Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi"

Transkript

1 Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi Şu anki sunumun yapılmasına imkan tanıyan bu proje, sayılı anlaşma kapsamındaki AB Horizon 2020 Araştırma ve Yenilik Programı'ndan fon desteği almıştır. Bu sunum sadece yazarın görüşlerini yansıtmaktadır. Avrupa Komisyonu nun yetkisi altındaki Araştırma Yürütme Ajansı sunumun içeriğindeki bilgilerin kullanımından sorumlu değildir.

2 PPT 3.2 İstatistik Teorisi 2

3 Öğrenme Hedefleri 1. Vaka, popülasyon, oran, örnek, rasgele gibi temel istatistik kavramlarını açıklamak 2. İnsidans ve prevelans, mortalite ve morbidite arasındaki farkı bilmek 3. İstatistiki tahminler neden ve ne zaman gereklidir i anlamak 4. Tanımlayıcı epidemiyolojiye ilişkin mevcut literatürü yorumlayabilmek 5. İstatistik konusuna eleştirel bakabilmek 3

4 Vaka nedir? sağlıkla ilgili bir durum ya da hadise Meslek Hastalığı İşle ilgili Hastalık İşle ilgili Sağlık Şikayetleri / Bozuk sağlık durumları Vaka: Net bir şekilde tanımlanmalıdır Yapılan tanım standart bir şekilde farklı kişiler tarafından kolaylıkla kullanılabilmeli ve ölçülebilmelidir 4

5 Risk altındaki popülasyon ne demektir? Çalışmada yer alan toplam kişi sayısı - Tüm işçiler - Belli bir bölgede çalışan işçilerin tamamı - Belli bir sanayi sektöründe çalışan işçilerin tamamı - Belli bir meslek, yaş, cinsiyet grubundaki işçilerin tamamı Ulusal veri olmadığı için sıklıkla (rasgele) örnek kullanılır. 5

6 Neden oranlar kullanılıyor? Haziran ayında en az 200 işçi işe dayalı sebeplerden ötürü yaşamını kaybetti 6

7 Neden oranlar kullanılıyor? Belli bir dönemdeki vaka sayısı (nominator) Aynı dönem içerisinde risk altındaki popülasyonda bulunan kişilerin sayısı (denominator) 7

8 Hastalık Görülme Sıklığının Ölçülmesi İnsidans ve Prevelans Prevelans = belirli bir zaman içerisindeki mevcut tüm vakalar sayılır İnsidans = belirli bir zaman periyodu içerisindeki yeni hadiseler sayılır Bu iki ölçüm türünün artıları ve eksileri nelerdir? Bu ölçümler ne zaman kullanılmalıdır? 8

9 Vaka fatalite hızı hastalığın şiddetini ölçer belli bir süre içinde hayatını kaybeden belli bir hastalık ya da duruma sahip vakaların oranı şeklinde tanımlanır. Belli bir süre içinde tanısı konan vakalara dayalı ölümlerin sayısı Aynı süre içinde tanı konmuş vakaların sayısı 9

10 Mortalite ve morbidite Mortalite ya da ölüm oranı vaka fatalite hızı yüksek hastalıkların araştırılmasında faydalıdır Morbidite ya da hastalık oranı, - hastaneye yatış ve hastaneden taburcu kayıtları - ayakta tedavi ve birinci basamak sağlık bakım hizmetleri - (yara tedavisi gibi) uzman hizmetleri - hastalık hadiselerine ilişkin kayıtlar ile ölçülebilir 10

11 İstatistiki tahmin nedir? ABD Hanehalkı geliri 11

12 İstatistiki tahmin nedir? Şekil 4.3 Normal dağılım eğrisi Aritmetik ortalama 12

13 İstatistiki tahmin nedir? İstatistiksel anlamlılık p-değerleri hesaplanır ve bir çıktının rastlantısal belirlendiği dereceyi göstermek için kullanılır p < 0,05 değeri, çıktının rastlantısal faktörlerin bir sonucu olması ihtimalinin %5 in altında olduğunu gösterir p = 0,05 ya da üzeri: çıktı istatistiksel açıdan bir anlam ifade etmez YAYIN YANLILIĞI 13

14 İstatistiki tahmin nedir? %95 Güven aralıkları (CI) p-değeri ile aynı bilgileri verir çıktı = 1,3 ve % 95 CI = 0,9-1,8 gözlenen sonucun gerçek değeri bu güven aralığında kalacaktır 14

15 İstatistiki tahmin neden kullanılır? Popülasyonlar hakkında tahminler yapmak için örnekler kullanılır. Örnek ve popülasyon arasında farklılık olma olasılığı vardır ve sonuç gerçek değeri yansıtmaz. Örnek küçüldükçe istatistiki açıdan anlamlı sonuç elde etmek o kadar zor olur. Büyük örneklerde istatistiki açıdan anlamlı sonuç elde edilmesi daha kolay olacaktır ancak bu sonuçların gerçek hayat ile bir alakası olmayabilir. 15

16 Veriler nasıl sunulmalıdır? Aritmetik ortalamalar, medyanlar ve modlar verinin merkezi eğilimini verir. Aritmetik ortalama: Örnek içinde elde edilen ortalama sonuçtur Medyan: sonuçların yarısı medyanın altında yarısı medyanın üzerindedir 16

17 Veriler nasıl sunulmalıdır? Aritmetik Ortalamalar, medyanlar ve modlar verinin merkezi eğilimini temsil eder Mod Medyan Aritmetik ortalama Mod Medyan Aritmetik ortalama Sola çarpık (eksi çarpıklık) Sağa çarpık (artı çarpıklık) 17

18 Aşırı ölümlerin oranı Derece Veriler nasıl sunulmalıdır Tablo 3.2 Papua Yeni Gine de et tüketimi ile enteretis necrotican hastalığı arasındaki ilişki 11 Hastalık Adı (enteretis necrotican) Eve t Maruziyet (yakın zamanda et tüketimi) Evet Hay ır Toplam Şekil yılında Paris teki sıcak dalgasında ölenlerin sayısı Maksimum sıcaklık Minimum sıcaklık Hay ır Top lam Tablo 2.8 Solunum yolu enfeksiyonlarına bağlı doğrudan standardize edilmiş erkek ölüm oranları ve üç farklı standart popülasyon üzerinden 5 ülke sıralaması Ülke Ülke Yaş-standardize edilmiş oran ( e göre) Segi Avrupalı WHO world Yaş-standardize edilmiş orana göre ülke sıralaması Segi Avrupalı WHO world Avustralya Küba Mauritius Singapur Türkmenistan

19 Veriler nasıl sunulmalı? Tablolar, grafikler ve çizelgeler Tablolar ve çizelgeler basit ve net hatırlaması kolay karmaşık ilişkileri gösterebilir olmalıdır Tablolar, karmaşık veriler için kullanılır Çok özel ya da kesin verileri içerir 19

20 Özet Vakaların sayısını yorumlamak için, risk altındaki popülasyonda bulunan kişi sayısına ve oran hesabına gerek vardır Vakanın görülme sıklığını ölçmek için insidans ve prevelans yöntemlerini kullanabilirsiniz Vaka ölüm oranı hastalığın şiddeti ile ilgili bilgi vermek için kullanılır Vaka ölüm oranı düşük hastalıklarda morbidite oranlarını kullanabilirsiniz İstatistiki tahmin, örneklere ait sonuçların popülasyona yönelik tahmininde kullanılır Rastlantı için p-değerleri ve %95 güven aralıkları kullanılır. 20

21 İstatistik sonuçları ile nasıl yanlış yönlendirme yapılır? İki kişilik ödev Lütfen aşağıdaki adresi ziyaret ediniz ve burada yazılanları okuyunuz. Powerpoint formatında, yorumlaması güç ve hatta yanıltıcı en az iki istatistik örneği hazırlayınız - Bu örnekleri ESPrIT veri havuzunda bulabilirsiniz - veya kendi örneklerinizi hazırlayabilirsiniz Süreniz 30 dakika 21

Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi

Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi Şu anki sunumun yapılmasına imkan tanıyan bu proje, 692188 sayılı anlaşma kapsamındaki AB Horizon 2020 Araştırma

Detaylı

Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi

Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi Şu anki sunumun yapılmasına imkan tanıyan bu proje, 692188 sayılı anlaşma kapsamındaki AB Horizon 2020 Araştırma

Detaylı

Halk Sağlığı-Ders 8 Sağlık Düzeyinin Ölçülmesi ve Epidemiyoloji

Halk Sağlığı-Ders 8 Sağlık Düzeyinin Ölçülmesi ve Epidemiyoloji Halk Sağlığı-Ders 8 Sağlık Düzeyinin Ölçülmesi ve Epidemiyoloji Öğr. Gör. Hüseyin ARI 1 İstanbul Arel Üniversitesi M.Y.O Sağlık Kurumları İşletmeciliği Epidemiyoloji; hastalık ve sağlıkla ilgili olayların

Detaylı

Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi

Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi Şu anki sunumun yapılmasına imkan tanıyan bu proje, 692188 sayılı anlaşma kapsamındaki AB Horizon 2020 Araştırma

Detaylı

Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi

Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi Şu anki sunumun yapılmasına imkan tanıyan bu proje, 692188 sayılı anlaşma kapsamındaki AB Horizon 2020 Araştırma

Detaylı

Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi

Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi Şu anki sunumun yapılmasına imkan tanıyan bu proje, 692188 sayılı anlaşma kapsamındaki AB Horizon 2020 Araştırma

Detaylı

Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi

Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi Şu anki sunumun yapılmasına imkan tanıyan bu proje, 692188 sayılı anlaşma kapsamındaki AB Horizon 2020 Araştırma

Detaylı

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri

Temel İstatistik. Y.Doç.Dr. İbrahim Turan Mart Tanımlayıcı İstatistik. Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Temel İstatistik Tanımlayıcı İstatistik Dağılımları Tanımlayıcı Ölçüler Dağılış Ölçüleri Y.Doç.Dr. İbrahim Turan Mart 2011 DAĞILIM / YAYGINLIK ÖLÇÜLERİ Verilerin değişkenlik durumu ve dağılışın şeklini

Detaylı

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ

BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ 1 BÖLÜM 5 MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel sayma

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

doğrudur? Veya test, sağlıklı dediği zaman hangi olasılıkla doğrudur? Bu soruların yanıtları

doğrudur? Veya test, sağlıklı dediği zaman hangi olasılıkla doğrudur? Bu soruların yanıtları DÖNEM III HALK SAĞLIĞI-ADLİ TIP-BİYOİSTATİSTİK-TIP TARİHİ VE ETİK Ders Kurulu Başkanı : Prof. Dr. Günay SAKA TANI TESTLERİ (30.04.2014 Çrş. Y. ÇELİK) Duyarlılık (Sensitivity) ve Belirleyicilik (Specificity)

Detaylı

KANSER İSTATİSTİKLERİ

KANSER İSTATİSTİKLERİ 1 KANSER İSTATİSTİKLERİ Kanser, günümüzün en önemli sağlık sorunlarından biridir. Sık görülmesi ve öldürücülüğünün yüksek olması nedeniyle de bir halk sağlığı sorunudur. Tanı olanaklarının gelişmesi ve

Detaylı

Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi

Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi Şu anki sunumun yapılmasına imkan tanıyan bu proje, 692188 sayılı anlaşma kapsamındaki AB Horizon 2020 Araştırma

Detaylı

Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi

Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi Şu anki sunumun yapılmasına imkan tanıyan bu proje, 692188 sayılı anlaşma kapsamındaki AB Horizon 2020 Araştırma

Detaylı

VERİ SETİNE GENEL BAKIŞ

VERİ SETİNE GENEL BAKIŞ VERİ SETİNE GENEL BAKIŞ Outlier : Veri setinde normal olmayan değerler olarak tanımlanır. Ders: Kantitatif Yöntemler 1 VERİ SETİNE GENEL BAKIŞ Veri setinden değerlendirme başlamadan çıkarılabilir. Yazım

Detaylı

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar

TEMEL İSTATİSTİK BİLGİSİ. İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar TEMEL İSTATİSTİK BİLGİSİ İstatistiksel verileri tasnif etme Verilerin grafiklerle ifade edilmesi Vasat ölçüleri Standart puanlar İstatistiksel Verileri Tasnif Etme Verileri daha anlamlı hale getirmek amacıyla

Detaylı

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005

KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 KARŞILAŞTIRMA İSTATİSTİĞİ, ANALİTİK YÖNTEMLERİN KARŞILAŞTIRILMASI, BİYOLOJİK DEĞİŞKENLİK Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2005 1 Karşılaştırma istatistiği Temel kavramlar: Örneklem ve evren:

Detaylı

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH

ORTALAMA ÖLÇÜLERİ. Ünite 6. Öğr. Gör. Ali Onur CERRAH ORTALAMA ÖLÇÜLERİ Ünite 6 Öğr. Gör. Ali Onur CERRAH Araştırma sonucunda elde edilen nitelik değişkenler hakkında tablo ve grafikle bilgi sahibi olunurken, sayısal değişkenler hakkında bilgi sahibi olmanın

Detaylı

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ

BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ 1 BÖLÜM 6 MERKEZDEN DAĞILMA ÖLÇÜLERİ Gözlenen belli bir özelliği, bu özelliğe ilişkin ölçme sonuçlarını yani verileri kullanarak betimleme, istatistiksel işlemlerin bir boyutunu oluşturmaktadır. Temel

Detaylı

SAĞLIK ALANINDA KULLANILAN EPİDEMİYOLOJİK ÖLÇÜTLER

SAĞLIK ALANINDA KULLANILAN EPİDEMİYOLOJİK ÖLÇÜTLER SAĞLIK ALANINDA KULLANILAN EPİDEMİYOLOJİK ÖLÇÜTLER HÜTF Halk Sağlığı AD Epidemiyoloji Konferans Serisi: 10 Dr.A.Tülay Bağcı Bosi MSc,PhD,MSc Bu yansı seti sadece HÜTF Halk Sağlığı Anabilim Dalı Epidemiyoloji

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U Saat Kredi AKTS İSTATİSTİK MATH 176 2 3 + 0 3 5. Program Öğrenim Çıktıları 1,5 2,3 2,5,12 8,12 1,2,5 2,12 1,3,4

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U Saat Kredi AKTS İSTATİSTİK MATH 176 2 3 + 0 3 5. Program Öğrenim Çıktıları 1,5 2,3 2,5,12 8,12 1,2,5 2,12 1,3,4 DERS BİLGİLERİ Ders Kodu Yarıyıl T+U Saat Kredi AKTS İSTATİSTİK MATH 176 2 3 + 0 3 5 Ön Koşul Dersleri - Dersin Dili Dersin Seviyesi Dersin Türü Almanca Lisans Zorunlu Dersin Koordinatörü Dersi Verenler

Detaylı

KANTİTATİF TEKNİKLER - Temel İstatistik -

KANTİTATİF TEKNİKLER - Temel İstatistik - KANTİTATİF TEKNİKLER - Temel İstatistik - 1 İstatistik Nedir? Belirli bir amaçla verilerin toplanması, düzenlenmesi, analiz edilerek yorumlanmasını sağlayan yöntemler topluluğudur. 2 İstatistik Kullanım

Detaylı

Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi

Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi Şu anki sunumun yapılmasına imkan tanıyan bu proje, 692188 sayılı anlaşma kapsamındaki AB Horizon 2020 Araştırma

Detaylı

Mühendislikte İstatistiksel Yöntemler

Mühendislikte İstatistiksel Yöntemler Mühendislikte İstatistiksel Yöntemler BÖLÜM 7 TAHMİNLER Yrd. Doç. Dr. Fatih TOSUNOĞLU 1 Tahmin (kestirim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmaktır.

Detaylı

SÜREKLĠ OLASILIK DAĞILIMLARI

SÜREKLĠ OLASILIK DAĞILIMLARI SÜREKLĠ OLASILIK DAĞILIMLARI Sayı ekseni üzerindeki tüm noktalarda değer alabilen değişkenler, sürekli değişkenler olarak tanımlanmaktadır. Bu bölümde, sürekli değişkenlere uygun olasılık dağılımları üzerinde

Detaylı

ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI

ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI DOÇ. DR. NİHAL ERGİNEL TANIMLAR VE VERİ SINIFLAMASI Olasılık, ilgilenilen olay/olayların meydana gelme olabilirliğinin ölçülmesidir.

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

BÖLÜM 9 NORMAL DAĞILIM

BÖLÜM 9 NORMAL DAĞILIM 1 BÖLÜM 9 NORMAL DAĞILIM Normal dağılım; 'normal dağılım eğrisi (normaly distribution curve)' ile kavramlaştırılan hipotetik bir evren dağılımıdır. 'Gauss dağılımı' ya da 'Gauss eğrisi' olarak da bilinen

Detaylı

Sağlık Bakımıyla İlişkili İnfeksiyonların Epidemiyolojisinde Temel Tanımlar

Sağlık Bakımıyla İlişkili İnfeksiyonların Epidemiyolojisinde Temel Tanımlar Sağlık Bakımıyla İlişkili İnfeksiyonların Epidemiyolojisinde Temel Tanımlar Dr. Alpay AZAP Ankara Üniversitesi Tıp Fakültesi Enfeksiyon Hastalıkları ve Klinik Mikr. AD. Epidemiyoloji Nedir? Sağlıkla ilgili

Detaylı

RASTGELE SAYI ÜRETİMİ VE UYGULANAN TESTLER HAZIRLAYAN: ÖZLEM AYDIN

RASTGELE SAYI ÜRETİMİ VE UYGULANAN TESTLER HAZIRLAYAN: ÖZLEM AYDIN RASTGELE SAYI ÜRETİMİ VE UYGULANAN TESTLER HAZIRLAYAN: ÖZLEM AYDIN RASTGELE SAYILARIN ÜRETİLMESİ Rastgele değişimler yapay tablolardan veya parametreleri verilen teorik dağılım fonksiyonlarından elde edilir.

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi

Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi Şu anki sunumun yapılmasına imkan tanıyan bu proje, 692188 sayılı anlaşma kapsamındaki AB Horizon 2020 Araştırma

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU FREKANS DAĞILIMLARINI TANIMLAYICI ÖLÇÜLER Düzenlenmiş verilerin yorumlanması ve daha ileri düzeydeki işlemler için verilerin bütününe ait tanımlayıcı ve özetleyici ölçülere ihtiyaç

Detaylı

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği İSTATİSTİK E GİRİŞ TEMEL KAVRAMLAR İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği Elemanlarıl AMAÇ İstatistiğe

Detaylı

ÖLÇME DEĞERLENDİRME ÜNİTE BAŞLIKLARI

ÖLÇME DEĞERLENDİRME ÜNİTE BAŞLIKLARI ÖLÇME DEĞERLENDİRME ÜNİTE BAŞLIKLARI 1. TEMEL KAVRAMLAR 2. ÖLÇMEDE HATA (GÜVENİRLİK GEÇERLİK) 3. İSTATİSTİK 1. TEMEL KAVRAMLAR Ölçme, Ölçüm, Ölçme Kuralı, Ölçüt, Değerlendirme. Ölçme Türleri: Doğrudan,

Detaylı

BIG BİLİM ve TEKNOLOJİ GENEL MÜDÜRLÜĞÜ Etki Değerlendirme Dairesi Başkanlığı

BIG BİLİM ve TEKNOLOJİ GENEL MÜDÜRLÜĞÜ Etki Değerlendirme Dairesi Başkanlığı TC BİLİM, SANAYİ VE TEKNOLOJİ BAKANLIĞI AR-GE MERKEZLERİ NDE PERFORMANS DEĞERLENDİRME BIG BİLİM ve TEKNOLOJİ GENEL MÜDÜRLÜĞÜ Etki Değerlendirme Dairesi Başkanlığı İçerik Amaç ve Yasal Dayanak Performans

Detaylı

İSTATİSTİK I. Giriş. Bölüm 1 Temel Terimler ve Tanımlar İSTATİSTİKLER

İSTATİSTİK I. Giriş. Bölüm 1 Temel Terimler ve Tanımlar İSTATİSTİKLER İSTATİSTİK I Bölüm 1 Temel Terimler ve Tanımlar 1 2 Giriş İSTATİSTİKLER Genel olarak araştırmalarda, büyük veri gruplarının içinden daha küçük veri grupları seçilerek büyük veri gruplarının hakkında bilgi

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi

Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi Türkiye Halk Sağlığı Kurumu Çalışan Sağlığı ve Bilimsel Kapasitenin Güçlendirilmesi Projesi Şu anki sunumun yapılmasına imkan tanıyan bu proje, 692188 sayılı anlaşma kapsamındaki AB Horizon 2020 Araştırma

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN 1 Tek Örneklem İşaret Testi İşaret Testi parametrik olmayan prosedürler içinde en eski olanıdır. Analiz yapılırken serideki verileri artı ve

Detaylı

MESLEK HASTALIKLARI SÜRVEYANS SİSTEMİ 2.3 Sürveyans Kavramı ve farklı sürveyans sistemleri

MESLEK HASTALIKLARI SÜRVEYANS SİSTEMİ 2.3 Sürveyans Kavramı ve farklı sürveyans sistemleri MESLEK HASTALIKLARI SÜRVEYANS SİSTEMİ 2.3 Sürveyans Kavramı ve farklı sürveyans sistemleri Şu anki sunumun yapılmasına imkan tanıyan bu proje, 692188 sayılı anlaşma kapsamındaki AB Horizon 2020 Araştırma

Detaylı

Türkiye nin Tansiyonunu Ölçüyoruz

Türkiye nin Tansiyonunu Ölçüyoruz T.C. Sağlık Bakanlığının Onayı ve Desteği ile Türkiye nin Tansiyonunu Ölçüyoruz İstatistik Analiz Raporu (İstanbul) Eylül 2010 Omega Araştırma tarafından hazırlanmıştır. İÇİNDEKİLER Türkiye nin Tansiyonunu

Detaylı

Ölçme Sonuçları Üzerinde İstatistiksel İşlemler

Ölçme Sonuçları Üzerinde İstatistiksel İşlemler Ölçme Sonuçları Üzerinde İstatistiksel İşlemler Bir grup birey veya nesnenin belli bir özelliğe sahip olup olmadığı ya da belli bir özelliğe ne derece sahip olduğunu belirlemek amacı ile ölçme işlemi yapılır.

Detaylı

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ

ÖRNEKLEME TEORİSİ. Prof.Dr.A.KARACABEY Doç.Dr.F.GÖKGÖZ ÖRNEKLEME TEORİSİ 1 Bir popülasyonu istatistiksel açıdan incelemek ve işlemler yapabilmek için popülasyon içerisinden seçilen örneklemlerden yararlandığımızı söylemiştik. Peki popülasyonun istatistiksel

Detaylı

DÜŞÜK PREVALANS HEKİMLİĞİ. Yrd. Doç. Dr. Yasemin ÇAYIR Atatürk Üniversitesi Tıp Fakültesi Aile Hekimliği AD

DÜŞÜK PREVALANS HEKİMLİĞİ. Yrd. Doç. Dr. Yasemin ÇAYIR Atatürk Üniversitesi Tıp Fakültesi Aile Hekimliği AD DÜŞÜK PREVALANS HEKİMLİĞİ Yrd. Doç. Dr. Yasemin ÇAYIR Atatürk Üniversitesi Tıp Fakültesi Aile Hekimliği AD Öğrenim amaç ve hedefleri Amaç Düşük prevalans hekimliği hakkında bilgi vermek Hedefler Bu dersin

Detaylı

İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ. Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET

İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ. Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİNİN BAŞARI NOTLARININ DEĞERLENDİRİLMESİ Tamer Yılmaz, Barış Yılmaz, Halim Sezici 1 ÖZET Bu çalışmada, Celal Bayar Üniversitesi İnşaat Mühendisliği Bölümü öğrencilerinin

Detaylı

Sağlık Hizmetleri Genel Müdürlüğü Sağlıkta Kalite ve Akreditasyon Daire Başkanlığı

Sağlık Hizmetleri Genel Müdürlüğü Sağlıkta Kalite ve Akreditasyon Daire Başkanlığı Sağlık Hizmetleri Genel Müdürlüğü Sağlıkta Kalite ve Akreditasyon Daire Başkanlığı MAYIS 2017 KOAH Tanısı Alan Hastalarda Spirometri Yapılma Oranı KOAH.1 KOAH tanısı alan hastalarda spirometri yapılma

Detaylı

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler

Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Verilerin Özetlenmesinde Kullanılan Sayısal Yöntemler Merkezi Eğilim Ölçüleri Merkezi eğilim ölçüsü, bir veri setindeki merkezi, yada tipik, tek bir değeri ifade eder. Nicel veriler için, reel sayı çizgisindeki

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma

Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma Kalite Geliştirmede İstatistiksel Yöntemler ve Six Sigma - 1 Ödevler 5 er kişilik 7 grup Hayali bir şirket kurulacak Bu şirketin kalite kontrol süreçleri raporlanacak Kalite sistem dokümantasyonu oluşturulacak

Detaylı

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme

İstatistik ve Olasılığa Giriş. İstatistik ve Olasılığa Giriş. Ders 3 Verileri Sayısal Ölçütlerle İfade Etme. Verileri Sayısal Ölçütlerle İfade Etme İstatistik ve Olasılığa Giriş Robert J. Beaver Barbara M. Beaver William Mendenhall Presentation designed and written by: Barbara M. Beaver İstatistik ve Olasılığa Giriş Ders 3 Verileri Sayısal Ölçütlerle

Detaylı

Türkiye nin Tansiyonunu Ölçüyoruz

Türkiye nin Tansiyonunu Ölçüyoruz T.C. Sağlık Bakanlığının Onayı ve Desteği ile Türkiye nin Tansiyonunu Ölçüyoruz İstatistik Analiz Raporu (Sivas) Eylül 2010 Omega Araştırma tarafından hazırlanmıştır. İÇİNDEKİLER Türkiye nin Tansiyonunu

Detaylı

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi

Parametrik Olmayan Testler. İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Yrd. Doç. Dr. Neşet Demirci, Balıkesir Üniversitesi NEF Fizik Eğitimi Parametrik Olmayan Testler İşaret Testi-The Sign Test Mann-Whiney U Testi Wilcoxon Testi Kruskal-Wallis Testi Rank Korelasyon Parametrik

Detaylı

IİSTATIİSTIİK. Mustafa Sezer PEHLI VAN

IİSTATIİSTIİK. Mustafa Sezer PEHLI VAN IİSTATIİSTIİK Mustafa Sezer PEHLI VAN İstatistik nedir? İstatistik, veri anlamına gelir, İstatistik, sayılarla uğraşan bir bilim dalıdır, İstatistik, eksik bilgiler kullanarak doğru sonuçlara ulaştıran

Detaylı

!!! Ödevlerin sunumları verilen tarihte power point sunumu şeklinde yapılacak ve her bir sunum

!!! Ödevlerin sunumları verilen tarihte power point sunumu şeklinde yapılacak ve her bir sunum ÇAĞRI MERKEZİ HİZMETLERİ 2.SINIF (İkinci Öğretim) ARAŞTIRMA YÖNTEM ve TEKNİKLERİ DERSİ ÖDEV KONULARI!!! Ödevlerin sunumları verilen tarihte power point sunumu şeklinde yapılacak ve her bir sunum için en

Detaylı

AVRASYA ÜNİVERSİTESİ

AVRASYA ÜNİVERSİTESİ Ders Tanıtım Formu Dersin Adı Öğretim Dili İSTATİSTİK Türkçe Dersin Verildiği Düzey Ön Lisans (X) Lisans ( ) Yüksek Lisans( ) Doktora( ) Eğitim Öğretim Sistemi Örgün Öğretim (X) Uzaktan Öğretim( ) Diğer

Detaylı

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014

Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri. BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 Nicel / Nitel Verilerde Konum ve Değişim Ölçüleri BBY606 Araştırma Yöntemleri 2013-2014 Bahar Dönemi 13 Mart 2014 1 Konum ölçüleri Merkezi eğilim ölçüleri Verilerin ortalamaya göre olan gruplanması nasıl?

Detaylı

DERS BİLGİLERİ. Uygulamalı İşletme İstatistiği BBA 282 Bahar 3+0+0 3 5

DERS BİLGİLERİ. Uygulamalı İşletme İstatistiği BBA 282 Bahar 3+0+0 3 5 DERS BİLGİLERİ Ders Kodu Yarıyıl T+U+L Saat Kredi AKTS Uygulamalı İşletme İstatistiği BBA 282 Bahar 3+0+0 3 5 Ön Koşul Dersleri - Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Zorunlu Dersin

Detaylı

ANALİTİK YÖNTEMLERİN DEĞERLENDİRİLMESİ. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2004

ANALİTİK YÖNTEMLERİN DEĞERLENDİRİLMESİ. Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2004 ANALİTİK YÖNTEMLERİN DEĞERLENDİRİLMESİ Doç.Dr. Mustafa ALTINIŞIK ADÜTF Biyokimya AD 2004 1 Laboratuvarlarda yararlanılan analiz yöntemleri performans kalitelerine göre üç sınıfta toplanabilir: -Kesin yöntemler

Detaylı

AÜTF HALK SAĞLIĞI ANABİLİM DALI TIPTA UZMANLIK EĞİTİMİ PROGRAMI /

AÜTF HALK SAĞLIĞI ANABİLİM DALI TIPTA UZMANLIK EĞİTİMİ PROGRAMI / AÜTF HALK SAĞLIĞI ANABİLİM DALI TIPTA UZMANLIK EĞİTİMİ PROGRAMI / 2017-18 TARİH/MODÜL BAŞLIKLAR (Konular) ÖĞRETİM ÜYESİ MODÜL 1 9 Ekim 2017 Halk Sağlığı tanımı, kavramı ve yaklaşımı Geleneksel ve Çağdaş

Detaylı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı

DENEY 0. Bölüm 1 - Ölçme ve Hata Hesabı DENEY 0 Bölüm 1 - Ölçme ve Hata Hesabı Amaç: Ölçüm metodu ve cihazına bağlı hata ve belirsizlikleri anlamak, fiziksel bir niceliği ölçüp hata ve belirsizlikleri tespit etmek, nedenlerini açıklamak. Genel

Detaylı

BÖLÜM 3 KURAMSAL ÇATI VE HİPOTEZ GELİŞ

BÖLÜM 3 KURAMSAL ÇATI VE HİPOTEZ GELİŞ BÖLÜM 3 KURAMSAL ÇATI VE HİPOTEZ GELİŞ İŞTİRME Araştırma rma SüreciS 1.Gözlem Genel araştırma alanı 3.Sorunun Belirlenmesi Sorun taslağının hazırlanması 4.Kuramsal Çatı Değişkenlerin açıkça saptanması

Detaylı

TEST VE MADDE ANALİZLERİ

TEST VE MADDE ANALİZLERİ TEST VE MADDE ANALİZLERİ Madde güçlüğü Madde ayırt ediciliği Madde varyansı ve madde standart sapması Madde güvenirliği Çeldiricilerin işlerliği Test Analizleri Merkezi Eğilim(Yığılma Ölçüleri) Merkezi

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin

Detaylı

ÖZEL BİR HASTANEDE YENİDOĞAN ÜNİTESİNE YATIRILAN İNDİREKT HİPERBİLİRUBİNEMİLİ OLGULARIN RETROSPEKTİF DEĞERLENDİRİLMESİ

ÖZEL BİR HASTANEDE YENİDOĞAN ÜNİTESİNE YATIRILAN İNDİREKT HİPERBİLİRUBİNEMİLİ OLGULARIN RETROSPEKTİF DEĞERLENDİRİLMESİ ÖZEL BİR HASTANEDE YENİDOĞAN ÜNİTESİNE YATIRILAN İNDİREKT HİPERBİLİRUBİNEMİLİ OLGULARIN RETROSPEKTİF DEĞERLENDİRİLMESİ *Aysun Çakır, *Hanife Köse,*Songül Ovalı Güral, *Acıbadem Kadıköy Hastanesi GİRİŞ

Detaylı

Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup. Araştırma sonuçlarının genelleneceği grup

Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup. Araştırma sonuçlarının genelleneceği grup Evren (Popülasyon) Araştırma kapsamına giren tüm elemanların oluşturduğu grup Araştırma sonuçlarının genelleneceği grup Evrendeğer (Parametre): Değişkenlerin evrendeki değerleri µ : Evren Ortalaması σ

Detaylı

Bölüm 3. Tanımlayıcı İstatistikler

Bölüm 3. Tanımlayıcı İstatistikler Bölüm 3 Tanımlayıcı İstatistikler 1 Tanımlayıcı İstatistikler Bir veri setini tanımak veya birden fazla veri setini karşılaştırmak için kullanılan ve ayrıca örnek verilerinden hareket ile frekans dağılışlarını

Detaylı

İstatistiksel Kalite Kontrol BBY 374 TOPLAM KALİTE YÖNETİMİ 18 NİSAN 2014

İstatistiksel Kalite Kontrol BBY 374 TOPLAM KALİTE YÖNETİMİ 18 NİSAN 2014 İstatistiksel Kalite Kontrol BBY 374 TOPLAM KALİTE YÖNETİMİ 18 NİSAN 2014 İstatistiksel kalite kontrol o Üretim ve hizmet süreçlerinin ölçülebilir veriler yardımıyla istatistiksel yöntemler kullanılarak

Detaylı

15.433 YATIRIM. Ders 7: CAPM ve APT. Bölüm 2: Uygulamalar ve Sınamalar

15.433 YATIRIM. Ders 7: CAPM ve APT. Bölüm 2: Uygulamalar ve Sınamalar 15.433 YATIRIM Ders 7: CAPM ve APT Bölüm 2: Uygulamalar ve Sınamalar Bahar 2003 Öngörüler ve Uygulamalar Öngörüler: - CAPM: Piyasa dengesinde yatırımcılar sadece piyasa riski taşıdıklarında ödüllendirilir.

Detaylı

Test İstatistikleri AHMET SALİH ŞİMŞEK

Test İstatistikleri AHMET SALİH ŞİMŞEK Test İstatistikleri AHMET SALİH ŞİMŞEK İçindekiler Test İstatistikleri Merkezi Eğilim Tepe Değer (Mod) Ortanca (Medyan) Aritmetik Ortalama Merkezi Dağılım Dizi Genişliği (Ranj) Standart Sapma Varyans Çarpıklık

Detaylı

009 BS 400- İstatistik sonılannın cevaplanmasında gerekli olabilecek tablolar ve formüller bu kitapçığın sonunda verilmiştir. 1. şağıdakilerden hangisi doğal birimdir? l TV alıcısı Bl Trafik kazası CL

Detaylı

ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Nokta Grafikleri. Ders 2 Minitab da Grafiksel Analiz-II Tanımlayıcı İstatistikler

ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Nokta Grafikleri. Ders 2 Minitab da Grafiksel Analiz-II Tanımlayıcı İstatistikler ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Nokta Grafikleri Nokta grafikleri örnek veri dağılımlarını değerlendirmek ve karşılaştırmak için kullanılır. Bir nokta grafiği örneklem verilerini gruplandırır

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık - I Prof. Dr. İrfan KAYMAZ Tanım Tahmin (kes1rim veya öngörü): Mevcut bilgi ve deneylere dayanarak olayın bütünü hakkında bir yargıya varmak7r. ü Bu anlamda, anakütleden çekilen

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

14.74- Kalkınma Politikasının Temelleri

14.74- Kalkınma Politikasının Temelleri MIT OpenCourseWare http://ocw.mit.edu 14.74- Kalkınma Politikasının Temelleri Bahar 2009 Ders materyallerini alıntılamak için bilgi almak ya da Kullanım Koşulları nı öğrenmek için lütfen aşağıdaki siteyi

Detaylı

Siirt Üniversitesi Eğitim Fakültesi. Yrd. Doç. Dr. H. Coşkun ÇELİK Arş. Gör. Barış MERCİMEK

Siirt Üniversitesi Eğitim Fakültesi. Yrd. Doç. Dr. H. Coşkun ÇELİK Arş. Gör. Barış MERCİMEK Siirt Üniversitesi Eğitim Fakültesi Yrd. Doç. Dr. H. Coşkun ÇELİK Arş. Gör. Barış MERCİMEK EYLÜL-2013 Temel olarak bir bilgisayar, çeşitli donanım parçalarını bir araya getirip uygun bir çalışma platformunu

Detaylı

Üniversite Öğrencilerinde Dikkat Eksikliği ve Hiperaktivite Bozukluğu Belirtileri

Üniversite Öğrencilerinde Dikkat Eksikliği ve Hiperaktivite Bozukluğu Belirtileri Üniversite Öğrencilerinde Dikkat Eksikliği ve Hiperaktivite Bozukluğu Belirtileri Yrd. Doç. Dr. Esengül Kayan Beykent Üniversitesi Çocuk Gelişimi Bölümü 04.10.2017 Çalışmanın Amacı 1.Üniversite öğrencilerinde

Detaylı

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır?

26.12.2013. Farklı iki ilaç(a,b) kullanan iki grupta kan pıhtılaşma zamanları farklı mıdır? 26.2.23 Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel yöntemlere HĐPOTEZ TESTLERĐ denir. Sonuçların raslantıya bağlı olup

Detaylı

THOMAS TÜRKİYE PPA Güvenilirlik, Geçerlilik ve Standardizasyon Çalışmaları Özet Rapor

THOMAS TÜRKİYE PPA Güvenilirlik, Geçerlilik ve Standardizasyon Çalışmaları Özet Rapor THOMAS TÜRKİYE PPA Güvenilirlik, Geçerlilik ve Standardizasyon Çalışmaları Özet Rapor Amaç Aşamalar Örneklem Analizler PPA Güvenilirlik, Geçerlilik ve Standardizasyon Çalışmaları nın amacı, yeni örneklemler

Detaylı

UYGULAMALI DAVRANIŞ ANALİZİNDE VERİLERİN GRAFİKSEL ANALİZİ

UYGULAMALI DAVRANIŞ ANALİZİNDE VERİLERİN GRAFİKSEL ANALİZİ UYGULAMALI DAVRANIŞ ANALİZİNDE VERİLERİN GRAFİKSEL ANALİZİ Uygulamalı davranış analizinde verilerin gösterilmesi ve yorumlanması için grafikler kullanılır. Grafikler öğrenci performansının merkezi eğilimi,

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

Hastane Yönetimi-Ders 8 Hastanelerde İstatistiksel Karar Verme

Hastane Yönetimi-Ders 8 Hastanelerde İstatistiksel Karar Verme Hastane Yönetimi-Ders 8 Hastanelerde İstatistiksel Karar Verme Öğr. Gör. Hüseyin ARI 1 İstanbul Arel Üniversitesi M.Y.O Sağlık Kurumları İşletmeciliği Hastane Yönetiminde İstatistiksel Karar Vermenin Önemi

Detaylı

İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İŞLETME BÖLÜMÜ DERS BİLGİ PAKETİ Dersin Kodu / Adı İŞL 104/ YÖNETİM VE ORGANİZASYON 1. Sınıf Bahar Dönemi

İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ İŞLETME BÖLÜMÜ DERS BİLGİ PAKETİ Dersin Kodu / Adı İŞL 104/ YÖNETİM VE ORGANİZASYON 1. Sınıf Bahar Dönemi Sınıfı / Dönemi Dili Düzeyi Türü Kategorisi Kredisi Eğitim Şekli Ön Koşul Dersler Öğretim Üyesi Diğer Öğr. Üyeleri Yardımcılar Ders Saatleri Değerlendirme Ölçütleri Türkçe Lisans Zorunlu İKTİSADİ VE İDARİ

Detaylı

KTO KARATAY ÜNİVERSİTESİ Sosyal ve Beşeri Bilimler Fakültesi Psikoloji Bölümü Bölüm/Program Dersi DERS TANIM BİLGİLERİ. Uygulama (Saat) G

KTO KARATAY ÜNİVERSİTESİ Sosyal ve Beşeri Bilimler Fakültesi Psikoloji Bölümü Bölüm/Program Dersi DERS TANIM BİLGİLERİ. Uygulama (Saat) G KTO KARATAY ÜNİVERSİTESİ Sosyal ve Beşeri Bilimler Fakültesi Psikoloji Bölümü Bölüm/Program Dersi DERS TANIM BİLGİLERİ Dersin Adı İSTATİSTİK I Dersin Kodu Teori Uygulama Laboratuvar AKTS Kredisi G 201

Detaylı

Araştırma Oyunu Avrupa Bilimsel Araştırma Oyunu Oyun rehberi

Araştırma Oyunu Avrupa Bilimsel Araştırma Oyunu Oyun rehberi Araştırma Oyunu Avrupa Bilimsel Araştırma Oyunu Oyun rehberi Oynarken nelere ihtiyacınız olacak? Kayıt oldunuz mu? Bir takımınız var mı? Öyleyse şimdi oyuna başlama zamanı! Adımları takip et ve Aşama 1

Detaylı

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 6

PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 6 PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER 6 Prof. Dr. Ali ŞEN 1 İki populasyon karşılaştırılırken her iki örneklemin hacmi n1 ve n2, 10 dan büyükse TA nın dağılışı ortalaması ve varyansı aşağıdaki gösterilen

Detaylı

Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var :

Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var : Rasgele Sayı Üretme Rasgele Sayıların Özellikleri İki önemli istaiksel özelliği var : Düzgünlük (Uniformity) Bağımsızlık R i, rasgele sayısı olasılık yoğunluk fonksiyonu aşağıdaki gibi olan uniform bir

Detaylı

Pervin HORASAN Erciyes Üniversitesi Mehmet Kemal Dedeman Onkoloji Hastanesi

Pervin HORASAN Erciyes Üniversitesi Mehmet Kemal Dedeman Onkoloji Hastanesi Bir Üniversiteye Bağlı Kanser Hastanesinde Çalışan Hemşire ve Doktorlar Arasındaki Empati Eğilimi ve Tükenmişlik Arasındaki İlişkinin İncelenmesi: Türkiye nin Ortasından Bir Örneklem Pervin HORASAN Erciyes

Detaylı

Parametrik Olmayan İstatistik

Parametrik Olmayan İstatistik Parametrik Olmayan İstatistik 2 Anakütlenin Karşılaştırılması İki Anakütlenin Karşılaştırılması Bağımsız Örnekler Eşleştirilmiş Örnekler Wilcoxon Mertebe Toplam Testi İşaret Testi Wilcoxon İşaretli Mertebe

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 4.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Ranj Çeyrek Kayma Çeyrekler Arası Açıklık Standart Sapma Varyans

Detaylı

30- İŞ SAĞLIĞI VE GÜVENLİĞİNDE ARAŞTIRMA YÖNTEMLERİ. Dr. VOLKAN DÜNDAR

30- İŞ SAĞLIĞI VE GÜVENLİĞİNDE ARAŞTIRMA YÖNTEMLERİ. Dr. VOLKAN DÜNDAR 30- İŞ SAĞLIĞI VE GÜVENLİĞİNDE ARAŞTIRMA YÖNTEMLERİ Dr. VOLKAN DÜNDAR 1 Epidemiyoloji 1 Toplumlarda sağlıkla ilgili olayların dağılım ve nedenlerini inceleyen bilim dalıdır. İnsan toplulukları üzerine

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

İİİ Ş Ş ç ç ç ç ç ç ç İ Ö İ İ Ğ ç ç ç Ö ç ç Ş ç ç ç ç ç ç ç ç ç ç ç ç İ ç Ş İ İ Ü İ Ş İ ç ç ç İ ç İ İ İç ç İ ç ç ç ç İ İ İ İ İ İ İİ İ Ç ç Ş İ Ş İ İ ç ç ç İ Ç ç Ö İ Ü İ İŞ ç ç İ Ğ Ş Ü İ ç ç Ş Ş ç İ İ Ö

Detaylı

İ İ İ ç çi İ İ İ ç İ İ ç Ş İ Ç Ş İ ç Ş ç İ İ İ ç İ Ç ç İ İ İ İ İ İĞİ İ İ İ İ Ş Ş Ş Ş ç Ş Ş Ş İ İ İ Ğ İ İ İ İ Ş Ç Ş Ç Ş İ İ İ ç Ç Ş Ç Ş ç İ Ç Ş İ ç ç Ö Ç ç Ü İ ç Ç İ İ ç ç İ İ ç ç ç ç ç ç ç ç ç ç ç ç ç

Detaylı

İ İ İ İ İ Ö Ü İ İ İ İ Ğ Ö Ö Ö İ Ö Ç İ İ Ş Ü Ü İ Ş Ş İ İ İ İ İ İ İ «Ü İ İ Ü İ İ İÇİ İ İ Ü İ İ İ İ İ Ö Ü İ Ö İ Ü İ İ İ İ İ Ü Ö İ İ İ İ İ Ö İ İ İ Ş Ü Ü İ Ş Ş İ İ İ İ İ İ İ İ Ç»«İ Ü İ İ Ü Ç İ İ İİ İ İ Ü

Detaylı

Tanı Testlerinin Değerlendirilmesi. ROC Analizi. Prof.Dr. Rian DİŞÇİ

Tanı Testlerinin Değerlendirilmesi. ROC Analizi. Prof.Dr. Rian DİŞÇİ Tanı Testlerinin Değerlendirilmesi ROC Analizi Prof.Dr. Rian DİŞÇİ İstanbul Üniversitesi, Onkoloji Enstitüsü Kanser Epidemiyolojisi Ve Biyoistatistik Bilim Dalı Tanı Testleri Klinik çalışmalarda, özellikle

Detaylı