İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ İktisat Hakkında İktisatta Grafik ve Matematik Kullanımı 13

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13"

Transkript

1 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ İktisat Hakkında İktisatta Grafik ve Matematik Kullanımı 13 Bölüm 2 STATİK DENGE ANALİZİ İktisatta Denge Kavramı Kısmi Denge Analizi Genel Denge Analizi Doğrusal Fonksiyonlar Doğrusal Talep Fonksiyonu Bireysel Talep fonksiyonu Talep Fonksiyonunun Elde edilmesi Ters Talep Fonksiyonu Arz Fonksiyonu Bireysel Arz Fonksiyonu Arz Fonksiyonunun Elde Edilmesi Ters Arz Fonksiyonu Piyasa Dengesi Piyasaya Dengesine Müdahale Dolaylı Müdahale Kota (Miktar Kısıtlaması) Doğrusal Olmayan Talep ve Arz Fonksiyonları ve Piyasa Dengesi Doğrusal Olmayan Denklemlerin Çözümlenmesi Genel Denge Analizi İki Mallı Durumda Genel Denge Analizi Başabaş Noktası Analizi Milli Gelir Analizinde Denge IS - LM Analizi IS Fonksiyonu LM Fonksiyonu Mal ve Para Piyasasında Eşanlı Denge 58 Bölüm 3 MATRİSLER Matrisin Tanımı Matris Çeşitleri 65

2 3.1.2.Matrislerin Eşitliği Matrislerde İşlemler Bir Matrisin Transpozesi ( Devriği ) Matrislerin Bloklara Ayrılması Matrisin İzi Matrisin Rankı Vektörler Determinantlar Determinantın Tanımı Minörler ve Kofaktörler( Determinantların Minörler Yardımıyla Hesaplanması ) Sarrus Yöntemi Determinantların Özellikleri Ek Matris ( Bir Kare Matrisin Adjointi ) Ters Matris Ters Matris Bulma Yöntemleri Doğrusal Denklem Sistemleri Ters Matris Yöntemi Gauss Elementer İşlemler Yöntemi Cramer Yöntemi 87 Bölüm 4 MATRİS FORMUNDA LİNEER EKONOMİK MODELLER Tek Denklemli Lineer Fonksiyonlar Tek Değişkenli Lineer Fonksiyonlar Çok Değişkenli Lineer Fonksiyonlar Tek Denklemli Lineer Fonksiyonlar Tek Değişkenli Lineer Fonksiyonlar Çok Değişkenli Lineer Fonksiyonlar Leontief Girdi-Çıktı Modelleri 96 Bölüm 5 TEK DEĞİŞKENLİ FONKSİYONLARDA TÜREV VE DİFERANSİYELİ Türevin Anlamı ve Geometrik Tanımı Türev Alma Kuralları Sabit Fonksiyonun Türevi Değişkenin Kendisine Göre Türevi Sabitle Fonksiyonun Çarpımının Türevi İki Fonksiyonun Toplamının ve Farkının Türevi İki Fonksiyonun Çarpımının Türevi İki Fonksiyonun Bölümünün Türevi Sabit Üslü Fonksiyonun Türevi 110 II

3 5.2.8 Kapalı (Örtük) Fonksiyonun Türevi Bileşke Fonksiyonların Türevi : Türevde Zincir Kuralı n. Dereceden Türev Dış Bükey ve İç Bükey Fonksiyonlar Türevin İktisadi Anlamı: Marjinal Analiz Ortalama Maliyet Marjinal Maliyet İlişkisi Kapalı Ekonomi Milli Gelir Denge Modeli Ekonomide Vergilendirme Modeli Logaritmik ve Üstel Fonksiyonların Türevi Doğal Üstel Fonksiyon Fonksiyonunun Türevi Logaritmik Fonksiyonların Türevi Doğrusal Yakınlaştırmalar Esneklik Türev İlişkisi : Logaritmik Türev Olarak Esneklik Diferansiyel ve Diferansiyel Alma Kuralları 130 Bölüm 6 MAKSİMUM-MİNİMUM VE EKONOMK UYGULAMALARI Artan ve Azalan Fonksiyonlar Tek Değişkenli Fonksiyonlarda Birinci ve İkinci Mertebe Koşul İki Değişkenli Fonksiyonlarda Birinci ve İkinci Mertebe Koşullar Kısıtlayıcı Altında Maksimizasyon, Minimizayon ve Lagrange Çarpanı 142 Bölüm 7 KISMİ VE TOPLAM TÜREV ALMA VE EKONOMİK UYGULAMALAR Çok Değişkenli Fonksiyonun Anlamı Çok Değişkenli Fonksiyonun Türevi Yüksek Dereceden Kısmi Türevler Kısmi Türevin İktisadi Anlamı Euler Teoremi Çok Değişkenli Talep Fonksiyonları ve Esneklikleri Çok Değişkenli Fonksiyonların Diferansiyeli Fayda Fonksiyonunun Diferansiyeli Çok Değişkenli Fonksiyonların Ekstremumları Koşullu Ekstremum : Lagrange Yöntemi 171 Bölüm 8 KISTLANMAMIŞ VE KISITLANMIŞ UÇ DEĞERLER Kısıtlanmamış Uç Değerler 186 III

4 Kısmi Türevler Birinci ve İkinci Sıra Koşullar İktisatta Kısıtlanmamış Uç Değer Uygulamaları Kısıtlanmış Uç Değerler Eşitlik Kısıtları Eşitsizlik Kısıtları Kısıtlanmış Uç Değerlere İlişkin İktisat Uygulamaları 207 Bölüm 9 İNTEGRAL ALMA VE ÜSTEL FONKSİYONLAR Belirsiz İntegraller Belirsiz İntegral Kavramı Belirsiz İntegralin Özellikleri Temel İntegral Kuralları Belirsiz İntegral Alma Yöntemleri Belirsiz İntegralin İktisadi Uygulamaları Belirli İntegraller Toplama işareti ve Kullanılması Alan Hesabı ve Belirli İntegraller İntegral Hesabın Temel Teoremi Belirli İntegralin Özellikleri Alan Hesabı Belirli İntegralin İktisadi Uygulamaları Üstel ve Logaritmik Fonksiyonlar Üstel Fonksiyonlar Logaritma ve Logaritmik Fonksiyonlar Üstel ve Logaritmik Fonksiyonların İktisadi Uygulamaları 246 Bölüm 10 DİFERANSİYEL DENKLEMLER VE DİFERANSİYEL DENKLEMLER SİSTEMİ Birinci Mertebeden Basit Diferansiyel Denklemler Türeve Göre Çözülebilen Diferansiyel Denklemler Değişkenlerine Ayrılabilen Diferansiyel Denklem Azalan Kalanlar (bakiyeler) Yöntemi Sıcaklığın Değişimi Bilgi Yayılması Birinci Mertebeden Lineer Denklemler Bernoulli Denklemi Evans Modeli Domar Modeli Gayri Safi Yurtiçi Hasıla Atışı (Ekonomik Büyüme) Lineer Diferansiyel Denklem Sistemleri Farklı Reel Özdeğerler 273 IV

5 Katlı Özdeğerler Yüksek Mertebeden Lineer Diferansiyel Denklemler Bağımlı Değişkeni İçermeyen Diferansiyel Denklemler Lineer Diferansiyel Denklemlerin Ayrıştırma Yöntemiyle Çözümü Yüksek Mertebeden Lineer Diferansiyel Denklemlerin ve Cauchy Probleminin Zincir Yöntemiyle Çözümü 288 Bölüm 11 FARK DENKLEMLERİ VE FARK DENKLEMLER SİSTEMİ Fark Denklemlerinin Yapısı: Tanım ve Kavramlar Ayrık Zamanda Bir Değişkenin Tanımı Bir Değişkenin Farkları Fark Denklemleri Analizi için Gerekli Kavramlar Birinci-Dereceden Otonom Fark Denklemleri Birinci-Dereceden Doğrusal Otonom Fark Denklemi Çözümleri Zaman Patikasının İstikrarlılığı Ekonomik Uygulamalar Birinci-Dereceden Doğrusal Olmayan Otonom Fark Denklemleri İkinci Dereceden Doğrusal Otonom Fark Denklemleri Genel Çözüm Yöntemi Zaman Patikasının Yakınsaklık Koşulu Ekonomik Uygulamalar Yüksek Dereceden Doğrusal Fark Denklemleri Fark Denklemleri Sistemi Birinci-Dereceden Doğrusal Fark Denklemleri Sisteminin Çözümü Ekonomik Uygulamalar 391 KAYNAKÇA 397 V

6 VI

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

Prof. Dr. Mahmut Koçak.

Prof. Dr. Mahmut Koçak. i Prof. Dr. Mahmut Koçak http://fef.ogu.edu.tr/mkocak/ ii Bu kitabın basım, yayım ve satış hakları Kitabın yazarına aittir. Bütün hakları saklıdır. Kitabın tümü ya da bölümü/bölümleri yazarın yazılı izni

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Meslek Yüksek Okulları İçin UYGULAMALI MATEMATİK. İstanbul, 2009

Meslek Yüksek Okulları İçin UYGULAMALI MATEMATİK. İstanbul, 2009 i Meslek Yüksek Okulları İçin UYGULAMALI MATEMATİK Yrd.Doç.Dr. Kamil TEMİZYÜREK Beykent Üniversitesi Öğretim Üyesi Yrd.Doç.Dr. Nurdan ÇOLAKOĞLU Beykent Üniversitesi Öğretim Üyesi İstanbul, 2009 ii Yay

Detaylı

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ YAZ OKULU DERS İÇERİGİ. Bölümü Dersin Kodu ve Adı T P K AKTS

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ YAZ OKULU DERS İÇERİGİ. Bölümü Dersin Kodu ve Adı T P K AKTS Bir Dönemde Okutulan Ders Saati MAT101 Genel I (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri) 1 Kümeler, reel sayılar, bir denklem veya eşitsizliğin grafiği 2 Fonksiyonlar,

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 KÜMELER 11 1.1. Küme 12 1.2. Kümelerin Gösterimi 13 1.3. Boş Küme 13 1.4. Denk Küme 13 1.5. Eşit Kümeler 13 1.6. Alt Küme 13 1.7. Alt Küme Sayısı 14 1.8. Öz Alt Küme 16 1.9.

Detaylı

ÖABT İLKÖĞRETİM MATEMATİK

ÖABT İLKÖĞRETİM MATEMATİK KPSS 2017 önce biz sorduk 50 Soruda 30 soru ÖABT İLKÖĞRETİM MATEMATİK ANALİZ - DİFERANSİYEL DENKLEMLER Eğitimde 30. yıl Fikret Hemek ÖABT İlköğretim Matematik Öğretmenliği Analiz-Diferansiyel Denklemler

Detaylı

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir.

m=n şeklindeki matrislere kare matris adı verilir. şeklindeki matrislere ise sütun matrisi denir. şeklindeki A matrisi bir kare matristir. Matrisler Satır ve sütunlar halinde düzenlenmiş tabloya matris denir. m satırı, n ise sütunu gösterir. a!! a!" a!! a!" a!! a!! a!! a!! a!" m=n şeklindeki matrislere kare matris adı verilir. [2 3 1] şeklinde,

Detaylı

Chapter 1 İçindekiler

Chapter 1 İçindekiler Chapter 1 İçindekiler Kendinizi Test Edin iii 10 Birinci Mertebeden Diferansiel Denklemler 565 10.1 Arılabilir Denklemler 566 10. Lineer Denklemler 571 10.3 Matematiksel Modeller 576 10.4 Çözümü Olmaan

Detaylı

Ç NDEK LER II. C LT KONULAR Sayfa Öz De er Öz Vektör.. 2. Lineer Cebir ve Sistem Analizi...

Ç NDEK LER II. C LT KONULAR Sayfa Öz De er Öz Vektör.. 2. Lineer Cebir ve Sistem Analizi... ÇNDEKLER II. CLT KONULAR 1. Öz Deer Öz Vektör.. 1 Kare Matrisin Öz Deeri ve Öz Vektörleri... 21 Matrisin Karakteristik Denklemi : Cayley Hamilton Teoremi.. 26 Öz Deer - Öz Vektör ve Lineer Transformasyon

Detaylı

DERS ÖĞRETİM PROGRAMI FORMU

DERS ÖĞRETİM PROGRAMI FORMU DERS ÖĞRETİM PROGRAMI FORMU Dersin Adı Kodu Normal Kredisi ECTS Ders 4 Yarıyılı Kredisi uygulama 0 Diferansiyel Denklemler 0252311 3 4 6 Laboratuvar 0 (Saat/Hafta) Dersin Dili Türkçe Dersin Türü Zorunlu

Detaylı

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Öğr. Gör. Barış Alpaslan

Öğr. Gör. Barış Alpaslan Dersin Adı DERS ÖĞRETİM PLANI Matematik I Dersin Kodu ECO 05/04 Dersin Türü (Zorunlu, Seçmeli) Dersin Seviyesi (Ön Lisans, Lisans, Yüksek Lisans, Doktora) Dersin AKTS Kredisi 5 Haftalık Ders Saati 3 Haftalık

Detaylı

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2015-2016 YAZ OKULU DERS İÇERİĞİ. (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri)

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2015-2016 YAZ OKULU DERS İÇERİĞİ. (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri) Bölümü Dersin Kodu ve Adı K MAT101 Genel I (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri) 1- Kümeler, reel sayılar, bir denklem veya eşitsizliğin grafiği 2- Fonksiyonlar,

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

HATA VE HATA KAYNAKLARI...

HATA VE HATA KAYNAKLARI... İÇİNDEKİLER 1. GİRİŞ... 1 1.1 Giriş... 1 1.2 Sayısal Analizin İlgi Alanı... 2 1.3 Mühendislik Problemlerinin Çözümü ve Sayısal Analiz... 2 1.4 Sayısal Analizde Bilgisayarın Önemi... 7 1.5 Sayısal Çözümün

Detaylı

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR

PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ KAZANIM NO KAZANIMLAR 2013-2014 PERGEL YAYINLARI LYS 1 DENEME-6 KONU ANALİZİ SORU NO LYS 1 MATEMATİK TESTİ A B KAZANIM NO KAZANIMLAR 1 1 / 31 12 32173 Üslü İfadeler 2 13 42016 Rasyonel ifade kavramını örneklerle açıklar ve

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER

İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER İÇİNDEKİLER KISIM 1: BİRİNCİ MERTEBE ADİ DİFERENSİYEL DENKLEMLER 1.1. Fiziksel Kanunlar ve Diferensiyel Denklemler Arasındaki İlişki... 1 1.2. Diferensiyel Denklemlerin Sınıflandırılması ve Terminoloji...

Detaylı

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ Prof. Dr. İbrahim UZUN Yayın No : 2415 İşletme-Ekonomi Dizisi : 147 5. Baskı Eylül 2012 - İSTANBUL ISBN 978-605 - 377-438 - 9 Copyright Bu kitabın

Detaylı

Nazım K. Ekinci Matematiksel İktisat Notları ax 1 + bx 2 = α cx 1 + dx 2 =

Nazım K. Ekinci Matematiksel İktisat Notları ax 1 + bx 2 = α cx 1 + dx 2 = Naım K. Ekinci Matematiksel İktisat Notları 0.6. DOĞRUSL DENKLEM SİSTEMLERİ ax + bx = α cx + dx = gibi bir doğrusal denklem sistemini, x ve y bilinmeyenler olmak üere, çömeyi hepimi biliyoru. ma probleme

Detaylı

MATRİS İŞLEMLER LEMLERİ

MATRİS İŞLEMLER LEMLERİ MTRİS İŞLEMLER LEMLERİ Temel matris işlemlerinin doğrudan matematik açılımını 2 yapmadan önce, bir eşanlı denklem sisteminin matris işlemleri kullanılarak nasıl daha kolay ve sistematik bir çözüm verdiğini,

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : ANALİZ I Ders No : 0310250035 : 4 Pratik : 2 Kredi : 5 ECTS : 8 Ders Bilgileri Ders Türü Öğretim Dili Öğretim Tipi Zorunlu

Detaylı

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9

İÇİNDEKİLER. Ön Söz...2. Adi Diferansiyel Denklemler...3. Birinci Mertebeden ve Birinci Dereceden. Diferansiyel Denklemler...9 İÇİNDEKİLER Ön Söz... Adi Diferansiyel Denklemler... Birinci Mertebeden ve Birinci Dereceden Diferansiyel Denklemler...9 Homojen Diferansiyel Denklemler...15 Tam Diferansiyel Denklemler...19 Birinci Mertebeden

Detaylı

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR Kısıtlı ve kısıtsız fonksiyonlar için maksimum veya minimum (ekstremum) noktalarının belirlenmesinde diferansiyel hesabı kullanarak çeşitli

Detaylı

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

8. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 8. HAFTA BLM323 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi 2 MATRİSLER Matris veya dizey, dikdörtgen bir sayılar tablosu

Detaylı

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER

EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Diferansiyel Denklemler ve Lineer Cebir BIL271 3 3+0 3 5 Ön Koşul Dersleri Yok Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans

Detaylı

İÇİNDEKİLER Sayfa ÖNSÖZ... v İÇİNDEKİLER... vi GENEL EKONOMİ 1. Ekonominin Tanımı ve Kapsamı... 1 1.1. Ekonomide Kıtlık ve Tercih... 1 1.2.

İÇİNDEKİLER Sayfa ÖNSÖZ... v İÇİNDEKİLER... vi GENEL EKONOMİ 1. Ekonominin Tanımı ve Kapsamı... 1 1.1. Ekonomide Kıtlık ve Tercih... 1 1.2. İÇİNDEKİLER Sayfa ÖNSÖZ... v İÇİNDEKİLER... vi GENEL EKONOMİ 1. Ekonominin Tanımı ve Kapsamı... 1 1.1. Ekonomide Kıtlık ve Tercih... 1 1.2. Ekonominin Tanımı... 3 1.3. Ekonomi Biliminde Yöntem... 4 1.4.

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2 OPTIMIZASYON.... Bir Değişkenli Fonksiyonların Maksimizasyonu.... Türev...3.. Bir noktadaki türevin değeri...4.. Maksimum için Birinci Derece Koşulu...4.3. İkinci Derece Koşulu...5.4. Türev Kuralları...5

Detaylı

6 2. Bir fonksiyonun bir noktadaki sürekliliği kavramını açıklar. Süreklilik

6 2. Bir fonksiyonun bir noktadaki sürekliliği kavramını açıklar. Süreklilik AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 201-2017 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 12.SINIFLAR İLERİ DÜZEY ÜNİTELENDİRİLMİŞ YILLIK PLANI AY: TÜREV (70) LİMİT VE SÜREKLİLİK (14) 1. Bir fonksiyonun bir

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV

ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV. ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV - 1 - ÖĞRENME ALANI TEMEL MATEMATİK BÖLÜM TÜREV ALT ÖĞRENME ALANLARI 1) Türev 2) Türev Uygulamaları TÜREV Kazanım 1 : Türev Kavramını fiziksel ve geometrik uygulamalar yardımıyla açıklar, türevin tanımını

Detaylı

MAT 202-DİFERENSİYEL DENKLEMLER-Güz Dönemi. Ders Uygulama Planı. -

MAT 202-DİFERENSİYEL DENKLEMLER-Güz Dönemi. Ders Uygulama Planı. - MAT 202-DİFERENSİYEL DENKLEMLER-Güz 2016-2017 Dönemi Ders Uygulama Planı 04 02 ve 03 01 Öğretim Üyesi Prof. Dr. Ömer AKIN (Ders Koordinatörü) Prof. Dr. Abdullah ALTIN Doç. Dr. Niyazi ŞAHİN Ofis No 226

Detaylı

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu;

x 1,x 2,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; 4. BÖLÜM DOĞRUSAL DENKLEM SİSTEMLERİ Doğrusal Denklem Sistemi x,x,,x n ler bilinmeyenler olmak üzere, doğrusal denklemlerin oluşturduğu; a x + a x + L + a x = b n n a x + a x + L + a x = b n n a x + a

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : İŞLETME MATEMATİĞİ II Ders No : 0020050011 Teorik : 3 Pratik : 0 Kredi : 3 ECTS : 4 Ders Bilgileri Ders Türü Öğretim Dili

Detaylı

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 015-01 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI SÜRE: MANTIK(30) ÖNERMELER VE BİLEŞİK ÖNERMELER(18) 1. Önermeyi, önermenin

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Lineer Cebir ve Vektörler EEE118 2 3+0 3 4

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Lineer Cebir ve Vektörler EEE118 2 3+0 3 4 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Lineer Cebir ve Vektörler EEE118 2 3+0 3 4 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Zorunlu / Yüz Yüze

Detaylı

DİFERENSİYEL DENKLEMLER. Doç. Dr. Mustafa KANDEMİR

DİFERENSİYEL DENKLEMLER. Doç. Dr. Mustafa KANDEMİR DİFERENSİYEL DENKLEMLER Doç. Dr. Mustafa KANDEMİR Doç. Dr. Mustafa KANDEMİR DİFERENSİYEL DENKLEMLER ISBN: 978-605-318-31-1 Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. 015, Pegem Akademi

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO: 203

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO: 203 DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO: 203 ÖNSÖZ Fakültemizin ikinci yarıyılında okutulan Matematik II dersi için hazırlanan bu kitap, Analitik Geometri kitabının devamı niteliğinde

Detaylı

ÜNİTE. MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK İÇİNDEKİLER HEDEFLER TÜREV VE TÜREV ALMA KURALLARI. Türev Türev Alma Kuralları

ÜNİTE. MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK İÇİNDEKİLER HEDEFLER TÜREV VE TÜREV ALMA KURALLARI. Türev Türev Alma Kuralları HEDEFLER İÇİNDEKİLER TÜREV VE TÜREV ALMA KURALLARI Türev Türev Alma Kuralları MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK Bu üniteyi çalıştıktan sonra Burada türevin tanımı verilecek, Geometride bir eğrinin bir noktadaki

Detaylı

1 Lineer Diferansiyel Denklem Sistemleri

1 Lineer Diferansiyel Denklem Sistemleri Outline İçindekiler 1 Lineer Diferansiyel Denklem Sistemleri 1 1.1 Lineer sistem türleri (iki bilinmeyenli iki denklem)................. 1 2 Normal Formda lineer denklem sistemleri (İki bilinmeyenli iki

Detaylı

DERS İÇERİKLERİ, KAZANIMLAR, DERSLER ARASI İLİŞKİ Çizelge 2.

DERS İÇERİKLERİ, KAZANIMLAR, DERSLER ARASI İLİŞKİ Çizelge 2. DERS İÇERİKLERİ, KAZANIMLAR, DERSLER ARASI İLİŞKİ Çizelge 2. Kategoriler Alt kategoriler Ders içerikleri Kazanımlar Dersler arası ilişki I. Analiz I.1. Fonksiyonlar I.1.1. Fonksiyonlara ait bazı önemli

Detaylı

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür. ÖZDEĞER VE ÖZVEKTÖRLER A n n tipinde bir matris olsun. AX = λx (1.1) olmak üzere n 1 tipinde bileşenleri sıfırdan farklı bir X matrisi için λ sayıları için bu denklemi sağlayan bileşenleri sıfırdan farklı

Detaylı

12.SINIF A VE B GRUBU MATEMATİK-GEOMETRİ DERSİ KURS KONULARI VE TESTLERİ

12.SINIF A VE B GRUBU MATEMATİK-GEOMETRİ DERSİ KURS KONULARI VE TESTLERİ .SINIF A VE B GRUBU MATEMATİK-GEOMETRİ DERSİ KURS KONULARI VE TESTLERİ A-TEST SAYILAR- TEMEL KAVRAMLAR A-TEST SAYILAR- POLİNOMLAR B-TEST POLİNOMLAR- PARALEL DOĞRULARDA VE ÜÇGENDE AÇILAR A- B TEST PARALEL

Detaylı

Genişletilmiş Kalkülüs I (MATH 157) Ders Detayları

Genişletilmiş Kalkülüs I (MATH 157) Ders Detayları Genişletilmiş Kalkülüs I (MATH 157) Ders Detayları Ders Adı Genişletilmiş Kalkülüs I Ders Kodu MATH 157 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Güz 4 2 0 5 7.5 Ön Koşul Ders(ler)i

Detaylı

LİNEER CEBİR. Ders Sorumlusu: Doç.Dr.Kemal HACIEFENDİOĞLU. Ders Notu: Prof. Dr. Şaban EREN

LİNEER CEBİR. Ders Sorumlusu: Doç.Dr.Kemal HACIEFENDİOĞLU. Ders Notu: Prof. Dr. Şaban EREN LİNEER CEBİR Ders Sorumlusu: Doç.Dr.Kemal HACIEFENDİOĞLU Ders Notu: Prof. Dr. Şaban EREN 1.BOLUM DOGRUSAL CEBIR VE DIFERANSIYEL DENKLEMLER LİNEER EŞİTLİKLER 1.1. LİNEER EŞİTLİKLERİN TANIMI x 1, x 2,...,

Detaylı

Tanım 2.1. Bir kare matrisin determinantı, o matrisi bir sayıya eşleyen fonksiyondur.

Tanım 2.1. Bir kare matrisin determinantı, o matrisi bir sayıya eşleyen fonksiyondur. Bölüm 2 Determinantlar Tanım 2.1. Bir kare matrisin determinantı, o matrisi bir sayıya eşleyen fonksiyondur. Söz konusu fonksiyonun değerine o matrisin determinantı denilir. A bir kare matris ise, determinantı

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

Ç NDEK LER I. C LT KONULAR Sayfa 1. Lineer Cebire Giri... 2. Lineer Denklem Sistemlerinin Elemanter lemlerle Çözümü

Ç NDEK LER I. C LT KONULAR Sayfa 1. Lineer Cebire Giri... 2. Lineer Denklem Sistemlerinin Elemanter lemlerle Çözümü ÇNDEKLER I. CLT KONULAR 1. Lineer Cebire Giri... 1 Lineer Modeller... 3 Lineer Olmayan Modeller... 3 Dorunun Analitik Analizi.. 5 Uzayda Geometrik Büyüklükler. 7 Lineer Cebir ve Lineerite 10 Lineer Denklem

Detaylı

ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI. : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA

ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI. : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA ÖZEL ÖĞRETİM KURSU MATEMATİK-III ÇERÇEVE PROGRAMI 1.KURUMUN ADI 2.KURUMUN ADRESİ 3.KURUCUNUN ADI :Tercih Özel Öğretim Kursu : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA : ARTI ÖZEL EĞİTİM ÖĞRETİM

Detaylı

İÇİNDEKİLER. Önsöz... iii. KİTABIN KULLANIMINA İLİŞKİN BAZI NOTLAR ve KURUM SINAVLARINA İLİŞKİN UYARILAR... 1 BİRİNCİ BÖLÜM İKTİSATIN TEMELLERİ

İÇİNDEKİLER. Önsöz... iii. KİTABIN KULLANIMINA İLİŞKİN BAZI NOTLAR ve KURUM SINAVLARINA İLİŞKİN UYARILAR... 1 BİRİNCİ BÖLÜM İKTİSATIN TEMELLERİ İÇİNDEKİLER Önsöz... iii KİTABIN KULLANIMINA İLİŞKİN BAZI NOTLAR ve KURUM SINAVLARINA İLİŞKİN UYARILAR... 1 BİRİNCİ BÖLÜM İKTİSATIN TEMELLERİ 1. İKTİSATIN TEMELLERİ... 9 1.1. İKTİSADIN TANIMI... 9 1.2.

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 1009

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 1009 Dersi Veren Birim: Mühendislik Fakültesi Dersin Türkçe Adı: MATEMATİK I Dersin Orjinal Adı: MATEMATİK I Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: MAT 1009 Dersin Öğretim

Detaylı

MATRİS - DETERMİNANT Test -1

MATRİS - DETERMİNANT Test -1 MRİS - DEERMİNN est - x y x 3., B olmak üzere, y y = B olduğuna göre, y x farkı kaçtır? 5. 5 4 0, B 4 3 7 3 matrisleri veriliyor. + B matrisi aşağıdakilerden hangisidir? 3 4 5 6 5 3 0 8 5 6 6 5 0 5 6 0

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU MATEMATİK I. Dersin Kodu: MAT 1009

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU MATEMATİK I. Dersin Kodu: MAT 1009 Dersi Veren Birim: Mühendislik Fakültesi Dersin Adı: MATEMATİK I Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Dersin Kodu: MAT 9 Dersin Öğretim Dili: Türkçe Formun Düzenleme / Yenilenme Tarihi:

Detaylı

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 1 YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 RASYONEL SAYILAR KÜMESİ VE ÖZELLİKLERİ 07 BASİT EŞİTSİZLİKLER

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO:89 MATEMATİK I (12. BASKI) Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr.

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO:89 MATEMATİK I (12. BASKI) Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr. MATEMATİK I (12. BASKI) Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr. Ali Tekin TİN MATEMATİK I DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAYINLARI NO:89 Prof. Dr. A. Nihat BADEM Yrd. Doç. Dr. Ali Tekin

Detaylı

Kalkülüs I (MATH 151) Ders Detayları

Kalkülüs I (MATH 151) Ders Detayları Kalkülüs I (MATH 151) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kalkülüs I MATH 151 Güz 4 2 0 5 7.5 Ön Koşul Ders(ler)i Dersin Dili Dersin Türü Dersin

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Kalkülüs I (MATH 151) Ders Detayları

Kalkülüs I (MATH 151) Ders Detayları Kalkülüs I (MATH 151) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kalkülüs I MATH 151 Güz 4 2 0 5 7.5 Ön Koşul Ders(ler)i Dersin Dili Dersin Türü Dersin

Detaylı

İÇİNDEKİLER BÖLÜM 1: EKONOMİ İLE İLGİLİ DÜŞÜNCELER VE TEMEL KAVRAMLAR...

İÇİNDEKİLER BÖLÜM 1: EKONOMİ İLE İLGİLİ DÜŞÜNCELER VE TEMEL KAVRAMLAR... İÇİNDEKİLER BÖLÜM 1: EKONOMİ İLE İLGİLİ DÜŞÜNCELER VE TEMEL KAVRAMLAR... 1 1.1. EKONOMİ İLE İLGİLİ DÜŞÜNCELER... 3 1.1.1. Romalıların Ekonomik Düşünceleri... 3 1.1.2. Orta Çağ da Ekonomik Düşünceler...

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

DOĞRUSAL OLMAYAN PROGRAMLAMA -I- DOĞRUSAL OLMAYAN PROGRAMLAMA -I- Dışbükeylik / İçbükeylik Hazırlayan Doç. Dr. Nil ARAS Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü İST38 Yöneylem Araştırması Dersi 0-0 Öğretim Yılı Doğrusal olmayan

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK SORU 1: Aşağıdaki grafik, bir okuldaki spor yarışmasına katılan öğrencilerin yaşa göre dağılışını göstermektedir. Öğrenci sayısı 5 3 9 10 1 14 Yaş 1.1: Yukarıdaki

Detaylı

Matris Cebiriyle Çoklu Regresyon Modeli

Matris Cebiriyle Çoklu Regresyon Modeli Matris Cebiriyle Çoklu Regresyon Modeli Hüseyin Taştan Mart 00 Klasik Regresyon Modeli k açıklayıcı değişkenden oluşan regresyon modelini her gözlem i için aşağıdaki gibi yazabiliriz: y i β + β x i + β

Detaylı

Matematik II (MATH 102) Ders Detayları

Matematik II (MATH 102) Ders Detayları Matematik II (MATH 102) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Matematik II MATH 102 Güz 3 0 0 3 5 Ön Koşul Ders(ler)i Math 101 Matematiksel Analiz

Detaylı

T.C SİNOP ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI DERS İÇERİKLERİ

T.C SİNOP ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI DERS İÇERİKLERİ T.C SİNOP ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI I.YARIYIL: IST101 BİLGİSAYAR PROGRAMLAMA I (223) Bilgisayar Donanımı, İşletim Sistemleri, Windows Kullanımı, Microsoft Word,

Detaylı

ÖZEL ÖĞRETİM KURSU MATEMATİK-IV ÇERÇEVE PROGRAMI. 2. KURUMUN ADRESİ : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA

ÖZEL ÖĞRETİM KURSU MATEMATİK-IV ÇERÇEVE PROGRAMI. 2. KURUMUN ADRESİ : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA ÖZEL ÖĞRETİM KURSU MATEMATİK-IV ÇERÇEVE PROGRAMI 1. KURUMUN ADI : Tercih Özel Öğretim Kursu 2. KURUMUN ADRESİ : Kesikkapı Mah. Atatürk Cad. No 79 Fethiye /MUĞLA 3. KURUCUNUN ADI : ARTI ÖZEL EĞİTİM ÖĞRETİM

Detaylı

MAT 3 DERS NOTLARI. Türkiye Matematik Öğretmenleri Zümresi TMOZ un katkılarıyla MY MAT-3. Mustafa YAĞCI ALTIN NOKTA YAYINEVİ

MAT 3 DERS NOTLARI. Türkiye Matematik Öğretmenleri Zümresi TMOZ un katkılarıyla MY MAT-3. Mustafa YAĞCI ALTIN NOKTA YAYINEVİ MAT 3 DERS NOTLARI Türkiye Matematik Öğretmenleri Zümresi TMOZ un katkılarıyla MY MAT-3 Mustafa YAĞCI ALTIN NOKTA YAYINEVİ ADANA - 2012 Copyright Altın Nokta Basım Yayın Dağıtım ISBN: 978-975-6146-95-8

Detaylı

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.5. Doğrusal olmayan fonksiyonların eğimi Doğrusal fonksiyonlarda eğim her noktada sabittir

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Hessien Matris-Quadratik Form Mutlak ve Bölgesel Maksimum-Minimum Noktalar Giriş Kısıtlı ve kısıtsız fonksiyonlar için

Detaylı

Kalkülüs I (MATH 151) Ders Detayları

Kalkülüs I (MATH 151) Ders Detayları Kalkülüs I (MATH 151) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kalkülüs I MATH 151 Güz 4 2 0 5 7.5 Ön Koşul Ders(ler)i Dersin Dili Dersin Türü Dersin

Detaylı

1: DENEYLERİN TASARIMI VE ANALİZİ...

1: DENEYLERİN TASARIMI VE ANALİZİ... İÇİNDEKİLER Bölüm 1: DENEYLERİN TASARIMI VE ANALİZİ... 1 1.1. Deneyin Stratejisi... 1 1.2. Deneysel Tasarımın Bazı Tipik Örnekleri... 11 1.3. Temel Kurallar... 16 1.4. Deneyleri Tasarlama Prensipleri...

Detaylı

İçindekiler kısa tablosu

İçindekiler kısa tablosu İçindekiler kısa tablosu Önsöz x Rehberli Tur xii Kutulanmış Malzeme xiv Yazarlar Hakkında xx BİRİNCİ KISIM Giriş 1 İktisat ve ekonomi 2 2 Ekonomik analiz araçları 22 3 Arz, talep ve piyasa 42 İKİNCİ KISIM

Detaylı

ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ EĞİTİM-ÖĞRETİM YILI 12. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI

ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ EĞİTİM-ÖĞRETİM YILI 12. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI ÖZEL ACAR KALİTE DEĞER MİLAT TEMEL LİSESİ 015-016 EĞİTİM-ÖĞRETİM YILI 1. SINIFLAR SEÇMELİ MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK DERS PLANI AY HAFTA SAAT KAZANIMLAR BÖLÜMLER (ALT ÖĞRENME ALANLARI) ÖĞRENME

Detaylı

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar Bir Matrisin Rankı A m n matrisinin determinantı sıfırdan farklı olan alt kare matrislerinin boyutlarının en büyüğüne A matrisinin rankı denir. rank(a)

Detaylı

Adi Diferensiyel Denklemler 1. BÖLÜM 1 Birinci-Mertebe Diferensiyel Denklemler 3. BÖLÜM 2 Lineer İkinci MertebeDenklemler 43

Adi Diferensiyel Denklemler 1. BÖLÜM 1 Birinci-Mertebe Diferensiyel Denklemler 3. BÖLÜM 2 Lineer İkinci MertebeDenklemler 43 İçindekiler Ön Söz xiii 1 Adi Diferensiyel Denklemler 1 BÖLÜM 1 Birinci-Mertebe Diferensiyel Denklemler 3 1.1 Terminololoji ve Değişkenlerine Ayrıştırılabilir Denklemler 3 1.2. Lineer Denklemler 16 1.3

Detaylı

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI

MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI MATLAB DA SAYISAL ANALİZ DOÇ. DR. ERSAN KABALCI Konu Başlıkları Lineer Denklem Sistemlerinin Çözümü İntegral ve Türev İntegral (Alan) Türev (Sayısal Fark ) Diferansiyel Denklem çözümleri Denetim Sistemlerinin

Detaylı

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz.

Alıştırmalar 1. 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Alıştırmalar 1 1) Aşağıdaki diferansiyel denklemlerin mertebesini ve derecesini bulunuz. Bağımlı ve bağımsız değişkenleri belirtiniz. Denklem Mertebe Derece a) 2 1 ( ) 4 6 c) 2 1 d) 2 2 e) 3 1 f) 2 4 g)

Detaylı

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr Ders Bilgisi Ders Kodu 9060528 Ders Bölüm 1 Ders Başlığı BİLİŞİM SİSTEMLERİ İÇİN MATEMATİĞİN TEMELLERİ Ders Kredisi 3 ECTS 8.0 Katalog Tanımı Ön koşullar Ders saati Bu dersin amacı altyapısı teknik olmayan

Detaylı

MAT MATEMATİK I DERSİ

MAT MATEMATİK I DERSİ MATEMATİK BÖLÜMÜ MAT 0 - MATEMATİK I DERSİ ÇALIŞMA SORULARI Bölüm : Fonksiyonlar. Tanım Kümesi ) f() = ln fonksiyonu verilsin. Tanım kümesini bulunuz. ((0, )\{}) Bölüm : Limit ve Süreklilik.. Limit L Hospital

Detaylı

1. Hafta SAYISAL ANALİZE GİRİŞ

1. Hafta SAYISAL ANALİZE GİRİŞ SAYISAL ANALİZ 1. Hafta SAYISAL ANALİZE GİRİŞ 1 AMAÇ Mühendislik problemlerinin çözümünde kullanılan sayısal analiz yöntemlerinin algoritmik olarak çözümü ve bu çözümlemelerin MATLAB ile bilgisayar ortamında

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik (Eşitlik Kısıtlı Türevli Yöntem) Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde

Detaylı

CUMHURİYET ÜNİVERSİTESİ FEN FAKÜLTESİ Yaz Öğretimi programı kapsamında açılan dersler ve kontenjanları

CUMHURİYET ÜNİVERSİTESİ FEN FAKÜLTESİ Yaz Öğretimi programı kapsamında açılan dersler ve kontenjanları CUMHURİYET ÜNİVERSİTESİ FEN FAKÜLTESİ 2012 2013 Yaz Öğretimi programı kapsamında açılan dersler ve kontenjanları AÇILAN DERSLERİN İÇERİKLERİ MAT 1001 ANALİZ-I (4 2 5) DERSİN KODU VE ADI KREDİ Kontenjan

Detaylı

Ders: MAT261 Konu: Matrisler, Denklem Sistemleri matrisi bulunuz. olmak üzere X = AX + B olacak şekilde bir X 1.

Ders: MAT261 Konu: Matrisler, Denklem Sistemleri matrisi bulunuz. olmak üzere X = AX + B olacak şekilde bir X 1. Ders: MAT6 Konu: Matrisler, Denklem Sistemleri. A = matrisi bulunuz.. A = a b c d e f ve B = ÇALIŞMA SORULARI- olmak üzere X = AX + B olacak şekilde bir X matrisi satır basamak hale getirildiğinde en fazla

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 2011

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 2011 Dersi Veren Birim: Mühendislik Fakültesi Dersin Türkçe Adı: MATEMATİK III Dersin Orjinal Adı: MATEMATİK III Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: MAT Dersin Öğretim

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı Ertuğrul US 01.09.2014 MATEMATİK PROGRAMIM Program 6 aylık (24 haftalık) bir programdır. Konuların veriliş sırasına uyularak çalışılması

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Genel Matematik (MATH 103) Ders Detayları

Genel Matematik (MATH 103) Ders Detayları Genel Matematik (MATH 103) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Genel Matematik MATH 103 Güz 3 2 0 4 6 Ön Koşul Ders(ler)i - Dersin Dili Dersin

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU MATEMATİK III. Dersin Kodu: MAT 2011

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU MATEMATİK III. Dersin Kodu: MAT 2011 Dersi Veren Birim: Mühendislik Fakültesi Dersin Adı: MATEMATİK III Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Dersin Kodu: MAT Dersin Öğretim Dili: Türkçe Formun Düzenleme / Yenilenme Tarihi:

Detaylı

T.C. MALTEPE ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK LİSANS PROGRAMI. 2013-14 Güz Yarıyılı. 1 yıl 1. yarıyıl Lisans Zorunlu

T.C. MALTEPE ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK LİSANS PROGRAMI. 2013-14 Güz Yarıyılı. 1 yıl 1. yarıyıl Lisans Zorunlu AKTS Kredisi 5 T.C. MALTEPE ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK LİSANS PROGRAMI Dersin adı: 2013-14 Güz Yarıyılı Genel Matematik I Dersin Kodu emat 151 1 yıl 1. yarıyıl Lisans Zorunlu 3 s/hafta

Detaylı

BÖLÜM I MAKROEKONOMİYE GENEL BİR BAKIŞ

BÖLÜM I MAKROEKONOMİYE GENEL BİR BAKIŞ İÇİNDEKİLER BÖLÜM I MAKROEKONOMİYE GENEL BİR BAKIŞ Giriş... 1 1. Makroekonomi Kuramı... 1 2. Makroekonomi Politikası... 2 2.1. Makroekonomi Politikasının Amaçları... 2 2.1.1. Yüksek Üretim ve Çalışma Düzeyi...

Detaylı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı

matematik LYS SORU BANKASI KONU ÖZETLERİ KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ Süleyman ERTEKİN Öğrenci Kitaplığı matematik SORU BANKASI Süleyman ERTEKİN LYS KONU ALT BÖLÜM TESTLERİ GERİ BESLEME TESTLERİ KONU ÖZETLERİ Öğrenci Kitaplığı SORU BANKASI matematik LYS EDAM Öğrenci Kitaplığı 18 EDAM ın yazılı izni olmaksızın,

Detaylı