ÇEMBERİN ANALİTİK İNCELENMESİ

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ÇEMBERİN ANALİTİK İNCELENMESİ"

Transkript

1 ÇEMBERİN ANALİTİK İNCELENMESİ Öncelikle çembein tanımını hatılayalım. Neydi çembe? Çembe, düzlemde bi noktaya eşit uzaklıkta bulunan noktala kümesiydi. O halde çembein analitik incelenmesinde en önemli fomülümüz uzaklık fomülü olacaktı. Bundan yola çıkaak çembe fomülünü uzaklık fomülü üzeine inşa edeceğiz. Çembe çizmek için bize geeken iki eleman çembein mekez noktası ve yaıçaptı. noktasını mekez kabul eden çembein yaıçap uzunluğu olsun. Çembe üzeinde değişken bi P(x,y) noktası alacak olusak haliyle bu değişken noktalaın çembein mekezine olan uzaklığı da yaıçap olan ye eşit olacaktı. İşte bu noktada iki nokta aasındaki uzaklık fomülünü kullanaak çembe denklemini elde edeceğiz. ( ) + ( ) He iki taafın da kaesini alısak (x-a) + (y-b) = İle çembein standat denklemini elde etmiş oluuz. Önek: Mekezi (,3) ve yaıçapı 4 olan çembein standat denklemini bulalım. (x-) +(y-3) =4 (x-) +(y-3) =16 Önek: Standat denklemi (x+1) +(y-) =9 olan çembein mekez noktasını ve yaıçapını bulalım. (x-a) + (y-b) = a=-1, b=+ ve =9 =3 Mekezi M(-1,) ve =3 He iki eksene biden teğet olan çembe denklemi (-,) (-,-) 1. Bölgede (x-) +(y-) =. Bölgede (x+) +(y-) = 3. Bölgede (x+) +(y+) = 4. Bölgede (x-) +(y+) = Önek: Eksenlee 4. bölgede teğet olan çembein mekezi x+3y+4=0 doğusundan geçtiğine göe bu çembein standat denklemini bulalım. Çembe eksenlee 4. Bölgede teğet olduğuna göe mekez koodinatlaı M(,-) olacaktı. Bu nokta aynı zamanda doğu üzeinde olduğundan doğu denklemini de sağlamalıdı. + 3.(-) + 4 = =0 =4 Çembe denklemi de; (x-4) +(y+4) =16 olu. MERKEZİ EKSENLERDE OLAN ÇEMBER DENKLEMLERİ Mekezi X ekseni üzeinde olan çembe denklemi: M(a,0) (,) (,-) (x-a) +y = EKSENLERE TEĞET OLAN ÇEMBERLER X eksenine teğet olan çembe denklemi: Mekezi Y ekseni üzeinde olan çembe denklemi: =b (x-a) +(y-b) = b M(0,b) x +(y-b) = Y eksenine paalel olan çembe denklemi: =a (x-a) +(y-b) = a Mekezi Oijin olan Çembe Denklemi (Mekezil Çembe) Önek: Mekezi M(-4,5) olan çembe: a) X eksenine teğetse, b) Y eksenine teğetse, Standat denklemi nedi? M(0,0) x +y = a) (x+4) +(y-5) = 5 b) (x+4) +(y-5) = 16

2 ÇEMBERİN GENEL DENKLEMİ Çembein standat denkleminde kae açılımlaını yapasak çembein genel denklemini elde etmiş oluuz. Mekez noktası ve yaıçapı olan çembein standat denkemi (x-a) +(y-b) = Bu denklemde kae açılımı yapalım. x -ax+a +y -by+b - = 0 Bu denklemi düzenlesek; x +y -ax-by+a +b - = 0 D=-a E=-b ve F= a +b - desek çembein genel denklemini elde edeiz: x +y +Dx+Ey+F=0 Genel Denklemi Veilen Çembein Mekezi ve Yaıçapının Elde Edilişi: x +y +Dx+Ey+F=0 denkleminde; D=-a E=-b F= a +b - dolayısıyla; a=-d/ b=-e/ = + eşitlikleini elde edeiz. Buadan mekez nokta koodinatlaı M(-D/,-E/) Önek: x +y -x+6y-6=0 çembeinin mekezini ve yaıçapını bulalım. D=- E=6 F=-6 M(-D/, -E/) ÇEMBERİN VEKTÖREL DENKLEMİ: = + 4 M(1,-3) = = 4 P(x,y) Mekezi olan ve yaıçapı olan çembe üzeinde değişken bi P(x,y) noktası alalım. Mekezden P noktasına bi vektö oluştuusak: =P-M = (x-a,y-b) olu ve vektöün boyu = Önek: (x+4,y-) ve = 4 sisteminin x eksenini kestiği noktala aasındaki mesafe kaç biimdi? ÇEMBERİN PARAMETRİK DENKLEMİ: Mekezil Çembein Paametik Denklemi: x=cost y=sint Mekezi ve yaıçapı olan çembein Paametik Denkemi: Mekez ötelemesi ile çembein paametik denklemi: x = a + cost y = b + sint Önek: Paametik denklemi: x = cost y = 4 + 3sint olan çembein standat denklemini bulalım. a=-1 b=4 ve =3 Çembein standat denklemi: (x+1) +(y-4) = 9 olu. Önek: Genel denklemi x +y +4x-y-4 olan çembein paametik denklemini bulalım. M(-D/,-E/) = + 4 M(-,1) = = 3 Çembein paametik denklemi: x = - + 3cost y = 1 + 3sint Önek: Paametik denklemi x = cost y = sint olan çembein t 1 = 0 o ve t = 110 o paameteleine kaşılık gelen noktala aasındaki mesafe kaç biimdi? vektöünün boyunu hesaplasak = ( + 4) + ( ) 4 eşitliğin he iki taafının kaesini alısak: (x+4) +(y-) = 16 mekezi M(-4,) ve yaıçapı =4 olan çembe denklemi elde edeiz. K 6 M(5,-3) =6 Pisagodan KL yi buluuz KL = 4 - KL = 3 6 M(5,-3) 6 =6 L t 1 = 0 o ve t = 110 o aalaındaki fak 90 o olup ikizkena dik üçgen oluşu. 3 K 3 L Çembein x eksenindeki mesafesi. 3 = 4 3 KL = 6 olu.

3 BİR ÇEMBER İLE BİR DOĞRUNUN BİRBİRİNE GÖRE KONUMLARI Buada da kıyaslamayı çembein mekezinin doğuya olan uzaklığı ile yaıçap aasında yapacağız. Eğe doğuya olan uzaklık yaıçaptan fazla ise mantıken doğu çembei kesmeyecekti. Eğe mekezin doğuya olan uzaklığı yaıçapa eşitse bu duumda doğu çembee teğetti. Eğe mekezin doğuya olan uzaklığı yaıçaptan küçükse bu duumda da doğu çembei iki noktada kese deiz. Bu hesaplamalaı yapaken iki faklı yöntem kullanıız. 1. yöntem: Noktanın doğuya olan uzaklığını kullanma. yöntem: Otak çözüm ile diskiminant kullanma İki yöntemi de bu konu ile ilgili tüm soulada kullanabiliiz. Ancak doğu denkleminin veiliş fomatına göe seeçeceğim yöntem işimi daha kolaykaştıacaktı. Eğe denklem; mx+ny+c=0 fomatında ise 1. yöntemi y =mx+n fomatında ise. yöntemi kullanıız. Öncelikle 1. Yöntemin kullanımından bahsedelim ve önek sou çözümlei yapalım. Doğu ile çembe kesişmez ( 1). ( ) = 4 d= dolayısıyla doğu ile çembe bibiine teğetti. Önek: x +y -6x-4y+9 = 0 çembeinin 3x+4y+8=0 doğusuna en yakın noktasının doğuya olan uzaklığı kaç biimdi? M(3,) = Mekez noktasının doğuya olan uzaklığı: d d > 5 M(3,) = x +y -6x-4y+9 = = 5 mx+ny+c=0 3 Doğu çembee teğetti 3x+4y+8=0 d d = Doğu çembei iki noktada kese mx+ny+c=0 d A B mx+ny+c=0 AB = Doğu ile çembein bibileine göe duumlaını kıyaslaken kullanılacak bi diğe yöntem de diskiminant yöntemidi. Öncelikle doğu denkleminde y yi x cinsinden yazaız. Daha sona çembe denkleminde aynı şekilde y yeine x cinsinden bulduğumuz ifadeyi yazıp çembe denklemini x e bağlı ikinci deeceden bi denklem haline getimiş oluuz. Bu denklemin diskiminantını hesaplaız. Önek: (x-3) +(y+) =16 çembei ile 5x-1y+13=0 deoğusunun bibiine göe duumunu inceleyelim. Çembein mekez noktası M(3,-) ve yaıçapı =4 tü. Mekez noktasının doğuya olan uzaklığını incelesek: Şimdi de ikinci yöntemde neyden bahsediyouz onu açıklayalım: Buada doğu denkleminde veilen y=mx+n eşitliğini çembe denklemindeyeine yazaız. Öneğin çembe denklemim (x-a) +(y-b) = olsun. Buada y yeine mx+n yazaak otak çözüm yapaız. (x-a) +(mx+n) =0 İle. deeceden x e bağlı bi bilinmeyenli denklem elde edeiz. Bu denklemde diskiminantı hesaplaız. >0 ise doğu çembei iki noktada kese =0 ise doğu çembee teğetti <0 ise doğu ile çembe kesişmez deiz. Önek: (x+4) +(y-) =9 çembei ile y=x-1 doğusunun bibiine göe duumlaını kıyaslayın. Çembe denkleminde y yeine x-1 yazıp diskiminantı hesaplayalım. (x+4) +(x-1-) -9=0 (x+4) +(x-3) -9=0 x +8x+16+x -6x+9-9=0 x +x+16=0 x +x+8 =0 =b -4ac = =-31<0 (doğu çembei kesmez)

4 İKİ ÇEMBERİN BİRBİRİNE GÖRE DURUMLARI İki çembein bibiine göe duumunu inceleken çembelein mekez noktalaı aasındaki mesafe ile yaıçaplaı kıyaslaız. M 1(-1,3) M (5,-5) 1= =3 A M 1M =( 1 5) + (3 ( 5)) M 1M =10 1. Çembele kesişmez.. Çembele dıştan teğetti. M 1M > 1 + B 5 15 b En uzak mesafe 5 b En kısa mesafe C 3 3 M 1M = 1 + D Önek: (x-6) +(y-1) =49 çembei ile x +y -4x-8y+k=0 çembelei içten teğet olduğuna göe k nedi? 3. Çembele içten teğetti. M 1(6,1) 1=7 M (,-4) M 1M = 1 4. Çembele içiçe kesişmez. = 5 = 7 Çembele içten teğet M 1M = 1-5 = 7- = = + 4 = ( 4) + ( 8) 4 k=16 M 1M < 1 Önek: (x+7) +(y-8) =144 çembei ile (x-5) +(y-3) = çembelei dik kesiştiğine göe kaçtı? 5. Çembele iki noktada kesişi. 1 < M 1M < + 1 M 1(-7,8) 1=1 M (5,3) = M 1M = ( 7 5) (8 3) M 1M = 13 Çembele dik kesiştiği için M 1M = =1 + =5 6. Çembele dik kesişi =5 1 + = M 1M Önek: (x+1) +(y-3) = 4 çembei ile (x+5) +(y+5) =9 çembelei aasındaki en uzak mesafe kaç biimdi?

5 ÇEMBERDE KUVVET NOKTANIN ÇEMBERE GÖRE KUVVETİ Çembein dışında alınan bi noktadan çembee çizilen teğet uzunluğunun kaesi noktanın çembee göe kuvvetini vei. A(x 1,y 1) B Çmebein analitik incelenmesinde bi noktanın çembee göe kuvvetini hesaplamak oldukça kolaydı. A(x 1,y 1) noktasının koodinatlaını çemebein kapalı denkleminde yeine yazaız. Sonuç bize kuvveti vei. Kuvveti P (Powe) ile gösteiiz. P=(x-x 1) -(y-y 1) - veya genel denklemde; P=x 1 +y 1 -Dx 1+Ey 1+F bize kuvveti vei. P>0 ise nokta çembein dışındadı. P=0 ise nokta çembe üzeindedi. P<0 ise nokta çembein içindedi. Kuvvet aynı zamanda teğet uzunluğunun kaesini vei. P = AT Aynı zamanda yine çembede dış kuvvetten AT = AB. AC eşitliğinden P= AB. AC ile de kuvveti hesaplayabiliiz. Önek: A(1,) noktasının (x-5) +(y+3) =9 çembeine göe kuvveti nedi? Bulunan kuvvet değeinden yola çıkaak nokta ve çembein bibiine göe duumunu inceleyin. P=(1-5) +(+3) -9 P= P= 3 P>0 olduğu için nokta çembein dışındadı. T Önek: A(-3,) noktasından x +y -x+4y+9=0 çembeine çizilen teğet uzunluğunu bulalım. P=(-3) + +(-).(-3)+4.+9 P= P=36 Teğet uzunluğunun kaesi kuvvete eşitti.dolayısıyla AT =P=36 AT =6 C Önek: A(-1,3) noktası x +y +4x-6y+k=0 çembeinin içinde olduğuna göe k nın alacağı en büyük tamsayı değeini bulalım. Nokta çembein iç bölgesinde olduğuna göe kuvvetin negatif olması geeki. P=(-1) (-1)-6.3+k < 0 P= k < 0 P=-1+k < 0 k<1 k nın alacağı en büyük tamsayı değei 11 olu. İKİ ÇEMBERİN KUVVET EKSENİ İki çembein kuvvet ekseni bi doğudu. Yani elimizdeki çembe denklemleinden bi şekilde doğu denklemi elde etmemiz geek. Bunu da çembe denklemleinin taaf taafa fakını alaak elde edeceğiz. Tabi bu işlemi kolaylıkla yapmak için çembelein genel denklemini kullanmalıyız. Önek: x +y -4x+8y-1=0 çembei ile x +y+6x-y+0=0 çembeinin kuvvet ekseninin denklemini bulalım. x +y -4x+8y-1=0 x +y+6x-y+0=0 He iki denklemin taaf taafa fakını alısak (öneğin. denklemden 1. denklemi çıkaısak) 10x-10y+3=0 denklemlei sadeleştiisek; 5x-5y+16=0 denklemini elde edeiz ve bu bize çembelein kuvvet ekseninin denklemini vei. ÇEMBER DEMETİ Bi Çembei belitmek için 3 nokta geeki. noktadan sonsuz çembe geçe. Genel denklemlei x +y +D 1x+E 1y+F 1=0 ve x +y +D x+e y+f =0 olan çembeleinin kesişim noktalaından çizilebilecek tüm çembelein genel denklemi x +y +D 1x+E 1y+F 1 + k(x +y +D x+e y+f )=0 denklemi ile elde edili. Bu konu ile ilgili gelecek soulada önce veilen noktanın koodinatlaını çembe demetinin genel denkleminde yeine yazıp k değeini buluuz. sona bulduğumuz k değeini denklemde yeine yazıp bizden istenen çembe denklemini elde edeiz. Önek: x +y +x-6y+8=0 ve x +y +4x+4y-10=0 çembeleinin kesim noktalaından ve A(1,-) noktasından geçen çembe denklemini bulalım. x +y +x-6y+8+k(x +y +4x+4y-10)=0 A(1,-) noktasını denklemde yeine yazıp k yı bulalım. 1 +(-) +.1(-6)(-)+k[(1 +(-) (-)-10]=0 7-9k=0 k=3 Şimdi de k denklemde k yeine 3 yazıp bizden istenen çembe denklemini bulalım. x +y +x-6y+8+3(x +y +4x+4y-10)=0 x +y +x-6y+8+3x +3y +1x+1y-30=0 4x +4y +14x+6y-=0 çembe denklemini elde edeiz.

6 TEĞET VE NORMAL DENKLEMİ Mekezi ve yaıçapı olan çembee üzeindeki T(x 1,y 1) noktasından çizilen teğet ve nomal denklemleini bulalım. Doğu denklemleinde eğimden yaalanıldığı için önce teğetin ve nomalin eğimleini bulaak işe başlayalım. Nomalin eğimi: m N= Teğet ve nomal bibiine dik ve dik doğulaın eğimlei çapımı -1 e eşit olduğundan Teğetin eğimi: m T= ( ) Eğimi ve bi noktası bilinen doğu denklemi fomülünü kullanaak da teğet ve nomalin denklemleini elde edebiliiz. Buada teğet değme noktası hem teğetin hem de nomalin üzeinde olduğu için bu noktayı kullanıız) Nomal denklemi: y-y 1=M N(x-x 1) Teğet Denklemi: y-y 1=M T(x-x 1) elde edili. Önek: (x-4) +(y+3)=5 çembeine üzeindeki A(1,1) noktasından çizilen teğet ve nomal denklemkleini bulalım. T(x1,y1) Teğet doğusu Nomal doğusu Önek: x +y -4x+6y+5=0 çembeine üzeindeki A(4,-1) noktasından çizilen teğet ve nomal denklemleini bulalım. Teğet denklemi: y+1=(-1) (x-4) y+1=-x+4 d N:x+y-3=0 m N= () m n= 1 m T=-1 Nomal denklemi: y+1=1. (x-4) y+1=x-4 d t:x-y-5=0 Önek: x +y =100 çembeine üzeindeki A(-6,8) noktasından çizilen teğet ve nomal denklemleini bulalım. Teğet denklemi: (y-8)= (x+6) 4x+4=3y-4 4x-3y=0 A(-6,8) M(,-3) M(0,0) A(4,-1) m N= m t= Nomal denklemi: (y-8)= (x+6) 3x+18=-4y+3 3x+4y-14=0 A(1,1) M(4,-3) m N= m n= m T= Nomal denklemi: y-1= (x-1) 3y-3=-4x+4 d t:4x+3y-7=0 Teğet denklemi: y-1= (x-1) 4y-4=3x-3 d N:3x-4y+1=0

1. O(0,0) merkezli, 3 birim yarıçaplı. 2. x 2 +y 2 =16 denklemi ile verilen. 3. O(0,0) merkezli ve A(3,4)

1. O(0,0) merkezli, 3 birim yarıçaplı. 2. x 2 +y 2 =16 denklemi ile verilen. 3. O(0,0) merkezli ve A(3,4) HAZİNE-1 Düzlemde sabit M(a,b) noktasından eşit uzaklıkta bulunan noktaların geometrik yeri, M merkezli R yarıçaplı çemberdir. HAZİNE-2 O(0,0) merkezli, R yarıçaplı çemberin denklemi; x 2 +y 2 =R 2 dir.

Detaylı

LYS TÜREV KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI

LYS TÜREV KONU ÖZETLİ ÇÖZÜMLÜ SORU BANKASI LYS TÜREV KONU ÖZETLİ LÜ SORU BANKASI ANKARA İÇİNDEKİLER Tüev... Sağdan Ve Soldan Tüev... Tüev Alma Kuallaı...7 f n () in Tüevi... Tigonometik Fonksionlaın Tüevi... 6 Bileşke Fonksionun Tüevi... Logaitma

Detaylı

YX = b X +b X +b X X. YX = b X +b X X +b X. katsayıları elde edilir. İlk olarak denklem1 ve denklem2 yi ele alalım ve b

YX = b X +b X +b X X. YX = b X +b X X +b X. katsayıları elde edilir. İlk olarak denklem1 ve denklem2 yi ele alalım ve b Kadelen Bisküvi şiketinin on şehideki eklam statejisi Radyo-TV ve Gazete eklamı olaak iki şekilde geçekleşmişti. Bu şehiledeki satış, Radyo-TV ve Gazete eklam veilei izleyen tabloda veilmişti. Şehi No

Detaylı

r r r r

r r r r 997 ÖYS. + 0,00 0,00 = k 0,00 olduğuna göe, k kaçtı? B) C). [(0 ) + ( 0) ] [(9 0) (0 ) ] işleminin sonucu kaçtı? B) C) 9 6. Bi a doğal sayısının ile bölündüğünde bölüm b, kalan ; b sayısı ile bölündüğünde

Detaylı

açılara bölünmüş kutupsal ızgara sisteminde gösteriniz. KOORDİNATLAR Düzlemde seçilen bir O başlangıç noktası ve bir yarı doğrudan oluşan sistemdir.

açılara bölünmüş kutupsal ızgara sisteminde gösteriniz. KOORDİNATLAR Düzlemde seçilen bir O başlangıç noktası ve bir yarı doğrudan oluşan sistemdir. KUTUPSAL KOORDİNATLAR (POLAR Düzlemde seçilen bi O başlangıç noktası ve bi yaı doğudan oluşan sistemdi. açılaa bölünmüş kutupsal ızgaa sisteminde gösteiniz. Not: Kolaylık olması açısından Katezyen Koodinat

Detaylı

TG 8 ÖABT İLKÖĞRETİM MATEMATİK

TG 8 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN İLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖAT İLKÖĞRETİM MATEMATİK u testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının veya bi

Detaylı

Bölüm 5 Manyetizma. Prof. Dr. Bahadır BOYACIOĞLU

Bölüm 5 Manyetizma. Prof. Dr. Bahadır BOYACIOĞLU ölüm 5 Manyetizma Pof. D. ahadı OYACOĞLU Manyetizma Manyetik Alanın Tanımı Akım Taşıyan İletkene Etkiyen Kuvvet Düzgün Manyetik Alandaki Akım İlmeğine etkiyen Tok Yüklü bi Paçacığın Manyetik Alan içeisindeki

Detaylı

2013 2013 LYS LYS MATEMATİK Soruları

2013 2013 LYS LYS MATEMATİK Soruları LYS LYS MATEMATİK Soulaı. LYS 5. LYS ( + a ) = 8 < < olmak üzee, olduğuna öe, a kaçtı? I. A) D) II. + III. (.) ifadeleinden hanileinin değei neatifti? A) Yalnız I Yalnız II Yalnız III D) I ve III II ve

Detaylı

Örnek...1 : Çapı 4 birim olan bir dairenin yarı çevresi ve alan ın ın sa yısal değerleri toplam ı kaçtır? 6π. Örnek...4 : Örnek...2 : Örnek...

Örnek...1 : Çapı 4 birim olan bir dairenin yarı çevresi ve alan ın ın sa yısal değerleri toplam ı kaçtır? 6π. Örnek...4 : Örnek...2 : Örnek... ÇEEE ÇEVE, İEE N 3 ( ÇEEİN ÇEVEİ İENİN, İE İİİNİN, İE EEİNİN VE HNIN NI ÇEEE ENZEİ EĞEENİE ) ÇEEİN ÇEVEİ VE İENİN NI İE İİİ NI VE YY UZUNUĞU mek ezli bi çembein çevesi, Çeve=2.π. mek ezli bi daienin alanı,

Detaylı

SİSTEM MODELLEME VE OTOMATİK KONTROL FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ

SİSTEM MODELLEME VE OTOMATİK KONTROL FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ SİSTEM MODELLEME VE OTOMATİK KONTROL FİNAL/BÜTÜNLEME SORU ÖRNEKLERİ.Gup: Vize sou önekleindeki son gup (Routh-Huwitz testi) soula dahildi. Bunla PID soulaıyla bilikte de soulabili..) Tansfe fonksiyonu

Detaylı

ASTRONOTİK DERS NOTLARI 2014

ASTRONOTİK DERS NOTLARI 2014 YÖRÜNGE MEKANİĞİ Yöüngeden Hız Hesabı Küçük bi cismin yöüngesi üzeinde veilen hehangi bi noktadaki hızı ve bu hızın doğultusu nedi? Uydu ve çekim etkisinde bulunan cisim (Ye, gezegen, vs) ikili bi sistem

Detaylı

Basit Makineler. Test 1 in Çözümleri

Basit Makineler. Test 1 in Çözümleri Basit Makinele BASİ MAİNELER est in Çözümlei. Şekil üzeindeki bilgilee göe dinamomete değeini göstei. Cevap D di.. Makaa ve palanga sistemleinde kuvvetten kazanç sayısı kada yoldan kayıp vadı. uvvet kazancı

Detaylı

3. EŞPOTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ. Bir çift elektrot tarafından oluşturulan elektrik alan ve eş potansiyel çizgilerini görmek.

3. EŞPOTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ. Bir çift elektrot tarafından oluşturulan elektrik alan ve eş potansiyel çizgilerini görmek. 3. EŞPOTNSİYEL VE ELEKTRİK LN ÇİZGİLERİ MÇ i çift elektot taafından oluştuulan elektik alan ve eş potansiyel çizgileini gömek. RÇLR Güç kaynağı Galvanomete Elektot (iki adet) Pob (iki adet) İletken sıvı

Detaylı

Nokta (Skaler) Çarpım

Nokta (Skaler) Çarpım Nokta (Skale) Çapım Statikte bazen iki doğu aasındaki açının, veya bi kuvvetin bi doğuya paalel ve dik bileşenleinin bulunması geeki. İki boyutlu poblemlede tigonometi ile çözülebili, ancak 3 boyutluda

Detaylı

Bölüm 30. Biot-Savart Yasası Giriş. Biot-Savart Yasası Gözlemler. Biot-Savart Yasası Kurulum. Serbest Uzayın Geçirgenliği. Biot-Savart Yasası Denklem

Bölüm 30. Biot-Savart Yasası Giriş. Biot-Savart Yasası Gözlemler. Biot-Savart Yasası Kurulum. Serbest Uzayın Geçirgenliği. Biot-Savart Yasası Denklem it-savat Yasası Giiş ölüm 30 Manyetik Alan Kaynaklaı it ve Savat, elektik akımının yakındaki bi mıknatısa uyguladığı kuvvet hakkında deneyle yaptı Uzaydaki bi nktada akımdan ilei gelen manyetik alanı veen

Detaylı

= e DIŞ MERKEZLİK HAZİNE-1 HAZİNE-2

= e DIŞ MERKEZLİK HAZİNE-1 HAZİNE-2 HAZİNE-1 HAZİNE-2 Bir eksen üzerinde verilen noktadan geçen ve eksen ile belirli açı yaparak dönen doğrunun oluşturduğu yüzeye konik yüzey denir. Konik yüzeyin değişik düzlemler ile arakesit kümeleri çember,

Detaylı

BÖLÜM 2 GAUSS KANUNU

BÖLÜM 2 GAUSS KANUNU BÖLÜM GAUSS KANUNU.1. ELEKTRİK AKISI Elektik akısı, bi yüzeyden geçen elektik alan çizgileinin sayısının bi ölçüsüdü. Kapalı yüzey içinde net bi yük bulunduğunda, yüzeyden geçen alan çizgileinin net sayısı

Detaylı

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI SORU 1. Köşeleri (1,4) (3,0) (7,2) noktaları olan ABC üçgeninin bir ikizkenar dik üçgen (İpucu:, ve vektörlerinden yararlanın) SORU 2. Bir ABC üçgeninin

Detaylı

Basit Makineler Çözümlü Sorular

Basit Makineler Çözümlü Sorular Basit Makinele Çözümlü Soula Önek 1: x Çubuk sabit makaa üzeinde x kada haeket ettiilise; makaa kaç tu döne? x = n. n = x/ olu. n = sabit makaanın dönme sayısı = sabit makaanın yaıçapı Önek : x Çubuk x

Detaylı

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI ÜNİVERSİTEYE GİRİŞ SINV SORULRI. 99 ÖYS D C 5. 99 ÖYS fonksionunun ba lan g ç nok ta s na en a k n olan nok ta s n n, ba lan g ç nok ta s na uzak l kaç bi im di? O bi im olan bi a çem be in içi ne çi zi

Detaylı

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir.

Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri. Not 1: Buradaki A noktasına dönme merkezi denir. Düzlemde Dönüşümler: Öteleme, Dönme ve Simetri Düzlemin noktalarını, düzlemin noktalarına eşleyen bire bir ve örten bir fonksiyona düzlemin bir dönüşümü denir. Öteleme: a =(a 1,a ) ve u =(u 1,u ) olmak

Detaylı

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM

(m+2) +5<0. 7/m+3 + EŞİTSİZLİKLER A. TANIM EŞİTSİZLİKLER A. TANIM f(x)>0, f(x) - eşitsizliğinin

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77 UZAYDA DOĞRU VE DÜZLEM Sayfa No. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi.............. 7. BÖLÜM uzayda düzlem denklemleri.......................................... 77. BÖLÜM uzayda Bir

Detaylı

TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2.

TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2. AIŞIRMAAR 8 BÖÜM R ÇÖZÜMER R cos N 4N 0 4sin0 N M 5d d N ve 4N luk kuv vet lein çu bu ğa dik bi le şen le i şekil de ki gi bi olu nok ta sı na gö e top lam tok; τ = 6 4sin0 + cos4 = 4 + 4 = Nm Çubuk yönde

Detaylı

Katı Cismin Uç Boyutlu Hareketi

Katı Cismin Uç Boyutlu Hareketi Katı Cismin Uç outlu Haeketi KĐNEMĐK 7/2 Öteleme : a a a ɺ ɺ ɺ ɺ ɺ / / /, 7/3 Sabit Eksen Etafında Dönme : Hız : wx bwe bwe wx be he x we wx bwe e d b be d be he b h O n n n ɺ ɺ θ θ θ θ θ ( 0 Đme : d d

Detaylı

Ankara Üniversitesi Diş Hekimliği Fakültesi Ankara Aysuhan OZANSOY

Ankara Üniversitesi Diş Hekimliği Fakültesi Ankara Aysuhan OZANSOY FİZ11 FİZİK Ankaa Üniesitesi Diş Hekimliği Fakültesi Ankaa Aysuhan OZANSOY Bölüm-III : Doğusal (Bi boyutta) Haeket 1. Ye değiştime e Haeketin Tanımı 1.1. 1 Mekanik Nedi? 1.. Refeans çeçeesi, Konum, Ye

Detaylı

VEKTÖRLER 1. BÖLÜM. Vektörel Büyüklüğün Matematiksel Tanımı : u = AB yada u ile gösterilir.

VEKTÖRLER 1. BÖLÜM. Vektörel Büyüklüğün Matematiksel Tanımı : u = AB yada u ile gösterilir. . BÖLÜM VEKTÖRLER Tanım:Matematik, istatistik, mekanik, gibi çeşitli bilim dallaında znlk, alan, hacim, yoğnlk, kütle, elektiksel yük, gibi büyüklükle, cebisel kallaa göe ifade edilile. B tü çoklklaa Skale

Detaylı

5. ( 8! ) 2 ( 6! ) 2 = ( 8! 6! ). ( 8! + 6! ) Cevap E. 6. Büyük boy kutu = 8 tane. Cevap A dakika = 3 saat 15 dakika olup Göksu, ilk 3 saatte

5. ( 8! ) 2 ( 6! ) 2 = ( 8! 6! ). ( 8! + 6! ) Cevap E. 6. Büyük boy kutu = 8 tane. Cevap A dakika = 3 saat 15 dakika olup Göksu, ilk 3 saatte Deneme - / Mat MTEMTİK DENEMESİ Çözümle. 7 7 7, 0, 7, + + = + + 03, 00,, 3 0 0 7 0 0 7 =. +. +. 3 = + + = 0 bulunu.. Pa ve padaa eklenecek saı olsun. a- b+ b =- a+ b+ a & a - ab+ a =-ab-b -b & a + b =

Detaylı

5 ÖABT / MTL ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG. 678 ( sin + cos )( sin- cos )( sin+ cos ) lim sin- cos " = lim ( sin+ cos ) = bulunu. ". # # I = sin d = sin sin d sin = u sin d = dv du = sin : cos

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

Basit Makineler. Test 1 in Çözümleri. 3. Verilen düzenekte yük 3 ipe bindiği için kuvvetten kazanç 3 tür. Bu nedenle yoldan kayıp da 3 olacaktır.

Basit Makineler. Test 1 in Çözümleri. 3. Verilen düzenekte yük 3 ipe bindiği için kuvvetten kazanç 3 tür. Bu nedenle yoldan kayıp da 3 olacaktır. 9 Basit Makinele BASİ MAİNEER est in Çözülei.. Veilen düzenekte yük ipe bindiği için kuvvetten kazanç tü. Bu nedenle yoldan kayıp da olacaktı. kasnak ükün 5x kada yükselesi için kasnağa bağlı ipin 5x.

Detaylı

1.DERECEDEN DENKLEMLER. (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz)

1.DERECEDEN DENKLEMLER.  (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) .DERECEDEN DENKLEMLER Rüstem YILMAZ 546 550 86 48 destek@sinavdestek.com www.sinavdestek.com (Bu belgenin güncellenmiş halini bu adresten indirebilirsiniz) JET Yayınları 8 Ağustos 07 0. Bir Bilinmeyenli

Detaylı

10. SINIF KONU ANLATIMLI. 4. ÜNİTE: OPTİK 1. Konu GÖLGELER ve AYDINLANMA ETKİNLİK ÇÖZÜMLERİ

10. SINIF KONU ANLATIMLI. 4. ÜNİTE: OPTİK 1. Konu GÖLGELER ve AYDINLANMA ETKİNLİK ÇÖZÜMLERİ 0. SNF ONU NTM 4. ÜNİTE: OPTİ. onu GÖGEER ve YDNNM ETİNİ ÇÖZÜMERİ Ünite 4 Optik. 5. Ünite. onu (yınlanma) nın Yanıtlaı pee. a. yaklaştıılmalıı. b. uzaklaştıılmalıı. B nin Yanıtlaı X Y. a. ekan. 3. şık

Detaylı

FİZ101 FİZİK-I. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B Grubu 3. Bölüm (Doğrusal Hareket) Özet

FİZ101 FİZİK-I. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B Grubu 3. Bölüm (Doğrusal Hareket) Özet FİZ11 FİZİK-I Ankaa Üniesitesi Fen Fakültesi Kimya Bölümü B Gubu 3. Bölüm (Doğusal Haeket) Özet.1.14 Aysuhan Ozansoy Haeket Nedi? Mekanik; kuetlei e onlaın cisimle üzeine etkileini inceleyen fizik dalıdı

Detaylı

Eğrisel harekette çok sık kullanılan tanımlardan biri de yörünge değişkenlerini içerir. Bunlar, hareketin her bir anı için ele alınan biri yörüngeye

Eğrisel harekette çok sık kullanılan tanımlardan biri de yörünge değişkenlerini içerir. Bunlar, hareketin her bir anı için ele alınan biri yörüngeye Eğisel haekee çok sık kullanılan anımladan bii de yöünge değişkenleini içei. Bunla, haekein he bi anı için ele alınan bii yöüngeye eğe, diğei ona dik iki koodina eksenidi. Eğisel haekein doğal bi anımıdıla

Detaylı

Dönerek Öteleme Hareketi ve Açısal Momentum

Dönerek Öteleme Hareketi ve Açısal Momentum 6 Döneek Ötelee Haeketi e Açısal Moentu Test 'in Çözülei.. R L P N yatay M Çebe üzeindeki bi noktanın yee göe hızı, o noktanın ekeze göe çizgisel hızı ile çebein ötelee hızının ektöel toplaına eşitti.

Detaylı

DOĞRUNUN ANALİTİK İNCELEMESİ

DOĞRUNUN ANALİTİK İNCELEMESİ Koordinatlar DOĞRUNUN ANALİTİK İNCELEMESİ Bilindiği gibi, düzlemdeki her bir noktaya bir (a,b) sıralı ikilisi, her bir (a,b) sıralı ikilisine bir nokta karşılık gelir. Eğer bir A noktasına karşılık gelen

Detaylı

Çözüm Kitapçığı Deneme-7

Çözüm Kitapçığı Deneme-7 KAMU PESONEL SEÇME SINAI ÖĞETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞETİM MATEMATİK ÖĞETMENLİĞİ 7-9 MAT 7 Çözüm Kitapçığı Deneme-7 Bu testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının vea

Detaylı

DÝFERANSÝYEL DENKLEMLER ( Genel Tekrar Testi-1) KPSS MATEMATÝK

DÝFERANSÝYEL DENKLEMLER ( Genel Tekrar Testi-1) KPSS MATEMATÝK DÝFERANSÝYEL DENKLEMLER ( Genel Teka Testi-). Aşağıdaki difeansiel denklemlein hangisinin mete - besi (basamağı, sıası) tü?. Aşağıdaki difeansiel denklemlein hangisinin mete - besi (basamağı, sıası) ve

Detaylı

KUYRUK SİSTEMİ VE BİLEŞENLERİ SİSTEM SİMULASYONU KUYRUK SİSTEMİ VE BİLEŞENLERİ ÖRNEKLER BİR KUYRUK SİSTEMİNİN ÖRNEKLER

KUYRUK SİSTEMİ VE BİLEŞENLERİ SİSTEM SİMULASYONU KUYRUK SİSTEMİ VE BİLEŞENLERİ ÖRNEKLER BİR KUYRUK SİSTEMİNİN ÖRNEKLER KUYRUK SİSTEMİ VE SİSTEM SİMULASYONU 5. KUYRUK SİSTEMLERİ Bi kuyuk sistemi; hizmet veen bi veya biden fazla sevise sahipti. Sisteme gelen müşteile tüm sevislei dolu bulusa, sevisin önündeki kuyuğa ya da

Detaylı

İKİNCİ DERECEDEN DENKLEMLER

İKİNCİ DERECEDEN DENKLEMLER İKİNCİ DERECEDEN DENKLEMLER İkinci Dereceden Denklemler a, b ve c reel sayı, a ¹ 0 olmak üzere ax + bx + c = 0 şeklinde yazılan denklemlere ikinci dereceden bir bilinmeyenli denklem denir. Aşağıdaki denklemlerden

Detaylı

( KARMAŞIK SAYI MODÜL VE ÖZELLİKLERİ İKİ KARMAŞIK SAYI ARASI UZAKLIK DÜZLEMDE BELİRTTİĞİ BÖLGELER ) 1) z = z = i.z = z =... 2) z 1.

( KARMAŞIK SAYI MODÜL VE ÖZELLİKLERİ İKİ KARMAŞIK SAYI ARASI UZAKLIK DÜZLEMDE BELİRTTİĞİ BÖLGELER ) 1) z = z = i.z = z =... 2) z 1. BİR KARMAŞIK SAYININ MUTLAK DEĞERI (MODÜLÜ) Karmaşık düzlemde, bir karmaşık sayıya karşılık gelen noktanın (A noktasının), başlangıç noktasına uzaklığına bu sayının mutlak değeri (modülü) denir ve z şeklinde

Detaylı

Bölüm 6: Dairesel Hareket

Bölüm 6: Dairesel Hareket Bölüm 6: Daiesel Haeket Kaama Soulaı 1- Bi cismin süati değişmiyo ise hızındaki değişmeden bahsedilebili mi? - Hızı değişen bi cismin süati değişi mi? 3- Düzgün daiesel haekette cismin hızı değişi mi?

Detaylı

Öğrenci Seçme Sınavı (Öss) / 18 Haziran Matematik II Soruları ve Çözümleri. = 1 olur.

Öğrenci Seçme Sınavı (Öss) / 18 Haziran Matematik II Soruları ve Çözümleri. = 1 olur. Öğrenci Seçme Sınavı (Öss) / 8 Haziran 6 Matematik II Soruları ve Çözümleri x, x. f(x) x ise fonksiyonu için,, x olduğuna göre, a b kaçtır? lim + x f ( x) a ve lim x f ( x) b A) B) C) D) E) Çözüm x x için

Detaylı

Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören

Gelecek için hazırlanan vatan evlâtlarına, hiçbir güçlük karşısında yılmayarak tam bir sabır ve metanetle çalışmalarını ve öğrenim gören Gelecek için hazılanan vatan evlâtlaına, hiçbi güçlük kaşısında yılmayaak tam bi sabı ve metanetle çalışmalaını ve öğenim göen çocuklaımızın ana ve babalaına da yavulaının öğeniminin tamamlanması için

Detaylı

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur.

Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Üç Boyutlu Geometri Nokta (Point,Vertex) Nokta uzayda bir konumu belirtir. Noktanın 0 boyutlu olduğu kabul edilir. Herhangi bir büyüklüğü yoktur. Kartezyen Koordinat Sistemi Uzayda bir noktayı tanımlamak

Detaylı

LYS MATEMATİK DENEME - 2

LYS MATEMATİK DENEME - 2 LYS MATEMATİK DENEME - BU SORULAR FİNAL EĞİTİM KURUMLARI TARAFINDAN SAĞLANMIŞTIR. İZİNSİZ KOPYALANMASI VE ÇOĞALTILMASI YASAKTIR, YAPILDIĞI TAKDİRDE CEZAİ İŞLEM UYGULANACAKTIR. LYS MATEMATİK TESTİ. Bu testte

Detaylı

TG 1 ÖABT İLKÖĞRETİM MATEMATİK

TG 1 ÖABT İLKÖĞRETİM MATEMATİK KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT İLKÖĞRETİM MATEMATİK Bu testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının vea bi

Detaylı

BÖLÜM 2 KORUNUM DENKLEMLERİ

BÖLÜM 2 KORUNUM DENKLEMLERİ BÖLÜM KORUNUM DENKLEMLERİ.-Uzayda sabit konumlu sonlu kontol hacmi.- Debi.3- Haeketi takiben alınmış tüev.4- üeklilik denklemi.5- Momentum denklemi.6- Eneji Denklemi.7- Denklemlein bilançosu Kounum Denklemlei

Detaylı

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere,

Denklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere, Bölüm 33 Denklemler 33.1 İkinci Dereceden Denklemler İkinci dereceden Bir Bilinmeyenli Denklemler a,b,c IR ve a 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli

Detaylı

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR

9. SINIF Geometri TEMEL GEOMETRİK KAVRAMLAR TEMEL GEOMETRİK KAVRAMLAR 9. SINIF Geometri Amaç-1: Nokta, Doğru, Düzlem, Işın ve Uzayı Kavrayabilme. 1. Nokta, doğru, düzlem ve uzay kavramlarım açıklama. 2. Farklı iki noktadan geçen doğru sayışım söyleme

Detaylı

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir? PROL est -. m parabolü eksenini kesmiorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?. f a b c (, ) ) (, ) (, ) (, ) ( 6, ). m parabolü eksenini iki farklı noktada kesmektedir. una göre,

Detaylı

YENİ NESİL ASANSÖRLERİN ENERJİ VERİMLİLİĞİNİN DEĞERLENDİRİLMESİ

YENİ NESİL ASANSÖRLERİN ENERJİ VERİMLİLİĞİNİN DEĞERLENDİRİLMESİ YENİ NESİL ASANSÖRLERİN ENERJİ VERİMLİLİĞİNİN DEĞERLENDİRİLMESİ ÖZET Egün ALKAN Elk.Y.Müh. Buga Otis Asansö Sanayi ve Ticaet A.Ş. Tel:0212 323 44 11 Fax:0212 323 44 66 Balabandee Cad. No:3 34460 İstinye-İstanbul

Detaylı

KAMU PERSONEL SEÇME SINAVI ÖĞRETMENLİK ALAN BİLGİSİ TESTİ ORTAÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ TG ÖABT ORTAÖĞRETİM MATEMATİK Bu testlein he hakkı saklıdı. Hangi amaçla olusa olsun, testlein tamamının veya

Detaylı

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2

Lys x 2 + y 2 = (6k) 2. (x 2k) 2 + y 2 = (2k 5) 2 olduğuna göre x 2 y 2 =? Cevap: 14k 2 1. 1 =? Lys 1 7. x + y = (6k) (x k) + y = (k 5) olduğuna göre x y =?. 6 a.b = ise a + 1 b. b 1 a =? 1k 8. x ve y birbirinden farklı pozitif gerçel sayılar olmak üzere, x y y x. x.y = (x y) ise x y =?.

Detaylı

Teorem kan tlamak zordur da matematiksel

Teorem kan tlamak zordur da matematiksel Teoem kan tlamak zodu da matematiksel bi tan m bulmak kimileyin daha da zodu. Bu yaz da bi aç n n ölçüsünün matematiksel tan m n veece iz. Deece ya da adyan, hangi biim cinsinden yaz l sa yaz ls n, uygulamada

Detaylı

Kominikayon da ve de Sinyal Đşlemede kullanılan Temel Matematiksel Fonksiyonlar:

Kominikayon da ve de Sinyal Đşlemede kullanılan Temel Matematiksel Fonksiyonlar: Kominikayon da ve de Sinyal Đşlemede kllanılan Temel Matematiksel Fonksiyonla: Unit Step fonksiyon, Implse fonksiyon: Unit Step Fonksiyon: Tanim: Unit Step fonksiyon aşağıdaki gibi iki şekilde tanımlanabili

Detaylı

BASIT MAKINALAR. Basit makinalarda yük P, dengeleyici kuvvet F ile gösterilir. Bu durumda ; Kuvvet Kazancı = olur

BASIT MAKINALAR. Basit makinalarda yük P, dengeleyici kuvvet F ile gösterilir. Bu durumda ; Kuvvet Kazancı = olur SIT MKINR Günlük yaşantımızda iş yapmamızı kolaylaştıan alet ve makineledi asit makinelele büyük bi yükü, küçük bi kuvvetle dengelemek ve kaldımak mümkündü asit makinalada yük, dengeleyici kuvvet ile gösteili

Detaylı

Teorem kan tlamak zordur da matematiksel

Teorem kan tlamak zordur da matematiksel Geometi Köflesi Aç Ölçmek Ali Nesin anesin@bilgi.edu.t Teoem kan tlamak zodu da matematiksel bi tan m bulmak kimileyin daha da zodu. Bu yaz da aç ölçüsü nün matematiksel tan m n veece iz. Deece ya da adyan,

Detaylı

BASAMAK TİPİ DEVRE YAPISI İLE ALÇAK GEÇİREN FİLTRE TASARIMI

BASAMAK TİPİ DEVRE YAPISI İLE ALÇAK GEÇİREN FİLTRE TASARIMI BASAMAK TİPİ DEVRE YAPISI İE AÇAK GEÇİREN FİTRE TASARIMI Adnan SAVUN 1 Tugut AAR Aif DOMA 3 1,,3 KOÜ Mühendislik Fakültesi, Elektonik ve abeleşme Müh. Bölümü 41100 Kocaeli 1 e-posta: adnansavun@hotmail.com

Detaylı

Şekil 23.1: Düzlemsel bölgenin alanı

Şekil 23.1: Düzlemsel bölgenin alanı Bölüm Belirli İntegral Şekil.: Düzlemsel bölgenin alanı Düzlemde kare, dikdörtgen, üçgen, çember gibi iyi bilinen geometrik şekillerin alanlarını bulmak için uygun formüller kullanıyoruz. Ama, uygulamada

Detaylı

EMEKLILIK SİSTEMLERİ SINAV SORULARI WEB-ARALIK 2015. Bireysel emeklilik sistemine ilişkin olarak aşağıdakilerden hangisi(leri) yanlıştır?

EMEKLILIK SİSTEMLERİ SINAV SORULARI WEB-ARALIK 2015. Bireysel emeklilik sistemine ilişkin olarak aşağıdakilerden hangisi(leri) yanlıştır? EMEKLILIK SİSTEMLERİ SINAV SORULARI WEB-ARALIK 2015 Sou-1 Bieysel emeklilik sistemine ilişkin olaak aşağıdakileden hangisi(lei) yanlıştı? I. Bieysel emeklilik sistemindeki biikimle Sosyal Güvenlik Sistemine

Detaylı

ANALİTİK GEOMETRİ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI

ANALİTİK GEOMETRİ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI ÖABT ANALİTİK GEOMETRİ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT ANALİTİK GEOMETRİ KONU ANLATIMLI ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı ya da bir kısmı, yazarın izni olmaksızın,

Detaylı

KLASİK MEKANİK-1 BÖLÜM-1 KLASİK MEKANİĞE GİRİŞ 1)UZAY VE ZAMAN:

KLASİK MEKANİK-1 BÖLÜM-1 KLASİK MEKANİĞE GİRİŞ 1)UZAY VE ZAMAN: KLASİK MEKANİK- BÖLÜM- KLASİK MEKANİĞE GİRİŞ )UZAY VE ZAMAN: Uzay ve zaman fiziğin en temel vasayımlaı ile ilgili kavamladandı. Uzay ve zamanın süekli olduğunu vasaymak, ancak uzunluk ve zamanın bi standadının

Detaylı

- 2-1 0 1 2 + 4a a 0 a 4a

- 2-1 0 1 2 + 4a a 0 a 4a İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri

Detaylı

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir.

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. 1 DENKLEMLER: Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. Bir denklemde eşitliği sağlayan(doğrulayan) değerlere; verilen denklemin kökleri veya

Detaylı

çemberi ile O Çemberlerin birbirine göre durumlarını inceleyelim. İlk durumda alalım. olduğu takdirde O2K1

çemberi ile O Çemberlerin birbirine göre durumlarını inceleyelim. İlk durumda alalım. olduğu takdirde O2K1 . merkezli R yarıçaplı Ç çemberi ile merkezli R yarıçaplı ve noktasından geçen Ç çemberi veriliyor. Ç üzerinde, T Ç K T Ç, ve K K T K olacak şekilde bir T noktası alınıyor. Buna göre, uzunluklarından birinin

Detaylı

[ AN ] doğrusu açıortay olduğundan;

[ AN ] doğrusu açıortay olduğundan; . Bir havuzu bir musluk 6 saatte, başka bir musluk 8 saatte dolduruyor. Bu iki musluk kapalı iken, havuzun altında bulunan üçüncü bir musluk, dolu havuzu saatte boşaltabiliyor. Üç musluk birden açılırsa,boş

Detaylı

Çembersel Hareket. Test 1 in Çözümleri

Çembersel Hareket. Test 1 in Çözümleri 5 Çebesel Haeket est in Çözülei.. düşey eksen tabla He üç cisi aynı ipe bağlı olduğundan peiyotlaı eşitti. Açısal hız bağıntısı; ~ di. Bağıntısındaki sabit bi değedi. Ayıca cisilein peiyotlaı eşitti. hâlde

Detaylı

PARABOL. Merkezil parabol. 2px. 2py F 0, 2 F,0. Şekil I. Şekil II. p Odağı F 2. Odağı F 0, Doğrultmanı x. Doğrultmanı y

PARABOL. Merkezil parabol. 2px. 2py F 0, 2 F,0. Şekil I. Şekil II. p Odağı F 2. Odağı F 0, Doğrultmanı x. Doğrultmanı y ARABL Tanım: Düzlemde verilen sabit bir noktası ile bir d doğrusuna uzaklıkları eşit olan noktaların geometrik erine arabol denir. Sabit noktaa arabolün odağı; doğrua ise doğrultmanı denir. Merkezil arabol

Detaylı

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500 984 ÖYS. + + a a + a + a işleminin sonucu nedir? a A) +a B) a C) +a D) a E) +a a b ab. ifadesinin kısaltılmış biçimi a b + a b + ab a + b A) a b a b D) a b B) a b a + b E) ab(a-b) C) a b a + b A) 87 B)

Detaylı

Bölüm 6: Newton un Hareket Yasalarının Uygulamaları:

Bölüm 6: Newton un Hareket Yasalarının Uygulamaları: (Kimya Bölümü A Gubu 17.11.016) Bölüm 6: Newton un Haeket Yasalaının Uygulamalaı: 1. Bazı Sabit Kuetle 1.1. Yeçekimi 1.. Geilme 1.3. Nomal Kuet. Newton un I. Yasasının Uygulamalaı: Dengedeki Paçacıkla

Detaylı

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı

XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı XII. Ulusal Matematik Olimpiyatı Birinci Aşama Sınavı A 1. Köşeleri, yarıçapı 1 olan çemberin üstünde yer alan düzgün bir n-genin çevre uzunluğunun alanına oranı 4 3 ise, n kaçtır? 3 a) 3 b) 4 c) 5 d)

Detaylı

Uzayda iki doğrunun ortak dikme doğrusunun denklemi

Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda iki doğrunun ortak dikme doğrusunun denklemi Uzayda verilen d 1 ve d aykırı doğrularının ikisine birden dik olan doğruya ortak dikme doğrusu denir... olmak üzere bu iki doğru denkleminde değilse

Detaylı

FİZ102 FİZİK-II. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B-Grubu Bahar Yarıyılı Bölüm-III Ankara. A.

FİZ102 FİZİK-II. Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B-Grubu Bahar Yarıyılı Bölüm-III Ankara. A. FİZ12 FİZİK-II Ankaa Ünivesitesi Fen Fakültesi Kimya Bölümü B-Gubu 214-215 Baha Yaıyılı Bölüm-III Ankaa A. Ozansoy Bölüm-III: Gauss Kanunu 1. lektik Akısı 2. Gauss Kanunu 3. Gauss Kanununun Uygulamalaı

Detaylı

PROBLEM SET I KASIM = 50 p ML + M + L = [50 p ML + M + L] Q = Q

PROBLEM SET I KASIM = 50 p ML + M + L = [50 p ML + M + L] Q = Q PROBLEM SET I - 4 11 KASIM 009 Sou 1 (Besanko ve Baeutigam, s. 56 (00)): Aşa¼g daki gibi bi üetim fonksiyonu veilsin: = 50 p ML + M + L a - Bu üetim fonksiyonunun ölçe¼ge göe getiisini bulunuz. He iki

Detaylı

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür.

Matematikte karşılaştığınız güçlükler için endişe etmeyin. Emin olun benim karşılaştıklarım sizinkilerden daha büyüktür. - 1 - ÖĞRENME ALANI CEBİR BÖLÜM KARMAŞIK SAYILAR ALT ÖĞRENME ALANLARI 1) Karmaşık Sayılar Karmaşık Sayıların Kutupsal Biçimi KARMAŞIK SAYILAR Kazanım 1 : Gerçek sayılar kümesini genişletme gereğini örneklerle

Detaylı

ANALİTİK GEOMETRİ ÇÖZÜMLÜ SORU BANKASI

ANALİTİK GEOMETRİ ÇÖZÜMLÜ SORU BANKASI ÖABT ANALİTİK GEOMETRİ ÇÖZÜMLÜ SORU BANKASI Yasin ŞAHİN ÖABT ANALİTİK GEOMETRİ ÇÖZÜMLÜ SORU BANKASI Her hakkı saklıdır. Bu kitabın tamamı ya da bir kısmı, yazarın izni olmaksızın, elektronik, mekanik,

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edition VECTOR MECHANICS OR ENGINEERS: STATICS edinand P. Bee E. Russell Johnston, J. Des Notu: Hai ACAR İstanbul Teknik Üniveistesi Tel: 285 31 46 / 116 E-mail: acah@itu.edu.t Web: http://atlas.cc.itu.edu.t/~acah

Detaylı

1. BÖLÜM 1. BÖLÜM BASİ BAS T İ MAKİ T MAK N İ ELER NELER

1. BÖLÜM 1. BÖLÜM BASİ BAS T İ MAKİ T MAK N İ ELER NELER BÖÜ BASİ AİNEER AIŞIRAAR ÇÖZÜER BASİ AİNEER yatay düzlem 0N 0N 0N 0N fiekil-i fiekil-ii yatay düzlem 06 5 06 7 08 He iki şe kil de de des te ğe gö e tok alı nı sa a) kuvvetinin büyüklüğü 04 + 08 80 + 60

Detaylı

SİSTEM SİMULASYONU KUYRUK SİSTEMİ VE BİLEŞENLERİ KUYRUK SİSTEMİ VE BİLEŞENLERİ

SİSTEM SİMULASYONU KUYRUK SİSTEMİ VE BİLEŞENLERİ KUYRUK SİSTEMİ VE BİLEŞENLERİ SİSTEM SİMULASYONU KUYRUK SİSTEMLERİ KUYRUK SİSTEMİ VE BİLEŞENLERİ Bi kuyuk sistemi; hizmet veen bi veya biden fazla sevise sahipti. Sisteme gelen müşteile tüm sevislei dolu bulusa, sevisin önündeki kuyuğa

Detaylı

UZAYDA VEKTÖRLER ve DOĞRU DÜZLEM

UZAYDA VEKTÖRLER ve DOĞRU DÜZLEM UD VEKTÖRLER ve DĞRU DÜLEM. ir küpün ayrıtlarını taşıyan doğrular kaç farklı doğrultu oluşturur? ) ) ) D) 7 E) 8. ir düzgün altıgenin en uzun köşegeni ile aynı doğrultuda kaç farklı kenar vardır?. şağıdaki

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

ÇEMBERÝN ANALÝTÝÐÝ - I

ÇEMBERÝN ANALÝTÝÐÝ - I YGS-LYS GEOMETRÝ Konu Anlatýmý ÇEMBERÝN ANALÝTÝÐÝ - I 1. Çember Denklemi: Analitik düzlemde merkezi M(a, b) ve yarýçapý r birim olan çemberin denklemi, (x - a) 2 + (y - b) 2 = r 2 (x - a) 2 + y 2 = r 2

Detaylı

8. f( x) 9. Almanca ve İngilizce dillerinden en az birini bilenlerin

8. f( x) 9. Almanca ve İngilizce dillerinden en az birini bilenlerin . MAEMAİK çapıldığıda, çapım olu? 6 ifadesi aşağıdakilede hagisi ile ) 6 + ifadesie eşit ) D) 6 + 8. f( ) ile taımlı f foksiouu e geiş taım kümesi aşağıdaki sg( ) lede hagisidi? 6,@ ) 6,@ ) ^, h, ^, +

Detaylı

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY

TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY TRIGONOMETRI AÇI, YÖNLÜ AÇI, YÖNLÜ YAY A. AÇI Başlangıç noktaları aynı olan iki ışının birleşim kümesine açı denir. Bu ışınlara açının kenarları, başlangıç noktasına ise açının köşesi denir. B. YÖNLÜ AÇI

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

Chapter 1 İçindekiler

Chapter 1 İçindekiler Chapter 1 İçindekiler Kendinizi Test Edin iii 10 Birinci Mertebeden Diferansiel Denklemler 565 10.1 Arılabilir Denklemler 566 10. Lineer Denklemler 571 10.3 Matematiksel Modeller 576 10.4 Çözümü Olmaan

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı

Örnek 1. Çözüm: Örnek 2. Çözüm: 60 30000 300 60 = = = 540

Örnek 1. Çözüm: Örnek 2. Çözüm: 60 30000 300 60 = = = 540 Önek 1 1.8 kn yük altında 175 dev/dak dönen bi mil yatağında çalışacak bilyeli ulman için, 5 saat ömü ve %9 güvenililik istemekteyiz. Öneğin SKF kataloğundan seçmemiz geeken inamik yük sayısı (C 1 ) nedi?

Detaylı

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = mm T = 70 C = 2. SAE 10 için

SAE 10, 20, 30 ve 40 d = 200 mm l = 100 mm W = 32 kn N = 900 d/dk c = mm T = 70 C = 2. SAE 10 için ÖRNEK mm çapında, mm uzunluğundaki bi kaymalı yatakta, muylu 9 d/dk hızla dönmekte ve kn bi adyal yükle zolanmaktadı. Radyal boşluğu. mm alaak SAE,, ve yağlaı için güç kayıplaını hesaplayınız. Çalışma

Detaylı

BÖLÜM 5 İDEAL AKIŞKANLARDA MOMENTUMUN KORUNUMU

BÖLÜM 5 İDEAL AKIŞKANLARDA MOMENTUMUN KORUNUMU BÖLÜM 5 İDEAL AKIŞKANLARDA MOMENTUMUN KORUNUMU Linee İmpuls-Momentum Denklemi Haeket halinde bulunan bi cismin hehangi bi andaki doğusal hızı, kütlesi m olsun. Eğe dt zaman aalığında cismin hızı değişiyosa,

Detaylı

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x Çalışma Soruları. Aşağıdaki denklemleri çözünüz: 7x = 4x + b) x 7x = x 4 c) x 4 x + = 0. Aşağıdaki eşitsizliklerin çözüm kümelerini belirleyiniz ve aralıklar cinsinden ifade ediniz: 4x > 9 b) x 4 < - c)

Detaylı

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ

LYS 1 / GEOMETRİ DENEME ÇÖZÜMLERİ YS / GMTİ NM ÇÖZÜMİ eneme -.. 70 70 b desek olu. b Ç ` j cm olduğundn + b b - dı. de 6 @ ot tbnı çizilise benzelik ydımıyl biim bulunu. 6@ ' 6@ olduğundn m^\ h m ^\ h 70c di. ikiz ken üçgen çıktığındn

Detaylı

AST413 Gezegen Sistemleri ve Oluşumu. Ders 1 : Tarihçe ve Temel Yasalar

AST413 Gezegen Sistemleri ve Oluşumu. Ders 1 : Tarihçe ve Temel Yasalar AST413 Gezegen Sistemlei ve Oluşumu Des 1 : Taihçe ve Temel Yasala Kopenik (ya da Sıadanlık) İlkesi: "Güneş sıadan bi yıldız ve Dünya da sıadan bi gezegen." Aslında çok uzun zamandı Güneş'ten başka yıldızlaın

Detaylı

KUTUPSAL KOORDİNATLAR

KUTUPSAL KOORDİNATLAR KUTUPSAL KOORDİNATLAR Geometride, bir noktanın konumunu belirtmek için değişik yöntemler uygulanır. Örnek olarak çok kullanılan Kartezyen (Dik ) Koordinat sistemini anımsatarak çalışmamıza başlayalım.

Detaylı

LYS MATEMATİK DENEME - 1

LYS MATEMATİK DENEME - 1 LYS MATEMATİK DENEME - BU SORULAR FİNAL EĞİTİM KURUMLARI TARAFINDAN SAĞLANMIŞTIR. İZİNSİZ KOPYALANMASI VE ÇOĞALTILMASI YASAKTIR, YAPILDIĞI TAKDİRDE CEZAİ İŞLEM UYGULANACAKTIR. LYS MATEMATİK TESTİ. Bu testte

Detaylı

Otomotiv Mühendisliği Bölümü Dinamik Ders Notu

Otomotiv Mühendisliği Bölümü Dinamik Ders Notu 16 Otomotiv Mühendisliği Bölümü Dinamik Des Notu Pof. D. Halit KARABULUT 1.1.16 GİRİŞ Dinamik cisimlein kuvvet altında davanışlaını inceleyen bi bilim dalıdı. Kinematik ve kinetik konulaını kapsamaktadı.

Detaylı

Uzayda Simetri. A(x, y, z) noktasının O(a, b, c) noktasına göre simetriği B(x, y, z ) ise O noktası [AB] nın orta noktasıdır.

Uzayda Simetri. A(x, y, z) noktasının O(a, b, c) noktasına göre simetriği B(x, y, z ) ise O noktası [AB] nın orta noktasıdır. Uzayda Simetri Hazırlayan Halit Çelik Matematik Öğretmeni Noktaya Göre Simetri: A(x, y, z) noktasının O(a, b, c) noktasına göre simetriği B(x, y, z ) ise O noktası [AB] nın orta noktasıdır. Buna göre şeklinde

Detaylı