fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

Save this PDF as:

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı"

Transkript

1 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun. Fonksiyonda meydana gelen artma miktarı ile gösterilirse, olur. Bu eşitliğin her iki tarafını ile bölersek, bulunur. limit halde sıfıra yaklaştığında bu ifadenin reel değerli bir limiti varsa, bu limite fonksiyonun x 0 noktasındaki türevi denir ve olarak gösterilir. fonksiyonunun türevi, f (x), veya daha basit olarak sembolü ile gösterilebilir. Kapalı fonksiyonlarda her iki tarafın türevi alınarak eşitlikten çözülür. türevi Geometrik Açıklama fonksiyonun eğrisine deyip türevin geometrik açıklamasını yapalım. A bu eğri üzerinde koordinatları, B olan iki nokta olsun. ABD dik üçgeninden, yazılabilir. 1

2 Bu oran A ve B noktalarını birleştiren doğrunun (kirişin) eğimi halinde bu oran, x = x x 0 in sıfıra yaklaşımı = olur. Bu eğrisine noktasında teğet olan doğrunun eğimi olup tanıma göre fonksiyonun bu noktadaki türevi Yani ; Bu sonuca göre, fonksiyonunun eğrisine noktasında teğet olan doğrunun denklemi, olarak veya daha basit bir gösterimle, şeklinde yazılabilir. 2

3 Türev Kavramı İle İlgili Tanım, Teorem ve Örnekler Tanım : Eğer bir fonksiyonun tanım aralığının bir noktasında türevi varsa yani mevcutsa fonksiyona bu noktada türevi alınabilir fonksiyon denir. Teorem : fonksiyonu tanım aralığının herhangi bir fonksiyonu bu noktada sürekli noktasında türevi alınabilir bir fonksiyon yazabiliriz. Her iki tarafın için limitini alırsak, elde edilir. Burada, bulunur. Yani fonksiyonu noktasında sürekli Bu teoremin tersi doğru değil Yani bir fonksiyon tanım aralığının herhangi bir olduğu halde bu noktada türevi alınamayabilir. noktasında sürekli 3

4 i) ii) iii) 10.2 Türevi Alma Kuralları Toplamın Türevi ve tanım aralığının her noktasında türevi alınabilir fonksiyonlar olsun. Toplamın Türevi: 4

5 te meydana gelen artma miktarına karşılık ve de meydana gelen artma miktarları ve, de meydana gelen artma miktarı ile gösterilirse, yazılabilir. yani, bulunur. Eşitliğin her iki tarafını ile bölersek, ve için limitleri alınırsa, bulunur Çarpımın Türevi ve tanım aralığının her noktasında türevi alınabilir fonksiyonlar olsun. Çarpımın Türevi: dur. 5

6 fonksiyonu türevi alınabilir bir fonksiyon olup dır. Dolayısıyla, elde edilir Bölümün Türevi ve tanım aralığının her noktasında türevi alınabilir fonksiyonlar olsun. Bölümün Türevi: dır. Buna göre, bulunur. 6

7 Fonksiyon Fonksiyonunun (Bileşke Fonksiyonu) Türevi ve bileşik fonksiyonun türevi, veya ya da diğer bir gösterimle, ve yazılabilir. u ve y fonksiyonları türevi alınabilir fonksiyonlar olduğuna göre için ve dır. Buna göre, olup Yani, yazılabilir. Burada, ile birlikte sıfır olan sonsuz küçük bir büyüklüktür. dır. Böylece veya diğer bir gösterimle yazılabilir. Bu kurala zincir kuralı denir Ters Fonksiyon Türevi ters fonksiyonunun türevi 7

8 bağıntısından yararlanılarak bulunur Trigonometrik Fonksiyonların Türevleri (I) y = cos x Fonksiyonun Türevi bağıntısından bulunur. Yani Trigonometrik Fonksiyonların Türevleri (II) y = tan x Fonksiyonunun Türevi 8

9 olarak yazılırsa bölümün türevinden, veya olduğundan, yazılabilir Ters Trigonometrik Fonksiyonların Türevleri (I) y = arcsin x Fonksiyonunun Türevi yazılabilir. Buradan, ve ters fonksiyonun türevinden; ( zira ) bulunur. ve olduğundan bulunan değerler yukarıdaki türev ifadesinde yerine yazılırsa bulunur. Yani, Ters Trigonometrik Fonksiyonların Türevleri (II) y = arccos x Fonksiyonunun Türevi 9

10 ve Ters fonksiyonun türevinden, bulunur. ( çünkü ) yazılırsa ve olduğundan bulunan değerler yukarıdaki türev ifadesinde yerine bulunur. Yani, Ters Trigonometrik Fonksiyonların Türevleri (III) y = arctanx Fonksiyonunun Türevi ve Ters fonksiyonun türevinden bulunur. ( ) olduğuna göre, bulunur. O halde, 10

11 Logaritma Fonksiyonunun Türevi y = log a x Fonksiyonunun Türevi yazılabilir. Logaritmanın özelliklerinden, eşitliğin sağ tarafını x ile çarpıp bölersek, ve buradan olup denirse için olacağından; olup bulunur. Yani, y = ln x Fonksiyonunun Türevi 11

12 in türev ifadesi olan ifadesinde a = e konursa, bulunur. olduğuna göre, bulunur. O halde, Üstel Fonksiyonların Türevi y = a x Üstel Fonksiyonunun Türevi dır. ifadesinin her iki tarafının logaritmasını alırsak, bulunur. Bu ifadenin her iki tarafının türevi alınırsa, elde edilir. ifadesi bu eşitlikteki yerine yazılırsa, bulunur Hiperbolik Fonksiyonların Türevleri (I) y = shx Fonksiyonunun Türevi 12

13 ifadesinin türevi alınırsa, bulunur. Yani, Hiperbolik Fonksiyonların Türevleri (II) y = chx Fonksiyonunun Türevi ifadesinin türevi alınırsa, bulunur. Yani, Hiperbolik Fonksiyonların Türevleri (III) y = thx Fonksiyonunun Türevi yazılabilir. Bölümün türevinden, bulunur. Buna göre, 13

14 10.3 Bazı Elemanter Fonksiyonların Türev Tablosu Buraya kadar incelediğimiz türev ifadeleri yardımıyla özel fonksiyonların türevlerini bir tablo halinde verebiliriz. Aşağıda verilen tablodaki ifadelerde u nun x e bağlı ve türevi alınabilir bir fonksiyon olduğu kabul edilmiştir. u = x halinde u' = 1 olacağı açıktır. Bölüm sonundaki soruların çözümü için aşağıdaki tablo bilgileri yeterli olacaktır. y y' 0 u u' a.u' u n nu n-1 u' e u e u. u' a u (a > 1, a 1) a u.lna.u' log a u(a > 1, a 1).log a e.u' sin u cos u. u' cos u -sin u. u' 14

15 tan u (1 + tan 2 u). u' =. u' = sec 2 u. u' cotan u -(1 + cotan 2 u). u' =. u' = - cosec 2 u. u' sh u chu.u' ch u shu.u' th u (1 - th 2 u). u' =. u' = sech 2 u. u' coth u. u' = -cosech 2 u. u' arcsin u arccos u arctan u arccotan u 15

16 10.4 Kapalı Fonksiyonların Türevi f(x,y) = 0 denklemiyle belirtilen kapalı fonksiyonlarda denklemin y = φ(x) şeklinde y nin x e bağlı bir ifadesi elde edilebiliyorsa türev φ' (x) = olarak bulunabilir. Ancak bu tür fonksiyonlarda y nin x cinsinden ifadesini hesaplamak çoğu kez mümkün olmaz. Bu durumda y nin x in fonksiyonu olduğu göz önünde bulundurularak zincir kuralı uygulanıp türev hesaplanır Ardışık Türev ve Yüksek Mertebeden Türevler fonksiyonu aralığında türevi alınabilir bir fonksiyon, bu fonksiyonun türevine yani y'=f '(x)= ifadesine f(x) in birinci mertebeden türevi denir. Eğer f '(x) = g(x) fonksiyonu da aralığında türevi alınabilir bir fonksiyon buna yani, g(x) e f(x) fonksiyonunun ikinci mertebeden türevi denir ve y'', f ''(x), sembollerden biri ile gösterilir. Benzer şekilde eğer mevcutsa f(x) in (n) inci mertebeden türevi, y n, f n (x), sembollerinden biri ile gösterilir. Bu ifadedeki n(n N) ye türevin mertebesi denir. 16

17 f (x) = f '(x) = f '' (x) = f ''' (x) =... f (n) (x) = Bir Toplamın Yüksek Mertebeden Türevi u ve v n inci mertebeden x e bağlı türevi alınabilir iki fonksiyon, (u + v) (n) = u (n) + v (n) 17

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II)

7.2 Fonksiyon ve Fonksiyon Tanımları (I) Fonksiyon ve Fonksiyon Tanımları (II) 7.2 Fonksiyon ve Fonksiyon Tanımları (I) Tanım kümesindeki her elemanın değer kümesinde bir ve yalnız bir görüntüsü varsa, tanım kümesinden değer kümesine olan bağıntıya fonksiyon denir. Fonksiyonu f ile

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI A R, a A ve f de A da tanımlı bir fonksiyon olsun. Eğer f(x) f(a) lim x a x a limiti veya x=a+h koymakla elde edilen f(a+h) f(a) lim h 0 h Bu türev f (a), df dx limiti varsa f fonksiyonu

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

1. GİRİŞ Örnek: Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre), zamanın t (saniye) bir fonksiyonu olarak

1. GİRİŞ Örnek: Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre), zamanın t (saniye) bir fonksiyonu olarak DERS: MATEMATİK I MAT0(09) ÜNİTE: TÜREV ve UYGULAMALARI KONU: A. TÜREV. GİRİŞ Bir doğru boyunca hareket eden bir cismin başlangıç noktasına göre konumu s (metre) zamanın t (saniye) bir fonksiyonu olarak

Detaylı

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir.

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir. TÜREV y= f(x) fonksiyonu [a,b] aralığında tanımlı olsun. Bu aralıktaki bağımsız x değişkenini h kadar arttırdığımızda fonksiyon değeri de buna bağlı olarak değişecektir. Fonksiyondaki artma miktarını değişkendeki

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

ÜNİTE. MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK İÇİNDEKİLER HEDEFLER TÜREV VE TÜREV ALMA KURALLARI. Türev Türev Alma Kuralları

ÜNİTE. MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK İÇİNDEKİLER HEDEFLER TÜREV VE TÜREV ALMA KURALLARI. Türev Türev Alma Kuralları HEDEFLER İÇİNDEKİLER TÜREV VE TÜREV ALMA KURALLARI Türev Türev Alma Kuralları MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK Bu üniteyi çalıştıktan sonra Burada türevin tanımı verilecek, Geometride bir eğrinin bir noktadaki

Detaylı

SÜREKLİLİK. 9.1 Süreklilik ve Süreksizlik Kavramları

SÜREKLİLİK. 9.1 Süreklilik ve Süreksizlik Kavramları SÜREKLİLİK Bu bölümde süreklilik kavramı, süreksizlik, sürekli fonksiyonların özellikleri ile buna ilişkin teoremler örnekler ve grafiklerle açıklanmaktadır. 9.1 Süreklilik ve Süreksizlik Kavramları Tanım

Detaylı

BÖLÜM 4 4- TÜREV KAVRAMI 4- TÜREV KAVRAMI. Tanım y = fonksiyonunda x değişkeni x. artımını alırken y de. kadar artsın. = x.

BÖLÜM 4 4- TÜREV KAVRAMI 4- TÜREV KAVRAMI. Tanım y = fonksiyonunda x değişkeni x. artımını alırken y de. kadar artsın. = x. - TÜREV KAVRAMI - TÜREV KAVRAMI 7 iadesinin türevini alınız. Çözüm lim lim 7 7 lim 7 7 lim lim onksionunun türevini alınız. Tanım onksionunda değişkeni artımını alırken de kadar artsın. oranının giderken

Detaylı

Matematik 1 - Alıştırma 1. i) 2(3x + 5) + 2 = 3(x + 6) 3 j) 8 + 4(2x + 1) = 5(x + 3) + 3

Matematik 1 - Alıştırma 1. i) 2(3x + 5) + 2 = 3(x + 6) 3 j) 8 + 4(2x + 1) = 5(x + 3) + 3 Matematik 1 - Alıştırma 1 A) Denklemler 1. Dereceden Denklemler 1) Verilen denklemlerdeki bilinmeyeni bulunuz (x =?). a) 4x 6 = x + 4 b) 8x + 5 = 15 x c) 7 4x = 1 6x d) 7x + = e) 5x 1 = 10x + 6 f) 0x =

Detaylı

Chapter 1 İçindekiler

Chapter 1 İçindekiler Chapter 1 İçindekiler Kendinizi Test Edin iii 10 Birinci Mertebeden Diferansiel Denklemler 565 10.1 Arılabilir Denklemler 566 10. Lineer Denklemler 571 10.3 Matematiksel Modeller 576 10.4 Çözümü Olmaan

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

01/U UYGULAMA. MATEMATİK 2 - FÖY İZLEME TESTLERİ ÜNİTE 1: MANTIK Önermeler - I. 1. p: "Ω 3 R" 4. (p' q)' r p. 5. I. p p' 6. I.

01/U UYGULAMA. MATEMATİK 2 - FÖY İZLEME TESTLERİ ÜNİTE 1: MANTIK Önermeler - I. 1. p: Ω 3 R 4. (p' q)' r p. 5. I. p p' 6. I. MATEMATİK - FÖY İZLEME TESTLERİ ÜNİTE : MANTIK Önermeler - I /U UYGULAMA. p: "Ω R" q: "iki basamaklı en küçük tam sayı dur." r: " " + = + 9 önermelerinden hangilerinin doğruluk değeri dir? A) Yalnız I

Detaylı

Fonksiyonlarda limiti öğrenirken değişkenlerin limitini ve sağdan-soldan limit kavramlarını öğreneceksiniz.

Fonksiyonlarda limiti öğrenirken değişkenlerin limitini ve sağdan-soldan limit kavramlarını öğreneceksiniz. 8.2. Fonksiyonlarda Limit Fonksiyonlarda limiti öğrenirken değişkenlerin limitini ve sağdan-soldan limit kavramlarını öğreneceksiniz. 8.2.1. Değişkenin Limiti Sonsuz sayıda değer alabilen bir x değişkeninin

Detaylı

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir.

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir. 1 İNTEGRAL BİR FONKSİYONUN DİFERANSİYELİ Tanım: f: [a,b] R, x f(x) fonksiyonu (a,b) aralığında türevli olmak üzere, x değişkeninin değişme miktarı x ise f '(x). x ifadesine f(x) fonksiyonunun diferansiyeli

Detaylı

HOMOGEN OLMAYAN DENKLEMLER

HOMOGEN OLMAYAN DENKLEMLER n. mertebeden homogen olmayan lineer bir diferansiyel denklemin y (n) + p 1 (x)y (n 1) + + p n 1 (x)y + p n (x)y = f(x) (1) şeklinde olduğunu ve bununla ilgili olan n. mertebeden lineer homogen denlemin

Detaylı

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY A. AÇI Başlangıç noktaları aynı olan iki ışının birleşim kümesine açı denir. Bu ışınlara açının kenarları, başlangıç noktasına ise açının köşesi denir. B. YÖNLÜ AÇI

Detaylı

fonksiyonu aralığında sürekli bir fonksiyon ve için ise olur. Eğer bu aralıktaki bütün x ler için ise bu fonksiyonun noktasında bir minimumu vardır.

fonksiyonu aralığında sürekli bir fonksiyon ve için ise olur. Eğer bu aralıktaki bütün x ler için ise bu fonksiyonun noktasında bir minimumu vardır. TÜREV UYGULAMALARI Bölüm içinde maksimum, minimum, artan ve azalan fonksiyonlar, büküm noktası, teğet, normal ve belirsizliğin türev yardımıyla giderilmesi işlenmektedir. 11.1 Maksimum ve Minimum (Ekstremum)

Detaylı

28/04/2014 tarihli LYS-1 Matematik-Geometri Testi konu analizi SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 1 / 31

28/04/2014 tarihli LYS-1 Matematik-Geometri Testi konu analizi SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 1 / 31 SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 11 32159 Rasyonel sayı kavramını açıklar. 2 12 32151 İki ya da daha çok doğal sayının en büyük ortak bölenini ve en küçük ortak katını bulur.

Detaylı

DERS: MATEMATİK I MAT101(04)

DERS: MATEMATİK I MAT101(04) DERS: MATEMATİK I MAT0(0) ÜNİTE: FONKSİYONLAR KONU:. TRİGONOMETRİK FONKSİYONLAR Öncelikle açı ölçü birimlerine göz atalım: Bilindiği gibi bir tam açının ölçüsü 0 derecedir. Diğer bir açı ölçü birimi de

Detaylı

[ 1, 1] alınırsa bu fonksiyon birebir ve örten olur. Bu fonksiyonun tersine arkkosinüs. f 1 (x) = sin 1 (x), 1 x 1

[ 1, 1] alınırsa bu fonksiyon birebir ve örten olur. Bu fonksiyonun tersine arkkosinüs. f 1 (x) = sin 1 (x), 1 x 1 ..3 Ters Trigonometrik Fonksionlar Önceki kesimde belirtilen bütün trigonometrik fonksionlar perodik olduklarından görüntü kümesindeki her değeri sonsuz noktada alırlar. Bölece trigonometrik fonksionlar

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

TRİGONOMETRİK FONKSİYONLARIN GRAFİKLERİ

TRİGONOMETRİK FONKSİYONLARIN GRAFİKLERİ TRİGONOMETRİK FONKSİYONLARIN GRAFİKLERİ A. PERİYODİK FONKSİYONLAR A, düna ve güneşin hareketleri, a ve güneş tutulmaları her 7 ılda bir Halle kuruklu ıldızının dünamızı ziareti periodik olarak medana gelen

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x Çalışma Soruları. Aşağıdaki denklemleri çözünüz: a) 7x = 4x + b) x 7x = x 4 c) x 4 x + = 0. Aşağıdaki eşitsizliklerin çözüm kümelerini belirleyiniz ve aralıklar cinsinden ifade ediniz: a) 4x > 9 b) x 4

Detaylı

[ AN ] doğrusu açıortay olduğundan;

[ AN ] doğrusu açıortay olduğundan; . Bir havuzu bir musluk 6 saatte, başka bir musluk 8 saatte dolduruyor. Bu iki musluk kapalı iken, havuzun altında bulunan üçüncü bir musluk, dolu havuzu saatte boşaltabiliyor. Üç musluk birden açılırsa,boş

Detaylı

1 Lineer Diferansiyel Denklem Sistemleri

1 Lineer Diferansiyel Denklem Sistemleri Outline İçindekiler 1 Lineer Diferansiyel Denklem Sistemleri 1 1.1 Lineer sistem türleri (iki bilinmeyenli iki denklem)................. 1 2 Normal Formda lineer denklem sistemleri (İki bilinmeyenli iki

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

9 B ol um Türevin Uygulamaları

9 B ol um Türevin Uygulamaları 2 Bölüm 9 Türevin Uygulamaları 64 BÖLÜM 9. TÜREVİN UYGULAMALARI Bölüm 0 Türev Tanım 0. y = f () fonksiyonu (a,b) aralığında tanımlı ve 0 (a,b) olsun. y = f ( 0 ) h 0 f ( 0 + h) f ( 0 ) h iti varsa, bu

Detaylı

TMOZ/tmoz@yahoogroups.com Kasım - 2005 Ters trigonometrik fonksiyonlar Eyüp Kamil Yeşilyurt Alaattin Altuntaş Mustafa Yağcı Dikkat edilmeyen veya önemsenmeyen ayrıntılar bir gün sizi de rahatsız edebilir.

Detaylı

EĞİTİM ÖĞRETİM YILI FEN LİSESİ 12.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 12.SINIF KAZANIM VE SÜRE TABLOSU

EĞİTİM ÖĞRETİM YILI FEN LİSESİ 12.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 12.SINIF KAZANIM VE SÜRE TABLOSU 08-09 EĞİTİM ÖĞRETİM YILI FEN LİSESİ.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI.SINIF KAZANIM VE SÜRE TABLOSU No Konular Kazanım sayısı Ders Saati Ağırlık (%).. ÜSTEL VE LOGARİTMİK FONKSİYONLAR

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 4- LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ Matematikte veya hidrolik, dinamik, mekanik, elektrik

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 7- SAYISAL TÜREV Doç. Dr. Ali Rıza YILDIZ 1 GİRİŞ İntegral işlemi gibi türev işlemi de mühendislikte çok fazla kullanılan bir işlemdir. Basit olarak bir fonksiyonun bir noktadaki

Detaylı

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini

Detaylı

Çalışma Soruları(MAT-117)-Harita Mühendisliği Bölümü(2015)-Ara Sınav

Çalışma Soruları(MAT-117)-Harita Mühendisliği Bölümü(2015)-Ara Sınav Çalışma Soruları(MAT-117)-Harita Mühendisliği Bölümü(015)-Ara Sınav S-1) Merkezi M(, 1) de olan ve 4y + 1 = 0 doğrusundan 4 birimlik bir kiriş ayıran çemberin S-) Merkezi M(,4) de olan ve + 5y 10 = 0 doğrusundan

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

MAT 101, MATEMATİK I, FİNAL SINAVI 08 ARALIK (10+10 p.) 2. (15 p.) 3. (7+8 p.) 4. (15+10 p.) 5. (15+10 p.) TOPLAM

MAT 101, MATEMATİK I, FİNAL SINAVI 08 ARALIK (10+10 p.) 2. (15 p.) 3. (7+8 p.) 4. (15+10 p.) 5. (15+10 p.) TOPLAM TOBB-ETÜ, MATEMATİK BÖLÜMÜ, GÜZ DÖNEMİ 2014-2015 MAT 101, MATEMATİK I, FİNAL SINAVI 08 ARALIK 2014 Adı Soyadı: No: İMZA: 1. 10+10 p.) 2. 15 p.) 3. 7+8 p.) 4. 15+10 p.) 5. 15+10 p.) TOPLAM 1. a) NOT: Tam

Detaylı

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği

8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği MIT Açık Ders Malzemeleri http://ocw.mit.edu 8.333 İstatistiksel Mekanik I: Parçacıkların İstatistiksel Mekaniği 2007 Güz Bu materyallerden alıntı yapmak ya Kullanım Şartları hakkında bilgi almak için

Detaylı

EĞİTİM ÖĞRETİM YILI ANADOLU LİSESİ 12.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 12.SINIF KAZANIM VE SÜRE TABLOSU

EĞİTİM ÖĞRETİM YILI ANADOLU LİSESİ 12.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI 12.SINIF KAZANIM VE SÜRE TABLOSU 08-09 EĞİTİM ÖĞRETİM YILI ANADOLU LİSESİ.SINIF MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLANI.SINIF KAZANIM VE SÜRE TABLOSU No Konular Kazanım sayısı Ders Saati Ağırlık (%).. ÜSTEL VE LOGARİTMİK FONKSİYONLAR

Detaylı

LYS Y ĞRU MTMTİK TSTİ. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.., y reel sayılar

Detaylı

Math 322 Diferensiyel Denklemler Ders Notları 2012

Math 322 Diferensiyel Denklemler Ders Notları 2012 1 Genel Tanımlar Bir veya birden fazla fonksiyonun türevlerini içeren denklemlere diferensiyel denklem denmektedir. Diferensiyel denklemler Adi (Sıradan) diferensiyel denklemler ve Kısmi diferensiyel denklemler

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

Örnek 1: 2 x = 3 x = log 2 3. Örnek 2: 3 2x 1 = 2 2x 1 = log 3 2. Örnek 3: 4 x 1 = 7 x 1 = log 4 7. Örnek 4: 2 x = 3 2 x 2 = 3

Örnek 1: 2 x = 3 x = log 2 3. Örnek 2: 3 2x 1 = 2 2x 1 = log 3 2. Örnek 3: 4 x 1 = 7 x 1 = log 4 7. Örnek 4: 2 x = 3 2 x 2 = 3 Soru : f(x) = log x 4 5 fonksiyonunun tanım aralığını bulunuz? a x = b eşitliğinde a ve b belli iken x i bulmaya logaritma işlemi denir. Üstel fonksiyon bire bir ve örten olduğundan ters fonksiyonu vardır.

Detaylı

Üstel ve Logaritmik Fonksiyonlar

Üstel ve Logaritmik Fonksiyonlar Üstel ve Logaritmik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; üstel ve logaritmik fonksiyonları tanıyacak, üstel ve logaritmik fonksiyonların grafiklerini

Detaylı

CEVAP ANAHTARI. Tempo Testi D 2-B 3-A 4-A 5-C 6-B 7-B 8-C 9-B 10-D 11-C 12-D 13-C 14-C

CEVAP ANAHTARI. Tempo Testi D 2-B 3-A 4-A 5-C 6-B 7-B 8-C 9-B 10-D 11-C 12-D 13-C 14-C 01. BÖLÜM: FONKSİYONLARLA İLGİLİ UYGULAMALAR - 1 1-E 2-D 3-C 4-E 5-B 6-C 7-C 8-B 9-C 10-D 11-C - 2 1-D 2-E 3-C 4-D 5-E 6-E 7-C 8-D 9-E 10-B - 3 1-E 2-A 3-B 4-D 5-A 6-E 7-E 8-C 9-C 10-C 11-C 1-A 2-B 3-E

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO:89 MATEMATİK I (12. BASKI) Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr.

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO:89 MATEMATİK I (12. BASKI) Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr. MATEMATİK I (12. BASKI) Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr. Ali Tekin TİN MATEMATİK I DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO:89 Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr. Ali Tekin

Detaylı

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14

ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI. Analiz. Cilt 2. Ünite 8-14 ANADOLU ÜNİVERSİTESİ AÇIKÖĞRETİM FAKÜLTESİ İLKÖĞRETİM ÖĞRETMENLİĞİ LİSANS TAMAMLAMA PROGRAMI Analiz Cilt 2 Ünite 8-14 T.C. ANADOLU ÜNİVERSİTESİ YAYINLARI NO: 1082 AÇIKÖĞRETİM FAKÜLTESİ YAYINLARI NO: 600

Detaylı

Limiti varsa, bu limite y = f (x) fonksiyonunun x e göre x x türevi denir. dy y=f(x) fonksiyonunun bu türevi, y ', f ' ( x ), = Lim

Limiti varsa, bu limite y = f (x) fonksiyonunun x e göre x x türevi denir. dy y=f(x) fonksiyonunun bu türevi, y ', f ' ( x ), = Lim 1. TÜREV 1.1. Tanım Bir y = f(x) fonksiyonu verilsin. x de x bağımsız değişkenine verilen bir artmayı (yada azalmayı) göstersin. f (x+ x) - f(x) Eğer Lim Limiti varsa, bu limite y = f (x) fonksiyonunun

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Trigonometrik Fonksiyonlar

Trigonometrik Fonksiyonlar Trigonometrik Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 6 Amaçlar Bu üniteyi çalıştıktan sonra; açı kavramını hatırlayacak, açıların derece ölçümünü radyan ölçümüne ve tersine çevirebilecek, trigonometrik

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

MEKANİZMA TEKNİĞİ (4. HAFTA)

MEKANİZMA TEKNİĞİ (4. HAFTA) MEKANİZMA TEKNİĞİ (4. HAFTA) KONUM ANALİZİ-(Konum denklemi ve Konum Tablosu) Bir mekanizmayı mafsal ve mesnet noktalarından parçalara ayırdığımızda her bir uzvu vektörel konum denklemi ile gösterebiliriz.

Detaylı

BMET116 Final Test -Soru B-

BMET116 Final Test -Soru B- Bölüm 1 BMET116 Final Test -Soru B- 1. Birim matris hangisidir? (a) bütün öğeleri 1 olan matristir. (b) Asal köşegen üstündeki öğeleri 1 olan matristir. (c) Yedek asal hem yedek köşegen üstündeki öğeleri

Detaylı

BMET116 Final Test. 1. (2+3i)+(3+i) işleminin sonucu nedir? (a) (6 + i) (b) (6+5i) (c) (5 + 3i) (d) 5 + 4i (e) Hiçbiri

BMET116 Final Test. 1. (2+3i)+(3+i) işleminin sonucu nedir? (a) (6 + i) (b) (6+5i) (c) (5 + 3i) (d) 5 + 4i (e) Hiçbiri Bölüm 1 BMET116 Final Test 1. (2+3i)+(3+i) işleminin sonucu nedir? (a) (6 + i) (b) (6+5i) (c) (5 + 3i) (d) 5 + 4i (e) Hiçbiri 2. (-3+7i)-(1-2i) işleminin sonucu nedir? (a) -4 + 5i (b) 2 + 5i (c) -4 + 9i

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

12. SINIF. Ağırlık (%) SAYILAR VE CEBİR ÜSTEL VE LOGARİTMİK FONKSİYONLAR Üstel Fonksiyon 1 8 4

12. SINIF. Ağırlık (%) SAYILAR VE CEBİR ÜSTEL VE LOGARİTMİK FONKSİYONLAR Üstel Fonksiyon 1 8 4 12. SINIF No Konular Kazanım Sayısı Ders Saati Ağırlık (%) 12.1. ÜSTEL VE LOGARİTMİK FONKSİYONLAR 6 36 17 12.1.1. Üstel Fonksiyon 1 8 4 12.1.2. Logaritma Fonksiyonu 3 18 8 12.1.3 Üstel, Logaritmik Denklemler

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

( ) 1. Alt kenarı bir konveks çokgenin iç açılarının toplamı aşağıdakilerden hangisine eşittir? 3. x in hangi aralıktaki değeri ( ) 2

( ) 1. Alt kenarı bir konveks çokgenin iç açılarının toplamı aşağıdakilerden hangisine eşittir? 3. x in hangi aralıktaki değeri ( ) 2 . lt kenarı bir konveks çokgenin iç açılarının toplamı aşağıdakilerden hangisine eşittir? ) 6 dik açı B) 4 dik açı C) 8 dik açı D) dik açı E ) dik açı Bir konveks çokgenin iç açıları toplamını veren bağıntı

Detaylı

İkinci Mertebeden Lineer Diferansiyel Denklemler

İkinci Mertebeden Lineer Diferansiyel Denklemler A(x)y + B(x)y + C(x)y = F (x) (5) Denklem (5) in sağ tarafında bulunan F (x) fonksiyonu, I aralığı üzerinde sıfıra özdeş ise, (5) denklemine lineer homogen; aksi taktirde lineer homogen olmayan denklem

Detaylı

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Uygulamaları ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Uygulamaları Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramı yardımı ile fonksiyonun monotonluğunu, ekstremum noktalarını, konvekslik ve konkavlığını, büküm

Detaylı

S4 u(x, y) = ln ( sin y. S5 u(x, y) = 2α 2 sec(α(x 4α 2 t)) fonksiyonunun

S4 u(x, y) = ln ( sin y. S5 u(x, y) = 2α 2 sec(α(x 4α 2 t)) fonksiyonunun Kısmi Türevli Denklemler Problem Seti-I S1 u = u(x, y ve a, b, c R olmak uzere, ξ = ax + by ve η = bx ay degisken degistirmesi yaparak n cozunuz. au x + bu y + cy = 0 S2 Aşa gidaki denklemleri Adi Diferensiyel

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

LYS Y OĞRU MTMTİK TSTİ LYS-. u testte Matematik ile ilgili soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a ve b asal

Detaylı

MAT MATEMATİK I DERSİ

MAT MATEMATİK I DERSİ MATEMATİK BÖLÜMÜ MAT 0 - MATEMATİK I DERSİ ÇALIŞMA SORULARI Bölüm : Fonksiyonlar. Tanım Kümesi ) f() = ln fonksiyonu verilsin. Tanım kümesini bulunuz. ((0, )\{}) Bölüm : Limit ve Süreklilik.. Limit L Hospital

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ 1. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için

Detaylı

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır? 017 LYS MATEMATİK DENEMESİ Soru Sayısı: 50 Sınav Süresi: 75 ı 1. 4. (1+ 5 ) 1+ 5 işleminin sonucu kaçtır? A) 5 B)3 5 C)+ 5 işleminin sonucu kaçtır? D)3+ 5 E)1+ 5 A) B) 1 C) 1 D) E) 3. 4 0,5.16 0,5 işleminin

Detaylı

11. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI

11. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI 11. SINIF MATEMATİK DERSİ İLERİ DÜZEY ÖĞRETİM PROGRAMI Programın öğrencilerde geliştirmeyi hedeflediği becerilerle 11. sınıf matematik öğretim programı ilişkisi Modelleme/Problem çözme Matematiksel Süreç

Detaylı

MAT MATEMATİK I DERSİ

MAT MATEMATİK I DERSİ MATEMATİK BÖLÜMÜ MAT 0 - MATEMATİK I DERSİ ÇALIŞMA SORULARI Bölüm : Fonksiyonlar. Tanım Kümesi ) f() = ln fonksiyonu verilsin. Tanım kümesini bulunuz. ((0, )\{}) Bölüm : Limit ve Süreklilik.. Limit L Hospital

Detaylı

LYS YE DOĞRU MATEMATİK TESTİ

LYS YE DOĞRU MATEMATİK TESTİ MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 50 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 75 dakikadır.. a, b ve c birer rakam

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 2. yapılırsa bu durumda θ ya z nin esas argümenti denir ve Argz ile gösterilir. argz = Argz + 2nπ, n Z

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 2. yapılırsa bu durumda θ ya z nin esas argümenti denir ve Argz ile gösterilir. argz = Argz + 2nπ, n Z MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 1.. Kutupsal Formda Gösterim z x + iy vektörünün pozitif reel eksenle yaptığı açıya θ diyelim. cos θ x, sin θ y ve buradan tan θ y θ arctan y olup θ ya z z

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 8- SAYISAL İNTEGRASYON 1 GİRİŞ Mühendislikte sık karşılaşılan matematiksel işlemlerden biri integral işlemidir. Bilindiği gibi integral bir büyüklüğün toplam değerinin bulunması

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Çözümlü Yüksek Matematik Problemleri. Yrd. Doç. Dr. Erhan Pişkin

Çözümlü Yüksek Matematik Problemleri. Yrd. Doç. Dr. Erhan Pişkin Çözümlü Yüksek Matematik Problemleri Yrd. Doç. Dr. Erhan Pişkin 1 Yrd. Doç. Dr. Erhan PİŞKİN ÇÖZÜMLÜ YÜKSEK MATEMATİK PROBLEMLERİ 1 ISBN 978-605-318-249-8 Kitap içeriğinin tüm sorumluluğu yazarına aittir.

Detaylı

LYS MATEMATİK DENEME - 1

LYS MATEMATİK DENEME - 1 LYS MATEMATİK DENEME - BU SORULAR FİNAL EĞİTİM KURUMLARI TARAFINDAN SAĞLANMIŞTIR. İZİNSİZ KOPYALANMASI VE ÇOĞALTILMASI YASAKTIR, YAPILDIĞI TAKDİRDE CEZAİ İŞLEM UYGULANACAKTIR. LYS MATEMATİK TESTİ. Bu testte

Detaylı

BÖLÜNMÜŞ FARKLAR (DİVİDED DİFFERENCES)

BÖLÜNMÜŞ FARKLAR (DİVİDED DİFFERENCES) BÖLÜNMÜŞ FARKLAR (DİVİDED DİFFERENCES) Lagrange ve Neville yöntemlerinin bazı olumsuz yanları vardır: İşlem sayısı çok fazladır (bazı başka yöntemlere kıyasla) Data setinde bir nokta ilavesi veya çıkartılması

Detaylı

İçindekiler 3. Türev... 3.1 Türev kavramı.. 001 3.2 Bir fonksiyonun bir noktadaki türevi. 003. Alıştırmalar 3 1...

İçindekiler 3. Türev... 3.1 Türev kavramı.. 001 3.2 Bir fonksiyonun bir noktadaki türevi. 003. Alıştırmalar 3 1... İçindekiler. Türev......... Türev kavramı.. 00. Bir fonksiyonun bir noktadaki türevi. 00. Alıştırmalar.... 005. Bir fonksiyonun bir noktadaki soldan ve sağdan türevi..... 006.4 Bir fonksiyonun bir noktadaki

Detaylı

Türev Uygulamaları. 4.1 Bağımlı Hız

Türev Uygulamaları. 4.1 Bağımlı Hız Bölüm 4 Türev Uygulamaları 4.1 Bağımlı Hız Eğer bir balonun içine hava pompalarsak, balonun hem yarıçapı hem de hacmi artar ve artış hızları birbirine bağımlıdır. Fakat, hacmin artış hızını doğrudan ölçmek

Detaylı

1. GRUPLAR grup 1) 2) 3) 1) 2) Tanım 1.3. değişmeli grup Abel grubu Tanım 1.4 değişmeli olmayan grup sonlu grup

1. GRUPLAR grup 1) 2) 3) 1) 2) Tanım 1.3. değişmeli grup Abel grubu Tanım 1.4 değişmeli olmayan grup sonlu grup 1. GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. ( G aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( bc) ( a b) c (Birleşme özelliği) sağlanır. ) 3) ag

Detaylı

Test 16. 1. Teorem: a R ve a 1 ise 1 1. 4. İddia: 5 = 3 tür. 2. Teorem: x Z ve. Kanıt: Varsayalım ki, 1 olsun. a 1

Test 16. 1. Teorem: a R ve a 1 ise 1 1. 4. İddia: 5 = 3 tür. 2. Teorem: x Z ve. Kanıt: Varsayalım ki, 1 olsun. a 1 Test 6. Teorem: a R ve a ise a dir. Kanıt: Varsayalım ki, olsun. a a olduğundan a 0 dır. Bu durumda, eşitsizliğin yönü değişmeden, a a olur. Demek ki, a a dir. Fakat bu durum a hipotezi ile çelişmektedir.

Detaylı

Taşkın, Çetin, Abdullayeva

Taşkın, Çetin, Abdullayeva BÖLÜM Taşkın, Çetin, Abdullaeva FONKSİYONLAR.. FONKSİYON KAVRAMI Tanım : A ve B boş olmaan iki küme a A ve b B olmak üzere ( ab, ) sıralı eleman çiftine sıralı ikili denir. ( ab, ) sıralı ikilisinde a

Detaylı

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x Çalışma Soruları. Aşağıdaki denklemleri çözünüz: 7x = 4x + b) x 7x = x 4 c) x 4 x + = 0. Aşağıdaki eşitsizliklerin çözüm kümelerini belirleyiniz ve aralıklar cinsinden ifade ediniz: 4x > 9 b) x 4 < - c)

Detaylı

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4.

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4. POLİNOMLAR I MATEMATİK. Aşağıdakilerden kaç tanesi polinomdur? I. ( ) P = + II. ( ) P = + III. ( ) + + P = + 6. ( ) ( ) ( ) P = a b a + b sabit polinom olduğuna göre ( ) ( ) ( ) P a +P b +P 0 toplamı kaçtır?

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

12-B. Polinomlar - 1 TEST. olduğuna göre P(x - 2, y + 4) polinomunun katsayılar toplamı kaçtır? olduğuna göre A B kaçtır? A) 78 B) 73 C) 62 D 58 E) 33

12-B. Polinomlar - 1 TEST. olduğuna göre P(x - 2, y + 4) polinomunun katsayılar toplamı kaçtır? olduğuna göre A B kaçtır? A) 78 B) 73 C) 62 D 58 E) 33 -B TEST Polinomlar -. Py _, i= y- y + 5y- olduğuna göre P( -, y + ) polinomunun katsayılar toplamı. - 6 = A - 5 + - + B - olduğuna göre A B 78 B) 7 6 D 58 E) B) D) - E) -. -a- b = _ + -5i_ -ci eşitliğine

Detaylı

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 22. LİSELERARASI MATEMATİK YARIŞMASI

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 22. LİSELERARASI MATEMATİK YARIŞMASI DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 22. LİSELERARASI MATEMATİK YARIŞMASI BİREYSEL YARIŞMA SORULARI CEVAPLARI CEVAP KAĞIDI ÜZERİNE YAZINIZ. SORU KİTAPÇIĞINI KARALAMA MAKSATLI KULLANABİLİRSİNİZ SORU-1.

Detaylı

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?

Örnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer

Detaylı

Halit Tansel Satan, Tolga TANIŞ, Simay AYDIN

Halit Tansel Satan, Tolga TANIŞ, Simay AYDIN YAYIN KURULU Hazırlayanlar Halit Tansel Satan, Tolga TANIŞ, Simay AYDIN YAYINA HAZIRLAYANLAR KURULU Kurumsal Yayınlar Yönetmeni Saime YILDIRIM Kurumsal Yayınlar Birimi Dizgi & Grafik Mustafa Burak SANK

Detaylı

Ders: Mat Konu: İntegral. 2. Aşağıdaki integralleri hesaplayın. (a) t 2 dt, 9r 2 dr, 1 r. (b)

Ders: Mat Konu: İntegral. 2. Aşağıdaki integralleri hesaplayın. (a) t 2 dt, 9r 2 dr, 1 r. (b) ÇALIŞMA SORULARI-3 Ders: Mat-3 Konu: İntegral. Aşağıdaki integralleri hesaplayın. (b) t t + t t dt, 9r dr, r 3 sin(t + ) cos (t + ) dt, 8 tan x sec x (d) ( + tan 3, x) cos θ θ sin θ dθ, (f) θ sin θ cos

Detaylı

SORULAR. 1. Aşa¼g daki limitleri bulunuz. Cevab n z n aşamalar n belirtiniz. lim. 1 n sin. lim. q 1 x 1+x

SORULAR. 1. Aşa¼g daki limitleri bulunuz. Cevab n z n aşamalar n belirtiniz. lim. 1 n sin. lim. q 1 x 1+x SOULA. Aşa¼g daki limitleri bulunuz. Cevab n z n aşamalar n belirtiniz. lim! lim sin(t )dt sin 4 np n! i= n sin i n. q + arcsin belirli integralini hesalay n z. Cevab n z n aşamalar n belirtiniz. 3. 4

Detaylı

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu

18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr

Detaylı

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır.

1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır. 1. GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir., ) cebirsel 1) a b cg,, için a( bc) ( ab) c (Birleşme özelliği)

Detaylı

Türev Kavramı ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Türev Kavramı ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Türev Kavramı Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 9 Amaçlar Bu üniteyi çalıştıktan sonra; türev kavramını anlayacak, türev alma kurallarını öğrenecek, türevin geometrik ve fiziksel anlamını kavrayacak,

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ YAZ OKULU DERS İÇERİGİ. Bölümü Dersin Kodu ve Adı T P K AKTS

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ YAZ OKULU DERS İÇERİGİ. Bölümü Dersin Kodu ve Adı T P K AKTS Bir Dönemde Okutulan Ders Saati MAT101 Genel I (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri) 1 Kümeler, reel sayılar, bir denklem veya eşitsizliğin grafiği 2 Fonksiyonlar,

Detaylı

CEVAP ANAHTARI POLİNOMLAR - 4 POLİNOMLAR - 2 POLİNOMLAR - 1 POLİNOMLAR - 3. b) zaferbalci.com. 2. zaferbalci.com

CEVAP ANAHTARI POLİNOMLAR - 4 POLİNOMLAR - 2 POLİNOMLAR - 1 POLİNOMLAR - 3. b) zaferbalci.com. 2. zaferbalci.com POLİNOMLAR POLİNOMLAR POLİNOMLAR POLİNOMLAR. zaferbalci.com. zaferbalci.com. zaferbalci.com.. zaferbalci.com.. zaferbalci.com. 99 +..,,,,,,,. x x. x 0.... zaferbalci.com. (x + ).Q(x) + 0. E. x +. 0. a)

Detaylı

LİMİT. lim f(x) = L yazılır. lim. lim x a dır. lim g( clim

LİMİT. lim f(x) = L yazılır. lim. lim x a dır. lim g( clim LİMİT I. TANIM:, a yakınındaki değerleri için tanımlı bir onksiyon olsun. Alınan ε> sayısına karşılık -L < ε olacak şekilde -a < δ koşulunu sağlayan δ > sayısı bulunabiliyorsa ;, a ya yaklaşırken, L ye

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

LOGARİTMA. Örnek 1: 2 x = 3 x = log 2 3. Örnek 2: 3 2x 1 = 2 2x 1 = log 3 2. Örnek 3: 4 x 1 = 7 x 1 = log 4 7. Örnek 4: 2 x = 3 2 x 2 = 3

LOGARİTMA. Örnek 1: 2 x = 3 x = log 2 3. Örnek 2: 3 2x 1 = 2 2x 1 = log 3 2. Örnek 3: 4 x 1 = 7 x 1 = log 4 7. Örnek 4: 2 x = 3 2 x 2 = 3 a x = b eşitliğinde a ve b belli iken x i bulmaya logaritma işlemi denir. Üstel fonksiyon bire bir ve örten olduğundan ters fonksiyonu vardır. Soru : f(x) = log x 4 5 fonksiyonunun tanım aralığını bulunuz?

Detaylı

TÜREV TANIMI TÜREV ALMA KURALLARI FEN LĠSESĠ ÖĞRETĠM PROGRAMINA GÖRE DERS ANLATIM FÖYÜ 1

TÜREV TANIMI TÜREV ALMA KURALLARI FEN LĠSESĠ ÖĞRETĠM PROGRAMINA GÖRE DERS ANLATIM FÖYÜ 1 TÜRE TNIMI TÜRE LM KURLLRI FEN LĠSESĠ ÖĞRETĠM PROGRMIN GÖRE DERS NLTIM FÖYÜ Ortalama Değişim Oranı Bu itte dönüşümü apılırsa olur. f(b) B d f() f(b) f(a) Bu durumda iken olur. Buna göre, f() fonksionunun

Detaylı