğu için üzerindeki akım sabit kabul edilir. jkr d R l / 2 l / 2 jkr z jkr z jkr z İnc Antnl Çaplaı boylaına gö küçük olan antnl inc antnl dni Alanlaın hsabında antnlin sonsu inc kabul dilmsi kolaylık sağla Ancak antn mpdansı bulunmak istndiğind kalınlığın iş katılması gki Ht Dipolü

Detaylı

TANITIM ve KULLANIM KILAVUZU. Modeller UBA4234-R. Versiyon : KK_UBA_V3.0210

TANITIM ve KULLANIM KILAVUZU. Modeller UBA4234-R. Versiyon : KK_UBA_V3.0210 SAT-IF / CATV Ultra Gniş Bantlı Dağıtım Yükslticilri (UBA-Srisi) TANITIM v KULLANIM KILAVUZU Modllr UBA4234-R Vrsiyon : KK_UBA_V3.0210 1.Gnl Tanıtım UBA Srisi Dağıtım Yükslticilri, uydu (950-2150MHz) v

Detaylı

Diferensiyel Denklemler I Uygulama Notları

Diferensiyel Denklemler I Uygulama Notları 2004 Diferensiyel Denklemler I Uygulama Notları Mustafa Özdemir İçindekiler Temel Bilgiler...................................................................... 2 Tam Diferensiyel Denklemler........................................................4

Detaylı

İNTEGRAL KONU ANLATIMI ÖRNEKLER

İNTEGRAL KONU ANLATIMI ÖRNEKLER İNTEGRL KONU NLTIMI ÖRNEKLER Ġtgrl lmk, türi ril ir oksio lmk tır d,, d oksio olrk rildiğii =F i istdiğii rslım d içi i cid idsi: d = + dir, hrhgi ir sit df d koģl sğl = F oksio i gör itgrli dir d F içimid

Detaylı

π βk F -F 0.4 0.3 0.2 0.1 0 0.01 0.02 0.03 0.04 kayma 1 2 F + F 1 2 Döndüren kasnak Döndürülen kasnak

π βk F -F 0.4 0.3 0.2 0.1 0 0.01 0.02 0.03 0.04 kayma 1 2 F + F 1 2 Döndüren kasnak Döndürülen kasnak TİMAK-Taarım İmalat Analiz Kongri 6-8 Nian 006 - BALIKESİ KAYIŞ KASNAK MEKANİZMALAINDA KAYMA OLAYINI ETKİLEYEN AKTÖLEİN ANALİZİ M. Ndim GEGE Maina Mühndiliği Bölümü Mühndili aülti -Balıir/Türi Özt Kaış

Detaylı

B OSC2 VOD PIC16F84 MİKRODENETLEYİCİSİ KULLANILARAK CİHAZLARIN TELEFON İLE KONTROLÜNE BİR UYGULAMA. Rabman YAKAR, Etem KÖKLÜKAYA.

B OSC2 VOD PIC16F84 MİKRODENETLEYİCİSİ KULLANILARAK CİHAZLARIN TELEFON İLE KONTROLÜNE BİR UYGULAMA. Rabman YAKAR, Etem KÖKLÜKAYA. SAU Fn Bilimlri Enstitüsü Drgisi PIC16F84 Mikrodntlcisi Kullanılarak Ciaziarın Tlfon D Kontrolün Bir Uygulama PIC16F84 MİKRODENETLEYİCİSİ KULLANILARAK CİHAZLARIN TELEFON İLE KONTROLÜNE BİR UYGULAMA Rabman

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

ORTAM SICAKLIĞININ SOĞUTMA ÇEVRİMİNE ETKİSİNİN SAYISAL OLARAK MODELLENMESİ

ORTAM SICAKLIĞININ SOĞUTMA ÇEVRİMİNE ETKİSİNİN SAYISAL OLARAK MODELLENMESİ ORTAM SICAKLIĞININ SOĞUTMA ÇEVRİMİNE ETKİSİNİN SAYISAL OLARAK MODELLENMESİ Srkan SUNU - Srhan KÜÇÜKA Dokuz Eylül Ünivrsitsi Makina Mühndisliği Bölümü -posta: srhan.kuuka@du.du.tr Özt: Bu çalışmada, komprsör,

Detaylı

BÖLÜM 4 LİNEER DİFERANSİYEL DENKLEM SİSTEMLERİ

BÖLÜM 4 LİNEER DİFERANSİYEL DENKLEM SİSTEMLERİ BÖLÜM LİNEER DİFERANSİYEL DENKLEM SİSTEMLERİ GİRİŞ Dnklm sismlrin linr cbir drsindn şin olmlısınız Anck bu ür dnklmlrd hrhngi bir difrnsiyl büyüklük vy ürv bulunmz Bşk bir dyişl cbirsl dnklm sismi, y (

Detaylı

4.3. Türev ile İlgili Teoremler

4.3. Türev ile İlgili Teoremler 4.. Türev ile İlgili Teoremler Bu kesimde ortalama değer teoremini vereceğiz. Ortalama değer teoremini ispatlarken kullanılacak olan Fermat teoremini ve diğer bazı teoremleri ispat edeceğiz. 4...Teorem

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG 9 ÖABT ORTAÖĞRETİM MATEMATİK Bu testlerin her hakkı saklıdır. Hangi amaçla olursa olsun, testlerin tamamının

Detaylı

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.

Detaylı

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri Girdi Analizi 0 Gerçek hayattaki benzetim modeli uygulamalarında, girdi verisinin hangi dağılımdan geldiğini belirlemek oldukça zor ve zaman harcayıcıdır. 0 Yanlış girdi analizi, elde edilen sonuçların

Detaylı

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ

1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ 1. FARKLILIKLARIN TESPİTİNE YÖNELİK HİPOTEZ TESTLERİ Örneklem verileri kullanılan her çalışmada bir örneklem hatası çıkma riski her zaman söz konusudur. Dolayısıyla istatistikte bu örneklem hatasının meydana

Detaylı

İSTATİSTİK TERMODİNAMİK

İSTATİSTİK TERMODİNAMİK MIT OpnCoursWar http://ocw.mt.du 5.60 Thrmodnamk v Kntk Bahar 2008 Bu malzmlr atıfta bulunmak vya kullanım şartlarını öğrnmk çn http://ocw.mt.du/trms stsn zyart dnz İSTATİSTİK TERMODİAMİK İstatstk mkanğn

Detaylı

SIGORTA MATEMATİĞİ SORULARI WEB EKİM 2017

SIGORTA MATEMATİĞİ SORULARI WEB EKİM 2017 SIGORTA MATEMATİĞİ SORULARI WEB EKİM 2017 SORU 1: Hasar rassal değişkenini tanımlayan rassal X aşağıdaki dağılıma sahiptir: 150 F ( x) = 1, 0. x 150 + x Simülasyon teknikleri kullanılarak bu dağılımdan

Detaylı

ÖZEL KONU ANLATIMI SENCAR Başarının sırrı, bilginin ışığı

ÖZEL KONU ANLATIMI SENCAR Başarının sırrı, bilginin ışığı GENİŞLETİLMİŞ GERÇEL SAYILARDA LİMİT R = Q I küsin Rl Sayılar Küsi dniliyor. Rl Sayılar Küsid; = Tanısız v = olduğunu biliyorduk. -- R = R { -, + } gnişltiliş grçl sayılar küsind: li = -, - = -, li = +

Detaylı

Araş.Gör. Efe SARIBAY

Araş.Gör. Efe SARIBAY GÜVEN ARALIKLARI (ARALIK TAHMİNİ) ALIŞTIRMA SORULARI Araş.Gör. Efe SARIBAY 1) Bir hisse senedinin $ bazında fiyatının ortalamasını incelemek için yapılan bir araştırmada 18 gün boyunca hisse senedinin

Detaylı

Ruppert Hız Mekanizmalarında Optimum Dişli Çark Boyutlandırılması İçin Yapay Sinir Ağları Kullanımı

Ruppert Hız Mekanizmalarında Optimum Dişli Çark Boyutlandırılması İçin Yapay Sinir Ağları Kullanımı Makin Tknolojilri Elktronik Drgisi Cilt: 6, No: 2, 2009 (-8) Elctronic Journal of Machin Tchnologis Vol: 6, No: 2, 2009 (-8) TEKNOLOJİK ARAŞTIRMALAR www.tknolojikarastirmalar.com -ISSN:304-44 Makal (Articl)

Detaylı

SİSTEMLER. Sistemlerin Sınıflandırılması

SİSTEMLER. Sistemlerin Sınıflandırılması Sinallr & Sismlr - Sismlr SİSTEMLER Sism ori, bir fnomn im olarak, isiplinlr arası ilişkilrin bilimsl aklaşımlarla inclniği bir oriir. Bnn için ilişkinin varlığı va rcsi, ilgili olğ sosal v fn alanlarına

Detaylı

İSTATİSTİK I KAVRAMLARININ

İSTATİSTİK I KAVRAMLARININ YTÜ-İktisat İstatistik II İstatistik I Gözden Geçirme İSTATİSTİK I KAVRAMLARININ GÖZDEN GEÇİRİLMESİ Hüseyin Taştan Yıldız Teknik Üniversitesi, İktisat Bölümü, email: tastan@yildiz.edu.tr YTÜ-İktisat İstatistik

Detaylı

Enerji Dönüşüm Temelleri. Bölüm 3 Bir Fazlı Transformatörler

Enerji Dönüşüm Temelleri. Bölüm 3 Bir Fazlı Transformatörler Enrji Dönüşüm Tmllri Bölüm 3 Bir Fazlı Transformatörlr Birfazlı Transformatorlar GİRİŞ Transformatörlrin grçk özllik v davranışlarını daha kolay anlamak için ilk aşamada idal transformatör üzrind durulacaktır.

Detaylı

GERİ ÖDEME TALEP FORMU T.C. LONDRA BÜYÜKELÇİLİĞİ EĞİTİM MÜŞAVİRLİĞİNE, Sort Kod : Hesap No : İmzası E-posta : Telefon Nu :

GERİ ÖDEME TALEP FORMU T.C. LONDRA BÜYÜKELÇİLİĞİ EĞİTİM MÜŞAVİRLİĞİNE, Sort Kod : Hesap No : İmzası E-posta : Telefon Nu : T.C. LONDRA BÜYÜKELÇİLİĞİ EĞİTİM MÜŞAVİRLİĞİ GERİ ÖDEME TALEP FORMU B-1 T.C. LONDRA BÜYÜKELÇİLİĞİ EĞİTİM MÜŞAVİRLİĞİNE, 1416 Sayılı Kanuna gör MEB (... Ünivrsitsi) adına rsmi burslu statüd öğrnim görmk

Detaylı

YÜK KANCALARI VİDALI BAĞLANTILARINDA KULLANILAN FARKLI VİDA DİŞ PROFİLLERİNİN BİLGİSAYAR DESTEKLİ GERİLME ANALİZİ

YÜK KANCALARI VİDALI BAĞLANTILARINDA KULLANILAN FARKLI VİDA DİŞ PROFİLLERİNİN BİLGİSAYAR DESTEKLİ GERİLME ANALİZİ . Ulusal Tasarım İmalat v Analiz Kongrsi 11-1 Kasım 010- Balıksir YÜK KANCALARI VİDALI BAĞLANTILARINDA KULLANILAN FARKLI VİDA DİŞ PROFİLLERİNİN BİLGİSAYAR DESTEKLİ GERİLME ANALİZİ Aydın DEMİRCAN*, M. Ndim

Detaylı

6 (saatte 6 müşteri aramaktadır), servis hızı ise. 0.6e

6 (saatte 6 müşteri aramaktadır), servis hızı ise. 0.6e İST KUYRUK TEORİSİ ARASIAV SORULARI ( MAYIS ). Bir baaı müşteri hizmetleride te işi hizmet vermetedir. Müşteriler ortalama daiada bir arama yapmatadır bua arşı ortalama servis süresi ise daia sürmetedir.

Detaylı

BÖLÜM II 2. FOURIER DÖNÜŞÜMÜ. 2.1 Giriş

BÖLÜM II 2. FOURIER DÖNÜŞÜMÜ. 2.1 Giriş BÖLÜM II. FOURIER DÖNÜŞÜMÜ. Giriş Yr ürmizd gözl joizi olaylar zamaa yada uzalığa bağlı olara glişir. Gözl joizi olay zamaı bir osiyou is zama oramı im Domai uzuluğu bir osiyou is uzalı oramı Spac Domai

Detaylı

BİLEŞENLER. Demiryolu Araçları için yüksek hızlı DC devre kesiciler Tip UR6, UR10 ve UR15

BİLEŞENLER. Demiryolu Araçları için yüksek hızlı DC devre kesiciler Tip UR6, UR10 ve UR15 İLŞNLR miryolu raçları için yüksk hızlı dvr ksicilr Tip R, R v R Gnl bilgi R, R v R; doğal soğutmalı, açmasız, tk kutuplu, çift yönlü, lktromanytik üflmli, lktrik kontrol dvrlrin v doğrudan aşırı akım

Detaylı

SÜREKLİ OLASILIK DAĞILIŞLARI

SÜREKLİ OLASILIK DAĞILIŞLARI SÜREKLİ OLASILIK DAĞILIŞLARI Sürekli verilerin göstermiş olduğu dağılışa sürekli olasılık dağılışı denir. Sürekli olasılık dağılışlarının fonksiyonlarına yoğunluk fonksiyonu denilmekte ve bu dağılışlarla

Detaylı

y xy = x şeklinde bir özel çözümünü belirleyerek genel

y xy = x şeklinde bir özel çözümünü belirleyerek genel Difransil Dnklmlr I / 94 A Aşağıdaki difransil dnklmlrin çözümlrini bulunuz d d -( + ) 7 + n( ) +, () + n ( + ) 4 + - + 5 6 - ( - ) + 8 9 - - + + - ( -) d- ( + ) d + Not: Çözüm mtodu olarak: Tam difdnk

Detaylı

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa,

NORMAL DAĞILIM. 2., anakütle sayısı ile Poisson dağılımına uyan rassal bir değişkense ve 'a gidiyorsa, NORMAL DAĞILIM TEORİK 1., ortalaması, standart sapması olan bir normal dağılıma uyan rassal bir değişkense, bir sabitken nin beklem üreten fonksiyonunu bulun. 2., anakütle sayısı ile Poisson dağılımına

Detaylı

KATSAYILARI LEBESGUE İNTEGRALLENEBİLİR FONKSİYONLAR OLAN ADİ DİFERANSİYEL OPERATÖRLERİN ÖZDEĞERLERİ ÜZERİNE. Alp Arslan Kıraç

KATSAYILARI LEBESGUE İNTEGRALLENEBİLİR FONKSİYONLAR OLAN ADİ DİFERANSİYEL OPERATÖRLERİN ÖZDEĞERLERİ ÜZERİNE. Alp Arslan Kıraç Afyon Koa Ünivrsisi 8 Afyon Koa Univrsiy FEN BİLİMLERİ DERGİSİ JOURNAL OF SCIENCE KATSAYILARI LEBESGUE İNTEGRALLENEBİLİR FONKSİYONLAR OLAN ADİ DİFERANSİYEL OPERATÖRLERİN ÖZDEĞERLERİ ÜZERİNE ÖZET Al Arslan

Detaylı

TG 7 ÖABT İLKÖĞRETİM MATEMATİK

TG 7 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERONEL EÇME INAVI ÖĞREMENLİK ALAN BİLGİİ Eİ İLKÖĞREİM MAEMAİK ÖĞREMENLİĞİ 4 5 Maıs 4 G 7 ÖAB İLKÖĞREİM MAEMAİK Bu slrin hr hakkı saklıdır. Hangi amaçla olursa olsun, slrin amamının va bir kısmının

Detaylı

YENİ NESİL CAM KORKULUK SİSTEMLERİ

YENİ NESİL CAM KORKULUK SİSTEMLERİ F Mtal v Rklam Ürünlri San Tic AŞ YENİ NESİL CAM KORKULUK SİSTEM F TAL v NTİCAŞ Zmin Üstü Bağlantılı EGANT Srisi C50 Elgant srisi yüksk mimari standarttaki yapıların, dğrin, sağlamlığı v sttiği il dğr

Detaylı