Ayhan Topçu Accepted: January ISSN : Ankara-Turkey

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Ayhan Topçu Accepted: January 2012. ISSN : 1308-7304 ayhan_topcu@hotmail.com 2010 www.newwsa.com Ankara-Turkey"

Transkript

1 ISSN: e-journal of New World Sciences Academy 212, Volume: 7, Number: 1, Aricle Number: 3A47 NWSA-PHYSICAL SCIENCES Received: December 211 Ayhan Toçu Acceed: January 212 Fahrein Arslan Series : 3A Ankara Universiy ISSN : Ankara-Turkey COX ORANTILI HAZARD MODELİNİN PARAMETRİK MODELLERLE KARŞILAŞTIRMASI- SİMULASYON ÇALIŞMASI ÖZET Çalışma ile sağkalım analizinde yaygın olarak kullanılan ve yarı aramerik bir model olan Cox Regresyon modeli için veri üreilmesi incelenmiş ve Üsel/Weibull aramerik modelleri ile karşılaşırma amacıyla sansürlü ve sansürsüz durumlar için simulasyonlar yaılmışır. Veri Üsel ya da Weibull dağılımından geldiğinde Cox modeli de uygulanabilir olmakadır. Paramerik model ahminlerinin Cox modelinden elde edilen ahminlere göre daha doğru olması beklenmekedir. Burada bir karşılaşırma yaılmasının sebebi aramerik modeller yerine Cox modeli ercih edildiğinde ne kadarlık bir kayı olduğunun görülebilmesidir. Anahar Kelimeler: Sağkalım Fonksiyonu, Hazard Fonksiyonu, Cox Oranılı Hazard Regresyon Modeli, Weibull Regresyon Modeli, Üsel Regresyon Modeli A COMPARATIVE SIMULATION STUDY BETWEEN COX PROPORTIONAL HAZARDS MODEL AND PARAMETRIC MODELS ABSTRACT In his sudy daa generaion for Cox Proorional Hazards model, a semi-arameric model commonly used in survival analysis, is invesigaed and a simulaion sudy is erformed in order o comare he arameric Exonenial - Weibull models and semi-arameric modelcox Model for censored and uncensored daa. Cox Model is alicable if daa is coming from Weibull or Exonenial disribuions. The esimaion resuls obained from arameric models are execed o be more accurae han he resuls of he Cox models. In his aer, i is aimed o see how much accuracy is los by choosing Cox roorional hazards model insead of arameric models. Keywords: Survival Funcion, Hazard Funcion, Cox Proorional Hazard Model, Weibull Regression Model, Exonenial Regression Model

2 NWSA-Physical Sciences, 3A47, 7, 1, GİRİŞ INTRODUCTION Sağkalım analizinde başarısızlık olarak adlandırılan bir olay hasalık-ölüm-bozulma-iflas oraya çıkana kadar geçen süre analiz edilir. Bu süre sağkalım yaşam süresi olarak adlandırılır. Sağkalım sürecini ekilediği düşünülen değişkenlere bağlı olarak sağkalım süresi modellenebilir. Bu modellemede eğer sağkalım sürelerinin dağılımı biliniyorsa aramerik modeller kullanılır. Dağılımın bilinmediği durumlarda 1972 yılında Cox arafından öne sürülen ve yarı aramerik bir yönem olan Cox regresyon modeli kullanılmakadır. Cox Oranılı Hazard modelinde hazard fonksiyonlarının zamana oranılı olduğu varsayılır. Yani hazard oranı zamana karşı sabi, ya da bir bireyin hazard fonksiyonunun diğer bireyin hazard fonksiyonuna oranılı olması ve yaşam süresinden bağımsız olması anlamına gelmekedir. Cox regresyon modeli sağkalım sürelerinin dağılımına ilişkin varsayım gerekirmediğinden sağkalım analizinde oldukça yaygın olarak kullanılmakadır. T rasgele değişkeni sağkalım süresini göseren ve f olasılık yoğunluk fonksiyonuna sahi bir rasgele değişken olmak üzere S PT f xdx 1.1 olasılığına sağkalım fonksiyonu denir Bireyin zamanına kadar sağ olduğu bilindiğinde den sonra sağkalma olasılığı. Hazard fonksiyonu zamanına kadar yaşadığı bilinen bir bireyin zamanındaki ani ölüm riskini gösermekedir. P T T h lim 1.2 şeklinde ifade edilir. P T,T h lim. 1 PT lim 29 P T 1. PT h f S d ln S 1.3 d olmakadır. Hazard fonksiyonu sağkalım analizinde dağılımı karakerize eden bir orandır. T rasgele değişkeninin sahi olduğu dağılıma göre hazard fonksiyonu farklı yaıdadır Lawless, anı için hesalanmış olan başarısızlık hızlarının birikimli fonksiyonu ise birikimli hazard foksiyonu olarak adlandırılır. H hu du 1.4 S ex H ex hudu 1.5 Cox Oranılı hazard modelinde hazard fonksiyonları, açıklayıcı değişkenler X ve sağkalım süresi nin bir fonksiyonu olarak her bir birey için aşağıdaki şekilde ifade edilir: h,x h gx 1.6

3 NWSA-Physical Sciences, 3A47, 7, 1, X den bağımsız, zamandan bağımsız nin bir fonksiyonu Burada h emel hazard fonksiyonu olarak adlandırılır. X X 1,X 2,...,X P açıklayıcı değişkenler, değişkenlerin kasayıları, gx ex i1 i X i 1, 2,..., P açıklayıcı, açıklayıcı değişkenlerin logarimik lineer formdaki fonksiyonudur. Model lineer regresyon modeli olarak logh,x logh gx logh loggx log h,x log h i X i 1 X 1 2 X 2... X 1.7 şeklinde yazabilir. gx i1 Modelde fonksiyonu üsel olduğundan hazard fonksiyonunun oziifliği garani edilmekedir. Ayrıca halinde hazard fonksiyonu; X 1 X 2... X olması h,x h ex h 1.8 olu emel hazard fonksiyonuna eşi olmakadır. Bir başka açıdan bakıldığında, model açıklayıcı değişkenlerin emel hazard fonksiyonunu çaran olarak ne ölçüde ekilediğini oraya koymayı amaçlamakadır. S ex hudu 1.9 olduğundan oranılı hazard modeli için sağkalım fonksiyonu S,X ex hu,xdu ex h o ugxdu 1.1 S,X ex h udu gx S gx 1.11 olmakadır. Modeldeki oranılı kavramı, bir bireye ai hazard ın diğer bir bireyin hazardına oranının den bağımsız olmasıdır. X * X 1 *,X 2 *,...,X * hazardların birbirine oranı; h, X h,x * i1 X X 1,X 2,...,X ve iki bireye ai açıklayıcı değişkenler olmak üzere h ex i X i i1 ex i X i X * i 1.12 h ex i X * i1 i olu, den bağımsız olmakadırmiller 1981:137. Modelin bir başka özelliği h emel hazard fonksiyonuna h nin ahmini gerekmeden modelin üsel ilişkin bir bilgi olmadan, kısmından arameresinin ahmin edilebilmesidir. h 3 Modelde dağılım bilinmemekedir, dolayısıyla emel hazard fonksiyonu için belirli bir form yokur. Bu özellik Cox modelini yarı - aramerik hale geirir Kleinbaum 1996: 95.

4 NWSA-Physical Sciences, 3A47, 7, 1, ÇALIŞMANIN ÖNEMİ RESEARCH SIGNIFICANCE Cox regresyon modeli için veri üreilmesi lineer regresyon modellerinden farklı olmakadır. Lineer regresyon modellerinde bağımlı değişken belli bir dağılımdan gelen haa erimleri ve regresyon kasayılarının belirlenmesi ile üreilebilirken Cox Modelinde regresyon kasayılarının hazard fonksiyonu üzerindeki ekisi sağkalım sürelerine yansıılacak şekilde sağkalım süreleri üreilmelidir. Bu çalışma oüler bir model olan Cox Oranılı Hazard Regresyon Modeli ve aramerik weibull ve üsel regresyon modelleri için sansürlü ve sansürsüz veri üreilmiş simulasyonlar yaılarak erformansları karşılaşırılmışır. Veri Üsel ya da Weibull dağılımından geldiğinde Cox modeli de uygulanabilir olmakadır. Paramerik model ahminlerinin Cox modelinden elde edilen ahminlere göre daha doğru olması beklenmekedir. Çalışma ile oldukça yaygın olarak kullanılan Cox Modelinin Weibull ve Üsel aramerik modeller karşısındaki ahmin erformansı incelenerek Cox modeli ercih edildiğinde ne kadarlık bir kayı olduğunun görülmesi amaçlanmışır. 3. METOT METHOD Bu bölümde Cox modelinin aramerik regresyon modelleri ile karşılaşırılması amacıyla simulasyonlar yaılmışır. Cox regresyon modeli için veri üreilmesi lineer regresyon modellerinden farklı olmakadır. Lineer regresyon modellerinde bağımlı değişken açıklayıcı değişkenlerle ve haa erimleri ile doğrudan ilişkili olduğundan, bağımlı değişken belli bir dağılımdan gelen haa erimleri ve regresyon kasayılarının belirlenmesi ile üreilebilir. Ancak Cox Modeli hazard fonksiyonu ile belirlendiğinden, sağkalım süreleri üreilirken, regresyon kasayılarının hazard fonksiyonu üzerindeki ekisi sağkalım sürelerine yansıılmalıdır Bender e al. 25:3. Sağkalım analizinde fonksiyonlar arası ilişkilerden; h f S d d log S 3.1 S ex hudu 3.2 S exh 3.3 elde edilir. 2.1 ile verilen Cox Modeli için sağkalım fonksiyonu, S,x ex h uexxdu S,x ex H exx olarak elde edilir. Cox modeli için dağılım fonksiyonu;

5 NWSA-Physical Sciences, 3A47, 7, 1, F,x 1 ex H exx olmakadır. Bir x rasgele değişkeninin dağılım fonksiyonu aralığında düzgün dağılıma sahi olduğundan, U 1 ex H exx ~ U,1 yazilabilmekedir. Buradan Cox modeli için sağkalım süresi T H 1 log1uexx olarak elde edilir. Bender e al. 25: Fx,, Bu durumda Cox modeli için Üsel dağılımdan gelen sağkalım sürelerinin üreilmesi aşağıdaki şekilde olacakır; f ex, 3.9 h 3.1 H d 3.11 H 1 T log1uexx, emel hazarda sahi Cox Modeli, h,x exx 3.14 şeklindedir. 4. BULGULAR FINDINGS Veri Üsel ya da Weibull dağılımından geldiğinde Cox modeli de uygulanabilir olmakadır. Paramerik model ahminlerinin Cox modelinden elde edilen ahminlere göre daha hassas olması beklenmekedir. Burada bir karşılaşırma yaılmasının sebebi aramerik modeller yerine Cox modeli ercih edildiğinde ne kadarlık bir kayı olduğunun görülebilmesidir. Yaılan simulasyonlar için R rogramı kullanılmış, rogram çıkıları eke verilmişir. Simulasyon hem sansürlü hemde sansürsüz durumlar için uygulanmışır. n=2, 5, 1 olarak seçilmiş, döngü sayısı 1./n olarak alınmışır. Sağkalım süreleri üsel dağılımdan üreilmişir. x ex2x, X 1/1: n, T~Üsel olarak alınmış, arameresi ahmin edilmiş, oralama ahminleri ve sandar samalar her iki model için sağlanmışır. Sonuçlar aşağıda sunulmakadır. 32 2

6 NWSA-Physical Sciences, 3A47, 7, 1, Tablo 1. Simulasyon sonuçları-sansürsüz durum -weibull-cox regresyon modelleri karşılaşırması Table 1. Simulaion resul-uncensored daa-weibull vs. cox regression models T~Üsel x ex2x β=2 X 1/1: n Weibull Regresyon Modeli Oralama ˆ Sandar Sama ˆ Cox Regresyon Modeli Oralama ˆ Sandar Sama n= n= n= ˆ Tablo 2. Simulasyon sonuçları-sansürlü durum -weibull-cox regresyon modelleri karşılaşırması Table 2. Simulaion resul-censored daa-weibull vs. cox regression models Y~Üsel Weibull Regresyon Modeli Cox Regresyon Modeli x ex2x 1 β=2 X 1/1: n Oralama ˆ Sandar Sama ˆ Oralama ˆ Sandar Sama ˆ n= n= n= Tablo 3. Simulasyon sonuçları-sansürsüz durum -üsel-cox regresyon modelleri karşılaşırması Table 3. Simulaion resul-uncensored daa-exonenial vs. cox regression models Y~Üsel Üsel Regresyon Modeli Cox Regresyon Modeli x ex2x 1 β=2 X 1/1: n Oralama ˆ Sandar Sama ˆ Oralama ˆ Sandar Sama ˆ n= n= n= Tablo 4. Simulasyon sonuçları-sansürlü durum -üsel-cox regresyon modelleri karşılaşırması Table 4. Simulaion resul-censored daa-exonenial vs. cox regression models Y~Üsel Üsel Regresyon Modeli Cox Regresyon Modeli x ex2x 1 β=2 X 1/1: n Oralama Sandar Sama ˆ ˆ Oralama ˆ Sandar Sama ˆ n= n= n=

7 NWSA-Physical Sciences, 3A47, 7, 1, SONUÇ RESULT ˆ oralamalarının neredeyse aynı olduğu, Sonuçlar incelendiğinde Weibull ve Üsel modellerin sandar samalarının Cox modeline göre biraz daha küçük olmakla beraber örneklem hacmi arıkça birbirine çok yaklaşığı görülmekedir. Verinin sansürlü yada sansürsüz olması sonçlar üzerinde bir farklılık yaramamışır. Sonuçlar her üç model uygulanabilir olduğunda Weibull ve Üsel aramerik modeller olmasına karşın yarı-aramerik bir model olan Cox modelinin de aramerik modellere oldukça yakın sonuçlar verdiğini gösermekedir. Bu durum aramerik modelleri uygulayama durumunda kullandığımız Cox Modelinin güvenilirliğini gösermekedir. KAYNAKLAR REFERENCES 1. Bender, R., Augusin, T., and Blener, M., 25. Generaing survival imes o simulae Cox roorional hazards models, Saisics in Medicine 24, Cox, D.R., Regression models and life-ables, Imerial College, London, Kleinbaum, D.G., Survival Analysis a Self Learning Tex. Sringer, New York. 4. Lawless, J.F., Saisical models and mehods for lifeime daa, Universiy of Waerloo, New Jersey. 5. Miller, R.G., Survival analysis, John Wiley& Sons. 34

8 NWSA-Physical Sciences, 3A47, 7, 1, EK APPENDIX R Program Çıkıları Weibull -Cox Karşılaşırması sansürsüz durum > Regresyon<-funcionn{ + x<-1/1:n#aciklayici degisken + u<-runifn,,1#normal dagilimdan ureilen veri + <--logu/ex2*x #usel dagilimdan gelen sagkalim sureleri +.model<-survregsurv,re1,lenghx~x,dis="weibull" + cox<-coxhsurv,re1,lenghx~x + reurncabs.model$coef[2],cox$coef > Simulasyon<-funcionn{ + sonuc<-marixna,nrow=2,ncol=1/n + fori in 1:1/n sonuc[,i]<-regresyonn + reurncmeansonuc[1,],meansonuc[2,],sdsonuc[1,],sdsonuc[2,] > Simulasyon2 [1] > Simulasyon5 [1] > Simulasyon1 [1] Üsel -Cox Karşılaşırması sansürsüz durum > Regresyon<-funcionn{ + x<-1/1:n#aciklayici degisken + u<-runifn,,1#normal dagilimdan ureilen veri + <--logu/ex2*x#usel dagilimdan gelen sagkalim sureleri +.model<-survregsurv,re1,lenghx~x,dis="exonenial" + cox<-coxhsurv,re1,lenghx~x + reurncabs.model$coef[2],cox$coef > Simulasyon<-funcionn{ + sonuc<-marixna,nrow=2,ncol=1/n + fori in 1:1/n sonuc[,i]<-regresyonn + reurncmeansonuc[1,],meansonuc[2,],sdsonuc[1,],sdsonuc[2,] > Simulasyon2 [1] > Simulasyon5 [1] > Simulasyon1 [1] Weibull -Cox Karşılaşırması sansürlü durum > Regresyon<-funcionn{ + x<-1/1:n#aciklayici degisken + u<-runifn,,1#normal dagilimdan ureilen veri + <--logu/ex2*x#usel dagilimdan gelen sagkalim sureleri + u2<-runifn,,1 #normal dagilimdan ureilen veri + c<--logu/ex2*x #usel dagilimdan gelen sagkalim sureleri + obs<-min,c #gozlemler + binary<-as.numeric<=c #sansur verisi +.model<-survregsurvobs,binary~x,dis="weibull" + cox<-coxhsurvobs,binary~x + reurncabs.model$coef[2],cox$coef > Simulasyon<-funcionn{ + sonuc<-marixna,nrow=2,ncol=1/n 35

9 NWSA-Physical Sciences, 3A47, 7, 1, fori in 1:1/n sonuc[,i]<-regresyonn + reurncmeansonuc[1,],meansonuc[2,],sdsonuc[1,],sdsonuc[2,] > Simulasyon2 [1] > Simulasyon5 [1] > Simulasyon1 [1] Üsel -Cox Karşılaşırması sansürlü durum > Regresyon<-funcionn{ + x<-1/1:n#aciklayici degisken + u<-runifn,,1#normal dagilimdan ureilen veri + <--logu/ex2*x#usel dagilimdan gelen sagkalim sureleri + u2<-runifn,,1 #normal dagilimdan ureilen veri + c<--logu/ex2*x #usel dagilimdan gelen sagkalim sureleri + obs<-min,c #gozlemler + binary<-as.numeric<=c #sansur verisi +.model<-survregsurvobs,binary~x,dis="exonenial" + cox<-coxhsurvobs,binary~x + reurncabs.model$coef[2],cox$coef > Simulasyon<-funcionn{ + sonuc<-marixna,nrow=2,ncol=1/n + fori in 1:1/n sonuc[,i]<-regresyonn + reurncmeansonuc[1,],meansonuc[2,],sdsonuc[1,],sdsonuc[2,] > Simulasyon2 [1] > Simulasyon5 [1] > Simulasyon1 [1]

İstatistikçiler Dergisi

İstatistikçiler Dergisi www.istatistikciler.org İstatistikçiler Dergisi (28) 6-22 İstatistikçiler Dergisi COX REGRESYON MODELİ VE AKCİĞER KANSERİ VERİLERİ İLE BİR UYGULAMA Durdu KARASOY Hacettepe Üniversitesi Fen Fakültesi İstatistik

Detaylı

BİRİM KÖK TESTLERİNDE YAPISAL KIRILMA ZAMANININ İÇSEL OLARAK BELİRLENMESİ PROBLEMİ: ALTERNATİF YAKLAŞIMLARIN PERFORMANSLARI

BİRİM KÖK TESTLERİNDE YAPISAL KIRILMA ZAMANININ İÇSEL OLARAK BELİRLENMESİ PROBLEMİ: ALTERNATİF YAKLAŞIMLARIN PERFORMANSLARI BİRİM KÖK TESTLERİNDE YAPISAL KIRILMA ZAMANININ İÇSEL OLARAK BELİRLENMESİ PROBLEMİ: ALTERNATİF YAKLAŞIMLARIN PERFORMANSLARI Arş. Gör. Furkan EMİRMAHMUTOĞLU Yrd. Doç. Dr. Nezir KÖSE Arş. Gör. Yeliz YALÇIN

Detaylı

Dolar Kurundaki Günlük Hareketler Üzerine Bazı Gözlemler

Dolar Kurundaki Günlük Hareketler Üzerine Bazı Gözlemler Dolar Kurundaki Günlük Harekeler Üzerine Bazı Gözlemler Türkiye Bankalar Birliği Ekonomi Çalışma Grubu Toplanısı 28 Nisan 2008, İsanbul Doç. Dr. Cevde Akçay Koç Finansal Hizmeler Baş ekonomis cevde.akcay@yapikredi.com.r

Detaylı

KONYA İLİ SICAKLIK VERİLERİNİN ÇİFTDOĞRUSAL ZAMAN SERİSİ MODELİ İLE MODELLENMESİ

KONYA İLİ SICAKLIK VERİLERİNİN ÇİFTDOĞRUSAL ZAMAN SERİSİ MODELİ İLE MODELLENMESİ KONYA İLİ SICAKLIK VERİLERİNİN ÇİFTDOĞRUSAL ZAMAN SERİSİ MODELİ İLE MODELLENMESİ İsmail KINACI 1, Aşır GENÇ 1, Galip OTURANÇ, Aydın KURNAZ, Şefik BİLİR 3 1 Selçuk Üniversiesi, Fen-Edebiya Fakülesi İsaisik

Detaylı

Çoklu Doğrusal Regresyon Modelinde Değişken Seçiminin Zootekniye Uygulanışı

Çoklu Doğrusal Regresyon Modelinde Değişken Seçiminin Zootekniye Uygulanışı Ç.Ü.Z.F. Dergisi, 2015, 30 (1) : 1 8 J.Agric. Fac. Ç.Ü., 2015, 30 (1) : 1-8 Çoklu Doğrusal Regresyon inde Değişken Seçiminin Zooekniye Uygulanışı G. Tamer KAYAALP (1) Melis ÇELİK GÜNEY (1) Zeynel CEBECİ

Detaylı

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar.

19.11.2013 EME 3105 SİSTEM SİMÜLASYONU. Sürekli Dağılımlar (2) Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar. 9..03 EME 305 SİSTEM SİMÜLASYONU Simulasyonda İstatistiksel Modeller-II Ders 5 Sürekli Rassal Değişkenlerin Modellemesinde Kullanılan Dağılımlar Sürekli Düzgün (Uniform) Dağılım Normal Dağılım Üstel (Exponential)

Detaylı

4) Seyrek rastlanılan bir hastalık için belli bir zaman araalığında bu hastalığa yakalananların sayısının gözlenmesi,

4) Seyrek rastlanılan bir hastalık için belli bir zaman araalığında bu hastalığa yakalananların sayısının gözlenmesi, POĐSSON DAĞILIMI Poisson Dağılımı sürekli oramlarda (zaman, alan, hacim, ) kesikli sonuçlar veren ve aşağıda a),b),c) şıklarında belirilen özelliklere sahip deneylerin modellenmesinde kullanılan bir dağılım

Detaylı

8.Ders(EK) Zaman Serileri Analizi

8.Ders(EK) Zaman Serileri Analizi 8.Ders(EK) Zaman Serileri Analizi SPSS Projec: Airline Passengers daa se is used for various analyses in his online raining workshop, which includes: Times series analysis [building ARIMA models] Proje:

Detaylı

Çift Üstel Düzeltme (Holt Metodu ile)

Çift Üstel Düzeltme (Holt Metodu ile) Tahmin Yönemleri Çif Üsel Düzelme (Hol Meodu ile) Hol meodu, zaman serilerinin, doğrusal rend ile izlenmesi için asarlanmış bir yönemdir. Yönem (seri için) ve (rend için) olmak üzere iki düzelme kasayısının

Detaylı

-ENFLASYON ROBUST ESTIMATION OF THE VECTOR AUTOREGRESSIVE MODEL: AN INVESTIGATION OF THE RELATIONSHIP BETWEEN ECONOMIC GROWTH AND INFLATION

-ENFLASYON ROBUST ESTIMATION OF THE VECTOR AUTOREGRESSIVE MODEL: AN INVESTIGATION OF THE RELATIONSHIP BETWEEN ECONOMIC GROWTH AND INFLATION Marmara Üniversiesi YIL 2010, SAYI II, S. 539-553 -ENFLASYON Öze Özlem YORULMAZ * ** - Anahar Kelimeler: ROBUST ESTIMATION OF THE VECTOR AUTOREGRESSIVE MODEL: AN INVESTIGATION OF THE RELATIONSHIP BETWEEN

Detaylı

Mevsimsel Kointegrasyon Analizi: Güney Afrika Örneği. Seasonal Cointegration Analysis: Example of South Africa

Mevsimsel Kointegrasyon Analizi: Güney Afrika Örneği. Seasonal Cointegration Analysis: Example of South Africa Gazi Üniversiesi Sosyal Bilimler Dergisi Vol/Cil 3, No/Sayı 6, 216 Mevsimsel Koinegrasyon Analizi Güney Afrika Örneği Jeanine NDIHOKUBWAYO Yılmaz AKDİ Öze Bu çalışmada 1991-2134 dönemi Güney Afrika ekonomik

Detaylı

Türkiye nin Kabuklu Fındık Üretiminde Üretim-Fiyat İlişkisinin Koyck Yaklaşımı İle Analizi

Türkiye nin Kabuklu Fındık Üretiminde Üretim-Fiyat İlişkisinin Koyck Yaklaşımı İle Analizi TÜRK TARIM ve DOĞA BİLİMLERİ DERGİSİ TURKISH JOURNAL of AGRICULTURAL and NATURAL SCIENCES www.urkjans.com Türkiye nin Kabuklu Fındık Üreiminde Üreim-Fiya İlişkisinin Koyck Yaklaşımı İle Analizi Şenol ÇELİK*

Detaylı

Rassal Değişken Üretimi

Rassal Değişken Üretimi Rassal Değişken Üretimi Doç. Dr. Mehmet AKSARAYLI GİRİŞ Yaşadığımız ya da karşılaştığımız olayların sonuçları farlılık göstermektedir. Sonuçları farklılık gösteren bu olaylar, tesadüfü olaylar olarak adlandırılır.

Detaylı

Bölüm 3 HAREKETLİ ORTALAMALAR VE DÜZLEŞTİRME YÖNTEMLERİ

Bölüm 3 HAREKETLİ ORTALAMALAR VE DÜZLEŞTİRME YÖNTEMLERİ Bölüm HAREKETLİ ORTALAMALAR VE DÜZLEŞTİRME ÖNTEMLERİ Bu bölümde üç basi öngörü yönemi incelenecekir. 1) Naive, 2)Oralama )Düzleşirme Geçmiş Dönemler Şu An Gelecek Dönemler * - -2-1 +1 +2 + Öngörü yönemi

Detaylı

Orantısız hazardlar için parametrik ve yarı parametrik yaşam modelleri

Orantısız hazardlar için parametrik ve yarı parametrik yaşam modelleri www.istatistikciler.org İstatistikçiler Dergisi (008) 5-34 İstatistikçiler Dergisi Orantısız hazardlar için arametrik ve yarı arametrik yaşam modelleri Nihal Ata Hacettee Üniversitesi, Fen Fakültesi, İstatistik

Detaylı

Yaşam çözümlemesinde zamana bağlı açıklayıcı değişkenli Cox regresyon modeli Cox regression model with time dependent covariate in survival anaysis

Yaşam çözümlemesinde zamana bağlı açıklayıcı değişkenli Cox regresyon modeli Cox regression model with time dependent covariate in survival anaysis TEMEL BİLİMLER / BASIC SCIENCES Araştırma Yazısı / Original Article Ankara Üniversitesi Tıp Fakültesi Mecmuası 2005; 58:153-158 Yaşam çözümlemesinde zamana bağlı açıklayıcı değişkenli Cox regresyon modeli

Detaylı

A Study on the Estimation of Supply Response of Cotton in Cukurova Region

A Study on the Estimation of Supply Response of Cotton in Cukurova Region MPRA Munich Personal RePEc Archive A Sudy on he Esimaion of Suly Resonse of Coon in Cukurova Region Erkan Akas Faculy of Economics & Admin.Sciences a BIGA 2006 Online a h://mra.ub.uni-muenchen.de/8648/

Detaylı

DEĞİŞKENLER ARASINDAKİ GECİKMELİ İLİŞKİLER: Dağıtılmış Gecikme ve Otoregresiv Modeller

DEĞİŞKENLER ARASINDAKİ GECİKMELİ İLİŞKİLER: Dağıtılmış Gecikme ve Otoregresiv Modeller DEĞİŞKENLER ARASINDAKİ GECİKMELİ İLİŞKİLER: Dağıılmış Gecikme ve Ooregresiv Modeller 1 Zaman serisi modellerinde, bağımlı değişken Y nin zamanındaki değerleri, bağımsız X değişkenlerinin zamanındaki cari

Detaylı

KIRMIZI IŞIK KURAL İHLALİ NEDENİ İLE MEYDANA GELEN TRAFİK KAZALARININ DEĞERLENDİRİLMESİ

KIRMIZI IŞIK KURAL İHLALİ NEDENİ İLE MEYDANA GELEN TRAFİK KAZALARININ DEĞERLENDİRİLMESİ KIRMIZI IŞIK KURAL İHLALİ NEDENİ İLE MEYDANA GELEN TRAFİK KAZALARININ DEĞERLENDİRİLMESİ ÖZET Filiz KARDİYEN (*), Gökhan KAYGİSİZ (**) Yaşam sürdürme analizi, tanımlanan bir olayın belirli bir başlangıç

Detaylı

Türkiye de Kırmızı Et Üretiminin Box-Jenkins Yöntemiyle Modellenmesi ve Üretim Projeksiyonu

Türkiye de Kırmızı Et Üretiminin Box-Jenkins Yöntemiyle Modellenmesi ve Üretim Projeksiyonu Hayvansal Üreim 53(): 3-39, 01 Araşırma Türkiye de Kırmızı E Üreiminin Box-Jenkins Yönemiyle Modellenmesi ve Üreim Projeksiyonu Şenol Çelik Ankara Üniversiesi Fen Bilimleri Ensiüsü Zooekni Anabilim Dalı

Detaylı

Sigortacılık sektöründe yaşam çözümlemesi: Birikimli hayat sigortaları ile ilgili bir uygulama

Sigortacılık sektöründe yaşam çözümlemesi: Birikimli hayat sigortaları ile ilgili bir uygulama www.istatistikciler.org İstatistikçiler Dergisi 2 (2008) 80-87 İstatistikçiler Dergisi Sigortacılık sektöründe yaşam çözümlemesi: Birikimli hayat sigortaları ile ilgili bir uygulama Uğur Karabey Hacettepe

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ZAMAN SERİSİ MODELLERİ ÜZERİNE BİR SİMÜLASYON ÇALIŞMASI

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ZAMAN SERİSİ MODELLERİ ÜZERİNE BİR SİMÜLASYON ÇALIŞMASI T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ZAMAN SERİSİ MODELLERİ ÜZERİNE BİR SİMÜLASYON ÇALIŞMASI Tufan ÖZEK YÜKSEK LİSANS TEZİ İSTATİSTİK ANABİLİM DALI Konya, T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ

Detaylı

12. Ders Sistem-Model-Simülasyon Güvenilirlik Analizi ve Sistem Güvenilirliği

12. Ders Sistem-Model-Simülasyon Güvenilirlik Analizi ve Sistem Güvenilirliği . Ders Sisem-Model-Simülasyon Güvenilirlik Analizi ve Sisem Güvenilirliği Sisem-Model-Simülasyon Kaynak:F.Özürk ve L. Özbek,, Maemaiksel Modelleme ve Simülasyon, sayfa -9. Aklımız ile gerçek dünyadaki

Detaylı

YAPAY SİNİR AĞLARI İLE TÜRKİYE ELEKTRİK ENERJİSİ TÜKETİMİNİN 2010 YILINA KADAR TAHMİNİ

YAPAY SİNİR AĞLARI İLE TÜRKİYE ELEKTRİK ENERJİSİ TÜKETİMİNİN 2010 YILINA KADAR TAHMİNİ Gazi Üniv. Müh. Mim. Fak. Der. J. Fac. Eng. Arch. Gazi Univ. Cil 19, No 3, 7-33, 004 Vol 19, No 3, 7-33, 004 YAPAY SİNİR AĞLARI İLE TÜRKİYE ELEKTRİK ENERJİSİ TÜKETİMİNİN 010 INA KADAR TAHMİNİ Coşkun HAMZAÇEBİ

Detaylı

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır.

K-S Testi hipotezde ileri sürülen dağılımla örnek yığılmalı dağılım fonksiyonunun karşılaştırılması ile yapılır. İstatistiksel güven aralıkları uygulamalarında normallik (normal dağılıma uygunluk) oldukça önemlidir. Kullanılan parametrik istatistiksel tekniklerin geçerli olabilmesi için populasyon şans değişkeninin

Detaylı

MEH535 Örüntü Tanıma

MEH535 Örüntü Tanıma MEH535 Örünü Tanıma 4. Paramerik Sınıflandırma Doç.Dr. M. Kemal GÜLLÜ Elekronik ve Haberleşme Mühendisliği Bölümü web: hp://akademikpersonel.kocaeli.edu.r/kemalg/ E-posa: kemalg@kocaeli.edu.r Paramerik

Detaylı

Simülasyonda İstatiksel Modeller

Simülasyonda İstatiksel Modeller Simülasyonda İstatiksel Modeller Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri iyi tanımlayabilir. İlgilenilen olayın örneklenmesi ile uygun

Detaylı

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ SORU : Ortalaması, varyansı olan bir raslantı değişkeninin, k ile k arasında değer alması olasılığının en az 0,96 olmasını sağlayacak en küçük k değeri aşağıdakilerden hangisidir? A),5 B) C) 3,75 D) 5

Detaylı

Simülasyonda İstatiksel Modeller. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Simülasyonda İstatiksel Modeller. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Simülasyonda İstatiksel Modeller Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Amaç Model-geliştirici dünyaya deterministik değil olasıksal olarak bakar. İstatiksel modeller değişimleri

Detaylı

eyd Ekonomik Yaklaşım Derneği / Association

eyd Ekonomik Yaklaşım Derneği / Association eyd Ekonomik Yaklaşım Derneği / Associaion Ekonomik Yaklaşım 016, 7(99): 1-15 www.ekonomikyaklasim.org doi: 10.5455/ey.35908 BIST-100 Endeksinin Volail Davranışlarının Simerik Ve Asimerik Sokasik Volailie

Detaylı

IE 303T Sistem Benzetimi

IE 303T Sistem Benzetimi IE 303T Sistem Benzetimi 1 L E C T U R E 5 : O L A S I L I K T E K R A R 2 Review of the Last Lecture Random Variables Beklenen Değer ve Varyans Moment Kesikli Dağılımlar Bernoulli Dağılımı Binom Dağılımı

Detaylı

Yaşam çözümlemesinde cox orantılı tehlikeler ve orantılı odds modelleri

Yaşam çözümlemesinde cox orantılı tehlikeler ve orantılı odds modelleri www.istatistikciler.org İstatistikçiler Dergisi: İstatistik&Aktüerya 6 (2013) 70-78 İstatistikçiler Dergisi: İstatistik&Aktüerya Yaşam çözümlemesinde cox orantılı tehlikeler ve orantılı odds modelleri

Detaylı

LOGİSTİC DAĞILIM VE RANDOM SAYI ÜRETİMİ

LOGİSTİC DAĞILIM VE RANDOM SAYI ÜRETİMİ C.Ü. İktisadi ve İdari Bilimler Dergisi, Cilt 3, Sayı, 9 LOGİSTİC DAĞILIM VE RANDOM SAYI ÜRETİMİ Yalçın KARAGÖZ Cumhuriyet Üniversitesi, İ.İ.B.F. İşletme Bölümü Özet Bu çalışmada logistic dağılım hakkında

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

Yaflam Analizinde Cox Regresyon Modeli ve Art klar n ncelenmesi

Yaflam Analizinde Cox Regresyon Modeli ve Art klar n ncelenmesi Cerrahpafla T p Dergisi 2007; 38: 39-45 ISSN:300-5227 ARAfiTIRMA Yaflam Analizinde Cox Regresyon Modeli ve Art klar n ncelenmesi Meral YAY, Elif ÇOKER, Ömer UYSAL 3 Mimar Sinan Güzel Sanatlar Üniversitesi

Detaylı

ISSN : 1308-7290 varolebru@gmail.com 2010 www.newwsa.com Nigde-Turkey

ISSN : 1308-7290 varolebru@gmail.com 2010 www.newwsa.com Nigde-Turkey ISSN:1306-3111 e-journal of New World Sciences Academy 2011, Volume: 6, Number: 2, Article Number:D0061 FINE ARTS Received: November 2010 Accepted: February 2011 Ebru Temiz Series : D Nigde University

Detaylı

ĐST 474 Bayesci Đstatistik

ĐST 474 Bayesci Đstatistik ĐST 474 Bayesci Đstatistik Ders Sorumlusu: Dr. Haydar Demirhan haydarde@hacettepe.edu.tr Đnternet Sitesi: http://yunus.hacettepe.edu.tr/~haydarde Đçerik: Olasılık kuramının temel kavramları Bazı özel olasılık

Detaylı

Matematik Ders Notları. Doç. Dr. Murat Donduran

Matematik Ders Notları. Doç. Dr. Murat Donduran Matematik Ders Notları Doç. Dr. Murat Donduran Mart 18, 28 2 İçindekiler 1 Tanımlı Integral Uygulamaları 5 1.1 Olasılık.............................. 5 3 4 İÇINDEKILER Bölüm 1 Tanımlı Integral Uygulamaları

Detaylı

BANKA KREDİ PORTFÖYLERİNİN YÖNETİMİNDE ÖDEMEME RİSKİ ANALİZİ: KALMAN FİLTRESİNE DAYANAN ALTERNATİF BİR YÖNTEM ÖNERİSİ

BANKA KREDİ PORTFÖYLERİNİN YÖNETİMİNDE ÖDEMEME RİSKİ ANALİZİ: KALMAN FİLTRESİNE DAYANAN ALTERNATİF BİR YÖNTEM ÖNERİSİ BANKA KREDİ PORTFÖLERİNİN ÖNETİMİNDE ÖDEMEME RİSKİ ANALİZİ: KALMAN FİLTRESİNE DAANAN ALTERNATİF BİR ÖNTEM ÖNERİSİ K. Bau TUNA * ÖZ Ödememe riski banka kredilerini ve bankaların kredi porföylerini ekiler.

Detaylı

SAĞKALIM ANALİZİNDE KANTİL REGRESYON VE PARAMETRİK REGRESYON MODELLERİNİN PERFORMANSLARININ KARŞILAŞTIRILMASI

SAĞKALIM ANALİZİNDE KANTİL REGRESYON VE PARAMETRİK REGRESYON MODELLERİNİN PERFORMANSLARININ KARŞILAŞTIRILMASI T.C. ADNAN MENDERES ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ BİYOİSTATİSTİK ANABİLİM DALI BİS-YL-2015-0002 SAĞKALIM ANALİZİNDE KANTİL REGRESYON VE PARAMETRİK REGRESYON MODELLERİNİN PERFORMANSLARININ KARŞILAŞTIRILMASI

Detaylı

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir.

Y = f(x) denklemi ile verilen fonksiyonun diferansiyeli dy = f '(x). dx tir. 1 İNTEGRAL BİR FONKSİYONUN DİFERANSİYELİ Tanım: f: [a,b] R, x f(x) fonksiyonu (a,b) aralığında türevli olmak üzere, x değişkeninin değişme miktarı x ise f '(x). x ifadesine f(x) fonksiyonunun diferansiyeli

Detaylı

WEIBULL DAĞILIMI WEIBULL DAĞILIMI ANADOLU ÜNİVERSİTESİ

WEIBULL DAĞILIMI WEIBULL DAĞILIMI ANADOLU ÜNİVERSİTESİ ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ SÜREKLİ DAĞILIMLAR-2 DOÇ. DR. NİHAL ERGİNEL 2015 WEIBULL DAĞILIMI Weibull dağılımı, pek çok farklı sistemlerin bozulana kadar geçen süreleri ile ilgilenir. Dağılımın

Detaylı

Table 1. Reservoir/Well/Fluid Data Reservoir Thickness, h, Well radius, r w,, 0.328 ft Fluid viscosity, μ, 0.8 cp Formation volume factor, B o,

Table 1. Reservoir/Well/Fluid Data Reservoir Thickness, h, Well radius, r w,, 0.328 ft Fluid viscosity, μ, 0.8 cp Formation volume factor, B o, M. Onur 10.04.2008 PET467E-Analysis of Well Pressure Tess 2008 Spring/İTÜ HW No. 6/SOLUTIONS Due dae: 17.04.2008 Subjec: Analysis of a drawdown es for reservoir limi esing. Table 1 presens relevan daa

Detaylı

SAĞKALIM ANALİZ YÖNTEMLERİ VE KARACİĞER NAKLİ VERİLERİ İLE BİR UYGULAMA

SAĞKALIM ANALİZ YÖNTEMLERİ VE KARACİĞER NAKLİ VERİLERİ İLE BİR UYGULAMA T.C. İNÖNÜ ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ SAĞKALIM ANALİZ YÖNTEMLERİ VE KARACİĞER NAKLİ VERİLERİ İLE BİR UYGULAMA YÜKSEK LİSANS TEZİ Feyza İNCEOĞLU BİYOİSTATİSTİK VE TIP BİLİŞİMİ ANABİLİMDALI

Detaylı

İMKB 100 endeksindeki kaldıraç etkisinin ARCH modelleriyle iki alt dönemde incelenmesi

İMKB 100 endeksindeki kaldıraç etkisinin ARCH modelleriyle iki alt dönemde incelenmesi İsanbul Üniversiesi İşleme Fakülesi Dergisi Isanbul Universiy Journal of he School of Business Adminisraion Cil/Vol:41, Sayı/No:, 1, 14-6 ISSN: 133-173 www.ifdergisi.org 1 İMKB 1 endeksindeki kaldıraç

Detaylı

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI SORU- 1 : ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI X ve Y birbirinden bağımsız iki rasgele değişken olmak üzere, sırasıyla aşağıdaki moment çıkaran fonksiyonlarına sahiptir: 2 2 M () t = e,

Detaylı

TÜRKİYE NÜFUSU İÇİN STOKASTİK ÖLÜMLÜLÜK MODELLERİ

TÜRKİYE NÜFUSU İÇİN STOKASTİK ÖLÜMLÜLÜK MODELLERİ Nüfusbilim Dergisi\Turkish Journal of Populaion Sudies, 2012, 34, 31-50 31 TÜRKİYE NÜFUSU İÇİN STOKASTİK ÖLÜMLÜLÜK MODELLERİ Ölümlülük ahminleri, demografi ve aküerya bilimlerinde önemli bir rol oynamakadır.

Detaylı

YAYINLAR VE ATIFLAR. I. SCI Expanded Makaleler: II. Diğer Uluslararası Makaleler:

YAYINLAR VE ATIFLAR. I. SCI Expanded Makaleler: II. Diğer Uluslararası Makaleler: YAYINLAR VE ATIFLAR I. SCI Expanded Makaleler: I.1. ALAKUŞ, K. (2010). Confidence intervals estimation for survival function in Weibull proportional hazards regression based on censored survival time data.

Detaylı

Box-Jenkıns Modelleri ile Aylık Döviz Kuru Tahmini Üzerine Bir Uygulama

Box-Jenkıns Modelleri ile Aylık Döviz Kuru Tahmini Üzerine Bir Uygulama Kocaeli Üniversiesi Sosyal Bilimler Ensiüsü Dergisi (6) 2003 / 2 : 49-62 Box-Jenkıns Modelleri ile Aylık Döviz Kuru Tahmini Üzerine Bir Uygulama Hüdaverdi Bircan * Yalçın Karagöz ** Öze: Bu çalışmada geleceği

Detaylı

Markov Zinciri Monte Carlo Yaklaşımı. Aktüeryal Uygulamaları

Markov Zinciri Monte Carlo Yaklaşımı. Aktüeryal Uygulamaları Markov Zinciri Monte Carlo Yaklaşımı ve Aktüeryal Uygulamaları ŞİRZAT ÇETİNKAYA Aktüer Sistem Araştırma Geliştirme Bölümü AKTÜERLER DERNEĞİ 2.0.20080 2008 - İSTANBUL Sunum Planı. Giriş 2. Bayesci Metodun

Detaylı

GRUP ARDIŞIK TEST YÖNTEMLERİ İLE SAĞKALIM ANALİZİNDE ÖRNEKLEM HACMİNİN BELİRLENMESİ. Afyonkarahisar. Samsun

GRUP ARDIŞIK TEST YÖNTEMLERİ İLE SAĞKALIM ANALİZİNDE ÖRNEKLEM HACMİNİN BELİRLENMESİ. Afyonkarahisar. Samsun Afyon Kocatepe Üniversitesi 8(1) Afyon Kocatepe University FEN BİLİMLERİ DERGİSİ JOURNAL OF SCIENCE GRUP ARDIŞIK TEST YÖNTEMLERİ İLE SAĞKALIM ANALİZİNDE ÖRNEKLEM HACMİNİN BELİRLENMESİ Yüksel Terzi 1, Naci

Detaylı

Teknolojik bir değişiklik veya üretim arttırıcı bir yatırımın sonucunda ihracatta, üretim miktarında vs. önemli artışlar olabilir.

Teknolojik bir değişiklik veya üretim arttırıcı bir yatırımın sonucunda ihracatta, üretim miktarında vs. önemli artışlar olabilir. YAPISAL DEĞİŞİKLİK Zaman serileri bazı nedenler veya bazı fakörler arafından ekilenerek zaman içinde değişikliklere uğrayabilirler. Bu değişim ikisadi kriz, ikisa poliikalarında yapılan değişiklik, eknolojik

Detaylı

FORECASTING TOURISM DEMAND BY ARTIFICIAL NEURAL NETWORKS AND TIME SERIES METHODS: A COMPARATIVE ANALYSIS IN INBOUND TOURISM DEMAND TO ANTALYA

FORECASTING TOURISM DEMAND BY ARTIFICIAL NEURAL NETWORKS AND TIME SERIES METHODS: A COMPARATIVE ANALYSIS IN INBOUND TOURISM DEMAND TO ANTALYA Süleyman Demirel Üniversiesi İkisadi ve İdari Bilimler Fakülesi Dergisi Y.2009, C.14, S.1 s.99-114. Suleyman Demirel Universiy The Journal of Faculy of Economics and Adminisraive Sciences Y.2009, Vol.14,

Detaylı

EKONOMÝK GÖSTERGELERÝN VE DIÞ ORTAM SICAKLIÐININ ETKÝLERÝ

EKONOMÝK GÖSTERGELERÝN VE DIÞ ORTAM SICAKLIÐININ ETKÝLERÝ ESKÝÞEHÝR DE KONUTSAL DOÐAL GAZ TALEBÝNE EKONOMÝK GÖSTERGELERÝN VE DIÞ ORTAM SICAKLIÐININ ETKÝLERÝ Haydar ARAS * Nil ARAS ** Bu makalede, konularda kullanýlan doðal gazýn ýsýma dönemine ai aylardaki ükeiminin

Detaylı

Yaşam Sürdürme Analizinde Gamma Kırılganlık Modelleri. Gamma Frailty Models in Survival Analysis

Yaşam Sürdürme Analizinde Gamma Kırılganlık Modelleri. Gamma Frailty Models in Survival Analysis Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi Cilt **, Sayı *, **-**, 2** Süleyman Demirel University Journal of Natural and Applied Sciences Volume **, Issue *, **-**, 2** Yaşam Sürdürme

Detaylı

YABANCI ZİYARETÇİ SAYISININ TAHMİNİNDE BOX- JENKINS MODELİ, WINTERS YÖNTEMİ VE YAPAY SİNİR AĞLARIYLA ZAMAN SERİSİ ANALİZİ

YABANCI ZİYARETÇİ SAYISININ TAHMİNİNDE BOX- JENKINS MODELİ, WINTERS YÖNTEMİ VE YAPAY SİNİR AĞLARIYLA ZAMAN SERİSİ ANALİZİ YABANCI ZİYARETÇİ SAYISININ TAHMİNİNDE BOX- JENKINS MODELİ, WINTERS YÖNTEMİ VE YAPAY SİNİR AĞLARIYLA ZAMAN SERİSİ ANALİZİ 62 Arş. Grv. Emrah ÖNDER İsanbul Üniversiesi İşleme Fakülesi Arş. Grv. Özlem HASGÜL

Detaylı

Türkiye de İktisadi Çıkarsama Üzerine Bir Açımlama: Sürprizler Gerçekten Kaçınılmaz mı?

Türkiye de İktisadi Çıkarsama Üzerine Bir Açımlama: Sürprizler Gerçekten Kaçınılmaz mı? Türkiye de İkisadi Çıkarsama Üzerine Bir Açımlama: Sürrizler Gerçeken Kaçınılmaz mı? Hazırlayan ve Sunan: Eren Ocakverdi* eren.ocakverdi@yaikredi.com.r Boğaziçi Üniversiesi Finans Mühendisliği 26 Ekim

Detaylı

İSTANBUL MENKUL KIYMETLER BORSASINDA DEĞİŞKENLİĞİN (VOLATİLİTENİN) ARCH-GARCH YÖNTEMLERİ İLE MODELLENMESİ

İSTANBUL MENKUL KIYMETLER BORSASINDA DEĞİŞKENLİĞİN (VOLATİLİTENİN) ARCH-GARCH YÖNTEMLERİ İLE MODELLENMESİ İSTANBUL MENKUL KIYMETLER BORSASINDA DEĞİŞKENLİĞİN (VOLATİLİTENİN) ARCH- YÖNTEMLERİ İLE MODELLENMESİ ÖZET Yard.Doç. Dr. Tülin ATAKAN İsanbul Üniversiesi, İşleme Fakülesi, Finans Anabilim Dalı Bu çalışmada,

Detaylı

FİNANSAL RİSK ANALİZİNDE KARMA DAĞILIM MODELİ YAKLAŞIMI * Mixture Distribution Approach in Financial Risk Analysis

FİNANSAL RİSK ANALİZİNDE KARMA DAĞILIM MODELİ YAKLAŞIMI * Mixture Distribution Approach in Financial Risk Analysis FİNANSAL RİSK ANALİZİNDE KARMA DAĞILIM MODELİ YAKLAŞIMI * Mixture Distribution Approach in Financial Risk Analysis Keziban KOÇAK İstatistik Anabilim Dalı Deniz ÜNAL İstatistik Anabilim Dalı ÖZET Son yıllarda

Detaylı

White ın Heteroskedisite Tutarlı Kovaryans Matrisi Tahmini Yoluyla Heteroskedasite Altında Model Tahmini

White ın Heteroskedisite Tutarlı Kovaryans Matrisi Tahmini Yoluyla Heteroskedasite Altında Model Tahmini Ekonomeri ve İsaisik Sayı:4 006-1-8 İSTANBUL ÜNİVERSİTESİ İKTİSAT FAKÜLTESİ EKONOMETRİ VE İSTATİSTİK DERGİSİ Whie ın Heeroskedisie Tuarlı Kovaryans Marisi Tahmini Yoluyla Heeroskedasie Alında Model Tahmini

Detaylı

Mide Kanseri Hastalarına İlişkin Verilerle Bir Uygulama

Mide Kanseri Hastalarına İlişkin Verilerle Bir Uygulama Çankaya University Journal of Science and Engineering Volume 8 (2011), No. 2, 225 235 Sağkalım Çözümlemesi için Zayıflık Modeli ve Mide Kanseri Hastalarına İlişkin Verilerle Bir Uygulama Nihal Ata 1, ve

Detaylı

AYÇİÇEK VE SOYA YAĞI İTHALAT TALEBİNİN ANALİZİ

AYÇİÇEK VE SOYA YAĞI İTHALAT TALEBİNİN ANALİZİ AKDENİZ ÜNİVERSİTESİ ZİRAAT FAKÜLTESİ DERGİSİ,, 15(),71-79 AYÇİÇEK VE SOYA YAĞI İTHALAT TALEBİNİN ANALİZİ Selim Adem HATIRLI Vecdi DEMİRCAN Ali Rıza AKTAŞ Süleyman Demirel Üniversiesi Ziraa Fakülesi Tarım

Detaylı

Zaman Serisi Modelleri: Birim Kök Testleri, Eşbütünleşme, Hata Düzeltme Modelleri

Zaman Serisi Modelleri: Birim Kök Testleri, Eşbütünleşme, Hata Düzeltme Modelleri Yıldız Teknik Üniversiesi İkisa Bölümü Ekonomeri II Ders Noları Ders Kiabı: J.M. Wooldridge, InroducoryEconomericsA Modern Approach, 2nd. ed., 2002, Thomson Learning. Zaman Serisi Modelleri: Birim Kök

Detaylı

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Sıra İstatistikleri ve Uygulama Alanlarından Bir Örneğin Değerlendirmesi 89 SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Esin Cumhur PİRİNÇCİLER Araş. Gör. Dr., Çanakkale Onsekiz

Detaylı

Bölüm V Darbe Kod Modülasyonu

Bölüm V Darbe Kod Modülasyonu - Güz Bölüm V Dare Kod Modülasyonu emel Bilgiler Bi nerjisi Gürülü Gücü İlinisel lıcı Uygun Süzgeçli lıcı Bi Haa Olasılığı Semoller rası Girişim DKM ve Ha Kodlama DC veya Bilgisayardan sayısal daa k Semol

Detaylı

altında ilerde ele alınacaktır.

altında ilerde ele alınacaktır. YTÜ-İktisat İstatistik II Nokta Tahmin Yöntemleri 1 NOKTA TAHMİN YÖNTEMLERİ Şimdiye kadar verilmiş tahmin edicilerin sonlu örneklem ve asimptotik özelliklerini inceledik. Acaba bilinmeyen anakütle parametrelerini

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

24.05.2010. Birim Kök Testleri. Zaman Serisi Modelleri: Birim Kök Testleri, Eşbütünleşme, Hata Düzeltme Modelleri

24.05.2010. Birim Kök Testleri. Zaman Serisi Modelleri: Birim Kök Testleri, Eşbütünleşme, Hata Düzeltme Modelleri Yıldız Teknik Üniversiesi İkisa Bölümü Ekonomeri II Ders Noları Ders Kiabı: J.M. Wooldridge, Inroducory Economerics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Zaman Serisi Modelleri: Birim Kök

Detaylı

Türkiye Cumhuriyet Merkez Bankası Sayı: 2010-8 / 24 Mayıs 2010 EKONOMİ NOTLARI

Türkiye Cumhuriyet Merkez Bankası Sayı: 2010-8 / 24 Mayıs 2010 EKONOMİ NOTLARI Türkiye Cumhuriye Merkez Bankası Sayı: 2010-8 / 24 Mayıs 2010 EKONOMİ NOTLARI TCMB Faiz Kararlarının Piyasa Faizleri Ve Hisse Senedi Piyasaları Üzerine Ekisi Mura Duran Refe Gürkaynak Pınar Özlü Deren

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

RİSK ANALİZİ VE AKTÜERYAL MODELLEME SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla

Detaylı

Türkiye de Döviz Kuru Oynaklığının SWARCH Yöntemi İle Analizi

Türkiye de Döviz Kuru Oynaklığının SWARCH Yöntemi İle Analizi Finans Poliik & Ekonomik Yorumlar 2007 Cil: 44 Sayı:512 43 Türkiye de Döviz Kuru Oynaklığının SWARCH Yönemi İle Analizi Öze Bülen GÜLOĞLU 1 Ayşe AKMAN 2 Bu çalışmada, Mar 2001-Mar 2007 arihleri arası dönemde

Detaylı

İnönü Bulvarı No:27, 06490, Bahçelievler / Ankara-Türkiye hasan.tiryaki@euas.gov.tr, mehmet.bulut@euas.gov.tr. ikocaarslan@kku.edu.

İnönü Bulvarı No:27, 06490, Bahçelievler / Ankara-Türkiye hasan.tiryaki@euas.gov.tr, mehmet.bulut@euas.gov.tr. ikocaarslan@kku.edu. Termik Sanralların Konrol Sisemlerinde Teknolojik Gelişmeler ve Verimlilik Technologic Developmens on Conrol Sysems of Thermal Power Plans and Efficiency Hasan TİRYAKİ 1, Mehme BULUT 2, İlhan KOCAARSLAN

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015 RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015 SORU 2: Motosiklet sigortası pazarlamak isteyen bir şirket, motosiklet kaza istatistiklerine bakarak, poliçe başına yılda ortalama 0,095 kaza olacağını tahmin

Detaylı

Prof.Dr. Rian Dişçi İ.Ü.Onkoloji Enstitüsü Kanser Epidemiyolojisi ve Biyoistatistik Bilim Dalı

Prof.Dr. Rian Dişçi İ.Ü.Onkoloji Enstitüsü Kanser Epidemiyolojisi ve Biyoistatistik Bilim Dalı SAĞKALIM (SÜRVİ) ANALİZİ Prof.Dr. Rian Dişçi İ.Ü.Onkoloji Enstitüsü Kanser Epidemiyolojisi ve Biyoistatistik Bilim Dalı Amaç Tedaviden sonra hastaların beklenen yaşam sürelerinin tahmin edilmesi, genel

Detaylı

Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? n(s) = 3 6 = 1 2

Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? n(s) = 3 6 = 1 2 Bir Olayın Olasılığı P(A) = n(a) n(s) = A nın eleman sayısı S nin eleman sayısı Örnek Bir zar atıldığında zarın üstünde bulunan noktaların sayısı gözlensin. Çift sayı gelmesi olasılığı nedir? Çözüm: S

Detaylı

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇOK DEĞİŞKENLİ EŞİKSEL OTOREGRESİF MODELLER ÜZERİNE BİR ÇALIŞMA Ümran Münire KAHRAMAN DOKTORA TEZİ İsaisik Anabilim Dalı 2012 KONYA Her Hakkı Saklıdır TEZ

Detaylı

Geriye Dönük Testlerin Karşılaştırmalı Analizi: Döviz Kuru Üzerine Bir Uygulama

Geriye Dönük Testlerin Karşılaştırmalı Analizi: Döviz Kuru Üzerine Bir Uygulama Bankacılar Dergisi, Sayı 6, 7 Geriye Dönük Teslerin Karşılaşırmalı Analizi: Döviz Kuru Üzerine Bir Uygulama Ailla Çifer * - Dr. Alper Özün ** - Sai Yılmazer *** Bu çalışmada, riske maruz değer modellerinin

Detaylı

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ

χ =1,61< χ χ =2,23< χ χ =42,9> χ χ =59,4> χ SORU : Ortalaması, varyansı olan bir raslantı değişkeninin, k ile k arasında değer alması olasılığının en az 0,96 olmasını sağlayacak en küçük k değeri aşağıdakilerden hangisidir? A),5 B) C) 3,75 D) 5

Detaylı

ÜSTEL DÜZLEŞTİRME YÖNTEMİ

ÜSTEL DÜZLEŞTİRME YÖNTEMİ ÜSEL DÜLEŞİRME YÖNEMİ ÜSEL DÜLEŞİRME YÖNEMİ Bu bölüme kadar anlatılan yöntemler zaman içinde değişmeyen parametre varsayımına uygun serilerin tahminlerinde kullanılmaktaydı. Bu tür seriler deterministik

Detaylı

HOMOJEN OLMAYAN POISSON SÜRECİ: BİR MADEN MAKİNESİNİN GÜVENİLİRLİK ANALİZİ

HOMOJEN OLMAYAN POISSON SÜRECİ: BİR MADEN MAKİNESİNİN GÜVENİLİRLİK ANALİZİ Gazi Üniv. Müh. Mim. Fak. Der. J. Fac. Eng. Arch. Gazi Univ. Cil 25, No 4, 827-837, 2 Vol 25, No 4, 827-837, 2 HOMOJEN OLMAYAN POISSON SÜRECİ: BİR MADEN MAKİNESİNİN GÜVENİLİRLİK ANALİZİ Nevin UZGÖREN*

Detaylı

İyi İmalat Uygulamaları Denetim Süreci Uzunluğu İnceleme Raporu

İyi İmalat Uygulamaları Denetim Süreci Uzunluğu İnceleme Raporu İyi İmalat Uygulamaları Denetim Süreci Uzunluğu İnceleme Raporu Doçent Dr. Özden Gür Ali 1 Temmuz 212 Giriş ve Amaç Türkiye de satılan ithal ilaçların üretim yerlerinin iyi imalat uygulamaları (İİU veya

Detaylı

ORANTILI TEHLİKE VARSAYIMININ İNCELENMESİNDE KULLANILAN YÖNTEMLER VE BİR UYGULAMA

ORANTILI TEHLİKE VARSAYIMININ İNCELENMESİNDE KULLANILAN YÖNTEMLER VE BİR UYGULAMA Eskişehir Osmangazi Üniversitesi Müh.Mim.Fak.Dergisi C.XX, S.1, 2007 Eng&Arch.Fac. Eskişehir Osmangazi University, Vol..XX, No:1, 2007 Makalenin Geliş Tarihi : 18.02.2006 Makalenin Kabul Tarihi : 21.12.2006

Detaylı

Mühendislikte İstatistik Metotlar

Mühendislikte İstatistik Metotlar Mühendislikte İstatistik Metotlar Recep YURTAL Çukurova Üniveristesi Mühendislik Mimarlık Fakültesi İnşaat Mühendisliği Bölümü Referans Kitaplar Türkçe : Mühendisler için İstatistik, Mehmetçik Bayazıt,

Detaylı

Bireysel emeklilik planlarında hedef fon büyüklüğüne ulaşmak için değişken katkı ve optimal yatırım stratejisi

Bireysel emeklilik planlarında hedef fon büyüklüğüne ulaşmak için değişken katkı ve optimal yatırım stratejisi İsaisikçiler Dergisi: İsaisik & Aküerya Journal of Saisicians: Saisics and Acuarial Sciences IDIA 9, 016,, 54-65 Geliş/Received:0.05.016, Kabul/Acceped: 16.11.016 www.isaisikciler.org Araşırma Makalesi

Detaylı

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ Günümüz simülasyonları gerçek sistem davranışlarını, zamanın bir fonksiyonu olduğu düşüncesine dayanan Monte Carlo yöntemine dayanır. 1.

Detaylı

YAPAY SİNİR AĞLARI İLE NİĞDE BÖLGESİNİN ELEKTRİK YÜK TAHMİNİ

YAPAY SİNİR AĞLARI İLE NİĞDE BÖLGESİNİN ELEKTRİK YÜK TAHMİNİ YAPAY SİNİR AĞLARI İLE NİĞDE BÖLGESİNİN ELEKRİK YÜK AHMİNİ anku YALÇINÖZ Saadedin HERDEM Ulaş EMİNOĞLU Niğde Üniversiesi, Mühendislik-Mimarlık Fakülesi Elekrik-Elekronik Mühendisliği Bölümü, Niğde 5 /

Detaylı

BMÜ-421 BENZETIM VE MODELLEME STOKASTİK ÜRETEÇLER. İlhan AYDIN

BMÜ-421 BENZETIM VE MODELLEME STOKASTİK ÜRETEÇLER. İlhan AYDIN BMÜ-421 BENZETIM VE MODELLEME STOKASTİK ÜRETEÇLER İlhan AYDIN RASGELE SAYI ÜRETEÇLERİ BMÜ-421 Benzetim ve Modelleme 2 Deterministik terimler ile doğayı tanımlamak geleneksel bir yoldur. Doğa ve mühendislik

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

FİZİK II LABORATUVARI DENEY FÖYÜ

FİZİK II LABORATUVARI DENEY FÖYÜ ELAL BAYA ÜNİESİTESİ / FEN-EDEBİYAT FAKÜLTESİ / FİZİK BÖLÜMÜ FİZİK LOATUA DENEY FÖYÜ. DİENÇ E ELEKTOMOTO KUETİNİN ÖLÇÜLMESİ. OHM YASAS. KHHOFF YASALA 4. ELEKTİK YÜKLEİNİN DEPOLANŞ E AKŞ AD SOYAD: NUMAA:

Detaylı

İSTATİSTİK ANABİLİM DALI

İSTATİSTİK ANABİLİM DALI ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Adnan KARAİBRAHİMOĞLU İNDEKS SAYILARIN KULLANIMI İSTATİSTİK ANABİLİM DALI ADANA, 27 ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İNDEKS

Detaylı

Birim Kök Testleri 3/24/2016. Bir stokastik sürecin birim kök içerip içermediğini nasıl anlarız? Hatırlarsak aşağıdaki AR(1) sürecinde

Birim Kök Testleri 3/24/2016. Bir stokastik sürecin birim kök içerip içermediğini nasıl anlarız? Hatırlarsak aşağıdaki AR(1) sürecinde Yıldız Teknik Üniversiesi İkisa Bölümü Ekonomeri II Ders Noları Ders Kiabı: J.M. Wooldridge, Inroducory Economerics A Modern Approach, 2nd. ed., 2002, Thomson Learning. Zaman Serisi Modelleri: Birim Kök

Detaylı

KIRIKKALE ÜNİVERSİTESİ FEN-EDEBIYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI

KIRIKKALE ÜNİVERSİTESİ FEN-EDEBIYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI KIRIKKALE ÜNİVERSİTESİ FEN-EDEBIYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI Kırıkkale Üniversitesi Fen-Edebiyat Fakültesi İstatistik Bölümü Lisans Programı, Kırıkkale Üniversitesi Önlisans ve Lisans

Detaylı

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır?

2(1+ 5 ) b = LYS MATEMATİK DENEMESİ. işleminin sonucu kaçtır? A)2 5 B)3 5 C)2+ 5 D)3+ 5 E) işleminin sonucu kaçtır? 017 LYS MATEMATİK DENEMESİ Soru Sayısı: 50 Sınav Süresi: 75 ı 1. 4. (1+ 5 ) 1+ 5 işleminin sonucu kaçtır? A) 5 B)3 5 C)+ 5 işleminin sonucu kaçtır? D)3+ 5 E)1+ 5 A) B) 1 C) 1 D) E) 3. 4 0,5.16 0,5 işleminin

Detaylı

MEIXNER SÜRECİ İLE REEL EFEKTİF DÖVİZ KURU NUN MODELLENMESİ

MEIXNER SÜRECİ İLE REEL EFEKTİF DÖVİZ KURU NUN MODELLENMESİ Marmara Üniversiesi İ.İ.B.F. Dergisi YIL 0, CİLT XXX, SAYI I, S. 63-8 MEIXNER SÜRECİ İLE REEL EFEKTİF DÖVİZ KURU NUN Öze MODELLENMESİ Ömer ÖNALAN Levy süreçleri finans alanında aran bir öneme sahipir.

Detaylı

İŞSİZLİK VE İNTİHAR İLİŞKİSİ: 1975 2005 VAR ANALİZİ Ferhat TOPBAŞ *

İŞSİZLİK VE İNTİHAR İLİŞKİSİ: 1975 2005 VAR ANALİZİ Ferhat TOPBAŞ * İşsizlik ve İnihar İlişkisi: 1975 2005 Var Analizi 161 İŞSİZLİK VE İNTİHAR İLİŞKİSİ: 1975 2005 VAR ANALİZİ Ferha TOPBAŞ * ÖZET İşsizlik, birey üzerinde olumsuz birçok soruna neden olan karmaşık bir olgudur.

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

İ yi İ malat Uygulamaları Denetim Su reci İ nceleme Raporu

İ yi İ malat Uygulamaları Denetim Su reci İ nceleme Raporu İ yi İ malat Uygulamaları Denetim Su reci İ nceleme Raporu 2014 Yarıyıl Sonu Doçent Dr. Özden Gür Ali tarafından AİFD için hazırlanmıştır Kasım 2014 Yönetici Özeti Bu rapor, Türkiye ye yurtdışında ithal

Detaylı

Turizm Talebi ve Döviz Kuru Şokları: Türk Turizm Sektörü İçin Ekonometrik Bir Analiz

Turizm Talebi ve Döviz Kuru Şokları: Türk Turizm Sektörü İçin Ekonometrik Bir Analiz Turizm Talebi ve Döviz Kuru Şokları: Türk Turizm Sekörü İçin Ekonomerik Bir Analiz Kuruluş BOZKURT Yrd. Doç. Dr., Adnan Menderes Üniversiesi Söke İşleme Fakülesi, Bankacılık ve Finans Bölümü kuriboz_48@homail.com

Detaylı

TÜRKİYE DE ELEKTRİK TÜKETİMİ, İSTİHDAM VE EKONOMİK BÜYÜME İLİŞKİSİ

TÜRKİYE DE ELEKTRİK TÜKETİMİ, İSTİHDAM VE EKONOMİK BÜYÜME İLİŞKİSİ Süleyman Demirel Üniversiesi İkisadi ve İdari Bilimler Fakülesi Dergisi Y.2011, C.16, S.1 s.349-362. Suleyman Demirel Universiy The Journal of Faculy of Economics and Adminisraive Sciences Y.2011, Vol.16,

Detaylı