Olasılık ve İstatistik nedir? Bilgisayar Mühendisliğindeki yeri

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Olasılık ve İstatistik nedir? Bilgisayar Mühendisliğindeki yeri"

Transkript

1 Olasılık ve İstatistik nedir? Bilgisayar Mühendisliğindeki yeri IST 108 Olasılık ve İstatistik Bahar 2016 Yrd. Doç. Dr. Ferhat Dikbıyık Bu sunumun bir kısmı Utah Üniversitesi nden Bilgisayar Bilimleri bölümü CS 3130 dersi sunumlarından adapte edilmiştir (

2 Olasılık nedir? Olasılık teorisi rastgele olayların hükmettiği matematiksel kuralları inceler. Rastgele olma (randomness) nedir? Bir rastgele olay (random event) sonucunu gözlemlemeden bilemeyeceğimiz bir olaydır. Olasılık bize, muhtemel sonuçlar hakkında varsayımlarımız göz önüne alındığında, böyle bir olay için ne söyleyebileceğimizi anlatır. 2

3 İstatistik nedir? İstatistik olasılığın rastgele verinin toplanmasına, analizine ve tanımlanmasına uygulanmasıdır. İstatistik; Deneyleri dizayn etmek, Verileri düzenlemek, Sonuçlar çıkarmak, Karmaşık dataları incelemek için kullanılır. 3

4 Olasılık ve İstatistiğin Uygulamaları: Bilgisayar Mühendisliği Makine Öğrenmesi Veri Madenciliği Simülasyon Görüntü İşleme Bilgisayar Görmesi Bilgisayar Grafikleri Görüntüleme Yazılım Testi Algoritmalar Sinyal İşleme Telekomünikasyon Bilgi Teorisi Kontrol Teorisi Algılayıcılar Donanım Testleri 4

5 Olasılık ve İstatistiğin Uygulamaları: Genel Borsa Analizi Politika Spor Demografi Tıp Ekonomi Eğlence Bütün bilim dalları! 5

6 Alan Turing: Bilgisayar Mühendisliği ve Olasılığı Bağlayan Bilim Adamı Bilgisayar Mühendisliği nin babası Hesaplanabilirlik, Turing makinesi Turing test WWII Kripto-analizi Olasılık Teorisi üzerine tez yazdı! Olasılık ve istatistiği kullanarak Enigma yı kırdı. 6

7 Uygulama: Makine Öğrenmesi Makine öğrenmesi karmaşık örüntüleri tanımak ve bu gözlemlere göre kararlar vermek için verilerin istatistiki modellerini inşa eder. Örnekler: Sınıflandırma (yüz ve elyazısı tanıma) Tahmin Öngörüm (borsa, seçimler) Veri madenciliği 7

8 Uygulama: Algoritmalar Bazı algoritmalar belirli adımlar yerine rastgele adımlar kullanırlar. Örnekler: Asallık testi Büyük sayılar için bütün muhtemel bölenleri test etmek çok zaman alır. Bunun yerine belli bir sayıda rastgele seçilmiş bölenler için test ederek belirli bir seviyeye kadar asal olduğu ifade edilebilir. 8

9 Uygulama: Bilgisayar Grafikleri Işın takibi bir sahne etrafında çarpıp yansıyan ışık fotonlarını modeller. Her fotonu modellemek imkansızdır. Monte Carlo ışın takibi rastgele seçilmiş fotonlar simule eder. 9

10 Uygulama: Bilgisayar Ağları İstatistiki Çoklama (Statistical Multiplexing) Eğer her bir kullanıcıya bağlantı üzerinde sadece kendisinin kullanacağı 10 birimlik kapasite ayırırsak bu bağlantı üzerinde en fazla 10 kullanıcı desteklenebilir. Kullanıcıların her biri en fazla 10 birim kapasite kullanıyor. Her biri birim zamanda %10 aktif. İnternet 10 Bağlantı kapasitesi 100 birim Kapasite paylaşımına izin verildiğini varsayalım, yani kullanıcı aktif olduğunda boş bulduğu 10 birimlik alanı kullanır. Aynı anda 10 dan fazla kullanıcı aktif olursa bağlantı kapasitesi yetmeyecektir. Eğer 35 kullanıcı varsa, aynı anda 10 kullanıcının aktif olma olasılığı 0,0004 olacaktır. Bu da kabul edilebilir bir risktir. Nasıl hesaplandı? İleride göreceğiz!

11 Uygulama: Büyük Veri (Big Data) Üretilen sayısal bilgi her gün artıyor. Sosyal medya, sanal alışveriş, haber siteleri, bilimsel veriler, tıbbi veriler Cisco İnternet üzerinde akan sayısal bilginin 2013 itibari ile yıllık 667 Exabyte olduğunu tahmin ediyor. IDC/EMC Digital Universe araştırmasına göre 2015 te sayısal veriler 7910 Exabyte a ulaşabilir. 11

12 Uygulama: Büyük Veri (Big Data) 1 Exabyte bilgi 500 trilyon sayfa standart yazılı kağıt kadar bilgi taşır. 94,200 sayfalık bir kitabı basmak için bir ağaç gerekir. Dolayısı ile 1 Exabyte bilgiyi kağıt üzerinde depolamak için yaklaşık 530 milyar ağaç gerekir yılında NASA nın yaptığı tahminlere göre dünya üzerinde 400 milyar ağaç var. Yani tüm ağaçları kullansak bile 1 Exabyte veriyi depolayamayız. 12

13 Bilimsel Metot 1. Bir problem tanımla 2. Literatür taraması, gözlem 3. Bir hipotez üret 4. Bir tekrarlanabilir deney (repeatable experiment) dizayn et ve uygula 5. Sonuçları analiz et Deneysel ölçümler gürültülüdür (noisy) ve bu rastgelelik (randomness) oluşturur. Olasılık ve İstatistik son iki aşamada çok önemlidir. 13

14 Peki şimdi Artık neden olasılık ve istatistik öğrenmemiz gerektiğini biliyoruz. Derste önce Olasılık ile başlayacağız ve daha sonra istatistiğe geçeceğiz. Teoriyi kolaylaştırmak için önce basit örnekler kullanacağız (para atma, zar atma gibi). Dersin sonlarına doğru bilgisayar mühendisliği uygulmalarına geri döneceğiz. 14

BSM 450 Fiber Optik Ağlar Bahar Yrd. Doç. Dr. Ferhat Dikbıyık

BSM 450 Fiber Optik Ağlar Bahar Yrd. Doç. Dr. Ferhat Dikbıyık BSM 450 Fiber Optik Ağlar Bahar 2016 Yrd. Doç. Dr. Ferhat Dikbıyık Genel Bilgiler Dersi veren: Yrd. Doç. Dr. Ferhat Dikbıyık fdikbiyik@sakarya.edu.tr, Oda 1153 Dersler: Salı 15:00-18:00, 1105 Karma: Salı

Detaylı

GALATASARAY ÜNİVERSİTESİ

GALATASARAY ÜNİVERSİTESİ 1 MÜHENDİSLİK VE TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2016/2017 ÖĞRETİM YILI DERS PROGRAMI Not 1 : Fransızca Hazırlık sınıfından gelen ve Fransızca seviye tespit sınavında başarısız olan

Detaylı

İSTATİSTİKÇİ TANIM A- GÖREVLER

İSTATİSTİKÇİ TANIM A- GÖREVLER TANIM Toplumsal, ekonomik, kültürel, bilimsel olgu ve olaylarla ilgili bilgileri derleyen ve derlemiş olduğu bilgileri istatistik tekniklerini kullanarak yorumlayan ve sayısal olarak ifade eden, karar

Detaylı

GALATASARAY ÜNİVERSİTESİ

GALATASARAY ÜNİVERSİTESİ 1 MÜHENDİSLİK VE TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2017/2018 ÖĞRETİM YILI DERS PROGRAMI Not 1 : Fransızca Hazırlık sınıfından gelen ve Fransızca seviye tespit sınavında başarısız olan

Detaylı

TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ I. SINIF EĞİTİM - ÖĞRETİM PROGRAMI

TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ I. SINIF EĞİTİM - ÖĞRETİM PROGRAMI TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ I. SINIF EĞİTİM - ÖĞRETİM PROGRAMI 1. YIL 1. DÖNEM BİL 103 Bilgisayar Bilimlerine Giriş 2 0 2 3 Z BİL 113 Bilgisayar

Detaylı

Makine Öğrenmesi İle Duygu Analizinde Veri Seti Performansı

Makine Öğrenmesi İle Duygu Analizinde Veri Seti Performansı Makine Öğrenmesi İle Duygu Analizinde Veri Seti Performansı Hatice NİZAM İstanbul Üniversitesi Bilgisayar Mühendisliği Bölümü haticenizam@outlook.com Saliha Sıla AKIN ERS Turizm Yazılım Şirketi, Bilgisayar

Detaylı

DAVRANIŞ BİLİMLERİNE GİRİŞ

DAVRANIŞ BİLİMLERİNE GİRİŞ DAVRANIŞ BİLİMLERİNE GİRİŞ DAVRANIŞIN TANIMI Davranış Kavramı, öncelikle insan veya hayvanın tek tek veya toplu olarak gösterdiği faaliyetler olarak tanımlanabilir. En genel anlamda davranış, insanların

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü. Bilgisayar Mühendisliği

Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü. Bilgisayar Mühendisliği Bilkent Üniversitesi Bilgisayar Mühendisliği Bölümü Bilgisayar Mühendisliği Bilgisayar Mühendisliği Günümüzde, finans, tıp, sanat, güvenlik, enerji gibi bir çok sektör, bilgisayar mühendisliğindeki gelişimlerden

Detaylı

Alanya Alaaddin Keykubat UniversityInternational Relations Office

Alanya Alaaddin Keykubat UniversityInternational Relations Office Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü Bilgisayar Mühendisliği (Örgün Öğretim) Diploma Programı 2016 Müfredatı 1 BLG109 Üniversite'de Yaşam Kültürü ve Bilgisayar Mühendisliğine İntibak 1

Detaylı

AST416 Astronomide Sayısal Çözümleme - II. 6. Monte Carlo

AST416 Astronomide Sayısal Çözümleme - II. 6. Monte Carlo AST416 Astronomide Sayısal Çözümleme - II 6. Monte Carlo Bu derste neler öğreneceksiniz? Monte Carlo Yöntemleri Markov Zinciri (Markov Chain) Rastgele Yürüyüş (Random Walk) Markov Chain Monte Carlo, MCMC

Detaylı

GÜZ YARIYILI İSTATİSTİK BÖLÜMÜ HAFTALIK DERS PROGRAMI 1. SINIF (NORMAL ÖĞRETİM ve İKİLİ ÖĞRETİM)

GÜZ YARIYILI İSTATİSTİK BÖLÜMÜ HAFTALIK DERS PROGRAMI 1. SINIF (NORMAL ÖĞRETİM ve İKİLİ ÖĞRETİM) 1. SINIF (NORMAL ÖĞRETİM ve İKİLİ ÖĞRETİM) 8:30-9:15 İST-101 ING (A) TR MAT-101 (B) MAT-101 (A) 9:25-10:10 İST-101 ING (A) TR MAT-101 (B) MAT-101 (A) İST-103 (B-C) 10:20-11:05 İST-101 ING (A) -TR İST-103

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü umutokkan@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN Hidrolik Anabilim Dalı Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü Bölüm

Detaylı

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Kümeleme İşlemleri Kümeleme Tanımı Kümeleme Uygulamaları Kümeleme Yöntemleri Kümeleme (Clustering) Kümeleme birbirine

Detaylı

MÜHENDİSLİK VE TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2016/2017 ÖĞRETİM YILI BAHAR YARIYILI DERS PROGRAMI 1. SINIF

MÜHENDİSLİK VE TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2016/2017 ÖĞRETİM YILI BAHAR YARIYILI DERS PROGRAMI 1. SINIF BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 1. SINIF ING115 Fransızca II F. Pelletier M. Lafond CNT105 M. Lafond Fransızca II F. Pelletier M. Lafond INF103 Algoritma ve İleri Bilgisayar Programlama Yrd.Doç.Dr. Ö. Durmaz

Detaylı

Veri Bilim - Yapay Öğrenme Yaz Okulu, 2017 Matematiksel Temeller ve Vaka Çalışmaları

Veri Bilim - Yapay Öğrenme Yaz Okulu, 2017 Matematiksel Temeller ve Vaka Çalışmaları Veri Bilim - Yapay Öğrenme Yaz Okulu, 2017 Matematiksel Temeller ve Vaka Çalışmaları Boğaziçi Üniversitesi, TETAM, Kandilli, İstanbul Konu ve Kapsam Bu yaz okulunda veri bilim ve yapay öğrenme alanında

Detaylı

EĞİTİM ÖĞRETİM YILI FATİH SULTAN MEHMET ORTAOKULU MATEMATİK UYGULAMALARI 8 YILLIK PLANI 1.DÖNEM AY HAFTA TARİH KAZANIM AÇIKLAMA

EĞİTİM ÖĞRETİM YILI FATİH SULTAN MEHMET ORTAOKULU MATEMATİK UYGULAMALARI 8 YILLIK PLANI 1.DÖNEM AY HAFTA TARİH KAZANIM AÇIKLAMA 06-07 EĞİTİM ÖĞRETİM YILI FATİH SULTAN MEHMET ORTAOKULU MATEMATİK UYGULAMALARI 8 YILLIK PLANI.DÖNEM EYLÜL EKİM.Hafta 9-.Hafta 6-0 K)Doğal sayılar, kesirler, ondalık sayılar ve yüzdelerle hesaplamaları

Detaylı

MÜHENDİSLİK FAKÜLTESİ / ENSTİTÜSÜ / YÜKSEKOKULU BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ /ABD LİSANS PROGRAMI - 1 ( yılı ve sonrasında birinci

MÜHENDİSLİK FAKÜLTESİ / ENSTİTÜSÜ / YÜKSEKOKULU BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ /ABD LİSANS PROGRAMI - 1 ( yılı ve sonrasında birinci MÜHENDİSLİK FAKÜLTESİ / ENSTİTÜSÜ / YÜKSEKOKULU BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ /ABD LİSANS PROGRAMI - 1 (2016-17 yılı ve sonrasında birinci sınıfa başlayan öğrenciler için) BİRİNCİ YIL 1. Dönem

Detaylı

tarih ve 217 sayılı Eğitim Komisyonu Kararı Eki-3

tarih ve 217 sayılı Eğitim Komisyonu Kararı Eki-3 23.02.2017 tarih ve 217 sayılı Eğitim Komisyonu Kararı Eki-3 Tablo 1 Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü GÜZ BAHAR DERSİN KODU VE ADI T P K AKTS DERSİN KODU VE ADI T P K AKTS BBM 101 Programlamaya

Detaylı

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği

İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği İSTATİSTİK E GİRİŞ TEMEL KAVRAMLAR İstatistik Nedir? İstatistiğin Önemi Nedir? Tanımlayıcı ve Çıkarımcı İstatistik ttitik Tanımlayıcı İstatistik Türleri Çıkarımcı İstatistiğin i iği Elemanlarıl AMAÇ İstatistiğe

Detaylı

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare http://ocw.mit.edu. 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ YAPAY SİNİR AĞLARI Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ İÇERİK Sinir Hücreleri Yapay Sinir Ağları Yapısı Elemanları Çalışması Modelleri Yapılarına Göre Öğrenme Algoritmalarına Göre Avantaj ve

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

Matematiksel Finansın Hesaplama Yöntemleri (MATH 417) Ders Detayları

Matematiksel Finansın Hesaplama Yöntemleri (MATH 417) Ders Detayları Matematiksel Finansın Hesaplama Yöntemleri (MATH 417) Ders Detayları Ders Adı Matematiksel Finansın Hesaplama Yöntemleri Ders Kodu MATH 417 Dönemi Ders Uygulama Saati Saati Laboratuar Kredi AKTS Saati

Detaylı

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5

Hatalar Bilgisi ve İstatistik Ders Kodu: Kredi: 3 / ECTS: 5 Ders Kodu: 0010070021 Kredi: 3 / ECTS: 5 Yrd. Doç. Dr. Serkan DOĞANALP Necmettin Erbakan Üniversitesi Harita Mühendisliği Bölümü Konya 07.01.2015 1 Giriş 2 Giriş Matematiksel istatistiğin konusu yığın

Detaylı

CRYSTAL BALL Eğitimi

CRYSTAL BALL Eğitimi CRYSTAL BALL Eğitimi İki günlük bu kursun ilk yarısında, Crystal Ball Fusion Edition kullanılarak Excel tablolarına dayalı risk analizi öğretilecektir. Monte Carlo simülasyonu, tornado analizi ve Crystal

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİ İÇİN YÖNETİM BİLİŞİM SİSTEMLERİ Ç.A.P. PROGRAMI

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİ İÇİN YÖNETİM BİLİŞİM SİSTEMLERİ Ç.A.P. PROGRAMI BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ ÖĞRENCİLERİ İÇİN YÖNETİM BİLİŞİM SİSTEMLERİ Ç.A.P. PROGRAMI Sınıf Dönem 1 Sonbahar Ders Kodu Adı T U L Kr. AKTS Ortak/Muaf(*)/Alınacak AT 101 Atatürk İlkeleri ve İnkılap

Detaylı

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan

Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan Veriye Dayalı Karar Verme (Bölüm 2) Can Akkan 1 Ders Planı 1. Karar Problemleri i. Karar problemlerinin bileşenleri ii. Değerler, amaçlar, bağlam iii. Etki diagramları 2. Model Girdilerinde Belirsizlik

Detaylı

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ 1 A. GİRİŞ Gözlemlerin belirli bir dönem için gün, hafta, ay, üç ay, altı ay, yıl gibi birbirini izleyen eşit aralıklarla yapılması ile elde edilen seriler zaman

Detaylı

KHDAK IMRT sinde Tedavi Planlama Sistemlerinin Monte Carlo Yöntemi ile Karşılaştırılması

KHDAK IMRT sinde Tedavi Planlama Sistemlerinin Monte Carlo Yöntemi ile Karşılaştırılması KHDAK IMRT sinde Tedavi Planlama Sistemlerinin Monte Carlo Yöntemi ile Karşılaştırılması Türkay TOKLU 1, Bahar DİRİCAN 2, Necdet ASLAN 1 1 Yeditepe Üniversitesi, Fizik Bölümü 2 Gülhane Askeri Tıp Akademisi,

Detaylı

Büyük Veri ve Endüstri Mühendisliği

Büyük Veri ve Endüstri Mühendisliği Büyük Veri ve Endüstri Mühendisliği Mustafa Gökçe Baydoğan Endüstri Mühendisliği Bölümü Boğaziçi Üniversitesi İstanbul Yöneylem Araştırması/Endüstri Mühendisliği Doktora Öğrencileri Kolokyumu 21-22 Nisan

Detaylı

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Uygulama 4 Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Örnek Senaryo İmplant üreten İMPLANTDENT

Detaylı

BARTIN ÜNİVERSİTESİ FEN FAKÜLTESİ İSTATİSTİK BÖLÜMÜ. Telefon: M.Bahar BAŞKIR

BARTIN ÜNİVERSİTESİ FEN FAKÜLTESİ İSTATİSTİK BÖLÜMÜ.  Telefon: M.Bahar BAŞKIR http://fen.bartin.edu.tr Telefon:0 378 501 10 00 M.Bahar BAŞKIR GENEL BİLGİLER: Eğitim Dili : Türkçe Eğitim Süresi : 4 Yıl 2013 yılı: 3 adet Öğretim üyesi 2016-2017 Eğitim-Öğretim faaliyeti başladı. Mezuniyet

Detaylı

FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI EĞİTİM-ÖĞRETİM YILI DERS KATALOĞU (YÜKSEK LİSANS)

FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI EĞİTİM-ÖĞRETİM YILI DERS KATALOĞU (YÜKSEK LİSANS) FEN BİLİMLERİ ENSTİTÜSÜ FİZİK ANABİLİM DALI 2014-2015 EĞİTİM-ÖĞRETİM YILI DERS KATALOĞU (YÜKSEK LİSANS) 1.Yarıyıl GÜZ YARIYILI DERSİN DERS KURAMSAL UYGULAMA TOPLAM ULUSAL KREDİSİ DERSİN ADI OPTİK KODU

Detaylı

Rasgele Sayıların Özellikleri

Rasgele Sayıların Özellikleri Rasgele Sayı Üretme Rasgele Sayıların Özellikleri İki önemli istaiksel özelliği var : Düzgünlük (Uniformity) Bağımsızlık R i, rasgele sayısı olasılık yoğunluk fonksiyonu aşağıdaki gibi olan uniform bir

Detaylı

ÇARPANLAR ve KATLAR. Uygulama-1. Asal Sayılar. Pozitif Bir Tam Sayının Çarpanlarını Bulma. Aşağıdaki sayıların çarpanlarını (bölenlerini) bulunuz.

ÇARPANLAR ve KATLAR. Uygulama-1. Asal Sayılar. Pozitif Bir Tam Sayının Çarpanlarını Bulma. Aşağıdaki sayıların çarpanlarını (bölenlerini) bulunuz. Asal Sayılar Sadece kendisine ve sayısına bölünebilen 'den büyük tam sayılara asal sayı denir. En küçük asal sayı 2'dir ÇARPANLAR ve KATLAR Uygulama- Aşağıdaki sayıların çarpanlarını (bölenlerini) 36=

Detaylı

Bilgi Güvenliği Eğitim/Öğretimi

Bilgi Güvenliği Eğitim/Öğretimi Bilgi Güvenliği Eğitim/Öğretimi İbrahim SOĞUKPINAR Gebze Yüksek Teknoloji Enstitüsü İçerik Bilgi Güvenliği Eğitim/Öğretimi Dünyadaki Örnekler Türkiye deki Örnekler GYTE de Bilgi Güvenliği Dersi Sonuç ve

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan

Detaylı

Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var :

Rasgele Sayı Üretme. Rasgele Sayıların Özellikleri. İki önemli istaiksel özelliği var : Rasgele Sayı Üretme Rasgele Sayıların Özellikleri İki önemli istaiksel özelliği var : Düzgünlük (Uniformity) Bağımsızlık R i, rasgele sayısı olasılık yoğunluk fonksiyonu aşağıdaki gibi olan uniform bir

Detaylı

ç ç Ö Ç Ş Ç ç Ç ç ç ç Ö ç Ç Ş ç ç Ş Ç Ş Ö Ö Ş ç Ö ç ç ç ç Ş Ö Ç Ç Ş ç ç Ş Ş Ş Ö ç ç ç ç Ö Ş Ç Ö Ö ç «Ö ç Ş ç Ç «ÇŞ Ş Ö Ç ç Ö ç Ç Ş Ö Ö ç ç ç Ö Ş Ö ç Ö ç Ç Ş Ç «ç Ö Ç Ş ç ç ç «ç Ç Ş Ö Ö Ç ç ç Ş ç ç Ö ç

Detaylı

Ğ Ğ ş ç ş ç ç ç ş ç ç Ş ç «ş ş Ö Ş Ş ş ş ç Ö Ş ş Ü ç ç ş ş ş ç Ş ş ç ç ç ş ç ş ş ş ç ç ç ş Ç ş ş ç ş ç ş ş Ş ş ç ş ç ç ş ç ş ç ç ş ç ç ş Ü ş çş ş ş Çş Ç Ü çş ş Ç çş ç ş Ş Ö Ö ş ç ç ç ş ç ç ç ş ş ç ç ş

Detaylı

Ders Kodu Dersin Adı Dersin Ġntibak Durumu

Ders Kodu Dersin Adı Dersin Ġntibak Durumu ENDÜSTRĠ SĠSTEMLERĠ MÜHENDĠSLĠĞĠ BÖLÜMÜ ĠNTĠBAK ÇĠZELGESĠ 2010-2011 1.SINIF / GÜZ DÖNEMĠ IUE100 Akademik ve Sosyal Oryantasyon CS 115 Programlamaya Giriş I Bu ders 1. Sınıf güz döneminden 2. Sınıf güz

Detaylı

T.C. DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2014-2015 YILI BAHAR DÖNEMİ DERS PROGRAMI

T.C. DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2014-2015 YILI BAHAR DÖNEMİ DERS PROGRAMI T.C. DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2014-2015 YILI BAHAR DÖNEMİ DERS PROGRAMI TARİH SAAT I. SINIF II. SINIF III. SINIF IV. SINIF 08 00 W.T.U.P-M.S.P.P-G.S.T

Detaylı

Şube Sayısı. Şube Sayısı T P K AKTS T P K AKTS. 2 MTK 302 Kısmi Diferansiyel

Şube Sayısı. Şube Sayısı T P K AKTS T P K AKTS. 2 MTK 302 Kısmi Diferansiyel 11.12.2014 tarih ve 714 sayılı Eğitim Komisyonu Kararı Eki Tablo 1 ÖĞRETİM PROGRAMI TABLOSU Hacettepe Üniversitesi Fen Fakültesi Matematik Bölümü Lisans Programı (Ders dili İngilizce olan şubeler dosyanın

Detaylı

IE 303T Sistem Benzetimi L E C T U R E 6 : R A S S A L R A K A M Ü R E T I M I

IE 303T Sistem Benzetimi L E C T U R E 6 : R A S S A L R A K A M Ü R E T I M I IE 303T Sistem Benzetimi L E C T U R E 6 : R A S S A L R A K A M Ü R E T I M I Geçen Ders Sürekli Dağılımlar Uniform dağılımlar Üssel dağılım ve hafızasızlık özelliği (memoryless property) Gamma Dağılımı

Detaylı

BİYOİSTATİSTİK Örnekleme ve Örnekleme Yöntemleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH

BİYOİSTATİSTİK Örnekleme ve Örnekleme Yöntemleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH BİYOİSTATİSTİK Örnekleme ve Örnekleme Yöntemleri Yrd. Doç. Dr. Aslı SUNER KARAKÜLAH Ege Üniversitesi, Tıp Fakültesi, Biyoistatistik ve Tıbbi Bilişim AD. Web: www.biyoistatistik.med.ege.edu.tr 1 Araştırmalarda

Detaylı

TEMEL BİLGİTEKNOLOJİLERİ

TEMEL BİLGİTEKNOLOJİLERİ TEMEL BİLGİTEKNOLOJİLERİ Bilgiyi işlemekte kullanılan araçlar ikiye ayrılır. 1- Maddi cihazlar 2-Kavramsal araçlar. Kullanıcıve bilgisayarın karşılıklıetkileşimini sağlayan birimlerin genel adıgiriş-çıkışbirimleridir.

Detaylı

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ Günümüz simülasyonları gerçek sistem davranışlarını, zamanın bir fonksiyonu olduğu düşüncesine dayanan Monte Carlo yöntemine dayanır. 1.

Detaylı

Bilgisayar Mühendisliği Bölümü

Bilgisayar Mühendisliği Bölümü Bilgisayar Mühendisliği Bölümü Tarihçe Bölüm 1992 yılında kurulmuştur. 1994 yılında Yüksek Lisans eğitimine başlamıştır. 1999 yılından bu güne Lisans eğitimi gerçekleşmektedir. Bölümümüzün MÜDEK ve EUR-ACE

Detaylı

ANADOLU ÜNİVERSİTESİ OLASILIĞA GİRİŞ

ANADOLU ÜNİVERSİTESİ OLASILIĞA GİRİŞ ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ OLASILIĞA GİRİŞ DOÇ. DR. NİHAL ERGİNEL OLASILIĞA GİRİŞ - Bugün yağmur yağma olasılığı % 75 dir. - X marka bilgisayarın hiç servis gerektirmeden 100000 saat çalışması

Detaylı

Veri Madenciliği Yaklaşımı ile Mesleki Yönlendirme Sistemi

Veri Madenciliği Yaklaşımı ile Mesleki Yönlendirme Sistemi Veri Madenciliği Yaklaşımı ile Mesleki Yönlendirme Sistemi YRD. DOÇ. DR. HÜSEYİN GÜRÜLER MUĞLA SITKI KOÇMAN ÜNİVERSİTESİ, TEKNOLOJİ FAKÜLTESİ, BİLİŞİM SİSTEMLERİ MÜHENDİSLİĞİ Meslek Seçimi Meslek Seçimi

Detaylı

Çoklu Zeka Kuramı - Zeka Tipleri

Çoklu Zeka Kuramı - Zeka Tipleri Çoklu Zeka Kuramı - Zeka Tipleri Howard Gardner "Çoklu Zeka Kuramı" nı ortaya atmadan önce insanların zeki olup olmadığı matematik, geometri ve mantık sorulardan oluşan IQ testleri ile ölçülmekteydi. Fakat

Detaylı

YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ İNTİBAK ÇİZELGESİ 2010-2011 1.SINIF / GÜZ DÖNEMİ

YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ İNTİBAK ÇİZELGESİ 2010-2011 1.SINIF / GÜZ DÖNEMİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ İNTİBAK ÇİZELGESİ 2010-2011 1.SINIF / GÜZ DÖNEMİ Bu ders 1. Sınıf güz döneminden 2. Sınıf güz dönemine alınmıştır. gerektiği halde alamayan öğrenciler 2010-2011 öğretim yılı

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 1982 yılında kurulan bölümümüz 1986 yılında ilk mezunlarını vermiştir 1300 1300 Lisans, 190 25 190 Yüksek Lisans, 25 Doktora 93 Bölüm kontenjanımız

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 3616

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 3616 Dersi Veren Birim: Endüstri Mühendisliği Dersin Türkçe Adı: SİSTEM SİMÜLASYONU Dersin Orjinal Adı: SİSTEM SİMÜLASYONU Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: END 366

Detaylı

İSTATİSTİKSEL TAHMİNLEME. Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir.

İSTATİSTİKSEL TAHMİNLEME. Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir. İSTATİSTİKSEL TAHMİNLEME Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir. 1 ŞEKİL: Evren uzay-örneklem uzay İstatistiksel tahmin

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ 2013-2014 EĞİTİM-ÖĞRETİM YILINDAN İTİBAREN UYGULANACAK YENİ DERS PROGRAMI 1. SINIF GÜZ YARIYILI u in Adı T U L K AKTS Ön Şart 1501 EEM-101 EEM ne Giriş 1 0 0 1 2

Detaylı

IT-515 E-Devlet ve e-dönüşüm Türk Hava Kurumu Üniversitesi Bilişim Teknolojileri Yüksek Lisans Programı 2014

IT-515 E-Devlet ve e-dönüşüm Türk Hava Kurumu Üniversitesi Bilişim Teknolojileri Yüksek Lisans Programı 2014 IT-515 E-Devlet ve e-dönüşüm Türk Hava Kurumu Üniversitesi Bilişim Teknolojileri Yüksek Lisans Programı 2014 Geleceği (Kamuda Mevcut Ahmet Sözer h.ahmetsozer@hotmail.com Ders Öğretim Görevlileri Dr. İzzet

Detaylı

Parametrik Olmayan İstatistik

Parametrik Olmayan İstatistik Parametrik Olmayan İstatistik 2 Anakütlenin Karşılaştırılması İki Anakütlenin Karşılaştırılması Bağımsız Örnekler Eşleştirilmiş Örnekler Wilcoxon Mertebe Toplam Testi İşaret Testi Wilcoxon İşaretli Mertebe

Detaylı

SE Engineering Sciences 30 Mayıs 2011, Pazartesi 13:00 M1-2 İNG 152 -İngilizce II 31 Mayıs 2011, Salı 14:00 Yabancı Diller Binası

SE Engineering Sciences 30 Mayıs 2011, Pazartesi 13:00 M1-2 İNG 152 -İngilizce II 31 Mayıs 2011, Salı 14:00 Yabancı Diller Binası MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ FİNAL TARİHLERİ 2010-2011 BAHAR DÖNEMİ 1. SINIF Dersin Adı Sınav Tarihi Saat Sınav Yeri TRD 158 / 99 - Türk Dili II 30 Mayıs 2011, 10:00 Mühendislik Amfi SE 104

Detaylı

Öğretim planındaki AKTS 345031100000516 3 0 0 3 6

Öğretim planındaki AKTS 345031100000516 3 0 0 3 6 Ders Kodu Teorik Uygulama Lab. Liderlik Teorileri ve Davranışı Ulusal Kredi Öğretim planındaki AKTS 345031100000516 3 0 0 3 6 Ön Koşullar : Bu dersin ön koşulu bulunmamaktadır. Önerilen Dersler : İnsan

Detaylı

ĐŞLE 544 ĐSTATĐSTĐK ARA SINAV 11 Mayıs 2006

ĐŞLE 544 ĐSTATĐSTĐK ARA SINAV 11 Mayıs 2006 ĐŞLE 5 ĐSTATĐSTĐK ARA SINAV Mayıs 00 Adı Soyadı: No: [0 puan] -Bir Üniversitede okutulan derslerin öğrenciler tarafından değerlendirilmesi amacı ile hazırlanan bir anket formundaki sorulardan biri: Aldığınız

Detaylı

TARİHLİ EĞİTİM KOMİSYONU KARARLARI

TARİHLİ EĞİTİM KOMİSYONU KARARLARI 11.06.2015 TARİHLİ EĞİTİM KOMİSYONU KARARLARI Eğitim Komisyon Karar No: 902 Fen Bilimleri Enstitüsü Enstitü Kurulu nun Bilgisayar Mühendisliği Anabilim Dalının Doktora programında zorunlu olarak verilen

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2013/2014 BAHAR DÖNEMİ BÜTÜNLEME SINAV TAKVİMİ Lisansüstü Bilgisayar Müh. Bölümü

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2013/2014 BAHAR DÖNEMİ BÜTÜNLEME SINAV TAKVİMİ Lisansüstü Bilgisayar Müh. Bölümü BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2013/2014 BAHAR DÖNEMİ BÜTÜNLEME SINAV TAKVİMİ Lisansüstü Bilgisayar Müh. Bölümü 09:00 10:00 11:00 16.06.2014 17.06.2014 18.06.2014 19.06.2014 20.06.2014 Pazartesi Salı Çarşamba

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2013/2014 BAHAR DÖNEMİ BÜTÜNLEME SINAV TAKVİMİ Lisansüstü Bilgisayar Müh. Bölümü

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2013/2014 BAHAR DÖNEMİ BÜTÜNLEME SINAV TAKVİMİ Lisansüstü Bilgisayar Müh. Bölümü BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2013/2014 BAHAR DÖNEMİ BÜTÜNLEME SINAV TAKVİMİ Lisansüstü Bilgisayar Müh. Bölümü 09:00 10:00 10:00 11:00 11:00 12:00 12:00 13:00 13:00 14:00 BIL 606 208 14:00 15:00 15:00

Detaylı

MÜFREDAT DERS LİSTESİ

MÜFREDAT DERS LİSTESİ MÜFREDAT DERS LİSTESİ MÜHENDİSLİK FAK. / BİLGİSAYAR MÜHENDİSL / 2010 BİLGİSAYAR MÜHENDİSLİĞİ Müfredatı 0504101 Matematik I Calculus I 1 GÜZ 4 5 Z 0504102 Genel Fizik I General Physics I 1 GÜZ 4 4 Z 0504103

Detaylı

Mobil Güvenlik ve Denetim

Mobil Güvenlik ve Denetim Mobil Güvenlik ve Denetim IV. Bilgi Teknolojileri Denetim ve Yönetişim Konferansı Ümit Şen, Ernst & Young 14 Mart 2013 Gündem Mobil veri üretimi ve kullanımına ilişkin sayısal bilgiler Mobil cihazlara

Detaylı

MEÜ. SAĞLIK BĠLĠMLERĠ ENSTĠTÜSÜ DERS TANIMI FORMU

MEÜ. SAĞLIK BĠLĠMLERĠ ENSTĠTÜSÜ DERS TANIMI FORMU MEÜ. SAĞLIK BĠLĠMLERĠ ENSTĠTÜSÜ DERS TANIMI FORMU Dersin Adı-Kodu: BİS 601 Örnek Genişliği ve Güç Programın Adı: Biyoistatistik Dersin düzeyi Doktora Ders saatleri ve Teori Uyg. Lab. Proje/Alan Çalışması

Detaylı

Araştırma Oyunu BİLİMSEL YÖNTEM. Ortaöğretim öğrencilerini bilimsel araştırma yöntemlerini öğrenmeleri için teşvik etmek

Araştırma Oyunu BİLİMSEL YÖNTEM. Ortaöğretim öğrencilerini bilimsel araştırma yöntemlerini öğrenmeleri için teşvik etmek Araştırma Oyunu BİLİMSEL YÖNTEM Ortaöğretim öğrencilerini bilimsel araştırma yöntemlerini öğrenmeleri için teşvik etmek Yazarlar Bu rehber, Araştırma Oyunu Projesinin 4. iş paketinin bir çıktısı olarak

Detaylı

Eme Sistem simülasyonu. Giriş. Simulasyonun Kullanım Alanları (Devam) Simulasyonun Kullanım Alanları. Sistem Simülasyonuna Giriş

Eme Sistem simülasyonu. Giriş. Simulasyonun Kullanım Alanları (Devam) Simulasyonun Kullanım Alanları. Sistem Simülasyonuna Giriş Eme 3105 Giriş Sistem simülasyonu Gerçek Dünya Sureci Sistemin davranışıyla ilişkili varsayımlar seti Modelleme & Analiz Sistem Simülasyonuna Giriş Ders 1 Simülasyon, gerçek bir dünya sureci yada sistemindeki

Detaylı

9/14/2016 EME 3117 SİSTEM SIMÜLASYONU. Giriş. (Devam) Simulasyonun Kullanım Alanları. Sistem Simülasyonuna Giriş. Hafta 1. Yrd.Doç.Dr.

9/14/2016 EME 3117 SİSTEM SIMÜLASYONU. Giriş. (Devam) Simulasyonun Kullanım Alanları. Sistem Simülasyonuna Giriş. Hafta 1. Yrd.Doç.Dr. EME 3117 SİSTEM SIMÜLASYONU Sistem Simülasyonuna Giriş Hafta 1 Yrd.Doç.Dr.Beyazıt Ocaktan Giriş Simülasyon, gerçek bir dünya süreci yada sistemindeki işlemlerin zamana bağlı değişimlerinin taklit edilmesidir.

Detaylı

ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI

ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ TANIMLAR VE VERİ SINIFLAMASI DOÇ. DR. NİHAL ERGİNEL TANIMLAR VE VERİ SINIFLAMASI Olasılık, ilgilenilen olay/olayların meydana gelme olabilirliğinin ölçülmesidir.

Detaylı

YZM 2116 Veri Yapıları

YZM 2116 Veri Yapıları YZM 2116 Veri Yapıları Yrd. Doç. Dr. Deniz KILINÇ Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Yazılım Mühendisliği BAŞLAMADAN ÖNCE Bu dersi alan öğrencilerin aşağıdaki konuları bildiği

Detaylı

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U Saat Kredi AKTS SİSTEM MÜHENDİSLİĞİ METODOLOJİSİ ESYE505 1 3+0 3 10

DERS BİLGİLERİ. Ders Kodu Yarıyıl T+U Saat Kredi AKTS SİSTEM MÜHENDİSLİĞİ METODOLOJİSİ ESYE505 1 3+0 3 10 DERS BİLGİLERİ Ders Kodu Yarıyıl T+U Saat Kredi AKTS SİSTEM MÜHENDİSLİĞİ METODOLOJİSİ ESYE505 1 3+0 3 10 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Yüksek Lisans Zorunlu Dersin

Detaylı

Düzce Üniversitesi Mühendislik Fakültesi Biyomedikal Mühendisliği Bölümü. ( Eğitim-Öğretim Yılı)

Düzce Üniversitesi Mühendislik Fakültesi Biyomedikal Mühendisliği Bölümü. ( Eğitim-Öğretim Yılı) Düzce Üniversitesi Mühendislik Fakültesi Biyomedikal Mühendisliği Bölümü (2017-2018 Eğitim-Öğretim Yılı) Biyomedikal Mühendisliği bölümü, tıp, biyoloji mühendislik, fizik, kimya, matematik gibi bilimlerden

Detaylı

T.C. SAKARYA ÜNİVERSİTESİ SPOR BİLİMLERİ FAKÜLTESİ SPOR YÖNETİCİLİĞİ BÖLÜMÜ

T.C. SAKARYA ÜNİVERSİTESİ SPOR BİLİMLERİ FAKÜLTESİ SPOR YÖNETİCİLİĞİ BÖLÜMÜ T.C. SAKARYA ÜNİVERSİTESİ SPOR BİLİMLERİ FAKÜLTESİ SPOR YÖNETİCİLİĞİ BÖLÜMÜ ARAŞTIRMA PROJESİ BİTİRME ÇALIŞMASI HAZIRLAMA KILAVUZU (LİSANS ÖĞRENCİLERİ İÇİN) ARAŞTIRMA PROJESİ BİTİRME ÇALIŞMASI YÖNERGESİ

Detaylı

EME 3105 Giriş SISTEM SIMÜLASYONU Sistem Simülasyonuna Giriş Simülasyon Ders 1 Simülasyon, Yrd.Doç.Dr.Beyazıt Ocaktan

EME 3105 Giriş SISTEM SIMÜLASYONU Sistem Simülasyonuna Giriş Simülasyon Ders 1 Simülasyon, Yrd.Doç.Dr.Beyazıt Ocaktan EME 3105 Giriş SISTEM SIMÜLASYONU Sistem Simülasyonuna Giriş Gerçek Dünya Sureci Sistemin davranışıyla ilişkili varsayımlar seti Modelleme & Analiz Ders 1 Yrd.Doç.Dr.Beyazıt Ocaktan Simülasyon, gerçek

Detaylı

Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı

Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı cse@akdeniz.edu.tr Antalya, 2017 2 Özet Akdeniz Üniversitesi tanıtım filmi Neden Bilgisayar Mühendisliği Bilgisayar Mühendisi

Detaylı

Olasılık Kavramı. Recep YURTAL. Mühendislikte İstatistik Metotlar. Çukurova Üniversitesi İnşaat Mühendisliği Bölümü

Olasılık Kavramı. Recep YURTAL. Mühendislikte İstatistik Metotlar. Çukurova Üniversitesi İnşaat Mühendisliği Bölümü Olasılık Kavramı Mühendislikte İstatistik Metotlar Çukurova Üniversitesi İnşaat Mühendisliği ölümü OLSILIK KVRMI KÜME KVRMI irlikte ele alınan belirli nesneler topluluğuna küme, Kümede içerilen nesnelere

Detaylı

Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı

Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı Akdeniz Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölüm Tanıtımı cse@akdeniz.edu.tr Antalya, 2016 2 Özet Akdeniz Üniversitesi tanıtım filmi Neden Bilgisayar Mühendisliği Bilgisayar Mühendisi

Detaylı

15.10.2015 tarih ve 1009 sayılı Eğitim Komisyonu Kararı Eki

15.10.2015 tarih ve 1009 sayılı Eğitim Komisyonu Kararı Eki 5.0.205 tarih ve 009 sayılı Eğitim Komisyonu Kararı Eki Tablo ÖĞRETİM PROGRAMI TABLOSU Fen Fakültesi Aktüerya Bilimleri Bölümü Lisans Programı * GÜZ BAHAR. YARIYIL 2. YARIYIL ING 27 - İngilizce I 2 2 ING

Detaylı

Sosyal Bilimlerde İstatistik ve Araştırma Yöntemleri II (KAM 210) Ders Detayları

Sosyal Bilimlerde İstatistik ve Araştırma Yöntemleri II (KAM 210) Ders Detayları Sosyal Bilimlerde İstatistik ve Araştırma Yöntemleri II (KAM 210) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Uygulama Saati Saati Laboratuar Saati Kredi AKTS Sosyal Bilimlerde İstatistik ve Araştırma

Detaylı

Yapı Kredi Bankası Ar-Ge Çalışmaları Araştırma, Vizyon ve Uygulama. Eğitmen: Onur AĞIN

Yapı Kredi Bankası Ar-Ge Çalışmaları Araştırma, Vizyon ve Uygulama. Eğitmen: Onur AĞIN Yapı Kredi Bankası Ar-Ge Çalışmaları Araştırma, Vizyon ve Uygulama Eğitmen: Onur AĞIN 2016 Biz Kimiz? Kuruluş 9Eylül 2013 14 Kişilik bir Takım 11 Ar-Ge Mühendisi 2 Ar-Ge Koordinatörü 1 Müdür Yenilik Prototip

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Rastgele Değişkenlerin Dağılımları I Prof. Dr. İrfan KAYMAZ Ders konusu Bu derste; Rastgele değişkenlerin tanımı ve sınıflandırılması Olasılık kütle fonksiyonu Olasılık yoğunluk

Detaylı

EĞİTİM VE ÖĞRETİM YILI FİZİK ANABİLİM DALI DERS PLANI Güz Yarı yılı HAFTALIK DERSİN ADI KREDİSİ DERSİN

EĞİTİM VE ÖĞRETİM YILI FİZİK ANABİLİM DALI DERS PLANI Güz Yarı yılı HAFTALIK DERSİN ADI KREDİSİ DERSİN 2016-2017 EĞİTİM VE ÖĞRETİM YILI FİZİK ANABİLİM DALI DERS PLANI Güz Yarı yılı HAFTALIK DERSİN ADI DERS SAATİ KREDİSİ DERSİN Top T U L KODU l. Sİ FFZ5103 Kuantum Mekaniği I (i) FFZ5104 İleri Atom Fiziği

Detaylı

MATEMATİĞİN DOĞASI, YAPISI VE İŞLEVİ

MATEMATİĞİN DOĞASI, YAPISI VE İŞLEVİ İÇİNDEKİLER Önsöz.III Bölüm I: MATEMATİĞİN DOĞASI, YAPISI VE İŞLEVİ 11 1.1. Matematiğin Tanımına Çeşitli Yaklaşımlar 12 1.2.Matematik Öğrenmenin Amaçları 13 1.3.Matematik ile Diğer Öğrenme Alanlarının

Detaylı

DERS BİLGİLERİ Ders Kodu Yarıyıl T+U Saat Kredi AKTS Deneysel Tasarım EKO60 Bahar Ön Koşul Dersin Dili. Zorunlu

DERS BİLGİLERİ Ders Kodu Yarıyıl T+U Saat Kredi AKTS Deneysel Tasarım EKO60 Bahar Ön Koşul Dersin Dili. Zorunlu DERS BİLGİLERİ Ders Kodu Yarıyıl T+U Saat Kredi AKTS Deneysel Tasarım EKO60 Bahar 3+0 3 5 Ön Koşul Dersin Dili Türkçe Dersin Seviyesi Lisans Dersin Türü Dersi Veren Öğretim Elemanı Dersin Yardımcıları

Detaylı

Yrd. Doç. Dr. Gökçe BECİT İŞÇİTÜRK. Gökçe BECİT İŞÇİTÜRK 1

Yrd. Doç. Dr. Gökçe BECİT İŞÇİTÜRK. Gökçe BECİT İŞÇİTÜRK 1 Yrd. Doç. Dr. Gökçe BECİT İŞÇİTÜRK Gökçe BECİT İŞÇİTÜRK 1 Gökçe BECİT İŞÇİTÜRK 2 Kullanıcıların site içeriğini belirlemede rol oynadığı, Dinamik, Teknik bilgi gerektirmeyen, Çok yönlü etkileşim sağlayan,

Detaylı

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009

MIT OpenCourseWare Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 MIT OpenCourseWare http://ocw.mit.edu 14.30 Ekonomide İstatistiksel Yöntemlere Giriş Bahar 2009 Bu materyale atıfta bulunmak ve kullanım koşulları için http://ocw.mit.edu/terms sayfasını ziyaret ediniz.

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ DOKTORA DERS PROGRAMI (Lisanstan gelenler için)

BİLGİSAYAR MÜHENDİSLİĞİ DOKTORA DERS PROGRAMI (Lisanstan gelenler için) BİLGİSAYAR MÜHENDİSLİĞİ DOKTORA DERS PROGRAMI (Lisanstan gelenler için) HAZIRLIK PROGRAMI COME 27 İleri Nesneye Yönelik Programlama 5 COME 21 Veri Yapıları ve Algoritmalar COME 22 COME 1 COME 1 COME 411

Detaylı

I. İSTATİSTİK VE OLASILIK

I. İSTATİSTİK VE OLASILIK I. İSTATİSTİK VE OLASILIK Dr. İrfan Yolcubal Kocaeli Üniversitesi Jeoloji Müh. Bölümü Ders Kitabı Statistical analysis of Geological data (Koch G. S., ve Link, R. F., 1980. Dover Publications) A data-based

Detaylı

Elektrik ve Elektronik Mühendisliğine Giriş (EE 102 ) Ders Detayları

Elektrik ve Elektronik Mühendisliğine Giriş (EE 102 ) Ders Detayları Elektrik ve Elektronik Mühendisliğine Giriş (EE 102 ) Ders Detayları Ders Adı Ders Dönemi Ders Kodu Saati Uygulama Saati Laboratuar Kredi AKTS Saati Elektrik ve Elektronik Mühendisliğine Giriş EE 102 Bahar

Detaylı

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta:

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta: Genetik Algoritmalar Bölüm 1 Optimizasyon Yrd. Doç. Dr. Adem Tuncer E-posta: adem.tuncer@yalova.edu.tr Optimizasyon? Optimizasyon Nedir? Eldeki kısıtlı kaynakları en iyi biçimde kullanmak olarak tanımlanabilir.

Detaylı

Engellilik Ölçümünün İyileştirilmesi ve Engelleyici Olmayan Bir Çevrenin Sağlanması: Uluslararası Deneyimlerden Çıkarılan Dersler

Engellilik Ölçümünün İyileştirilmesi ve Engelleyici Olmayan Bir Çevrenin Sağlanması: Uluslararası Deneyimlerden Çıkarılan Dersler Engellilik Ölçümünün İyileştirilmesi ve Engelleyici Olmayan Bir Çevrenin Sağlanması: Uluslararası Deneyimlerden Çıkarılan Dersler ICT (Bilgi ve İletişim Teknolojisi) Erişilebilirliği Axel Leblois, G3ict

Detaylı

Termal Sistem Tasarımı (ME 408) Ders Detayları

Termal Sistem Tasarımı (ME 408) Ders Detayları Termal Sistem (ME 408) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Termal Sistem ME 408 Bahar 3 0 0 3 6 Ön Koşul Ders(ler)i ME 303, ME 301 Dersin Dili

Detaylı

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur

Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Kümeler Kümeler ve küme işlemleri olasılığın temellerini oluşturmak için çok önemlidir Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Sonlu sayıda, sonsuz sayıda, kesikli

Detaylı

BİLGİSAYAR VE ENFORMASYON BİLİMLERİ YÜKSEK LİSANS DERS PROGRAMI (Tezli Program)

BİLGİSAYAR VE ENFORMASYON BİLİMLERİ YÜKSEK LİSANS DERS PROGRAMI (Tezli Program) BİLGİSAYAR VE ENFORMASYON BİLİMLERİ YÜKSEK LİSANS DERS PROGRAMI (Tezli Program) HAZIRLIK PROGRAMI COME 27 İleri Nesneye Yönelik Programlama 2+2 3 5 COME 218 Veri Yapıları ve Algoritmalar 2+2 3 6 COME 226

Detaylı

Nevzat Melih TÜNEK THK Üniversitesi Bilişim Teknolojileri Bölümünde Yüksek Lisans Öğrencisi, bu sunumda sosyal medyanın e-devlet üzerindeki etkileri

Nevzat Melih TÜNEK THK Üniversitesi Bilişim Teknolojileri Bölümünde Yüksek Lisans Öğrencisi, bu sunumda sosyal medyanın e-devlet üzerindeki etkileri Nevzat Melih TÜNEK THK Üniversitesi Bilişim Teknolojileri Bölümünde Yüksek Lisans Öğrencisi, bu sunumda sosyal medyanın e-devlet üzerindeki etkileri konusu ele alınmıştır. 1 Sunum kapsamında sosyal medyanın

Detaylı