Örnek...17 : 1) EKSENLERİ KESTİĞİ NOKTALAR BİLİNEN DOĞRUNUN DENKLEMİ

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Örnek...17 : 1) EKSENLERİ KESTİĞİ NOKTALAR BİLİNEN DOĞRUNUN DENKLEMİ"

Transkript

1

2

3

4 C) ÖZEL DOĞRU DENKLEMLERİ Örnek...17 : A ( 3, 6 ) n ok t a s ı n a n v e o r i j i n e n g e ç e n o ğ r u n u n e n k l em i n e i r? 1) EKSENLERİ KESTİĞİ NOKTALAR BİLİNEN DOĞRUNUN DENKLEMİ eksenini A(a,0) ve eksenini B(0,b) noktalar ın a k e s e n o ğ r u n u n e nk l em i k ıs a c a + =1 a b o l a r a k a z ıl a b i l i r. b a Örnek...20 : D o ğ r u l a r ın e nk l em l e r i n i b u l u n u z? NOT 1) a + b + c = 0 e n k l em i n i n e ğ im i n i b u l m a k i ç i n a l n ı z ik e n i n k a t s a ı s ı n ı b u l u r u z. D ü ze n l e m e s o n u c u n a a + b + c = 0 o ğ a r u s u n u n e ğ im i m= o l a r a k e l e e i l i r. b 3-4 Örnek...18 : = 0 o ğ r u s u n u n e ğ im i m 1 v e = 0 o ğ r u s u n u n e ğ im i m 2 i s e m 1 + m 2 t o p l am ı k aç t ı r? 2) 3 2 Örnek...21 : + =1 o ğ r u n u n e ğ im i k aç t ır? 3 4 Örnek...19 : D ik k o o r i n a t ü zl em i n e = = = = 0 enklemleri ile verilen oğrularan hangilerinin O ek s e n i i l e a p t ı ğ ı p o zi t i f ö n l ü a ç ı a r a ç ı ı r? Örnek...22 : =1 o ğ r u n u n e k s e n l e r l e o l u ş t u r u ğ u 5 8 b ö l g e n i n a l a n ı k aç b i r i m k ar e i r? 4/8

5 2 ) ORİJİNDEN GEÇEN DOĞRULAR 4) AÇIORTAY DENKLEMLERİ İ) 1. AÇIORTAY DOĞRUSU Orijinen geçen oğr u l a r ı n g e n e l e nk l e m i = m. t i r. = =m. Örnek...23 : İİ) Ş ek i l ek i o ğ r u n u n e nk l e m i n i a z ı n ı z? =- A(2,-3) i ) e k s e n i n e ik ( eksenine paralel) o ğ r u l a r ı n e nk lemleri =k biçim in e i r. =k k k =k 3 ) EKSENLERE DİK (PARALEL) DOĞRULAR. i i ) e k s e n i n e ik ( eksenine paralel) oğrular e n k l em l e r i = k b i ç i m i n e i r. 2. AÇIORTAY DOĞRUSU Örnek...26 : D o ğ r u l a r ın e nk l em l e r i n i a z ı n ı z. =f() o Örnek...27 : O e k s e n i n i 3 ' t e O ek s e n i n i 5 ' t e k es e n o ğ r u n u n e nk l em i n i b u l u n u z? Örnek...24 : A ( a+ 2, b ) B ( 2 a 3, c ) n o k t a l a r ı n a n g e ç e n o ğ r u e k e n i n e p a r a l e l s e a k aç t ı r? Örnek...28 : Örnek...25 : K ( b 2, b + 1 ) v e L ( 4 + b, 2 b + 5 ) n o k t a l a r ı n a n g e ç e n o ğ r u e k e n i n e p a r a l e l s e KL k aç b i r im i r? t ℝ o l s u n. A ( t+ 3, 3 t 2 ) n ok t a l a r ın a n g e ç e n o ğ r u n u n e nk l e m i n e i r? 5/8

6 DOĞRUNUN GRAFİĞİNİN ÇİZİMİ Örnek...32 : = 0 o ğ r u s u n u n e k s e n l e r l e b ö l ü n e n p a r ç a s ın ın u zu n l u ğ u k aç b i r i m i r? B i r o ğ r u f a rk l ı ik i n ok t a l a b e l i r l e n i ğ i n e n g r af ik ç i zi l i r k e n o ğ r u a a i t ik i n o k t a b u l u n u r v e b u n o k t a l a r a n g e ç e c ek ş e k i l e o ğ r u ç i zi l i r. G e n e l e = 0 i ç i n e ğ e r i n i v e = 0 i ç i n e ğ e r i n i b u l a r ak e k s e n l e r i k e s t i ğ i n ok t a l a r l a g r a f i k l e r i ç i ze r i z. Örnek...29 : = 0 o ğ r u s u n u n g r af i ğ i n i ç i zi n i z? Örnek...30 : = 0 o ğ r u s u n u n g r af i ğ i n i ç i zi n i z? Örnek...31 : = 0 o ğ r u s u n u n ek s e n l e r l e o l u ş t u r uğu bölgenin alanı kaç br2 ir? Örnek...33 : B i r k öş e s i = 0 o ğ r u s u i ğ e r k en a r l a r ı v e e k e n l e r i ü ze r i n e o l a n k ar e n i n a l a n ı k aç b r 2 i r? Örnek...34 : 3+ + n = 0 o ğ r u s u n u n b i r i n c i b ö l g e e k al a n p a r ç a s ı 8 3 b i r i m i s e o r i j i n i n b u o ğ r u a u zak l ığ ı k a ç b i r im i r? 6/8

7 DEĞERLENDİRME - 1 1) 5) K(3m,m+2n) ve L(m+5,2n) noktasınan g e ç e n o ğ r u ek s e n i i l e p o zi t if ö n e 4 5 o l i k a ç ı a p ı o r s a m k a ç t ı r? K(1,2) noktasınan geçen ve eğimi 5 olan oğrunun başka bir noktası B(+2, 4 3) ise kaçtır? =f() 6-3 2) Ş ek i l ek i o ğ r u n u n e ğ im i 0, 5 i s e A ( O K L ) k a ç b i r im kareir? L(3,0) 3) Şekileki oğrunun enklemi =0 ise orijinin bu oğru üzerineki bir noktaa en kısa uzaklığı kaç birimir? P K O 4) Dik koorinat üzlemine A(1,1), B( 1,7) ve O ekseni üzerine bir C noktası verilior. AC + BC toplamı en az kaç birimir? 7) Eğimi 7 ve A(1,3) noktasınan geçen oğrunun enklemi neir? 8) (k+3). (2k 1). 24 =0 oğrusu eksenine paralel ise k kaçtır? Grafik =f() oğrusal fonksionuna aittir. Buna göre f(4) kaçtır? =f() 6-3 K 6) 7/8

8 DEĞERLENDİRME 2 2) 3) t ℝ olsun. A(3t, t 4) noktalarınan geçen oğrunun eğimi kaçtır? 5) =1 ve m=4+2 oğruları ekseni üzerine 3 6 kesişiorlarsa bu oğruların eğimleri toplamı kaçtır? 6) Şekile OPL üçgenin alanı 9 birim kare ise OL oğrusunun enklemini bulunuz? p bir reel eğişken olmak üzere, ik koorinat üzlemine, parametrik enklemi =5p 3, =7 p olan oğrunun enklemi neir? =4, 4= ve =2 oğruları arasına kalan bölgenin alanı kaç br2 ir? 6 P L K O 7) 8) 4) t ℝ olsun. A(t+3,3t 2) noktalarınan geçen oğrunun enklemi neir? 1) P(0,6) ve K(4,0) noktaları verilior. Şekile RP oğrusu ve KP oğrusu O ekseni üzerine ik kesişior ise RP oğrunun enklemini bulunuz 4 6 P R K O 4 16 ve B(6,24) noktalarınan geçen oğ3 runun koorinat üzleminin ikinci bölümüne eksenlerle oluşturuğu bölgenin alanı kaç birim kareir? ( A 1, ) 8/8

1. DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER

1. DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER 1. DERECEDEN İKİ BİLİNMEYENLİ DENKLEMLER Örnek...3 : 3 x+ y= 5 2x 3 =2 y s i s t e m i n i s a ğ l a ya n y d e ğ e r i k aç t ır? a, b, c R, a 0, b 0, x v e y d e ğ i şk e n o l m a k ü ze r e, a x+ b

Detaylı

Örnek...1 : mx+3y+12=0 ve 2x 5y+3=0 doğruları para - lelse m kaçtır?

Örnek...1 : mx+3y+12=0 ve 2x 5y+3=0 doğruları para - lelse m kaçtır? İKİ DOĞRUNUN BİRBİRİNE GÖRE DURUMU DURUM 1 PARALEL DOĞRULAR ve doğruları paralel doğrular ise eğimleri eşittir. Yani / / m 1 =m 2 Ayr ıca : a 1 x+b 1 y+c 1 =0 =0} / / a 1 a 2 = b 1 c 1 c 2 Örnek...1 :

Detaylı

2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir?

2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir? MC www.matematikclub.com, 006 Cebir Notları Gökhan DEMĐR, gdemir3@ahoo.com.tr. Dereceden Denklem ve Eşitsizlikler- TEST I A) 1 B) C) 3 D) 4 E) 5 1. 1/ = 0 denkleminin köklerinin toplamı aşağıdakilerden

Detaylı

TÜREVİN GEOMETRİK YORUMU

TÜREVİN GEOMETRİK YORUMU TÜREVİN GEOMETRİK YORUMU f :R R, =f ( fonksionuna düzlemde A karşılık gelen f( +h eğri anda ki =f( P gibi olsun. f( Eğrinin P(,f( noktasındaki teğetlerini +h araştıralım. Bunun için P(,f( noktasının sağıda

Detaylı

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir? PROL est -. m parabolü eksenini kesmiorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?. f a b c (, ) ) (, ) (, ) (, ) ( 6, ). m parabolü eksenini iki farklı noktada kesmektedir. una göre,

Detaylı

Örnek...1 : f (x)=2x 2 5x+6 parabolü K(2,p) noktasından geçiyorsa p kaçtır? Örnek...2 : Aşağıda çeşitli parabol grafikleri verilmiştir incele yi niz.

Örnek...1 : f (x)=2x 2 5x+6 parabolü K(2,p) noktasından geçiyorsa p kaçtır? Örnek...2 : Aşağıda çeşitli parabol grafikleri verilmiştir incele yi niz. a, b,c R,a 0 olmak koşulula f ()=a 2 +b+c fonksionuna ikinci dereceden bir değişkenli fonksion ve bu fonksionun belirttiği eğrie de parabol denir. Uarı ir parabolün grafiği başkatsaı olan a saısına bağlı

Detaylı

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI SORU 1. Köşeleri (1,4) (3,0) (7,2) noktaları olan ABC üçgeninin bir ikizkenar dik üçgen (İpucu:, ve vektörlerinden yararlanın) SORU 2. Bir ABC üçgeninin

Detaylı

İ İ Öğ ş İ İİ ğ ş ş Öğ ş İş Öğ İ ş İ İşİ ğ ç ğ ş ğ

İ İ Öğ ş İ İİ ğ ş ş Öğ ş İş Öğ İ ş İ İşİ ğ ç ğ ş ğ Ö Ğ ş ğ Ğ Ğ ğ İ İ Öğ ş İ İİ ğ ş ş Öğ ş İş Öğ İ ş İ İşİ ğ ç ğ ş ğ İ İ İ İ Ğ İ İ İş İ ş İ İ İ İş İ Öğ ş İ ş İ İ ş ş ç ş ş ş ş ğ ş ğ ş ş Öğ ş ş ğ ğ ş ğ ş ş ğ ğ ş ç ş Öğ ş ş ğ Öğ ş ç ş Öğ ş ş ş ğ ç ş ç ş ş

Detaylı

ü ç ü ü ü ö Ö ç

ü ç ü ü ü ö Ö ç İ Ç Ü ö üğü ö üğü Ü ü öğ ü ç Ç ü ü ğ ö ö ç ç ğ Ğ İ İ ç ç ç Ü ç ö üğü ö ü ü ç ç ğ ü ğ ç ğ ü ü ü Ç ü ğ Ç Ş ü ü ü ü ü Ç ö Ş ö Ö ğ ö ü Ç ğ ç Ü Ç ğ Ç ğ İ Ü Ü İ ü ç ü ü ü ö Ö ç ğ ü ü ğ ğ ö ğ ö ü ğ ü ü ü ü ü

Detaylı

ÇÖZÜM [KB] çizilirse, SORU. Boyutlar 9 cm ve 12 cm olan dikdörtgenin bir düzlem üzerindeki izdüflümü bir do ru parças ise, [KC] [CB] ve

ÇÖZÜM [KB] çizilirse, SORU. Boyutlar 9 cm ve 12 cm olan dikdörtgenin bir düzlem üzerindeki izdüflümü bir do ru parças ise, [KC] [CB] ve GMTR erginin bu sa s na Uza Geometri ve o runun nalitik ncelemesi konular na çözümlü sorular er almakta r. u konua, ÖSS e ç kan sorular n çözümü için gerekli temel bilgileri ve pratik ollar, sorular m

Detaylı

ç ç ç ç ç Ç Ç Ü ç

ç ç ç ç ç Ç Ç Ü ç Ç ç Ğ ««ç Ğ Ç ç Ğ ç Ü ç Ç Ğ Ğ Ç Ç ç Ü ç ç ç ç ç ç ç Ç Ç Ü ç ç Ç Ü Ç Ü Ğ ç Ç Ç Ğ Ç Ç Ğ ç Ç Ğ Ç ç Ç Ü ç Ç Ü Ç Ü ç ç Ç Ü ç ç Ü Ü ç ç ç ç ç ç ç ç ç Ç Ü ç ç ç ç ç ç ç ç Ç ç ç ç ç ç ç «ç ç ç ç Ü ç ç ç ç ç ç

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

DENKLEM KURMA PROBLEMLERİ

DENKLEM KURMA PROBLEMLERİ DENKLEM KURM İ SYI KESİR İ Örnek... : H a n g i s a yın ın d ö r t t e b i r i n i n 4 e k s i ğ i n i n 2 k a t ı 5 6 d ır? i r p r o b l e m i ç ö ze r k e n, s o r u d a ye r a l a n v e r i l e r i,

Detaylı

ğ Ü ö ç ö Ü ç ö ğ ğ Ü ç ö Ü ç ö ç ğ ö ğ ğ ğ Ş ç ç Ş «ç ç ç ç ç Ş ç ç Ö Ö ç

ğ Ü ö ç ö Ü ç ö ğ ğ Ü ç ö Ü ç ö ç ğ ö ğ ğ ğ Ş ç ç Ş «ç ç ç ç ç Ş ç ç Ö Ö ç ç ğ ç ç ç ç ğ ç Ç ö ğ Ç ğ ç ç ç ç ğ ç ç ğ ğ Ü ö ç ö Ü ç ö ğ ğ Ü ç ö Ü ç ö ç ğ ö ğ ğ ğ Ş ç ç Ş «ç ç ç ç ç Ş ç ç Ö Ö ç Ü ğ ğ ö ğ ğ ğ ğ Ü ğ ö ç ğ Ü ç ğ ö ç ğ ö ö ğ ğ ğ ğ ğ ğ ğ ö ğ Ü Ü Ü Ö Ü Ü Ş Ş Ğ ğ ç ğ

Detaylı

Ü Ü öğ ç Ü ö ö ö ç ö ö ö Ç ö Ö ö ç İ İ ö ç ö ö Ö ç ç İ ç ç ç ç ö ç ç ç ç ç ç ö ö ç Ç ö ç ç Ö İ ç ç Ö ç ç

Ü Ü öğ ç Ü ö ö ö ç ö ö ö Ç ö Ö ö ç İ İ ö ç ö ö Ö ç ç İ ç ç ç ç ö ç ç ç ç ç ç ö ö ç Ç ö ç ç Ö İ ç ç Ö ç ç öğ Ğ Ö ö İ Ğ İ Ç Ğ Ü Ü İ İ Ü ç ç İ İ ç Ü Ü öğ ç Ü ö ö ö ç ö ö ö Ç ö Ö ö ç İ İ ö ç ö ö Ö ç ç İ ç ç ç ç ö ç ç ç ç ç ç ö ö ç Ç ö ç ç Ö İ ç ç Ö ç ç İ ö Ç ç ç İ İ ö ö ç ç ç ç ö Ö Ö ö ö ö ö İ ö ö ç ç ö ö ö ö

Detaylı

öğ ç Ü ö ö ö ç ö ö ö ö ç ö Ö ö ç Ü ö ç ö ö Ö ç ç ç ö ç ç ö ç ç ç ç ç ç ö ö ç ç ö ç ç Ö ç ç Ö ç ç

öğ ç Ü ö ö ö ç ö ö ö ö ç ö Ö ö ç Ü ö ç ö ö Ö ç ç ç ö ç ç ö ç ç ç ç ç ç ö ö ç ç ö ç ç Ö ç ç Ö ç ç öğ Ğ Ö ö Ğ ç Ç Ğ ö Ğ Ğ ö öğ ç Ü ö ö ö ç ö ö ö ö ç ö Ö ö ç Ü ö ç ö ö Ö ç ç ç ö ç ç ö ç ç ç ç ç ç ö ö ç ç ö ç ç Ö ç ç Ö ç ç ö ç ç ç ö ö ç ç ç ç ö Ö Ö ö ö ö ö ç ç ö ö ö ö Ö ö ö ö Üç ç ç ç Ö ç ö Ö ö ö ç ç

Detaylı

LYS MATEMATÝK II - 10

LYS MATEMATÝK II - 10 ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS UYGULM FÖYÜ (MF-TM) DERSHNELERÝ LYS MTEMTÝK II - 0 PRL - I Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. dý Soadý :... u kitapçýðýn her hakký

Detaylı

ö ğ ğ ğ ö ğ ğ ğ ğ ğ ğ ğ ğ İ ğ ö ğ ğ ğ İ ğ ğ ğ ğ ö ö ö ğ ğ ğ ö ö

ö ğ ğ ğ ö ğ ğ ğ ğ ğ ğ ğ ğ İ ğ ö ğ ğ ğ İ ğ ğ ğ ğ ö ö ö ğ ğ ğ ö ö İ ğ ö ö İ ğ ğ ğ ö İ ö İ İ ö İ İ ğ İ İ ğ ğ ğ ö ğ ğ ğ ö ğ ğ ğ ğ ğ ğ ğ ğ İ ğ ö ğ ğ ğ İ ğ ğ ğ ğ ö ö ö ğ ğ ğ ö ö İ ö ğ İ ö ö ğ ö ğ ğ ğ İ İğ ö ğ ğ ğ ğ ğ ö ğ ğ ğ ğ ğ ö ğ ö ö ğ ö ğ ğ ğ ğ ğ Ş ö ö Ş ğ ğ ğ ğ ğ ğ

Detaylı

ı ı ı ıı ıı ıı ı ı ı ğ ş ı

ı ı ı ıı ıı ıı ı ı ı ğ ş ı Ü Ğ Ş ö İ Ş ç ç Ğ ç ö Ü Ü Ş ö Ö ç ç ğ ö ö ğ ö İ Ş ğ ğ ç ö Ü ğ Ç Ö İ ğ ğ ğ Ş ö ç ç ö ö ç ö Ü İ İ ö ö ç «ğ Ü Ş ğ ö ğ ç ğ ç ö ç ç ç ç ö ö ö ç ç ç ö ç ö İ ö Ü ö ğ Ü Ş Ü Ş ö ç ç İŞ ğ ğ ğ ö İŞ ö İ Ü İ İ İ İ

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır?

25. f: R { 4} R 28. ( ) 3 2 ( ) 26. a ve b reel sayılar olmak üzere, 27. ( ) eğrisinin dönüm noktasının ordinatı 10 olduğuna göre, m kaçtır? . f: R { 4} R, > ise ( ) 4 f =, ise 6 8. ( ) f = 6 + m + 4 eğrisinin dönüm noktasının ordinatı olduğuna göre, m kaçtır? ) 7 ) 8 ) 9 ) E) fonksiyonu aşağıdaki değerlerinin hangisinde süreksizdir? ) ) )

Detaylı

İ ğ ğ çö Ç ç ö ğ ğ çö ç ö ö Ö ğ ö ğ ç ğ ç Ü İ İ Üİ ö ğ ö ö ğ öğ ğ ğ İ ğ ç ğ ö İ ğ öğ öğ öğ öğ ç ğ ğ Ü

İ ğ ğ çö Ç ç ö ğ ğ çö ç ö ö Ö ğ ö ğ ç ğ ç Ü İ İ Üİ ö ğ ö ö ğ öğ ğ ğ İ ğ ç ğ ö İ ğ öğ öğ öğ öğ ç ğ ğ Ü ö ç ö ç ç ç ç ö ğ ö ç ç İ ğ İ ğ ö İ ğ ö İ İ ğ ğ çö Ç ç ö ğ ğ çö ç ö ö Ö ğ ö ğ ç ğ ç Ü İ İ Üİ ö ğ ö ö ğ öğ ğ ğ İ ğ ç ğ ö İ ğ öğ öğ öğ öğ ç ğ ğ Ü ğ Ö ğ öğ ğ ğ ğ İ ğ ö ö Öğ ö ğ öğ ö Ö öğ ğ ğ ğ öğ ö İ ç ç

Detaylı

- 2-1 0 1 2 + 4a a 0 a 4a

- 2-1 0 1 2 + 4a a 0 a 4a İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri

Detaylı

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674

Basým Yeri: Ceren Matbaacılık AŞ. Basým Tarihi: Haziran / ISBN Numarası: Sertifika No: 33674 kapak safası İÇİNDEKİLER. ÜNİTE FNKSİYNLARDA İŞLEMLER VE UYGULAMALARI Fonksionların Simetrileri ve Cebirsel Özellikleri... 4 Tek ve Çift Fonksionlar... 4 Fonksionlarda İşlemler... 6 Konu Testleri -...

Detaylı

İ Ç Ü ş ö üğü ü İ ç Ş ş ö ş Ö Ş Ö ğ ş ö ü ç ü Ş ğ Ç Ü ç ğ ş Ç ğ Ü

İ Ç Ü ş ö üğü ü İ ç Ş ş ö ş Ö Ş Ö ğ ş ö ü ç ü Ş ğ Ç Ü ç ğ ş Ç ğ Ü İ Ç Ü ş ö üğü ş ş ö üğü ğ ü ü öğ ü ü ü ü ü Ü ş ö ş ç ç ş ş ğ Ğ Ş ç ş ğ ğ ğ ü ğ ç Ü ç ş ö üğü ö ü ü ç ç ş ş ğ ü ş ğ ş ç ş ğ ş ü ü ç ü ş ü ğ ç ş ü ü İ Ç Ü ş ö üğü ü İ ç Ş ş ö ş Ö Ş Ö ğ ş ö ü ç ü Ş ğ Ç Ü

Detaylı

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x. 4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS NLTIM FÖYÜ DERSHNELERÝ Konu Ders dý ölüm Sýnav DF No. MTEMTÝK - II PRL - I MF TM LYS 09 Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. dý Soadý

Detaylı

BAĞINTI - FONKSİYON Test -1

BAĞINTI - FONKSİYON Test -1 BAĞINTI - FONKSİYON Test -. A,,,4,5 B,, olduğuna göre, AB kümesinin eleman saısı A) 8 B) C) D) 4 E) 5 5. A ve B herhangi iki küme AB,a,,a,,a,,b,,b,,b olduğuna göre, s(a) + s(b) toplamı A) B) 4 C) 5 D)

Detaylı

DOĞRUNUN ANALİTİK İNCELEMESİ

DOĞRUNUN ANALİTİK İNCELEMESİ Koordinatlar DOĞRUNUN ANALİTİK İNCELEMESİ Bilindiği gibi, düzlemdeki her bir noktaya bir (a,b) sıralı ikilisi, her bir (a,b) sıralı ikilisine bir nokta karşılık gelir. Eğer bir A noktasına karşılık gelen

Detaylı

DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ

DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ Örnek : Taksi ile yapılan yolculukların ücreti taksimetre ile belirlenir Bir taksimetrenin açılış ücreti 2 TL, sonraki her kilometre başına 1 TL ücret ödendiğine

Detaylı

7. f(x) = 2sinx cos2x fonksiyonunun. π x 3 2 A) y = 9. f(x) = 1 2 x2 3x + 4 eğrisinin hangi noktadaki teğetinin D) ( 10 3, 4 9 ) E) ( 2 3, 56

7. f(x) = 2sinx cos2x fonksiyonunun. π x 3 2 A) y = 9. f(x) = 1 2 x2 3x + 4 eğrisinin hangi noktadaki teğetinin D) ( 10 3, 4 9 ) E) ( 2 3, 56 , 006 MC Cebir Notları Gökhan DEMĐR, gdemir@ahoo.com.tr Türev TEST I 7. f() = sin cos fonksionunun. f()= sin( + )cos( ) için f'() nin eşiti nedir? A) B) C) 0 D) E) için erel minimum değeri nedir? A) B)

Detaylı

Ü ğ ü ü İç ç ç ü ü ü üş ç ş ş ğ ü ü ş Ü ü ş ç Ç ğ Ü ç Ü İç ü Öğ ü İ ğ ş ç ç ü ü ü ü ğ Öğ ö ğ ğ Ş ÜÇ ğ ü ü ü ü

Ü ğ ü ü İç ç ç ü ü ü üş ç ş ş ğ ü ü ş Ü ü ş ç Ç ğ Ü ç Ü İç ü Öğ ü İ ğ ş ç ç ü ü ü ü ğ Öğ ö ğ ğ Ş ÜÇ ğ ü ü ü ü üş Ğ ü ü Ğ İ İ ü ç ü İ İ Ş ç Ü ş Ğ İ ş İ Ü ğ ü ü İç ç ç ü ü ü üş ç ş ş ğ ü ü ş Ü ü ş ç Ç ğ Ü ç Ü İç ü Öğ ü İ ğ ş ç ç ü ü ü ü ğ Öğ ö ğ ğ Ş ÜÇ ğ ü ü ü ü ğ ö ü ö ğ ğ ö ü ç ç ü ç ö İ ğ ü ğ ş ş ğ Ş ç ş ö ü

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI

Ortak Akıl MATEMATİK DENEME SINAVI Ortak Akıl YGS MATEMATİK DENEME SINAVI 6 20502- Ortak Akıl Aem ÇİL Ali Can GÜLLÜ Ayhan YANAĞLIBAŞ Barbaros GÜR Barış DEMİR Celal İŞBİLİR Deniz KARADAĞ Engin POLAT Erhan ERDOĞAN Ersin KESEN Fatih TÜRKMEN

Detaylı

EĞİM, BİR DOĞRUNUN DENKLEMİ VE EĞİMİ ARASINDAKİ İLİŞKİ

EĞİM, BİR DOĞRUNUN DENKLEMİ VE EĞİMİ ARASINDAKİ İLİŞKİ Özgür EKER EĞİM, BİR DOĞRUNUN DENKLEMİ VE EĞİMİ ARASINDAKİ İLİŞKİ Eğim: ETKİNLİK : Bir bisiklet arışındaki iki farklı parkur aşağıdaki gibidir. I. parkurda KL 00 metre ve II. parkurda AB 00 metre olduğuna

Detaylı

YARDIRMALI MATEMATİK TÜREV FASİKÜLÜ

YARDIRMALI MATEMATİK TÜREV FASİKÜLÜ YRIRMLI MTEMTİK TÜREV FSİKÜLÜ Maksimum-Minimum Problemleri MESUT ERİYES MKSİMUM - MİNİMUM PROLEMLERİ Maksimum ve minimum problemlerini çözmek için şu kurallar ugulanır; 1) Maksimum a da minimum olması

Detaylı

İ İ İ Ş Ğ İ ç ö ç İ ğ ğ İ İ ö ç İ ğ ğ ç ö ğ ğ ö ç İ ç ö ç İ ğ ğ ğ ö ğ ö ç ö ç İ ç ö ç İ ğ ğ ç ç ç ğ ö ö Ü

İ İ İ Ş Ğ İ ç ö ç İ ğ ğ İ İ ö ç İ ğ ğ ç ö ğ ğ ö ç İ ç ö ç İ ğ ğ ğ ö ğ ö ç ö ç İ ç ö ç İ ğ ğ ç ç ç ğ ö ö Ü İ İ Ğ İ ç ö ç İ ğ ğ İ İ ö ç İ ğ ğ ç ö ç İ ğ ğ İ İ ğ ö ö ç İ ğ ö ç ğ ğ ğ ğ ç ö ç İ ğ ğ ö ç İ ç ö ç İ ğ ğ ç ç ç ğ ö ö ö İ İ İ Ş Ğ İ ç ö ç İ ğ ğ İ İ ö ç İ ğ ğ ç ö ğ ğ ö ç İ ç ö ç İ ğ ğ ğ ö ğ ö ç ö ç İ ç ö

Detaylı

Ş Ğ ö ğ ğ ö ö ç ç ö ö ö ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ö ğ ö ö ğ ğ ğ ç ç ğ ç ö ğ ç ö ğ ç

Ş Ğ ö ğ ğ ö ö ç ç ö ö ö ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ö ğ ö ö ğ ğ ğ ç ç ğ ç ö ğ ç ö ğ ç Ş Ğ Ş ç ç Çö ö ğ ö ç ğ ğ ö ğ ğ ç Çö ö ö ö ç ğ ğ ç ğ ğ ç ğ ö Ş Ğ ö ğ ğ ö ö ç ç ö ö ö ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ç ö ğ ö ö ğ ğ ğ ç ç ğ ç ö ğ ç ö ğ ç Ş Ğ ç ç öğ ö ö ğ ç ö öğ ç ç ğ ç Ü ğ ö ö ö ö

Detaylı

EŞİTSİZLİK SİSTEMLERİ Test -1

EŞİTSİZLİK SİSTEMLERİ Test -1 EŞİTSİZLİK SİSTEMLERİ Test -1 1. 9 5. 69 A) (, ] B) (, ) C) (, ) D) [, ] E) [, ) A) B) {} C) {, } D) R E) R {}. 5 6. 1 A) (, 5) B) [, 5] C) (, 5) D) (5, ) E) (, ) A) (, 1] B) (, ) C) [1, ) D) (, ] [1,

Detaylı

Ğ Ş Ğ

Ğ Ş Ğ Ğ ç ç ö ç ö ç ö ç ö ç ç ö ç ç ç ç ö ç ç ç ö ç ç ç ç ö ç ç ö ç ç ö ö ö ç ç ç ç ö Ğ Ş Ğ ç Ğ Ğ öğ Ğ Ğ Ğ Ğ Ğ öğ Ğ Ğ ç Ö ö ç ö ç ç Ö «ç ö ç ö ç ö ö ç ç ç ç Ö Ç ö Ğ Ö Ö ç Ç Ş ç Ö Ö ö ö ö ç ö ç Ğ ö ç ç ö ç ç

Detaylı

ş Ş Ş ş ş ş ç ş ç ş Ş ş ö ş Ş Ş ö ş ş ş ç ş ş ç ç Ç ş Ş Ş ş ş ş ş ş ö ş ş Ç Ş Ş ş ş Ş ş Ş ş ş ş ç ş ş ş ç ş ş ç ş ö ş ö ş ş ç ç ö ç Ç ş ş Ş ç ş ş ş ş

ş Ş Ş ş ş ş ç ş ç ş Ş ş ö ş Ş Ş ö ş ş ş ç ş ş ç ç Ç ş Ş Ş ş ş ş ş ş ö ş ş Ç Ş Ş ş ş Ş ş Ş ş ş ş ç ş ş ş ç ş ş ç ş ö ş ö ş ş ç ç ö ç Ç ş ş Ş ç ş ş ş ş ş Ş Ş Ş ş Ş Ç «Ş ç ş ç ç ş ş ş Ş Ş ş ş ş ç ş ç ş Ş ş ö ş Ş Ş ö ş ş ş ç ş ş ç ç Ç ş Ş Ş ş ş ş ş ş ö ş ş Ç Ş Ş ş ş Ş ş Ş ş ş ş ç ş ş ş ç ş ş ç ş ö ş ö ş ş ç ç ö ç Ç ş ş Ş ç ş ş ş ş ö Ş ç ş ş ş ş ş ö ş ş

Detaylı

ğ Ü ğ ç Ü ç Ö Ü Ü ç ç ç ç Ş Ğ ğ ğ ç ğ ç ç ğ ç ğ ğ ğ Ö ÜŞÜ ç ğ ğ Ö ç Ç ğ ç ç ğ ğ ç ğ ğ ç ğ ğ ç Ş ğ Ş ğ ğ ğ ğ ç ğ ğ ğ ç ç ç ğ ğ ç ç ç ç ç ç ç ç ğ ç ğ ç

ğ Ü ğ ç Ü ç Ö Ü Ü ç ç ç ç Ş Ğ ğ ğ ç ğ ç ç ğ ç ğ ğ ğ Ö ÜŞÜ ç ğ ğ Ö ç Ç ğ ç ç ğ ğ ç ğ ğ ç ğ ğ ç Ş ğ Ş ğ ğ ğ ğ ç ğ ğ ğ ç ç ç ğ ğ ç ç ç ç ç ç ç ç ğ ç ğ ç Ü Ş ğ Ü ğ ğ ğ ğ ç Ü Ş Ş ğ ğ Ş Ş Ş ğ ç ğ Ş Ü Ü ç ğ ğ Ç Ş ğ ğ ğ ğ ğ Ö Ç Ü Ş ğ ç ç ğç ğ ğ ğ ğ ğ Ö ÜŞÜ ç ğ ğ ğ ğ ç ğ ç ç ç Ö ÜŞÜ ğ ğ ğ ğ ç ğ ğ ğ ç ğ ğ ğ ğ ğ ç ç ğ ğ ğ ç ğ ğ ğ ğ ğ ğ ğ ç ç ç ç ç ç ğ ç ğ Ü ğ

Detaylı

ğ Ü ö ç ö Ü ö ğ ğ Ü ö Ü ç Ç ç ö ö ğ ç ç ö ö ç ö ö ğ ç ç ğ ğ ğ ö ğ ğ ç ğ ö ç ç ç ö ğ ğ ç ğ ö ğ ğ ğ ç ö Ü ç ö ö ğ Ç ö ğ ğ ö ç ğ ç ğ ö ç ç ğ ö ç ğ ğ ğ ç

ğ Ü ö ç ö Ü ö ğ ğ Ü ö Ü ç Ç ç ö ö ğ ç ç ö ö ç ö ö ğ ç ç ğ ğ ğ ö ğ ğ ç ğ ö ç ç ç ö ğ ğ ç ğ ö ğ ğ ğ ç ö Ü ç ö ö ğ Ç ö ğ ğ ö ç ğ ç ğ ö ç ç ğ ö ç ğ ğ ğ ç ğ ç ğ ğ ğ ö ğ ğ ğ Ü ö ç ö Ü ö ğ ğ Ü ö Ü ç Ç ç ö ö ğ ç ç ö ö ç ö ö ğ ç ç ğ ğ ğ ö ğ ğ ç ğ ö ç ç ç ö ğ ğ ç ğ ö ğ ğ ğ ç ö Ü ç ö ö ğ Ç ö ğ ğ ö ç ğ ç ğ ö ç ç ğ ö ç ğ ğ ğ ç ç ğ ğ ğ ç ğ ç ğ ğ ö ğ ğ ç ğ ğ ç ğ ğ

Detaylı

İ Ş İ İ ş ş ğ ç ğ ş ç ç ğ ç ğ Ç ö ç şi İ ç ç ş ğ ç ğ ç ç Ç ğ ö ğ İ ç ğ İ İ ğ ş ğ ğ ş öş ç ç ç ğ İ ş ğ İ ğ ç ç Ğ ş öş Ğ ç ç ç İ ğ ş ğ İ Ş ğ İ ğ ç ç İ Ğ

İ Ş İ İ ş ş ğ ç ğ ş ç ç ğ ç ğ Ç ö ç şi İ ç ç ş ğ ç ğ ç ç Ç ğ ö ğ İ ç ğ İ İ ğ ş ğ ğ ş öş ç ç ç ğ İ ş ğ İ ğ ç ç Ğ ş öş Ğ ç ç ç İ ğ ş ğ İ Ş ğ İ ğ ç ç İ Ğ İ Ş İ İ ş ş ğ ç ş ş ğ ğ ğ İ ğ İ İ ğ ş ğ ö ğ İ «ş ğ ş İ Ş ş ğ ş ş ğ İ ş ğ Ş İ Ş ş İ Ş ş Ş İİ Ş ş İ ğ Ş ö ş ö İ Ü Ü İ ö İ ş ç ğ ş çi ö ğ ç ş ç ö ğ ş ö ğ ç ş ğ ş ğ ş İ ö İ İ ö İ İ ç ş ş ö İ Ö ğ ş ğ İ ğ ş

Detaylı

Ç ö ğ İ İ İ İ Ç ö ğ İİ İ İ ğ ğ ğ ç ç İ İ İİ ğ ç ç ö Ö Ö ğ ö ç ğ Ç Ç ğ Ç ğ Ü

Ç ö ğ İ İ İ İ Ç ö ğ İİ İ İ ğ ğ ğ ç ç İ İ İİ ğ ç ç ö Ö Ö ğ ö ç ğ Ç Ç ğ Ç ğ Ü Ç ö ğ İ İ İ İ Ç ö ğ İİ İ İ ğ ğ ğ ç ç İ İ İİ ğ ç ç ö Ö Ö ğ ö ç ğ Ç Ç ğ Ç ğ Ü İ Ç Ü ö ğ ö ğ Ü öğ ç Ç İ ğ ö İ ğ ç ğ Ğ İ ç ç ö ç İ Ğ İ ö Ğ ç Ü ö Çö çö Ü ğ ö ö ö ç ö ğ Ç ö ö ç ö ö ğ Çö ğ çö ö İç ç ö İ İ İ

Detaylı

1997 ÖSS Soruları. 5. Rakamları birbirinden farklı olan üç basamaklı en büyük doğal sayı aşağıdakilerden hangisi ile kalansız bölünebilir?

1997 ÖSS Soruları. 5. Rakamları birbirinden farklı olan üç basamaklı en büyük doğal sayı aşağıdakilerden hangisi ile kalansız bölünebilir? 997 ÖSS Soruları. ( ) + ( ).( ) işleminin sonucu kaçtır? ) ) ) ) 8 6 ) 6. Rakamları birbirinden farklı olan üç basamaklı en büük doğal saı aşağıdakilerden hangisi ile kalansız bölünebilir? ) ) 9 ) 6 )

Detaylı

Örnek...1 : ÖZEL TANIMLI FONKSİYONLAR 14 ( FONKSİYONLARDA ÖTELEME VE SİMETRİ ) 2. X EKSENİNDE ÖTELEMELER FONKSİYONLAR BÖLÜM 14 FONKSİYONLARDA ÖTELEME

Örnek...1 : ÖZEL TANIMLI FONKSİYONLAR 14 ( FONKSİYONLARDA ÖTELEME VE SİMETRİ ) 2. X EKSENİNDE ÖTELEMELER FONKSİYONLAR BÖLÜM 14 FONKSİYONLARDA ÖTELEME ÖZEL TANIMLI FONKSİYONLAR FONKSİYONLAR BÖLÜM FONKSİYONLARDA ÖTELEME VE SİMETRİ FONKSİYONLARDA ÖTELEME. Y EKSENİNDE ÖTELEMELER a) =f() fonksionu verildiğinde k R + olmak üzere, =f()+k fonksionunu çizmek

Detaylı

Mustafa YAĞCI, Parabol ile Eğrilerin Kesişimi

Mustafa YAĞCI, Parabol ile Eğrilerin Kesişimi www.mustafaagci.com.tr, 11 Ceir Notları Mustafa YAĞCI, agcimustafa@ahoo.com Paraol ile Eğrilerin Kesişimi P araol İle Doğrunun Birirlerine Göre Durumları. Aslında sadece paraol ve doğru çifti için değil,

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matematk Deneme Sınavı. A.. n saısının tamsaı bölenlerinin saısı olduğuna göre, n 0. R de tanımlı " " işlemi; ο ο işleminin sonucu 0. (6) 6 (6) ifadesinin eşiti aşağıdakilerden hangisidir? 6 6 (6)

Detaylı

olmak üzere C noktasının A noktasına uzaklığı ile AB nin orta dikmesine olan uzaklığının oranının α değerinden bağımsız olduğunu gösteriniz.

olmak üzere C noktasının A noktasına uzaklığı ile AB nin orta dikmesine olan uzaklığının oranının α değerinden bağımsız olduğunu gösteriniz. GOMTRİ 05/0/0. bir üçgen m() =, m() = 90 +, = 5 br, = 7 br, olduğuna göre = x kaç br dir? 5 m 9 0 m 9 0 5 90+ 7 x Çözüm: den ye çıkılan dikmenin doğrusunu kestiği nokta olsun. bir dik üçgen ve bir ikizkenar

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan

Detaylı

LYS MATEMATİK-2 SORU BANKASI LYS. M. Ali BARS. çözümlü sorular. yıldızlı testler. Sınavlara en yakın özgün sorular

LYS MATEMATİK-2 SORU BANKASI LYS. M. Ali BARS. çözümlü sorular. yıldızlı testler. Sınavlara en yakın özgün sorular LYS LYS 6 Sınavlara en akın özgün sorular MATEMATİK- SORU BANKASI çözümlü sorular ıldızlı testler M. Ali BARS M. Ali Bars LYS Matematik Soru Bankası ISBN 978-65-8-7-9 Kitapta er alan bölümlerin tüm sorumluluğu

Detaylı

ANALİTİK GEOMETRİ KARMA / TEST-1

ANALİTİK GEOMETRİ KARMA / TEST-1 NLİTİK GEMETRİ KRM / TEST-. (, ) noktasından geçen ve + = 0 doğrusuna paralel olan doğrunun eksenini kestiği noktanın ordinatı ) ) 7 ) 9 ). = (k 6) + b k = k doğrularının ekseni üzerinde dik kesişmeleri

Detaylı

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07 UZY GEMETRİ İÇİNDEKİLER Safa No Test No UZY KSİYMLRI... 001-00... 01-0 UZYD DGRU VE DÜZLEMLER... 007-010... 0-05 DİK İZDÜŞÜM... 011-01... 0-07 PRİZMLR... 015-0... 08-1 KÜP... 05-00... 1-15 SİLİNDİR...

Detaylı

Doğrusal Fonksiyonlar, Karesel Fonksiyonlar, Polinomlar ve Rasyonel Fonksiyonlar, Fonksiyon Çizimleri

Doğrusal Fonksiyonlar, Karesel Fonksiyonlar, Polinomlar ve Rasyonel Fonksiyonlar, Fonksiyon Çizimleri Doğrusal Fonksionlar, Karesel Fonksionlar, Polinomlar ve Rasonel Fonksionlar, Fonksion Çizimleri Bir Fonksionun Koordinat Kesişimleri(Intercepts). Bir fonksionun grafiğinin koordinat eksenlerini kestiği

Detaylı

ü ğ ö ş ş ş ö üğü ğ ş ç ö ö üğü ü ü ü ü ü ğ ş ö ğ ö ş ğ ö ş ö ş ş ü ö ü ö ö ş ç ö ü ü ü üğü Ş ö ş ü ü ğ ş ğ ö ü ü ü ü ü ş ğ ğ ö ü ş ü ü ü üğü ş ö ş ş

ü ğ ö ş ş ş ö üğü ğ ş ç ö ö üğü ü ü ü ü ü ğ ş ö ğ ö ş ğ ö ş ö ş ş ü ö ü ö ö ş ç ö ü ü ü üğü Ş ö ş ü ü ğ ş ğ ö ü ü ü ü ü ş ğ ğ ö ü ş ü ü ü üğü ş ö ş ş Ğ ö ş ş ğ ö ş ö ö ş ğ ş Ş ü ö ğ Ş ö üş ö ş ş ö ş ş ö ş ğ ş ş ğ ğ ş ö ş ç ö ş ç ş ö ş ğ Ö ş ö ş ö ş ö ş ş ü ü ş ş ö ş ş ç ü ü ü ü ğ Ğ ş ş ü ü ğ ö ş ş ş ö üğü ğ ş ç ö ö üğü ü ü ü ü ü ğ ş ö ğ ö ş ğ ö ş ö

Detaylı

ege yayıncılık Parabolün Tan m ve Tepe Noktas TEST : 49 1. Afla daki fonksiyonlardan hangisinin grafi i bir parabol belirtir?

ege yayıncılık Parabolün Tan m ve Tepe Noktas TEST : 49 1. Afla daki fonksiyonlardan hangisinin grafi i bir parabol belirtir? Parabolün Tan m ve Tepe Noktas TEST : 9. Afla daki fonksionlardan hangisinin grafi i bir parabol belirtir? 5. Afla daki fonksionlardan hangisi A(,) noktas ndan geçer? A) f() = B) f() = f() = + f() =. f()

Detaylı

PARABOL. Merkezil parabol. 2px. 2py F 0, 2 F,0. Şekil I. Şekil II. p Odağı F 2. Odağı F 0, Doğrultmanı x. Doğrultmanı y

PARABOL. Merkezil parabol. 2px. 2py F 0, 2 F,0. Şekil I. Şekil II. p Odağı F 2. Odağı F 0, Doğrultmanı x. Doğrultmanı y ARABL Tanım: Düzlemde verilen sabit bir noktası ile bir d doğrusuna uzaklıkları eşit olan noktaların geometrik erine arabol denir. Sabit noktaa arabolün odağı; doğrua ise doğrultmanı denir. Merkezil arabol

Detaylı

MATEMAT K TEST. 3. a ve b reel say lar olmak üzere, 3 a = 4 ve 3 2a b 3 = 8 oldu una göre,

MATEMAT K TEST. 3. a ve b reel say lar olmak üzere, 3 a = 4 ve 3 2a b 3 = 8 oldu una göre, MTMT K TST KKT! + u testte 80 soru vard r. + u test için ar lan cevaplama süresi 5 dakikad r. + evaplar n z, cevap ka d n n Matematik Testi için ar lan k sma iflaretleiniz.. a, b, c pozitif reel sa lard

Detaylı

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI BİREYSEL YARIŞMA SORULARI CEVAPLARI CEVAP KAĞIDI ÜZERİNE YAZINIZ. SORU KİTAPÇIĞINI KARALAMA MAKSATLI KULLANABİLİRSİNİZ 1

Detaylı

TÜRKİYE GENELİ DENEME SINAVI LYS - 1 MATEMATİK

TÜRKİYE GENELİ DENEME SINAVI LYS - 1 MATEMATİK TÜRKİY GNLİ SINVI LYS - 1 7 MYIS 017 LYS 1 - TSTİ 1. u testte 80 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için arılan kısmına işaretleiniz. + k+ n 15 + 10 1. : = + 6 16 + 8 0 + 8 olduğuna

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A LYS 1 GMTRİ TSTİ 1. u testte sırasıyla Geometri (1 ) nalitik Geometri (3 30) ile ilgili 30 soru vardır.. evaplarınızı, cevap kâğıdının Geometri Testi için ayrılan kısmına işaretleyiniz. 1. bir üçgen =

Detaylı

İ Ğ ü ö ğ ç İ İ ç ö ç İ ğ ğ İ İ ö ç İ ğ ğ ç ö ö ç İ ğ ö ç İ İ ç Ç ç ğ ğ ö ç İ ğ ğ ö ç ğ ğ ü ö ç ç ç ç ğ ç ö ç İ ğ ğ ü Ş Ş Ö İ Ü Ü Ö Ö ÜŞ Ş Ö Ğ Ü Ü Ş Ç

İ Ğ ü ö ğ ç İ İ ç ö ç İ ğ ğ İ İ ö ç İ ğ ğ ç ö ö ç İ ğ ö ç İ İ ç Ç ç ğ ğ ö ç İ ğ ğ ö ç ğ ğ ü ö ç ç ç ç ğ ç ö ç İ ğ ğ ü Ş Ş Ö İ Ü Ü Ö Ö ÜŞ Ş Ö Ğ Ü Ü Ş Ç «Ğ ü İ ç ö ç İ ö ç İ ğ ğ İ İ» ğ İ ğ Ş ö ğ ğ ö ü ü ü İ Ğ ü ö ğ ç İ İ ç ö ç İ ğ ğ İ İ ö ç İ ğ ğ ç ö ö ç İ ğ ö ç İ İ ç Ç ç ğ ğ ö ç İ ğ ğ ö ç ğ ğ ü ö ç ç ç ç ğ ç ö ç İ ğ ğ ü Ş Ş Ö İ Ü Ü Ö Ö ÜŞ Ş Ö Ğ Ü Ü Ş

Detaylı

11. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 1. Konu ELEKTRİKSEL KUVVET VE ELEKTRİK ALANI ETKİNLİK VE TEST ÇÖZÜMLERİ

11. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 1. Konu ELEKTRİKSEL KUVVET VE ELEKTRİK ALANI ETKİNLİK VE TEST ÇÖZÜMLERİ SINI KONU NLTIMLI ÜNİTE: ELEKTRİK VE MNYETİZM Konu ELEKTRİKSEL KUVVET VE ELEKTRİK LNI ETKİNLİK VE TEST ÇÖZÜMLERİ Elektriksel Kuvvet ve Elektrik lanı Ünite Konu nın Çözümleri kuvvetinin yatay ve üşey bileşenleri

Detaylı

üü Ü ğü Ş ü ğ Ü ğ ğ ğ ğ ğ ü Ç ü ü ğü ü ç ü ğ ü ü Ş ğ ğ ğ ü ü

üü Ü ğü Ş ü ğ Ü ğ ğ ğ ğ ğ ü Ç ü ü ğü ü ç ü ğ ü ü Ş ğ ğ ğ ü ü ğ Ü Öğ ğ ğ Ç Ü Ş Ç ğ Ç Ş ü ü üğü ü ğ ç ü ü ü ü Ü Öğ ü ğ ü ü ü ğ ç ü üş üü Ü ğü Ş ü ğ Ü ğ ğ ğ ğ ğ ü Ç ü ü ğü ü ç ü ğ ü ü Ş ğ ğ ğ ü ü Ş ğ ç ğ ğ Ş ü Öğ ğ ğ Ç Ş ğ ç Ş ü ü ç Ş ğ ğ ğ Ö ü ü Ş ğü ç ç ğ Ş ü ğ ğ

Detaylı

Örnek...1 : Örnek...2 : Örnek...3 : A={0,1,2} kümesinden reel sayılara tanımlı f(x)=x² x fonksiyonu bire bir midir? Örnek...4 :

Örnek...1 : Örnek...2 : Örnek...3 : A={0,1,2} kümesinden reel sayılara tanımlı f(x)=x² x fonksiyonu bire bir midir? Örnek...4 : FONKSİYONLAR BÖLÜM 4 FONKSİYON TÜRLERİ: BİRE BİR FONKSİYON Bir fonksionun grafiğinden bire bir olup olmadığını anlamak için verilen tanım aralığında çizilen ata doğruların sadece bir defa grafiği kesmesini

Detaylı

Chapter 1 İçindekiler

Chapter 1 İçindekiler Chapter 1 İçindekiler Kendinizi Test Edin iii 10 Birinci Mertebeden Diferansiel Denklemler 565 10.1 Arılabilir Denklemler 566 10. Lineer Denklemler 571 10.3 Matematiksel Modeller 576 10.4 Çözümü Olmaan

Detaylı

İ ö ş ö ü ş ş üç ü ğ ç ş ş

İ ö ş ö ü ş ş üç ü ğ ç ş ş İ Ç Ü ş ö üğü ş ö üğü Ü ü ü öğ ü ç Ğ ş ü ü ü Ö Ü ğ ç ç ş ş ğ Ğ İ ç ç ğ ö ü ş ş ç Ü ç ş ö üğü ö ü ü ç ç ş ş ğ ü ş ğ ş ç ş ğ ş ü ü ü ç ü ş ü ğ ç ş ü ü ü ü ç ş ş ö ş Ö Ö ğ ş ö ü ç Ü ş ğ Ç Ü Ç ğ ş Ç ğ Ü İ

Detaylı

LYS MATEMATİK KONU ANLATIM FASİKÜLÜ

LYS MATEMATİK KONU ANLATIM FASİKÜLÜ Ders Adı.ınıf Mezun LY MATEMATİK KONU ANLATIM FAİKÜLÜ TÜREV KAF 0 Konu Bir doğrunun eğimi dik koordinat sisteminde X ekseni ile aptığı pozitif önlü açının tanjantıdır. Örneğin, şekilde verilen d doğrusunun

Detaylı

4. 8. A. D 2. ABC üçgeninin alanı kaç birim karedir? ABC üçgeninin alanı kaç birim karedir? A) 16 B) 18 C) 20 D) 24 E) 32 120º 135º

4. 8. A. D 2. ABC üçgeninin alanı kaç birim karedir? ABC üçgeninin alanı kaç birim karedir? A) 16 B) 18 C) 20 D) 24 E) 32 120º 135º ğlence başlıyor yor 1 º 0º üçgeninin alanı kaç birim karedir? ) ) 9 LN SI 1 LN SI 1 )1 ) üçgeninin alanı kaç birim karedir? üçgeninin alanı kaç birim karedir? ) ) ) ) ) ) üçgen, = birim, = birim, m() =

Detaylı

Ş ö ç ö ç Ç ö Ğ ö ö ç ç ç Ğ ö Ü Ö Ş ö ö ç Ö ö ö

Ş ö ç ö ç Ç ö Ğ ö ö ç ç ç Ğ ö Ü Ö Ş ö ö ç Ö ö ö Ş Ş ö ç ö ç Ç ö Ğ ö ö ç ç ç Ğ ö Ü Ö Ş ö ö ç Ö ö ö Ş Ö Ğ Ç Ç Ğ ç Ç «ö ç Ğ Ç ö Ö Ğ ö ö ö Ü ç Ğ Ğ ö ç ö ö Ü ç Ö Ü Ü ç Ş Ç Ü ö ö ö Ş Ü ç Ç ö Ü ç ö ç ö ö Ü ö ö ö ö Ü Ü ö ö Ğç Ç ö Ş Ğ ö ö ö ö ç ö ö ö ö ç ç ö

Detaylı

f : R + R, f(x) = log a 0 < a < 1 için f(x) = log a a. f : ;, 4m R, f(x) = log2 x b. f : R + R, f(x) = log 1, f(2) = 2 2

f : R + R, f(x) = log a 0 < a < 1 için f(x) = log a a. f : ;, 4m R, f(x) = log2 x b. f : R + R, f(x) = log 1, f(2) = 2 2 Fonksionlar f : R R, f() = a Fonksionunun Grafi i f : R R, f() = log a Fonksionunun Grafi i a > için f() = a üstel fonksionunun grafi i andaki gibidir. = a a > için f() = log a fonksionunun grafi i andaki

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

1998 ÖYS. 1. Üç basamaklı bir x doğal sayısının 7. iki basamaklı bir y doğal sayısına eşittir. Buna göre, y doğal sayısı en az kaç olabilir?

1998 ÖYS. 1. Üç basamaklı bir x doğal sayısının 7. iki basamaklı bir y doğal sayısına eşittir. Buna göre, y doğal sayısı en az kaç olabilir? 99 ÖYS. Üç basamaklı bir doğal saısının 7 katı, iki basamaklı bir doğal saısına eşittir. Buna göre, doğal saısı en az kaç olabilir? A) B) C) 6. Bugünkü aşları 6 ve ile orantılı olan iki kardeşin 6 ıl sonraki

Detaylı

Ç NDEK LER. Bölüm 4: Üslü Say lar...44 Üslü fadeler...44 Al t rmalar...47 Test Sorular...49

Ç NDEK LER. Bölüm 4: Üslü Say lar...44 Üslü fadeler...44 Al t rmalar...47 Test Sorular...49 Ç NDEK LER Bölüm1: Say Sistemleri...1 Say Sistemi...2 Desimal (Onluk) Say Sistemi...2 Say Basamaklar ve Taban...4 Binary ( kilik) Say Sistemi...4 Oktal (Sekizlik) Say Sistemi...7 Heksadesimal (Onalt l

Detaylı

ç ö ö ç ğ ğ ç ğ ğ ö

ç ö ö ç ğ ğ ç ğ ğ ö ç ç ç ç ö ç ğ ğ ğ ğ ç ö ğ ğ ç ç ğ ğ ç ğ ö ö ç ğ ğ ç ç ö ç ö ç ğ ğ ç ö ö ç ö ö ç ğ ğ ç ğ ğ ö ğ ç ğ ö ç ğ ç ç ğ ç ç ö ö ö ç ğ ö ç ğ ç ç ğ ö ç ç ç ö öç ö ç ğ ğ ö ç ğ ç ö ç ç ğ ğ ç ğ ç ğ ö ğ ğ ğ ğ ğ ğ ö ğ

Detaylı

Küresel Aynalar. Test 1 in Çözümleri

Küresel Aynalar. Test 1 in Çözümleri 8 üresel Aynalar est in Çözümleri 4.. L 4 Cismin L noktası merkeze e birim yükseklikte oluğu için görüntüsü yine merkeze, ters e birim yükseklikte olur. Cismin noktası an uzaklıkta e birim yükseklikte

Detaylı

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI

BÖLÜM 24 TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI YILLAR 966 967 968 969 97 97 97 975 976 977 978 980 98 98 98 98 985 986 987 988 989 990 99 99 99 99 995 996 997 998 006 007 ÖSS / ÖSS-I ÖYS / ÖSS-II 5 6 6 5

Detaylı

Örnek...3 : f(2x 3)=4 3x ise f(1) kaçtır? Örnek...4 : f(x)=3x+1 ise f(2x) fonksiyonu nedir?

Örnek...3 : f(2x 3)=4 3x ise f(1) kaçtır? Örnek...4 : f(x)=3x+1 ise f(2x) fonksiyonu nedir? FONKSİYON HATIRLATMA ( FONKSİYON TANIMI ) A dan B e tanımlı f kuralının fonksion olm ası için; Örnek... : f( )= ise f() kaçtır? ) A daki her elemanın görüntüsü olmalı ( A da açıkta eleman kalmamalı) )A

Detaylı

9. BÖLÜM. Özel Tanımlı Fonksiyonlar ÇİFT VE TEK FONKSİYONLAR: ÖRNEK ÖRNEK ÇÖZÜM ÇÖZÜM. M A T E M A T İ K

9. BÖLÜM. Özel Tanımlı Fonksiyonlar ÇİFT VE TEK FONKSİYONLAR: ÖRNEK ÖRNEK ÇÖZÜM ÇÖZÜM. M A T E M A T İ K M A T E M A T İ K www.akademitemellisesi.com ÇİFT VE TEK FONKSİYONLAR: f:ar (A R) fonksionu için, 9. BÖLÜM ) Her A için f( ) = f() ise f e çift fonksion denir. olduğundan ne tek nede çifttir. MUTL AK DEĞER

Detaylı

ü ü ü ü ü ü ü ü

ü ü ü ü ü ü ü ü İ Ğ Ş Ğ Ğ ü»ü üğü ü İ ü ü İ ü üü ü ü ü ü ü ü ü ü ü ü İ Ğ» Ğ Ğ ü ü İ ü Ü İ Ş ü İ Ş ü ü ü ü Ş ü İ Ş ü İ Ş ü ü ü ü İ İ ü ü ü ü ü ü üü ü İ üü ü ü ü ü Ş üü üü ü ü Ş ü Ş ü ü ü İ ü ü İ ü İ İ ü İ ü ü ü ü ü ü ü

Detaylı

ö ğ ğ ğ Ü ğ Ş ö ö ğ ö ğ Ş ö Ş ğ Ş ğ ğ Ş Ş Ş Ü ö Ö Ş ö ö Ş Ö Ş ö ö ğ ğ ğ ğ ö ö Ş ö Ş Ş ö ğ ö ö ğ ğ ğ ğ ö

ö ğ ğ ğ Ü ğ Ş ö ö ğ ö ğ Ş ö Ş ğ Ş ğ ğ Ş Ş Ş Ü ö Ö Ş ö ö Ş Ö Ş ö ö ğ ğ ğ ğ ö ö Ş ö Ş Ş ö ğ ö ö ğ ğ ğ ğ ö Ğ Ğ ö ö ğ ğ ğ Ü ğ Ş ö ö ğ ö ğ Ş ö Ş ğ Ş ğ ğ Ş Ş Ş Ü ö Ö Ş ö ö Ş Ö Ş ö ö ğ ğ ğ ğ ö ö Ş ö Ş Ş ö ğ ö ö ğ ğ ğ ğ ö ö ö ö ğ ö ö ö ö ğ ö ğ Ş ğ Ö ö ğ ğ ğ ğ ö ğ ğ Ş Ü Ş ğ ğ «ö ğ ğ «ö ö ğ ö ğ ğ ö ğ ğ ö ö Ö Ö ÜŞ

Detaylı

İ Ç ğ İ İ İ ü ü İ Ç Ü ü İ İ ü İ İ ü

İ Ç ğ İ İ İ ü ü İ Ç Ü ü İ İ ü İ İ ü +L, f "ffi l İ İ Ç ğ İ İ İ ü ü İ Ç Ü ü İ İ ü İ İ ü İ ü İ İİ İ İ İİ İ İ İ İ Ü Ğ Ö İ İ Ö ü Ö İ İ İ Ç Ğ İ İ İĞİ İ ü Öğ ğ ÖĞ İ Ş Ğ Ğ İ İ İ Ğ Ğ İ Ş Ö Ö Ö İ İ İ İŞ İ İĞİ İ Ş Ö İ İ İ İ İ Ö İ İ Ö Öğ İ İ İ İ İ

Detaylı

İ İ Ü İ İ İ İ

İ İ Ü İ İ İ İ İ İ Ü İ İ İ İ İ İ Ü Ü Ö Ü Ö Ş Ö Ş Ğ Ç Ş Ğ Ç Ş Ü Ü Ş Ü Ü Ö Ü Ü Ğ İ İ Ü Ü İ İ Ş Ü ÜŞ Ü Ü Ç Ü Ü İ Ş Ü İ İ İ İ İ Ş Ü İ Ö Ş İ İ Ü Ü Ü Ş Ğ Ü Ü Ş Ü Ğ Ğ Ö Ç Ü Ç Ü Ö Ü Ü İ Ü Ş İ Ü Ö Ü Ü Ü Ü Ü İ İ Ş Ü Ç Ü Ş Ü İ

Detaylı

10. Hilesiz iki zar birlikte atılıyor. Üst yüze gelen sayıların toplamı 6 olduğuna göre bunlardan birinin 1 olma olasılığı kaçtır?

10. Hilesiz iki zar birlikte atılıyor. Üst yüze gelen sayıların toplamı 6 olduğuna göre bunlardan birinin 1 olma olasılığı kaçtır? . kız ve 5 erkek arasınan kişilik bir ekip seçilecektir. n çok birinin kız olması olasılığı kaçtır? ( 5 ). 6 evli çift arasınan rasgele kişi seçiliyor. Seçilen bu kişi arasına evli bulunmama olasılığı

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16. MATEMATİK YARIŞMASI 10. SINIF ELEME SINAVI TEST SORULARI EGE BÖLGESİ OKULLAR ARASI. MATEMATİK YARIŞMASI 0. SINIF ELEME SINAVI TEST SORULARI 5. sayısının virgülden sonra 9 99 999 5. basamağındaki rakam kaçtır? A) 0 B) C) 3 D) E) 8!.!.3!...4! 4. A= aşağıdaki hangi

Detaylı

MUTLAK DEĞER. Örnek...6 : 1 x > 1 y > 1 z. Örnek...7 : x=1 5, y= 5 2, ise x+y y x x =? Örnek...1 : =? Örnek...8 : Örnek...2 : =?

MUTLAK DEĞER. Örnek...6 : 1 x > 1 y > 1 z. Örnek...7 : x=1 5, y= 5 2, ise x+y y x x =? Örnek...1 : =? Örnek...8 : Örnek...2 : =? TANIM MUTLAK DEĞER Örnek...6 : 1 x > 1 y > 1 z ise x y x z z y =? Bir x reel sayısına karşılık gelen noktanın sayı doğrusunda 0 (sıf ır) a olan uzaklığına x sayısının mutlak değeri denir ve x şeklinde

Detaylı

FONKSİYONLAR BÖLÜM 8. Örnek...3 : Örnek...1 : f(x)=2x+5 fonksiyonu artan mıdır? Örnek...4 :

FONKSİYONLAR BÖLÜM 8. Örnek...3 : Örnek...1 : f(x)=2x+5 fonksiyonu artan mıdır? Örnek...4 : FONKSİYONLAR BÖLÜM 8 Örnek...3 : ARTAN AZALAN FONKSİYONLAR ARTAN FONKSİYON f : A R R fonksionu verilsin. Her i B A için 1 < 2 f ( 1 )

Detaylı

Küresel Aynalar. Test 1 in Çözümleri

Küresel Aynalar. Test 1 in Çözümleri 0 üresel Aynalar Test in Çözümleri 4.. L T T 4 Cismin L noktası merkeze e birim yükseklikte oluğu için görüntüsü yine merkeze, ters e birim yükseklikte olur. Cismin noktası an uzaklıkta e birim yükseklikte

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

FİZİK MOMENT - DENGE MO MEN T. M o m e n t = K u v v e t x D i k U z a k l ı k

FİZİK MOMENT - DENGE MO MEN T. M o m e n t = K u v v e t x D i k U z a k l ı k İZİ E - DEGE Günlük hayatta karşılaştığımız anahtarla kapının açılması bir vianın sıkıştırılması pencerenin açılıp kapanması gibi olaylar kuvtin önürme etkisiyle oluşan olaylarır. E uvtin önürücü etkisine

Detaylı

Pegem Pegem. Pegem Pegem. Pegem. Pegem. Pegem

Pegem Pegem. Pegem Pegem. Pegem. Pegem. Pegem İ itörler: Kerem KÖKR - Kenan SMNĞLU Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem Pegem KPSS Geometri itörler: Kerem Köker / Kenan smanoğlu KPSS Geometri ISN 978-605-364-197-1

Detaylı