Değişken Kalınlıklı İzotrop Plakların ANSYS Paket Programı ile Modellenmesi

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Değişken Kalınlıklı İzotrop Plakların ANSYS Paket Programı ile Modellenmesi"

Transkript

1 Değişken Klınlıklı İotrop Plklrın ANSYS Pket Progrmı ile odellenmesi ustf Hlûk Srçoğlu 1, Yunus Öçelikörs 1 1 Eskişehir Osmngi Üniversitesi, İnşt ühendisliği Bölümü, Eskişehir Öet: Tşıdığı üke ve mesnet şrtlrın göre plkt oluşn gerilme dğılımı dügün olmilir. Gerilmenin olduğu erlerde plk klınlığının eteri kdr tırşlnmsı neticesinde ort değişken klınlıklı plklr çıkr. Değişken klınlıklı plklr sit klınlıklı plklr göre dh düşük ğırlığ shiptirler. Değişken klınlıklı plklr gın olrk üksek performnslı kr, deni, hv ve u rçlrının irçok türünde kullnılmktdır. Günümü mühendisliğinde pket ilgisr progrmlrının kullnımı gün geçtikçe rtmktdır. Bir rç olrk kullnılmsı gereken u pket progrmlrl krmşık pek çok pının nlii kıs mnd pılilmektedir. ANSYS, sonlu elemnlr metodunu kullnn çok önlü ir pket progrmdır. Bu çlışmd, değişken üklemeler ltınd ve dügün olmn klınlık değişimine ship iotrop dikdörtgen plklrın sttik nlii için litertürde geliştirilen kplı form çöümleri ile ANSYS pket progrmındn elde edilen çöümler krşılştırılmıştır. Anhtr Söcükler: ANSYS, Değişken Klınlıklı Plk, Sonlu Elemnlr etodu. odelling of Vrile Thickness Isotropic Pltes ith ANSYS Pckged Softre Astrct: Stress distriution on the plte could e not regulr ecuse of the lod nd oundr conditions. Vrile thickness pltes occur fter cutting out the plte thickness sufficientl on plces tht hve less stress. Vrile thickness pltes hve less eight thn uniform thickness pltes. Vrile thickness pltes re idel used in mn kinds of highperformnce lnd, se, ir nd spce vehicles. From d to d usge of pckged computer progrms increses in tod s engineering. So much comple structures could e nlsed ith less time these pckged softres tht hve to e utilied s tool. ANSYS is verstile pckged softre tht uses finite element method. In this stud, closed-form solutions tht hve een developed in the literture for the sttic response of isotropic rectngulr pltes ith non-uniform thickness vrition nd sujected to ritrr loding is compred ith the solutions tht hve een otined using ANSYS pckged softre. Keords: ANSYS, Vrile Thickness Plte, Finite Element ethod. Giriş Plklr; ort dülemlerine dik doğrultudki ükleri eğilme dirençleri rdımıl tşın dülemsel tşııcılrdır. Eğer ükleme sonucund oluşn gerilmelerin olduğu ölgelerde klınlık ltılırs değişken klınlıklı plklr elde edilir. Değişken klınlıklı plklr gın olrk üksek performnslı üe ve hv rçlrının irçok türünde kullnılmktdır [5]. Plk klınlığı ounc ni değişimin olmdığı durumlrd sit klınlıklı plklr için türetilen plk denklemi değişken klınlıklı plklr için de eterli doğrulukt sonuç vermektedir [4]. Plğın herhngi ir ekseni önünde ve her iki eksen önünde klınlığının değiştiği durumd kplı form çöümü, sit mesnetlenme ve ükleme durumlrınd ile krmşık ir hle gelmektedir [5]. Zenkour, klsik ince plk teorisine dnn çlışmsınd; sit, doğrusl ve ikinci dereceden klınlık değişimine ship dikdörtgen plklrın eğilme proleminde Lèv tipi klşımı ve küçük prmetre metodunu kullnrk sısl çöümler ulmuştur. Çlışmd ele lınn ince dikdörtgen plk krşılıklı iki kenrındn sit mesnetlidir. Diğer iki kenrın sınır şrtlrı değişkendir ve u iki kenr rsınd plğın klınlığı d değişeilmektedir. Yr, değişik üklemeler ltınd ve dügün olmn klınlık değişimine ship iotrop dikdörtgen plklrın sttik nlii için, kplı form çöümler geliştirmiştir. Geliştirilen modelin doğruluğunu, kesin çöümü ilinen sısl sonuçlu prolemler ile knıtlmıştır [5].. Değişken Klınlıklı Plklr q = + + D (1) ifdesi plk denklemi olrk ilinmektedir. Aslınd u denklem q(, ) ılı ükü tşın plk elemnının önündeki denge denklemidir. Bu denklemde (, ) plğın ort düleminin ve koordintlrın ğlı olrk pmış olduğu çökmei gösteren elstik 3 üe fonksionudur. D ise Eh 1( 1 υ ) şeklinde trif edilen plk eğilme rijitliğidir. Örnek olrk, - ekseni önündeki uunluğu, - ekseni önündeki uunluğu oln iotrop ir plk ele lınilir. Klsik plk teorisine umsı için plğın - ekseni önündeki outu h, plğın ve kenr uunluklrının elli ir ornınd olmsı gerekir.

2 Zenkour, plğın - ekseni önündeki klınlık değişimini şğıdki fonksionl tnımlmıştır. [ f ( ) ] h = h 1+ λ n n f = 1 n = 1,,3, () ( ) ( ) n Burd h Şekil 1 de görüldüğü gii plk ort noktsının klınlığıdır. Plk klınlığındki değişimin doğrusl olduğu durumd n = 1, ikinci dereceden olduğu durumd ise n = olrk lınmktdır. ise; = şeklinde tnımlnn ir ornı ifde etmektedir. λ plğın klsik plk teorisine ugun olmsı için klınlığını düenleen küçük ir prmetredir. Bu çlışmd λ =., h = lınmıştır. ANSYS pket progrmının kütüphnesinde çok sıd elemn ulunmktdır. Bu çlışmd ele lınn plk eğilme proleminin pısın en ugun oln SHELL63 elemnı seçilmiştir. SHELL63 elemnı, eğilme öelliğine ship, üe ve norml gerilmeleri krşılilen ir elemndır. Toplm 4 düğüm noktsın shiptir ve her düğüm noktsınd X, Y ve Z eksenleri önlerindeki ötelenmeler ile ine u eksenler etrfındki dönmelerden oluşn 6 serestlik derecesine shiptir. Numerik örneklerin hesplmlrınd ANSYS pket progrmının APDL ( Anss Prmetric Design Lnguge ) öelliği kullnılmıştır [1,,3]. Öncelikle sit klınlıklı ir plk, ğ oluşturulrk elli sıd elemn ölünmektedir. Sonr elemnlrın irleştiği noktlrdki plk klınlıklrı APDL kodlrı ile tnımlnmktdır. Aşğıd ANSYS pket progrmının rdım dossındn lınn ve plk klınlığının değişimini sğln progrm prçsı gösterilmiştir. *GET,XNODE,NODE,,NU,AXD *DI,THICK,,XNODE *DO,NODE,1,XNODE *IF,NSEL(NODE),EQ,1,THEN THICK(node) =.5+.*NX(NODE)+.*NY(NODE)** *ENDIF *ENDDO NODE = $ XNODE = Bu lgoritmdki THICK(node) fonksionu plk klınlığındki değişimi ifde etmektedir. Bu stır, şğıd görülen iki frklı içimde düenlenerek doğrusl (n=1) ve ikinci dereceden (n=) klınlık değişimine ship plk prolemlerinin çöümlerinde kullnılmıştır. ( n = 1)için: THICK(node) = (/5)+(1/5)*NY(NODE) ( n = )için: THICK(node) = (3/5)-(/5)*NY(NODE)+(/5)*NY(NODE)** h 8h. h h h h h h h ( ) ( ) ( c) ( d) ( e) Şekil ) Dört kenrındn sit mesnetli plk, ) Krşılıklı iki kenrı nkstre, diğer iki kenrı sit mesnetli plk, c) Sit klınlıklı plk kesiti, d) Doğrusl klınlık değişimi oln plk kesiti, e) İkinci dereceden klınlık değişimi oln plk kesiti.

3 () () (c) Şekil. ) Sit klınlıklı plk, ) Doğrusl klınlık değişimi oln plk, c) İkinci dereceden klınlık değişimi oln plk. Kre ir plğın klınlığındki değişim, Şekil de görülmektedir. Çöülen ütün örnek prolemlerde Poisson ornı υ =. 3 olrk lınmıştır. Tlo1-3 te verilen outsu çökme ve eğilme momentlerinin hesplnmsınd 1 D = 4 q 1 = q 1 = q ğıntılrı kullnılmıştır. Burd D plk ort noktsındki h klınlığı kullnılrk hesplnn plk eğilme rijitliğidir. 3. APDL kodu Örnek olrk, doğrusl klınlık değişimine ship, dügün ılı ükle üklenmiş sit mesnetli kre plk için APDL kodu şu şekildedir: /BATCH /input,menust,tmp,'',,,,,,,,,,,,,,,,1 WPSTYLE,,,,,,,, /PREP7!SHELL63 elemni ET,1,SHELL63 PTEP,,,,,,,, PTEP,1,!Elstisite odulu PDATA,EX,1,,1!Poisson Orni PDATA,PRXY,1,,.3!Plk tnimlnmsi RECTNG,,1,,1, FLST,5,4,4,ORDE, FITE,5,1 FITE,5,-4 C,_Y,LINE LSEL,,,,P51X C,_Y1,LINE CSEL,,_Y!Ag tnimlnmsi LESIZE,_Y1,,,51,,,,,1 SHAPE,,D SHKEY,1 C,_Y,AREA ASEL,,,, 1 C,_Y1,AREA CHKSH,'AREA' CSEL,S,_Y AESH,_Y1 CDELE,_Y CDELE,_Y1 CDELE,_Y!Kesitin degiskenlestirilmesi *GET,XNODE,NODE,,NU,AXD *DI,THICK,,XNODE *DO,NODE,1,XNODE *IF,NSEL(NODE),EQ,1,THEN *SET,THICK(node), (/5)+(1/5)*NY(NODE) *ENDIF *ENDDO *SET,NODE, *SET,XNODE, RTHICK,THICK,1,,3,4, FLST,,4,4,ORDE, FITE,,1 FITE,,-4!Kenrlrd sinir srtlri DL,P51X,,UZ, FLST,,,4,ORDE, FITE,,1 FITE,,3 DL,P51X,,UX, FLST,,,4,ORDE, FITE,, FITE,,4 DL,P51X,,UY, FLST,,,4,ORDE, FITE,,1 FITE,,3 DL,P51X,,ROTY, FLST,,,4,ORDE, FITE,, FITE,,4

4 DL,P51X,,ROTX, FLST,,4,1,ORDE,4 FITE,,1 FITE,,- FITE,,53 FITE,,14!Kose noktlrind sinir srtlri D,P51X,,,,,,UX,UY,UZ,ROTX,ROTY, FLST,,1,5,ORDE,1 FITE,,1 SFA,P51X,1,PRES,-1!Yuk FINISH /SOL SOLVE!Coum FINISH /POST1!Sonuc AVPRIN,,, ETABLE,,U,Z!Cokme AVPRIN,,, ETABLE,m,SISC, 4 AVPRIN,,, ETABLE,m,SISC, 5 PRETAB,W,X,Y 4. Ugulmlr!X!Y!tlo Plk klınlığındki değişimin sit, doğrusl ve ikinci dereceden lındığı her ir ugulmd ornı 1, 5 ve için çöümler pılmıştır. Plk kenr ornı = 1 oln prolemlerde 51 51, = 5 oln prolemlerde ve = oln prolemlerde lik ğlr oluşturulmuştur. Tlo1 ve de dört kenrındn sit mesnetli dügün ve üçgen ılı ükle üklenmiş dikdörtgen plklr it sonuçlr verilmiştir. Tlo 3 te ise krşılıklı iki kenrı nkstre diğer iki kenrı sit mesnetli ve dügün ılı ükle üklenmiş plk prolemlerine it sonuçlr gösterilmiştir Tlo Dört kenrındn sit mesnetli, dügün ılı ükle üklü dikdörtgen plklrın ort noktsındki outsu ( ) çökme ve outsu (, ) eğilme momentleri Klınlık Değişimi / Yükleme durumu Sit ( n = ) Doğrusl ( n = 1) İkinci dereceden ( n = ) Klınlık Değişimi / Yükleme durumu Sit ( n = ) Doğrusl ( n = 1) İkinci dereceden ( n = ) Zenkour Bu çlışm % Frk Zenkour Bu çlışm % Frk Zenkour Bu çlışm % Frk Zenkour Bu çlışm % Frk Zenkour Bu çlışm % Frk Zenkour Bu çlışm % Frk Tlo. Dört kenrındn sit mesnetli, üçgen ılı ükle üklü dikdörtgen plklrın ort noktsındki outsu ( ) çökme ve outsu (, ) eğilme momentleri.

5 5. Tlo 3. Krşılıklı iki kenrı nkstre, diğer kenrlrı sit mesnetli dügün ılı ükle üklü dikdörtgen plklrın ort noktsındki outsu ( ) çökme ve outsu ( ) 5. Sonuç ve Öneriler Numerik ugulmlr pılırken ANSYS pket progrmının APDL kodlrındn fdlnılmıştır. Fortrn ilgisr progrmlm dili ile de enerlik gösteren u kodlr rdımıl dh frklı plk modelleri oluşturmk t mümkün olmktdır. Elde edilen numerik sonuçlr, referns mkle sonuçlrı ile mukese edildiğinde mkledekilerle üük ir uum içerisinde olduğu görülmüştür. Çöüm pılırken kullnıln sonlu elemn sısının rttırılmsıl nlitik sonuçlr dh d klşılcğı çıktır. 6. Knklr Klınlık Değişimi / Yükleme durumu Sit ( n = ) Doğrusl ( n = 1) İkinci dereceden ( n = ) [1] ANSYS, ANSYS commnds reference, 1614 (5). [] ANSYS, APDL progrmmer s guide, (5). [3] ANSYS, Relese Documenttion for ANSYS (5). [4] Timoshenko, S., & Woinosk-Krieger, S. "Theor of Pltes nd Shells", c Gr Hill, Singpore, 594 (1959). [5] Zenkour, A.., "An ect solution for the ending of thin rectngulr pltes ith uniform, liner, nd qudrtic thickness vritions", Interntionl Journl of echnicl Sciences, 45: (3)., eğilme momentleri Zenkour Bu çlışm % Frk Zenkour Bu çlışm % Frk Zenkour Bu çlışm % Frk

Değişken Kalınlıklı İzotrop Plakların ANSYS Paket Programı ile Modellenmesi

Değişken Kalınlıklı İzotrop Plakların ANSYS Paket Programı ile Modellenmesi Akdemik Bilişim 1 - XII. Akdemik Bilişim Konfernsı Bildirileri 1-1 Şut 1 uğl Üniversitesi Değişken Klınlıklı İzotrop Plklrın ANSYS Pket Progrmı ile odellenmesi ustf Hlûk Srçoğlu, Yunus Özçelikörs Eskişehir

Detaylı

ISSN: 1306-3111/1308-7231 Received: October 2014 NWSA ID: 2015.10.1.1A0356 Accepted: January 2015 E-Journal of New World Sciences Academy

ISSN: 1306-3111/1308-7231 Received: October 2014 NWSA ID: 2015.10.1.1A0356 Accepted: January 2015 E-Journal of New World Sciences Academy NWSA-Engineering Sciences Sttus : Originl Stud ISSN: 1306-3111/1308-7231 Received: October 2014 NWSA ID: 2015.10.1.1A0356 Accepted: Jnur 2015 E-Journl of New World Sciences Acdem Mustf Hlûk Srçoğlu Dumlupınr

Detaylı

GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI

GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI Q z Genel ükleme durumund, ir Q noktsını üç outlu olrk temsil eden küik gerilme elemnı üzerinde 6 ileşeni gösterileilir: σ, σ, σ z, τ, τ z, τ z. Söz konusu

Detaylı

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT

VEKTÖRLER ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİTE 5. ÜNİT VKTÖRLR ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT 5. ÜNİT VKTÖRLR 1. Kznım : Vektör kvrmını çıklr.. Kznım : İki vektörün toplmını ve vektörün ir gerçek syıyl çrpımını ceirsel ve geometrik olrk gösterir. VKTÖRLR 1.

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası

Mustafa YAĞCI, yagcimustafa@yahoo.com Parabolün Tepe Noktası Mustf YĞCI www.mustfgci.com.tr, 11 Ceir Notlrı Mustf YĞCI, gcimustf@hoo.com Prolün Tepe Noktsı Ö nce ir prolün tepe noktsı neresidir, onu htırltlım. Kc, prolün rtmktn zlm ve zlmktn rtm geçtiği nokt dieiliriz.

Detaylı

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE

İŞ ETKİ ÇİZGİSİ TEOREMİ. Balıkesir Üniversitesi Mühendislik Mimarlık Fakültesi İnşaat Müh. Bölümü Balıkesir, TÜRKİYE THEOREM OF WORK INFLUENCE LINE BAÜ Fen Bil. Enst. Dergisi (006).8. İŞ ETKİ ÇİZGİSİ TEOREMİ Scit OĞUZ, Perihn (Krkulk) EFE Blıkesir Üniversitesi Mühendislik Mimrlık Fkültesi İnşt Müh. Bölümü Blıkesir, TÜRKİYE ÖZET Bu çlışmd İş Etki Çizgisi

Detaylı

DENEY 6 THEVENIN, NORTON, DOĞRUSALLIK VE TOPLAMSALLIK KURAMLARININ UYGULAMALARI

DENEY 6 THEVENIN, NORTON, DOĞRUSALLIK VE TOPLAMSALLIK KURAMLARININ UYGULAMALARI T.C. Mltepe Üniversitesi Mühendislik ve Doğ Bilimleri Fkültesi Elektrik-Elektronik Mühendisliği Bölümü ELK 201 DEVRE TEORİSİ DERSİ LABORATUVARI DENEY 6 THEVENIN, NORTON, DOĞRUSALLIK VE TOPLAMSALLIK KURAMLARININ

Detaylı

BETONARME KİRİŞLERİN DIŞTAN YAPIŞTIRILAN ÇELİK LEVHALARLA KESMEYE KARŞI GÜÇLENDİRİLMESİ

BETONARME KİRİŞLERİN DIŞTAN YAPIŞTIRILAN ÇELİK LEVHALARLA KESMEYE KARŞI GÜÇLENDİRİLMESİ BETONARME KİRİŞLERİN DIŞTAN YAPIŞTIRILAN ÇELİK LEVHALARLA KESMEYE KARŞI GÜÇLENDİRİLMESİ Sinn ALTIN 1, Özgür ANIL 2, M. Emin KARA 3 1 İnşt Müh. Böl. Prof. Dr., Gzi Üniversitesi, Mltepe, Ankr, Türkiye, 06570

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinnd P. Beer E. Russell Johnston, Jr. Ders Notu: Hri ACAR İstnbul Teknik Üniveristesi Tel: 85 1 46 / 116 E-mil: crh@itu.edu.tr Web: http://tls.cc.itu.edu.tr/~crh

Detaylı

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS)

11. SINIF GEOMETRİ. A, B ve C noktaları O merkezli çember üzerinde. Buna göre, BE uzunluğu kaç cm dir? B) 7 3 C) 8 3 A) 5 2 E) 9 5 D) 7 5 (2008 - ÖSS) ÇMR ÖSS SRULRI 1., ve noktlrı merkezli çember üzerinde m( ) = m( ) =. ir dik üçgeni için, = cm ve = 4 cm olrk veriliyor. Merkezi, yrıçpı [] oln bir çember, üçgenin kenrını ve noktlrınd kesiyor. un göre,

Detaylı

T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KISA ELYAF TAKVİYELİ KOMPOZİT PLAKLARDA TİTREŞİM ANALİZİ Sit Özmen ERUSLU DOKTORA TEZİ MAKİNA MÜHENDİSLİĞİ ANA BİLİM DALI TEZ DANIŞMANI: Doç Dr. Metin AYDOĞDU

Detaylı

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =?

Lisans Yerleştirme Sınavı 1 (Lys 1) / 16 Haziran Matematik Sorularının Çözümleri. sayısının 2 sayı tabanında yazılışı =? Lisns Yerleştirme Sınvı (Ls ) 6 Hirn Mtemtik Sorulrının Çöümleri 8 sı tnınd verilen ( ) 8 sısının sı tnınd ılışı? Bu durumd ( ) 8 sısı önce tnın çevrilir Sonr tnınd ılır ( ) 8 8 8 8 Bun göre ( ) 8 ( )

Detaylı

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90

G E O M E T R İ. Dar Açılı Üçgen. denir. < 90, < 90, < 90 = lik açının karşısındaki kenara hipotenüs denir. > 90 G O M T R İ. ÖLÜM Üçgende çılr. ÜÇGN oğrusl olmyn üç noktyı birleştiren doğru prçlrının birleşim kümesine üçgen denir. ış çı ış çı ış çı. ÇILRIN GÖR ÜÇG N ÇŞİTLR İ r çılı Üçgen Üç çının ölçüsü de 90 den

Detaylı

Bilgisayar Destekli Tasarım/İmalat Sistemlerinde Kullanılan Modelleme Yöntemleri: Bézier ve Tiriz Eğrileri ve İmalat Uygulamaları

Bilgisayar Destekli Tasarım/İmalat Sistemlerinde Kullanılan Modelleme Yöntemleri: Bézier ve Tiriz Eğrileri ve İmalat Uygulamaları Bilgisr Destekli Tsrım/İmlt Sistemlerinde Kllnıln Modelleme Yöntemleri: Béier ve Tiri Eğrileri ve İmlt Uglmlrı Bilimsel Hesplm II Dönem Projesi Hmdi Ndir Trl İçerik. Giriş. Bilgisrlı Destekli Tsrım (CAD

Detaylı

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü,

2005 ÖSS BASIN KOPYASI SAYISAL BÖLÜM BU BÖLÜMDE CEVAPLAYACAĞINIZ TOPLAM SORU SAYISI 90 DIR. Matematiksel İlişkilerden Yararlanma Gücü, 005 ÖSS SIN KPYSI SYISL ÖLÜM İKKT! U ÖLÜME EVPLYĞINIZ TPLM SRU SYISI 90 IR. İlk 45 Soru Son 45 Soru Mtemtiksel İlişkilerden Yrrlnm Gücü, Fen ilimlerindeki Temel Kvrm ve İlkelerle üşünme Gücü ile ilgilidir.

Detaylı

LİNEER CEBİR MATRİSLER: şeklindeki tablosuna mxn tipinde bir matris denir. [a ij ] mxn şeklinde gösterilir. m satır, n sütun sayısıdır.

LİNEER CEBİR MATRİSLER: şeklindeki tablosuna mxn tipinde bir matris denir. [a ij ] mxn şeklinde gösterilir. m satır, n sütun sayısıdır. LİNEER CEBİR MTRİSLER: i,,,...,m ve j,,,..., n için ij sılrının. m m...... n n mn şeklindeki tblosun mn tipinde bir mtris denir. [ ij ] mn şeklinde gösterilir. m stır, n sütun sısıdır. 5 mtrisi için ;

Detaylı

2005/2006 ÖĞRETİM YILI GÜZ YARIYILI MUKAVEMET 1 DERSİ FİNAL SORU VE CEVAPLARI

2005/2006 ÖĞRETİM YILI GÜZ YARIYILI MUKAVEMET 1 DERSİ FİNAL SORU VE CEVAPLARI 5/6 ÖĞRETİ GÜZ R UKVEET 1 ERSİ FİN SORU VE EVPR SORU 1 8 P Şekildeki gerilme durumund; ) sl gerilmeleri ve düzlemlerini ulrk elemn üzerinde gösteriniz. ) ksimum km gerilmesi ve düzlemini ulrk elemn üzerinde

Detaylı

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır?

1988 ÖYS. 1. Toplamları 242 olan gerçel iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 4, kalan 22 dir. Küçük sayı kaçtır? 988 ÖYS. Toplmlrı 4 oln gerçel iki syıdn üyüğü küçüğüne ölündüğünde ölüm 4, kln dir. Küçük syı kçtır? A) 56 B) 5 C) 48 D) 44 E) 40. 0,5 6 devirli (peryodik) ondlık syısı şğıdkilerden hngisine eşittir?

Detaylı

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen

ÇOKGENLER Çokgenler çokgen Dışbükey (Konveks) ve İçbükey (Konkav) Çokgenler dış- bükey (konveks) çokgen içbükey (konkav) çokgen ÇONLR Çokgenler rdışık en z üç noktsı doğrusl olmyn, düzlemsel şekillere çokgen denir. Çokgenler kenr syılrın göre isimlendirilirler. Üçgen, dörtgen, beşgen gibi. ışbükey (onveks) ve İçbükey (onkv) Çokgenler

Detaylı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı

Ankara Üniversitesi Mühendislik Fakültesi, Fizik Mühendisliği Bölümü FZM207. Temel Elektronik-I. Doç. Dr. Hüseyin Sarı Ankr Üniversitesi Mühendislik Fkültesi, Fizik Mühendisliği Bölümü FZM207 Temel ElektronikI Doç. Dr. Hüseyin Srı 2. Bölüm: Dirençli Devreler İçerik Temel Yslrın Doğrudn Uygulnışı Kynk Gösterimi ve Dönüşümü

Detaylı

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI

KIVIRMA İŞLEMİNİN ŞEKİL ve BOYUTLARI 2011 Şut KIVIRMA İŞEMİNİN ŞEKİ ve BOYUTARI Hzırlyn: Adnn YIMAZ AÇINIM DEĞERERİ 50-21 DİKKAT: İyi niyet, ütün dikkt ve çm krşın ynlışlr olilir. Bu nedenle onucu orumluluk verecek ynlışlıklr için, hiçir

Detaylı

η= 1 kn c noktasında iken A mesnedinin mesnet tepkisi (VA)

η= 1 kn c noktasında iken A mesnedinin mesnet tepkisi (VA) ölüm Đzosttik-Hipersttik-Elstik Şekil Değiştirme TESİR ÇİZGİSİ ÖRNEKLERİ Ypı sistemlerinin mruz kldığı temel yükler sit ve hreketli yüklerdir. Sit yükler için çözümler önceki konulrd ypılmıştır. Hreketli

Detaylı

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI

ÖZEL EGE LİSESİ OKULLAR ARASI 18. MATEMATİK YARIŞMASI 8. SINIF TEST SORULARI ., ÖZEL EGE LİSESİ OKULLR RSI 8. MTEMTİK YRIŞMSI 8. SINI TEST SORULRI 5. 0,0008.0 b 0,0000.0 ise; b.0 kç bsmklı bir sıdır? olduğun göre, ifdesinin değeri şğıdkilerden hngisine eşittir? ) 80 ) 8 ) 8 ) 8

Detaylı

GEMİ VE AÇIKDENİZ YAPILARI MUKAVEMETİ Hafta 11

GEMİ VE AÇIKDENİZ YAPILARI MUKAVEMETİ Hafta 11 Gemi İnşı ve eniz Bilimleri Fkülesi GEMİ VE AÇIKENİZ YAPILARI MUKAVEMETİ Hf oç. r. Brros Okn Gemi İnşı ve eniz Bilimleri Fkülesi Plklrın Burkulmsı N p (,) p, N Gemi İnşı ve eniz Bilimleri Fkülesi Plk Burkulmsı

Detaylı

MATEMATİK 2 TESTİ (Mat 2)

MATEMATİK 2 TESTİ (Mat 2) 009 - ÖSS / MT- MTEMTİK TESTİ (Mt ). u testte sırsıl, Mtemtik ( 8) Geometri (9 7) nlitik Geometri (8 0) lnlrın it 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için rıln kısmın işretleiniz..

Detaylı

İntegral Uygulamaları

İntegral Uygulamaları İntegrl Uygulmlrı Yzr Prof.Dr. Vkıf CAFEROV ÜNİTE Amçlr Bu üniteyi çlıştıktn sonr; düzlemsel ln ve dönel cisimlerin cimlerinin elirli integrl yrdımı ile esplnileceğini, küre, koni ve kesik koninin cim

Detaylı

GERİ KARIŞMALI ph NÖTRALİZASYON PROSESİNİN BİLGİSAYAR DESTEKLİ KONTROLÜ

GERİ KARIŞMALI ph NÖTRALİZASYON PROSESİNİN BİLGİSAYAR DESTEKLİ KONTROLÜ GERİ KARIŞMALI ph NÖTRALİZASYON PROSESİNİN BİLGİSAYAR DESTEKLİ KONTROLÜ Onur Ömer SÖĞÜT*, A. Fruk BAKAN**, Mesut AKGÜN* * YTÜ Dvutpş Kmpüsü, Kimy Mühendisliği Bölümü, 34210 Esenler, İstnul **YTÜ Elektrik

Detaylı

Örnek...1 : İNTEGRAL İNTEGRAL İLE ALAN HESABI UYARI 2 UYARI 3 ALAN HESABI UYARI 1 A 2 A 1. f (x )dx. = a. w w w. m a t b a z.

Örnek...1 : İNTEGRAL İNTEGRAL İLE ALAN HESABI UYARI 2 UYARI 3 ALAN HESABI UYARI 1 A 2 A 1. f (x )dx. = a. w w w. m a t b a z. İNTEGRAL İLE ALAN HESABI UYARI =f() =f() =f() [,] rlığınd f() işret değiştiriors, f onksi on prçlr rılır =f() Şekilde =f() eğrisile ekseni ltınd kln lnı ulmk için eğrinin ltınd kln ölgei dikdörtgenlere

Detaylı

FRENLER 25.02.2012 FRENLERİN SINIFLANDIRILMASI

FRENLER 25.02.2012 FRENLERİN SINIFLANDIRILMASI RENLER RENLER renler çlışmlrı itiriyle kvrmlr enzerler. Kvrmlr ir hreketin vey momentin diğer trf iletilmesini sğlrlr ve kıs ir süre içinde iki trftki hızlr iririne eşit olur. renler ise ir trftki hreketi

Detaylı

B - GERĐLĐM TRAFOLARI:

B - GERĐLĐM TRAFOLARI: ve Seg.Korum_Hldun üyükdor onrım süresinin dh uzun olmsı yrıc rnın izole edilmesini gerektirmesi; rızlnmsı hlinde r tdiltını d gerektireilmesi, v. nedenlerle, özel durumlr dışınd tercih edilmezler. - GERĐLĐM

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 15 Sayı: 1 sh Ocak 2013

DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 15 Sayı: 1 sh Ocak 2013 DEÜ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK BİLİMLERİ DERGİSİ Cilt: 5 Syı: sh. 5-66 Ok 0 X ÇAPRAZLI ÇELİK SİSTEMLERDE BASINÇ ÇUBUĞUNUN ELASTİK BURKULMA DAVRANIŞININ İNCELENMESİ (INVESTIGATION OF ELASTIC BUCKLING

Detaylı

63032 / 63932 ELEKTRONİK SICAKLIK KONTROL CİHAZI KULLANIM KILAVUZU

63032 / 63932 ELEKTRONİK SICAKLIK KONTROL CİHAZI KULLANIM KILAVUZU 63032 / 63932 ELEKTRONİK SICAKLIK KONTROL CİHAZI KULLANIM KILAVUZU www.omk.com.tr 01.08.2014 V3185 / V4185 VARİL ISITICISI KULLANIM KILAVUZU OMAK MAKİNA SANAYİİ ve TİCARET LİMİTED ŞİRKETİ DR. MEDİHA ELDEM

Detaylı

BİLDİRİ BAŞLIĞI : DİKDÖRTGEN SONLU ELEMAN FORMÜLASYONU

BİLDİRİ BAŞLIĞI : DİKDÖRTGEN SONLU ELEMAN FORMÜLASYONU İLİRİ AŞLIĞI : İKÖRGEN ONLU ELEMAN FORMÜLAYONU YAZAR : oç. r. Nmık Keml ÖZORUN (İ.Ü. İnş.Müh. öl. Ypı Anilimdlı oç. r. Nmık Keml ÖZORUN (İ.Ü. İnş. Müh. öl. Ypı An ilim dlı Adres: İstnul Üniversitesi, Mühendislik

Detaylı

DERS 3. Doğrusal Fonksiyonlar, Quadratic Fonksiyonlar, Polinomlar

DERS 3. Doğrusal Fonksiyonlar, Quadratic Fonksiyonlar, Polinomlar DERS 3 Doğrusl Fonksionlr Qudrtic Fonksionlr Polinomlr 3. Bir Fonksionun Koordint Kesişimleri(Intercepts). Bir fonksionun grfiğinin koordint eksenlerini kestiği noktlr o fonksionun koordint kesişimleri

Detaylı

UZAYDA VEKTÖRLER / TEST-1

UZAYDA VEKTÖRLER / TEST-1 UZAYDA VEKTÖRLER / TEST-. A(,, ) ve B(,, ) noktlrı rsındki uklık kç birimdir? 6. A e e e B e e e AB vektörü ile nı doğrultud ıt öndeki birim vektör şğıdkilerden ( e e e ). A(, b, ) B(,, ) noktlrı ve U

Detaylı

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi

Anadolu Üniversitesi Mühendislik Fakültesi Endüstri Mühendisliği Bölümü. Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2015-2016 Güz Dönemi Andolu Üniversitesi Mühendislik Fkültesi Endüstri Mühendisliği Bölümü Doç. Dr. Nil ARAS ENM411 Tesis Plnlmsı 2015-2016 Güz Dönemi 2 Tesis (fcility) Tesis : Belli bir iş için kurulmuş ypı Tesis etmek :

Detaylı

BÖLÜM II B. YENĐ ÇELĐK BĐNALARIN TASARIM ÖRNEKLERĐ ÖRNEK 8

BÖLÜM II B. YENĐ ÇELĐK BĐNALARIN TASARIM ÖRNEKLERĐ ÖRNEK 8 BÖLÜM II B. YENĐ ÇELĐK BĐNALARIN TASARIM ÖRNEKLERĐ ÖRNEK 8 BĐR DOĞRULTUDA SÜNEKLĐK DÜZEYĐ NORMAL ÇERÇEVELĐ, DĐĞER DOĞRULTUDA SÜNEKLĐK DÜZEYĐ NORMAL MERKEZĐ ÇAPRAZ PERDELĐ ÇELĐK ENDÜSTRĐ BĐNASININ TASARIMI

Detaylı

DENEY 2 Wheatstone Köprüsü

DENEY 2 Wheatstone Köprüsü 0-05 Güz ULUDĞ ÜNİESİTESİ MÜHENDİSLİK FKÜLTESİ ELEKTİK-ELEKTONİK MÜHENDİSLİĞİ ÖLÜMÜ EEM0 Elektrik Devreleri Lorturı I 0-05 DENEY Whetstone Köprüsü Deneyi Ypnın Değerlendirme dı Soydı : Deney Sonuçlrı (0/00)

Detaylı

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57

1990 ÖYS 1. 7 A) 91 B) 84 C) 72 D) 60 E) 52 A) 52 B) 54 C) 55 D) 56 E) 57 99 ÖYS. si oln si kçtır? A) 9 B) 8 C) D) 6 E) 5 6. Bir nın yşı, iki çocuğunun yşlrı toplmındn üyüktür. yıl sonr nın yşı, çocuklrının yşlrı toplmının ktı olcğın göre ugün kç yşınddır? A) 5 B) 5 C) 55 D)

Detaylı

BÖLÜM 3 : RASLANTI DEĞİŞKENLERİ

BÖLÜM 3 : RASLANTI DEĞİŞKENLERİ BÖLÜM : RASLANTI DEĞİŞKENLERİ (Rndom Vribles Giriş: Bölüm de olsılık fonksionu, denein örneklem uzını oluşurn sonuçlrın erimleri ile belirleniordu. Örneğin; iki zr ıldığınd, P gelen 6 olsı sırlı ikilinin

Detaylı

Şekil 13.1 Genel Sistem Görünüşü 13/1

Şekil 13.1 Genel Sistem Görünüşü 13/1 ÖRNEK 13: BĐR DOĞRULTUDA SÜNEKLĐK DÜZEYĐ NORMAL ÇERÇEVELERDEN DĐĞER DOĞRULTUDA SÜNEKLĐK DÜZEYĐ NORMAL MERKEZĐ ÇELĐK ÇAPRAZLI PERDELERDEN OLUŞAN TEK KATLI ÇELĐK ENDÜSTRĐ BĐNASI 13.1 Sistem Üç boyutlu genel

Detaylı

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise;

4- SAYISAL İNTEGRAL. c ϵ R olmak üzere F(x) fonksiyonunun türevi f(x) ise ( F (x) = f(x) ); denir. f(x) fonksiyonu [a,b] R için sürekli ise; 4- SAYISAL İNTEGRAL c ϵ R olmk üzere F() onksiyonunun türevi () ise ( F () = () ); Z ` A d F ` c eşitliğindeki F()+c idesine, () onksiyonunun elirsiz integrli denir. () onksiyonu [,] R için sürekli ise;

Detaylı

Yarım Toplayıcı (Half Adder): İki adet birer bitlik sayıyı toplayan bir devredir. a: Birinci Sayı a b c s. a b. s c.

Yarım Toplayıcı (Half Adder): İki adet birer bitlik sayıyı toplayan bir devredir. a: Birinci Sayı a b c s. a b. s c. Syıl Devreler (Lojik Devreleri) Tümleştirilmiş Kominezonl Devre Elemnlrı Syıl itemlerin gerçekleştirilmeinde çokç kullnıln lojik devreler, klik ğlçlrın ir ry getirilmeiyle tümleştirilmiş devre olrk üretilirler

Detaylı

ORTĐK ÜÇGEN ve EŞ ÖZELLĐKLĐ NOKTALAR

ORTĐK ÜÇGEN ve EŞ ÖZELLĐKLĐ NOKTALAR ORTÖĞRETĐM ÖĞRENĐLERĐ RSI RŞTIRM ROJELERĐ YRIŞMSI (2008 2009) ORTĐK ÜÇGEN ve EŞ ÖZELLĐKLĐ NOKTLR rojeyi Hzırlyn Öğrencilerin dı Soydı : Sinem ÇKIR Sınıf ve Şuesi : 11- dı Soydı : Fund ERDĐ Sınıf ve Şuesi

Detaylı

1981 ÜYS Soruları. 1. Bir top kumaşın önce i, sonra da kalanın ü. satılıyor. Geriye 26 m kumaş kaldığına göre, kumaşın tümü kaç metredir?

1981 ÜYS Soruları. 1. Bir top kumaşın önce i, sonra da kalanın ü. satılıyor. Geriye 26 m kumaş kaldığına göre, kumaşın tümü kaç metredir? 98 ÜYS Sorulrı. r top kumşın önce, sonr d klnın ü 5 stılıor. Gere 6 m kumş kldığın göre, kumşın tümü kç metredr? ) 7 ) 65 ) 6 ) 55 ) 5 4. r şekln, u brm uzunluğun göre ln ölçüsü, v brm uzunluğun göre ln

Detaylı

çizilen doğru boyunca birim vektörü göstermektedir. q kaynak yükünün konum vektörü r ve Q deneme E( r) = 1 q

çizilen doğru boyunca birim vektörü göstermektedir. q kaynak yükünün konum vektörü r ve Q deneme E( r) = 1 q Elektrosttik(Özet) Coulomb Yssı Noktsl bir q yükünün kendisinden r kdr uzktki bir Q yüküne uyguldığı kuvvet, şğıdki Coulomb yssı ile ifde edilir: F = 1 qq ˆr (1) r2 burd boşluğun elektriksel geçirgenlik

Detaylı

ÇELİK I PROFİLİ VE BETONARME PLAKTAN OLUŞAN KOMPOZİT KİRİŞTE PLASTİK HESAP TEORİSİ ANALİZİ. Mücahit OPAN 1

ÇELİK I PROFİLİ VE BETONARME PLAKTAN OLUŞAN KOMPOZİT KİRİŞTE PLASTİK HESAP TEORİSİ ANALİZİ. Mücahit OPAN 1 ÇELİK I PROFİLİ VE BETONARME PLAKTAN OLUŞAN KOMPOZİT KİRİŞTE PLASTİK HESAP TEORİSİ ANALİZİ Müchit OPAN 1 opnmuchit@yhoo.com ÖZ: Bu çlışmnın mcı, çelik I proili ve etonrme ktn oluşn kompozit kirişte Plstik

Detaylı

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ

DENEY 3: EŞDEĞER DİRENÇ, VOLTAJ VE AKIM ÖLÇÜMÜ A. DENEYĠN AMACI : Direnç devrelerinde eşdeğer direnç ölçümü ypmk. Multimetre ile voltj ve kım ölçümü ypmk. Ohm knununu sit ve prtik devrelerde nlmy çlışmk. B. KULLANILACAK AAÇ VE MALZEMELE : 1. DC güç

Detaylı

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK

11. BÖLÜM. Paralelkenar ve Eşkenar Dörtgen A. PARALELKENAR B. PARALELKENARIN ÖZEL LİKLERİ ÇÖZÜM ÖRNEK ÇÖZÜM ÖRNEK G O M T R İ www.kdemivizyon.com.tr. ÖÜM Prlelkenr ve şkenr örtgen. PRNR rşılıklı kenrlrı prlel oln dörtgenlere prlelkenr denir. [] // [] [] // [] = =. PRNRIN ÖZ İRİ. rşılıklı çılr eş ve rdışık çılr ütünlerdir.

Detaylı

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere

RASYONEL SAYILAR KESİR ÇEŞİTLERİ. www.unkapani.com.tr. 1. Basit Kesir. olduğuna göre, a, b tamsayı ve b 0 olmak üzere, a şeklindeki ifadelere RASYONEL SAYILAR, tmsyı ve 0 olmk üzere, şeklindeki ifdelere kesir denir. y kesrin pyı, ye kesrin pydsı denir. Örneğin,,,, kesirdir. kesrinde, py kesir çizgisi pyd, 0, 0 ise 0 0 dır.,, 0, syılrı irer 0

Detaylı

Örnek...1 : Örnek...2 : DÜZGÜN BEŞGEN DÜZGÜN BEŞGEN ÖZELLİK 3 TANIM VE ÖZELLİKLERİ ÖZELLİK 1 ÖZELLİK 2. A Köşe. köşeleri A, B, C, D ve E dir, β θ

Örnek...1 : Örnek...2 : DÜZGÜN BEŞGEN DÜZGÜN BEŞGEN ÖZELLİK 3 TANIM VE ÖZELLİKLERİ ÖZELLİK 1 ÖZELLİK 2. A Köşe. köşeleri A, B, C, D ve E dir, β θ ÜZGÜN ŞGN ( ÜZGÜN ŞGN TNII, ÖZİRİ ĞRNİRR ) ÜZGÜN ŞGN ÖZİ 3 TNI V ÖZİRİ enr syısı 5 oln düzgün çokgene öşe düzgün beşgen denir. üzgün beşgenin; köşeleri,,, ve dir, kenrlrı [], [], β θ [], [] ve [] dır,

Detaylı

AHP Temelli TOPSIS ve ELECTRE Yöntemiyle Muhasebe Paket Programı Seçimi. Use of AHP-based TOPSIS and ELECTRE Methods on Accounting. Software Selection

AHP Temelli TOPSIS ve ELECTRE Yöntemiyle Muhasebe Paket Programı Seçimi. Use of AHP-based TOPSIS and ELECTRE Methods on Accounting. Software Selection Niğde Üniversitesi İktisdi ve İdri Bilimler Fkültesi Dergisi Yıl: Ock 205 Cilt-Sı: 8 () ss: 53-7 ISSN: 248-580 e-issn 308-426 http://dergiprk.ulkbim.gov.tr/niguiibfd/ ÖZ AHP Temelli TOPSIS ve ELECTRE Yöntemile

Detaylı

Tek ve Çift Fonksiyonlar. Özel Tanýmlý Fonksiyonlar. Bir Fonksiyonun En Geniþ Taným Kümesi. 1. Parçalý Fonksiyonlar. 2. Mutlak Deðer Fonksiyonu

Tek ve Çift Fonksiyonlar. Özel Tanýmlý Fonksiyonlar. Bir Fonksiyonun En Geniþ Taným Kümesi. 1. Parçalý Fonksiyonlar. 2. Mutlak Deðer Fonksiyonu Fonksionlr Konu Özeti. Köklü fonksionlrın en geniş tnım kümesi: f( f( n f( g( fonksionun en geniş tnım kümesi, g( koşulunu sğln noktlr kümesidir. f( f( n f( g( tüm reel sılrd tnımlıdır. fonksionu g( in

Detaylı

Bazı Sert Çekirdekli Meyve Türlerinde Çiçek Tozu Çimlenmesi ve Çim Borusu Uzunluğunun Çoklu Regresyon Yöntemi ile Modellenmesi

Bazı Sert Çekirdekli Meyve Türlerinde Çiçek Tozu Çimlenmesi ve Çim Borusu Uzunluğunun Çoklu Regresyon Yöntemi ile Modellenmesi Süleymn Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi Cilt 19, Syı 3, 92-97, 2015 Süleymn Demirel University Journl of Nturl nd Applied Sciences Volume 19, Issue 3, 92-97, 2015 DOI: 10.19113/sdufed.04496

Detaylı

THÉVENİN, NORTON, MAKSİMUM GÜÇ TEOREMİ ve DEVRE PARAMETRELERİ

THÉVENİN, NORTON, MAKSİMUM GÜÇ TEOREMİ ve DEVRE PARAMETRELERİ DENEY NO: 4 THÉENİN, NORTON, MAKSİMUM GÜÇ TEOREMİ ve DERE PARAMETRELERİ Mlzeme ve Cihz Litei:. 330 direnç det. k direnç 3 det 3.. k direnç det 4. 3.3 k direnç det 5. 5.6 k direnç det 6. 0 k direnç det

Detaylı

1982 ÖSS =3p olduğuna göre p kaçtır? A) 79 B) 119 C) 237 E) A) 60 B) 90 C) 120 D) 150 E) 160

1982 ÖSS =3p olduğuna göre p kaçtır? A) 79 B) 119 C) 237 E) A) 60 B) 90 C) 120 D) 150 E) 160 8 ÖSS. Bir çiftlikte 800 koun 00 inek ve 600 mnd vrdır. Bu hvnlrın tümü bir dire grfikle gösterilirse ineklerle ilgili dilimin merkez çısı kç derece olur? A) 60 B) 0 C) 0 D) 0 E) 60 6. 0 - =p olduğun göre

Detaylı

DENKLEM ve EŞİTSİZLİKLER

DENKLEM ve EŞİTSİZLİKLER DENKLEM ve EŞİTSİZLİKLER Sf No..................................................... - 7 Denklem ve Eşitsizlikler Konu Özeti............................................. Konu Testleri ( 0)..........................................................

Detaylı

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır.

ek tremum LYS-1 MATEMATİK MATEMATİK TESTİ 1. Bu testte Matematik Alanına ait toplam 80 soru vardır. LYS- MTEMTİK MTEMTİK TESTİ. u testte Mtemtik lnın it toplm 0 soru vrdır.. evplrınızı, cevp kâğıdının Mtemtik Testi için yrıln kısmın işretleyiniz.. = 5! +! olduğun göre,! syısının türünden eşiti şğıdkilerden

Detaylı

Huş Odununun Kayın Odununa Alternatif Olarak Kontrplak Üretiminde Değerlendirilmesi

Huş Odununun Kayın Odununa Alternatif Olarak Kontrplak Üretiminde Değerlendirilmesi 50 Odununun Kyın Odunun Alterntif Olrk Kontrplk Üretiminde Değerlendirilmesi Evren Osmn ÇAKIROĞLU 1*, İsmil AYDIN 2 1 Artvin Çoruh Üniversitesi Meslek Yüksekokulu Mobily ve Dekorsyon Bölümü/Artvin 2 Krdeniz

Detaylı

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ

Ö.Y.S. 1998. MATEMATĐK SORULARI ve ÇÖZÜMLERĐ Ö.Y.S. 998 MATEMATĐK SORULARI ve ÇÖZÜMLERĐ. Üç bsmklı bir doğl syısının ktı, iki bsmklı bir y doğl syısın eşittir. 7 Bun göre, y doğl syısı en z kç olbilir? A) B) C) 8 D) E) Çözüm y 7 7y (, en küçük bsmklı,

Detaylı

AKM 205-BÖLÜM 4-UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205-BÖLÜM 4-UYGULAMA SORU VE ÇÖZÜMLERİ AKM 5-BÖÜM -UYGUAMA SORU VE ÇÖZÜMERİ 1. Aşğıd erilen dimi, iki otl ız lnını dikkte lınız: V (, ) (.66.1) i (.7.1) j B kış lnınd ir drm noktsı r mıdır? Vrs nerededir? Kller: 1. Akış dimidir.. Akış -otldr.

Detaylı

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5

1997 ÖYS A) 30 B) 35 C) 40 D) 45 E) 50. olduğuna göre, k kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 7 ÖYS. 0,00 0,00 k 0,00 olduğun göre, k kçtır? 6. Bir ust günde çift ykkbı, bir klf ise günde çift ykkbı ypmktdır. İkisi birlikte, 8 çift ykkbıyı kç günde yprlr? 0 C) 0 D) 0 C) D). (0 ) ( 0) işleminin

Detaylı

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur?

1986 ÖSS. olduğuna göre, aşağıdakilerden hangisi doğrudur? 986 ÖSS. (0,78+0,8).(0,3+0,7) Yukrıdki işlemin sonucu nedir? B) C) 0, D) 0, E) 0,0. doğl syısı 4 ile bölünebildiğine göre şğıdkilerden hngisi tek syı olbilir? Yukrıdki çrpm işleminde her nokt bir rkmın

Detaylı

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma

1. Değişkenler ve Eğriler: Matematiksel Hatırlatma DERS NOTU 01 Son Hli Değildir, tslktır: Ekleme ve Düzenlemeler Ypılck BİR SOSYAL BİLİM OLARAK İKTİSAT VE TEMEL KAVRAMLAR 1 Bugünki dersin işleniş plnı: 1. Değişkenler ve Eğriler: Mtemtiksel Htırltm...

Detaylı

Örnek...2 : x=2, x=4, y=2, y= 5 doğruları arasında kalan

Örnek...2 : x=2, x=4, y=2, y= 5 doğruları arasında kalan KAT CİSİMLERİN HACİMLERİ Örnek...2 : =2, =4, =2, = 5 doğrulrı rsınd kln ölgenin O ekseni etrfınd 360 o döndürülm esi le oluşck ktı cism in hcm ini ulunuz İNTEGRAL İLE HACİM HESAB 1. X EKSENİNDE DÖNDÜRMELER

Detaylı

Poli(3,8-diaminobenzo[c]sinolin-5-oksit)/Au Polimer Kompozitinin Elektrokimyasal Üretimi ve Elektrokromik Özelliklerinin İncelenmesi

Poli(3,8-diaminobenzo[c]sinolin-5-oksit)/Au Polimer Kompozitinin Elektrokimyasal Üretimi ve Elektrokromik Özelliklerinin İncelenmesi Poli(3,8-diminoenzo[c]sinolin-5-oksit)/Au Polimer Kompozitinin Elektrokimysl Üretimi ve Elektrokromik Özelliklerinin İncelenmesi ÖZET Bircn Hspult 1*, Ahmet Fert Üzdürmez 2, Fhriye Srı 1,Hndn Gülce 1,

Detaylı

TIKIZ ŞEKİL BETİMLEYİCİLERİ

TIKIZ ŞEKİL BETİMLEYİCİLERİ TIIZ ŞEİL BETİMLEYİCİLERİ Nfiz ARICA ve Ftoş YARMAN-VURAL Bildiri onusu : İMGE İŞLEME Sorumlu Yzr : Ftoş T. YARMAN-VURAL Adres : Bilgisyr Mühendisliği Bölümü Ort Doğu Teknik Üniversitesi 653 Eskişehir

Detaylı

BSD Lİ DİK İŞLEME MERKEZİNDE PARÇA PROGRAMINA GÖRE ZAMAN ANALİZİ

BSD Lİ DİK İŞLEME MERKEZİNDE PARÇA PROGRAMINA GÖRE ZAMAN ANALİZİ PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K BİLİMLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 2002 : 8 : 1 : 42-51 BSD

Detaylı

1.6 ELEKTROMOTOR KUVVET VE POTANSİYEL FARK

1.6 ELEKTROMOTOR KUVVET VE POTANSİYEL FARK .6 ELEKTROMOTOR KUVVET VE POTANSİYEL FARK İki uundn potnsiyel frk uygulnmış metl iletkenlerde, serest elektronlr iletkenin yüksek potnsiyeline doğru çekilirler. Elektrik kımını oluşturn, elektronlrın u

Detaylı

Çelik veya Karbon Fiber Plakalar ile Güçlendirilmiş Çerçeve Tipi Yapısal Sistemlerin Analizi Çerçeve/Düğüm Makro Elemanı

Çelik veya Karbon Fiber Plakalar ile Güçlendirilmiş Çerçeve Tipi Yapısal Sistemlerin Analizi Çerçeve/Düğüm Makro Elemanı ECAS lslrrsı Ypı ve Deprem ühendisliği Sempozym, 4 Ekim, Ort Doğ eknik Üniversitesi, Ankr, ürkiye Çelik vey ron ier Plklr ile Güçlendirilmiş Çerçeve ipi Ypısl Sistemlerin Anlizi Çerçeve/Düğüm kro Elemnı

Detaylı

DENEY 6. İki Kapılı Devreler

DENEY 6. İki Kapılı Devreler 004 hr ULUDĞ ÜNİVERSİTESİ MÜHENDİSLİK FKÜLTESİ ELEKTRİKELEKTRONİK MÜHENDİSLİĞİ ÖLÜMÜ ELN04 Elektrik Devreleri Lorturı II 004 hr DENEY 6 İki Kpılı Devreler Deneyi Ypnın Değerlendirme dı Soydı : Ön Hzırlık

Detaylı

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

FONKSĐYONLAR MATEMATĐK ĐM. Fonksiyonlar YILLAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 YILLAR 00 00 00 005 006 007 008 009 00 0 ÖSS-YGS - - - - - - LYS - - - - - - - - FONKSĐYONLAR A ve B oşn frklı iki küme olsun A dn B ye tnımlı f fonksiyonu f : A B ile gösterilir A y tnım kümesi, B ye

Detaylı

Demiryolu Titreşimlerinin Konfora Etkisinin Örnek Hatlarda İncelenmesi *

Demiryolu Titreşimlerinin Konfora Etkisinin Örnek Hatlarda İncelenmesi * KISA BİLDİRİ İMO Teknik Dergi, 009 4811-4815, Yzı 314, Kıs Bildiri Demiryolu Titreşimlerinin Konfor Etkisinin Örnek Htlrd İncelenmesi * Zübeyde ÖZTÜRK* Turgut ÖZTÜRK** Hluk EROL*** Veysel ARLI**** ÖZ

Detaylı

ÖZEL EGE LİSESİ PEDAL DÖRTGENLERİNDE GEOMETRİK EŞİTSİZLİKLER

ÖZEL EGE LİSESİ PEDAL DÖRTGENLERİNDE GEOMETRİK EŞİTSİZLİKLER ÖZEL EGE LİEİ PEDAL DÖRTGENLERİNDE GEOMETRİK EŞİTİZLİKLER HAZIRLAYAN ÖĞRENCİLER: Güneş BAŞKE Zeynep EZER DANIŞMAN ÖĞRETMEN: ereny ŞEN İZMİR 06 İçindekiler yf. Giriş.... Amç.... Ön Bilgiler...... 3. Yöntem....

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Mtemtk Deneme Sınvı. İki bsmklı bir sının rkmlrı toplmı dir. Rkmlrı er değiştirdiğinde elde edilen sı, ilk sının sinden fzldır.. Birbirinden frklı tne pozitif tmsının OKEK i olduğun göre, en çok kçtır?

Detaylı

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

LYS LİMİT VE SÜREKLİLİK KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI LYS LİMİT VE SÜREKLİLİK KONU ÖETLİ ÇÖÜMLÜ SORU BANKASI ANKARA İÇİNDEKİLER Limit Kvrmı ve Grfik Sorulrı... Limitle İlgili Bzı Özellikler...7 Genişletilmiş Reel Sılrd Limit... Bileşke Fonksionun Limiti...

Detaylı

Örnek...2 : Örnek...3 : Örnek...1 : Örnek...4 : a 3 DÜZGÜN ALTIGEN DÜZGÜN ALTIGEN TANIM VE ÖZELLİKLERİ. ABCDEF düzgün

Örnek...2 : Örnek...3 : Örnek...1 : Örnek...4 : a 3 DÜZGÜN ALTIGEN DÜZGÜN ALTIGEN TANIM VE ÖZELLİKLERİ. ABCDEF düzgün ÜZGÜN TIGN ( ÜZGÜN TIGN TNIMI, ÖZİİ V NI ĞNİM ) ÜZGÜN TIGN Örnek...2 : TNIM V ÖZİİ enr syısı 6 oln çok - gene lt ıgen denir. ltıgeni için [], [] ve [] köşegenlerinin kesim noktsı oln noktsı dü zgün ltıge

Detaylı

İstatistik I Bazı Matematik Kavramlarının Gözden

İstatistik I Bazı Matematik Kavramlarının Gözden İsttistik I Bzı Mtemtik Kvrmlrının Gözden Geçirilmesi Hüseyin Tştn Ağustos 13, 2006 İçindekiler 1 Toplm İşlemcisi 2 2 Çrpım İşlemcisi 6 3 Türev 7 3.1 Türev Kurllrı.......................... 8 3.1.1 Sbit

Detaylı

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR

Vektörler ÜNİTE. Amaçlar. İçindekiler. Yazar Yrd.Doç.Dr.Nevin MAHİR Vektörler zr rd.doç.dr.nevin MAHİR ÜNİTE 3 Amçlr Bu üniteyi çlıştıktn sonr; Düzlemde vektör kvrmını öğrenecek, İki vektörün eşitliği, toplmı, doğrusl bğımlılığı ile bir vektörün bir gerçel syı ile çrpımı,

Detaylı

*Corresponding Author Tel.:+90-332-223 19 42; fax:+90-332-241 06 35 E-mail:fyildiz@selcuk.edu.tr

*Corresponding Author Tel.:+90-332-223 19 42; fax:+90-332-241 06 35 E-mail:fyildiz@selcuk.edu.tr Selçuk Üniversitesi ISSN 130/6178 Journl of Technicl-Online Volume 10, Number:1-011 Cilt 10, Syı:1-011 ÇAPRAZ İLİŞKİ METODUYLA İRİS TANIMA Ferruh YILDIZ,*, Nurdn Akhn BAYKAN b Selçuk Üniversitesi, Hrit

Detaylı

7.SINIF: ÇOKGENLER ÇOKGENDE AÇILAR. Doğrusal olmayan üç veya daha fazla noktanın birleşmesiyle oluşan kapalı geometrik şekillere çokgen denir.

7.SINIF: ÇOKGENLER ÇOKGENDE AÇILAR. Doğrusal olmayan üç veya daha fazla noktanın birleşmesiyle oluşan kapalı geometrik şekillere çokgen denir. 7.SINIF: ÇOKGNLR oğrusl olmyn üç vey dh fzl noktnın birleşmesiyle oluşn kplı geometrik şekillere çokgen denir. n kenrlı bir çokgenin bir dış çısının ölçüsü 360/n dir. n kenrlı bir çokgenin bir iç çısının

Detaylı

KONİKLER KONİKLER...318-357. Sayfa No. r=a A O A. Asal çember. x 2 + y 2 = a 2

KONİKLER KONİKLER...318-357. Sayfa No. r=a A O A. Asal çember. x 2 + y 2 = a 2 Sf No.........................................................8-7 Prol....................................................................... 9 - Etkinlikler.....................................................................

Detaylı

Depolama Süresinin Bazı Hıyar Çeşitlerinde Mekanik Özelliklere Olan Etkisinin Belirlenmesi *

Depolama Süresinin Bazı Hıyar Çeşitlerinde Mekanik Özelliklere Olan Etkisinin Belirlenmesi * TRIM BİLİMLERİ DERGİSİ 5, (3) 5-56 Depolm Süresinin Bzı Hıyr Çeşitlerinde Meknik Özelliklere Oln Etkisinin Belirlenmesi * Yeşim Benl YURTLU Doğn ERDOĞN Geliş Trihi: 5.. 5 Öz: Bu çlışmd, bzı hıyr çeşitlerinde

Detaylı

Öğrenci Seçme Sınavı (Öss) / 7 Nisan Matematik Soruları ve Çözümleri

Öğrenci Seçme Sınavı (Öss) / 7 Nisan Matematik Soruları ve Çözümleri Öğrenci Seçme Sınvı (Öss) / 7 Nisn 99 Mtemtik Sorulrı ve Çözümleri (0,0 0,8) işleminin sonucu kçtır? 0,00 A) 00 B) 0 C) D), E) 0, Çözüm (0,0 0,00 0,8) 0, 0,00 0, 0,00 0 işleminin sonucu kçtır? A) B) C)

Detaylı

GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI

GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI Beer Johnston DeWolf Mzurek ifthmechanics OF MATERIALS GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI Q z Genel ükleme durumund, ir Q noktsını üç outlu olrk temsil eden küik gerilme elemnı üzerinde 6

Detaylı

SAYISAL ANALİZ. Matris ve Determinant

SAYISAL ANALİZ. Matris ve Determinant SAYISAL ANALİZ Mtris ve Determinnt Syısl Anliz MATLAB ile Temel Mtris İşlemleri Genel Mtris Oluşturm Özel Mtris Oluşturm zeros komutu ile sıfırlr mtrisi ones komutu ile birler mtrisi eye komutu ile birim

Detaylı

TOMRUKLARDAN MAKSİMUM KERESTE RANDIMANI ELDE ETMEK İÇİN İKİ BOYUTLU GEOMETRİK TEORİ 1. Süleyman KORKUT

TOMRUKLARDAN MAKSİMUM KERESTE RANDIMANI ELDE ETMEK İÇİN İKİ BOYUTLU GEOMETRİK TEORİ 1. Süleyman KORKUT Süleymn Demirel Üniversitesi Ormn Fkültesi Dergisi Seri: A, Syı:, Yıl: 004, ISSN: 130-7085, Syf:160-169 TOMRUKLARDAN MAKSİMUM KERESTE RANDIMANI ELDE ETMEK İÇİN İKİ BOYUTLU GEOMETRİK TEORİ 1 Süleymn KORKUT

Detaylı

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI

SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI YILLAR 00 00 004 00 006 007 008 009 010 011 ÖSS-YGS - 1 - - 1-1 1 SAYILARIN ÇÖZÜMLENMESĐ ve BASAMAK KAVRAMI,b,c,d birer rkm olmk üzere ( 0) b = 10 + b bc = 100+10+b bc = 100+10b+c bcd =1000+100b+10c+d

Detaylı

LYS LİMİT. x in 2 ye soldan yaklaşması hangisi ile ifade edilir? şeklinde gösterilir. lim. şeklinde gösterilir. f(x) lim f(x) ise lim f(x) yoktur.

LYS LİMİT. x in 2 ye soldan yaklaşması hangisi ile ifade edilir? şeklinde gösterilir. lim. şeklinde gösterilir. f(x) lim f(x) ise lim f(x) yoktur. Mtemtik SAĞDAN VE SOLDAN YAKLAŞMA Yndki tblod bir değişkeninin 4 sısın sğdn ve soldn klşımı ifde edilmiştir. u durumu genellemek gerekirse; değişkeni re el s ı sın, dn kü çük de ğer ler le k l şı or s,

Detaylı

30. Uzay çerçeve örnek çözümleri

30. Uzay çerçeve örnek çözümleri . Ua çerçeve örnek çöümleri. Ua çerçeve örnek çöümleri Ua çerçeve eleman sonlu elemanlar metodunun en karmaşık elemanıdır. Bunun nedenleri: ) Her eleman için erel eksen takımı seçilmesi gerekir. Elemanın

Detaylı

MATEMATİK TESTİ. 5. a, b birer gerçek sayı ve a + b < 3tür. Bu sayıların sayı doğrusunda gösterilişi aşağıdakilerden hangisindeki gibi olabilir?

MATEMATİK TESTİ. 5. a, b birer gerçek sayı ve a + b < 3tür. Bu sayıların sayı doğrusunda gösterilişi aşağıdakilerden hangisindeki gibi olabilir? MTEMTİK TESTİ 1 1 1 1 1. + 4 4 1 ) 0 ) 4 işleminin sonucu kçtır? ) 1 ) 1., irer gerçek syı ve + < 3tür. u syılrın syı doğrusund gösterilişi şğıdkilerden hngisindeki gii olilir? ) -3 - -1 0 1 3 ) -3 - -1

Detaylı

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ

ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ Mühendislik Mimrlık Fkültesi İnşt Mühendisliği Bölümü E-Post: ogu.hmet.topcu@gmil.com Web: http://mmf2.ogu.edu.tr/topcu Bilgisyr Destekli Nümerik Anliz Ders notlrı 204

Detaylı

BOYUT ANALİZİ- (DIMENSIONAL ANALYSIS)

BOYUT ANALİZİ- (DIMENSIONAL ANALYSIS) BOYU ANAİZİ- (IMENSIONA ANAYSIS Boyut nlizi deneysel ölçümlerde ğımlı ve ğımsız deney değişkenleri rsındki krmşık ifdeleri elirlemekte kullnıln ir yöntemdir. eneylerde ölçülen tüm fiziksel üyüklükler temel

Detaylı

Sayı Kümeleri ve Koordinatlar

Sayı Kümeleri ve Koordinatlar DERS 1 Sı Kümeleri ve Koordintlr 1.1 Kümeler. Mtemtiğin temel kvrmlrındn biri küme kvrmıdır. Okuucunun küme kvrmın bncı olmıp kümelerle ilgili temel işlemleri bildiğini kbul edioruz. Bununl berber kümelerle

Detaylı

DERS 3. Matrislerde İşlemler, Ters Matris

DERS 3. Matrislerde İşlemler, Ters Matris DES Mrislerde İşleler, Ters Mris Mrisler Mrislerle ilgili eel ılrııı ıslı e sır ve e süu oluşurk içide diiliş e sıı oluşurduğu lo ir ris deir ir ris geellikle şğıdki gii göserilir ve [ ij ], i ; j risii

Detaylı

ARABA BENZERİ GEZGİN ROBOTUN OTOMATİK PARK ETMESİ İÇİN BİR YÖNTEM

ARABA BENZERİ GEZGİN ROBOTUN OTOMATİK PARK ETMESİ İÇİN BİR YÖNTEM ARABA BENZERİ GEZGİN ROBOTUN OTOMATİK PARK ETMESİ İÇİN BİR YÖNTEM Burk Uzkent Osmn Prlktun Elektrik-Elektronik Mühendisliği Bölümü Eskişehir Osmngzi Üniversitesi, Eskişehir uzkent.burk@gmil.com oprlk@ogu.edu.tr

Detaylı

KAPALI ISI DEĞİŞTİRİCİLİ TERS VE DİK AKIŞLI SOĞUTMA KULELERİNİN ISI DEĞİŞİMİ MODELLENMESİ VE DİZAYNI

KAPALI ISI DEĞİŞTİRİCİLİ TERS VE DİK AKIŞLI SOĞUTMA KULELERİNİN ISI DEĞİŞİMİ MODELLENMESİ VE DİZAYNI X. UUSA TESİSAT ÜENDİSİĞİ KONGRESİ 3/6 NİSAN 0/İZİR _ 37 KAPAI ISI DEĞİŞTİRİCİİ TERS VE DİK AKIŞI SOĞUTA KUEERİNİN ISI DEĞİŞİİ ODEENESİ VE DİZAYNI ustf Turhn ÇOBAN ÖZET Soğutm kuleleri soğutm sistemlerinin

Detaylı

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 03

ELEKTRĐK MOTORLARI ve SÜRÜCÜLERĐ DERS 03 ELEĐ MOOLA ve SÜÜCÜLEĐ DES 03 Özer ŞENYU Mrt 0 ELEĐ MOOLA ve SÜÜCÜLEĐ DA MOOLANN ELEĐ DEE MODELLEĐ E AAEĐSĐLEĐ ENDÜĐ DEESĐ MODELĐ Endüviye uygulnn gerilim (), zıt emk (E), endüvi srgı direni () ile temsil

Detaylı

Çevre ve Alan. İlköğretim 6. Sınıf

Çevre ve Alan. İlköğretim 6. Sınıf Çevre ve Aln İlköğretim 6. Sınıf Çevre Merhb,ilk olrk seninle birlikte evin çevresini bulmy çlışlım Kırmızı çizgiler evin çevre uzunluğunu verir. Çevre Şimdi sır futbol shsınd Çevre Şimdi,Keloğlnın Pmuk

Detaylı

YAPI ELEMANI OLARAK YERİNDE DÖKME BETONARME KAZIKLAR

YAPI ELEMANI OLARAK YERİNDE DÖKME BETONARME KAZIKLAR TMMOB İNŞAAT MÜHENDİLERİ ODAI İTANBUL ŞUBEİ YAPI TAARIM KURLARI YAPI ELEMANI OLARAK YERİNDE DÖKME BETONARME KAZIKLAR Prof. Dr. Zeki Cele İstnbul Teknik Üniversitesi, İnşt Fkültesi Betonrme Yılr ve Derem

Detaylı