TAŞ DOLGU DALGAKIRANLARIN GENETİK ALGORİTMA İLE GÜVENİRLİK ANALİZİ. M. Levent Koç* Can E. Balas**

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "TAŞ DOLGU DALGAKIRANLARIN GENETİK ALGORİTMA İLE GÜVENİRLİK ANALİZİ. M. Levent Koç* Can E. Balas**"

Transkript

1 TAŞ DOLGU DALGAKIRANLARIN GENETİK ALGORİTMA İLE GÜVENİRLİK ANALİZİ M. Levent Koç* Can E. Balas** (*) Yrd. Doç. Dr., Cumhuriyet Üniversitesi, Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Sivas Tel: /1318 E-posta: (**) Doç. Dr., Gazi Üniversitesi, Mühendislik Mimarlık Fakültesi İnşaat Mühendisliği Bölümü, Ankara Tel: /2256 E-posta: GİRİŞ Taş dolgu dalgakıranlar, tasarım aşamasında, yüksek derecede belirsizlik içeren yapılardır ve bu belirsizlikler yük ve dayanım değişkenlerinin yanısıra tasarım sırasında kullanılan deneysel eşitliklerden de kaynaklanmaktadır. Belirsizlik faktörleri, yapının tasarım ömrü içinde gerçekleşebilecek hasar riskinin yanında güvenirlik seviyesini de etkilemektedir. Yapısal güvenirliğin tahmininde genellikle belirsizliklerin de dikkate alındığı ikinci düzey olasılık yöntemlerden yararlanılmaktadır. Bu tür yaklaşık olasılık yöntemlerinde, yapının güvenirlik indeksi, performans fonksiyonunun limit durumu için indirgenmiş tasarım değişkenleri sisteminin optimizasyonu yoluyla en olası yıkım (göçme) noktasına bağlı olarak belirlenmektedir. Ancak, bu tip yöntemlerle yapılan yapısal güvenirlik analizlerinde karşılaşılan en önemli sorunlardan biri yerel minimum noktalarının, güvenirlik indeksinin

2 belirlenmesinde belirleyici olmasıdır; bu da gerçek (en olası) yıkılma yüzeylerini temsil etmediğinden yapının beklenen seviyelerin de altında yıkılabilmesine neden olmaktadır. Genetik algoritmalar, sezgisel bir arama yöntemi olup son yıllarda birçok mühendislik problemine uygulanma olanağı bulmuş yapay zeka tekniklerinden biridir. Genetik operatörler yardımıyla doğal seçilim sürecinin bilgisayar ortamında benzeştirilmesini esas alan genetik algoritmaları diğer arama yöntemlerinden ayıran en önemli özellikler amaç fonksiyonunu kullanması dolayısıyla türev hesaplarına dayanmaması; tek noktada değil birçok noktada (bir grup çözüm içinde) arama yapması; parametrelerin kodlanmış diziler halinde temsil edilmesi ve stokastik bir arama yöntemi olmasıdır. Bu özellikler de, genetik algoritmaların, özellikle klasik arama yöntemlerinin yetersiz kaldığı karmaşık çözüm uzayları ile karakterize edilen, optimizasyon problemlerine uygulanmasını elverişli kılmaktadır; genetik algoritmalar, bu tip problemlerde global optimum çözüme genellikle daha yüksek bir olasılıkla ulaşabilmektedir. Dolayısıyla genetik algoritmalar, yüksek derecede belirsizlikler içeren taş dolgu dalgakıranların güvenirlik analizlerinde mevcut yöntemlere önemli bir alternatif oluşturmaktadır. Bu çalışmada Mersin Yat Limanı ana dalgakıranı koruma tabakası için güvenirlik analizi genetik algoritma ile yapılmış ve elde edilen sonuçlar ikinci moment yaklaşımı ve Monte Carlo Benzeşimi ile bulunan sonuçlarla karşılaştırılmıştır. Burada amaç, yapının yıkılma olasılığının daha güvenilir bir yaklaşımla belirlenmesi ve böylece daha ekonomik ve emniyetli tasarımın yapılması olmuştur. ÇALIŞMA YÖNTEMİ Bu çalışmada, taş dolgu dalgakıranlar için güvenirlik indeksi ikinci düzey olasıksal yöntemlerle birlikte genetik algoritma ile belirlenmiş ve elde edilen sonuçlar değerlendirilmiştir. Taş dolgu dalgakıranlar için "limit durum" belirlenen bir hasar seviyesinin yapının tümüyle yıkılmasına neden olmayacak, ancak performansını yerine getiremeyecek şekilde aşılması hali olarak tanımlanmıştır. Çalışmanın birinci kısmında, birinci mertebe ikinci momet yaklaşımıyla güvenirlik indeksi, Mersin yat limanı için verilen parametreler kullanılarak tahmin edilmiştir. Limit durum için yıkılma fonksiyonu Hudson eşitliğine bağlı olarak tanuımlanış olup değişkenler standart değişkenlere

3 indirgenmiş; belirgin dalga yüksekliği Rosenblatt dönüşümü ile eşdeğer normal dağılıma modellenmiştir. Yıkılma fonksiyonu ve kullanılan parametreler sırasıyla g:limit durum fonksiyonu, Y: eşitlikteki belirsizliklere karşılık gelen stokastik değişken, H s : yapının topuğundan itibaren belirgin dalga yüksekliği (m), θ: koruma tabakasının eğimi, D n50 : koruma tabakasının nominal taş çapı (m), K D : hasar seviyesine bağlı boyutsuz stabilite katsayısı, : koruma tabakasına ait göreceli taş yoğunluğu olmak üzere: n50 D 1 / 3 g = Y D ( K cotθ ) H (1) s olarak alınmıştır. Güvenirlik indeksi (β), ikinci moment yöntemi ile doğrudan ve iteratif olarak belirlenmiştir. Yıkılma olasılıkları (P f ) ve değişkenlerin en olası göçme yüzeyini temsil eden değerleri Tablo 1 in birinci ve ikinci satırlarında her iki yöntem için verilmiştir. Çalışmanın ikinci kısmında eşitlik (1) ile tanımlanan optimizasyon problemi genetik algoritma kullanılarak yapılmıştır. Başlangıç topluluğu değişkenlere ait istatistiki bilgiler ve olasılık dağılımları kullanılarak rassal şekilde oluşturulmuş; başlangıç topluluğundaki dizi sayısı 30 olarak belirlenmiş ve diziler onluk sisteme göre kodlanmıştır. Çaprazlama oranı 0,8; mutasyon oranı 0,001 seçilmiştir. Genetik algoritma ile elde edilen çözüm (Tablo 1 üçüncü satır) ayrıca amaç fonksiyonunun gradyen azalma (gradient descent) algoritması ile minimizasyonu yapılarak kontrol edilmiştir. Gradyen azalma algoritması ile elde edilen yıkılma olasılıkları ve değişkenlerin en olası göçme yüzeyini temsil eden değerleri Tablo 1 de dördüncü satırda verilmiştir. Sözkonusu minimizasyon işlemi tepe tırmanması (hill climbig) yöntemiyle de yapılmış ve sonuçlar Tablo 1 in beşinci satırında özetlenmiştir. Ayrıca, yapının yıkılma olasılığı, Monte Carlo Benzeşimi ile belirlenmiş ve bu aşamaya ait sonuçlar Tablo 1 in altıncı satırında verilmiştir.

4 Tablo 1. Değişik yöntemlerle elde edilen yıkılma olasılıkları ve tasarım değişkenlerinin yıkılma yüzeyine ait değerleri Yöntem β P f 1-P f Y (%) (%) D n50 Cot θ H s (m) (m) İkinci Moment 0,407 34,17 65,83 0,962 1,618 1,437 2,485 3,029 (Doğrudan çözüm) İkinci Moment (İteratif çözüm) 0,404 34,31 65,69 0,964 1,618 1,437 2,487 3,037 Genetik Algoritma 0,005 49,77 50,23 0,999 1,439 1,620 2,500 2,878 Gradyen Azalma 0,001 49,95 50,05 0,999 1,620 1,440 2,500 2,880 Tepe Tırmanması 0,003 49,87 50,13 1,000 1,620 1,440 2,499 2,880 Monte Carlo Benzeşimi - 45,74 54, BULGULAR Elde edilen sonuçlar karşılaştırıldığında, ikinci moment yöntemleri ve genetik algoritma ile elde edilen güvenirlik indeksleri arasında önemli oranda fark bulunmuş olup genetik algoritmanın gerçek (yerel olmayan) optimum çözüme ulaştığı açıktır. Bu sonuç, ikinci moment yaklaşımların yerel minimum noktaları bulunan yıkım yüzeylerinde iteratif algoritmaları nedeniyle doğru sonuç vermediğini; genetik algoritmaların, çoklu yerel minimum noktaları olan optimizasyon problemlerinde bile doğru sonuca (mutlak minimum veya maksimum) ulaşabilen bir yöntem olduğunu göstermektedir. Monte Carlo Benzeşimi gözönüne alınan değişkenlerin olasılık dağılımlarına ve istatistik parametrelerine bağlı rassal bir örnekleme yöntemidir ve karmaşık problemlerin çözümünde yaygın olarak kullanılan etkin tekniklerden birini oluşturmaktadır. Bu yaklaşım rassal örneklem üzerine kurulduğu için belirlenen yıkılma olasılıkları da rassal değişkenlerdir ve bu nedenle yıkılma olasılıkları aralık tahminleri olarak verilmiştir. Mersin yat limanı için yapılan güvenirlik analizinde, Monte Carlo Benzeşimi ile elde edilen yıkılma olasılığı, ikinci moment yöntemiyle iteratif olarak bulunan yıkılma olasılığından yaklaşık % 25 fazla, genetik algoritma ile bulunan olasılıktan ise yaklaşık % 9,0 azdır. Yıkılma olasılıkları dikkate alındığında, gradyen azalma ve tepe tırmanması yöntemleriyle genetik algoritma

5 birbirine çok yakın sonuçlar vermiştir (Tablo 1). Genetik algoritmanın, optimizasyon problemlerinde uygulanabilecek daha az karmaşık ve zaman alıcı bir yöntem olarak, yaklaşık çözümler veren ikinci moment yaklaşımından daha uygun olduğu ve taş dolgu dalgakıranların daha emniyetli tasarımını sağlayacağı bu çalışma ile Mersin yat limanı örneği için kanıtlanmıştır. İkinci moment yöntemi, uygulanması kolay olmakla birlikte fonksiyonun doğrusallaştırılması nedeniyle, yaklaşık çözümler vermektedir ve farklı yapılardaki güvenirlik düzeylerinin karşılaştırılması gerektiğinde kullanılması daha uygun olacaktır. Genetik algoritmalar, özellikle karmaşık (belirsiz) çözüm uzaylarında, daha yüksek bir olasılıkla global optimum çözüme ulaşabilmektedir. KAYNAKLAR Balas C.E., Ergin A., 2000, Sensitivity Study for the Second Order Reliability-Based Design Model of Rubble Mound Breakwaters, Coastal Engineering Journal, 42 (1), Burcharth, H. F., 1992, Reliability Evaluation of a Structure at Sea, Proc., Short Course on Design and Reliability of a Coastal Structures: Structural Integrity, A. Lamberti, ed., Tecnoprint Snc, Venice, Italy, Ergin A., Balas C.E., 1998, Implementation of a Reliability-Based Design Model in Turkey, Proceedings of the 17th International Conference on Offshore Mechanics and Arctic Engineering, Proceedings on CD-ROM - Paper No: , 5-9 July 1998, Lisbon, Portugal. Goldberg, D. E., 1989, Genetic Algorithms In Search, Optimization and Machine Learning, Addison-Wesley Publishing Company Inc., s 411, USA

6 Gonzalez, A., Perez, R., 2001, An Experimental Study About the Search Mechanism in the SLAVE learning Algorithm: Hill Climbing Methods Versus Genetic Algorithms, Information Sciences, 136, Jeong, H. K., Shenoi, R. A., 2000, Probabilistic Strength Analysis of Rectangular FRP Plates Using Monte Carlo Simulation, Computers and Structures, 76, Melchers, R. E., 1999, Structural Reliability Analysis and Prediction, John Wiley and Sons Inc., 456, New York. Polgar, O., Fried, M., Lohner, T., Barsony, I., 2000, Comparision of Algorithms Used for Evaluation of Ellipsometric Measurements Random Search, Genetic Algorithms, Simulated Annealing and Hill Climbing Graph Searches, Surface Science, 457, Tsang, E., Voudouris, C., 1997, Fast Local Search and Guided Local Seach and Their Application to Bristish Telecom s Work Force Scheduling Problem, Operations Research Letters, 20,

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI

KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI KİNETİK MODEL PARAMETRELERİNİN BELİRLENMESİNDE KULLANILAN OPTİMİZASYON TEKNİKLERİNİN KIYASLANMASI Hatice YANIKOĞLU a, Ezgi ÖZKARA a, Mehmet YÜCEER a* İnönü Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği

Detaylı

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta:

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta: Genetik Algoritmalar Bölüm 1 Optimizasyon Yrd. Doç. Dr. Adem Tuncer E-posta: adem.tuncer@yalova.edu.tr Optimizasyon? Optimizasyon Nedir? Eldeki kısıtlı kaynakları en iyi biçimde kullanmak olarak tanımlanabilir.

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Bu bölümde eşitsizlik kısıtlarına bağlı bir doğrusal olmayan kısıta sahip problemin belirlenen stasyoner noktaları

Detaylı

Tabakalı Kompozit Bir Malzemenin Genetik Algoritma Yöntemiyle Rijitlik Optimizasyonu

Tabakalı Kompozit Bir Malzemenin Genetik Algoritma Yöntemiyle Rijitlik Optimizasyonu th International Adanced Technologies Symposium (IATS ), -8 May 20, Elazığ, Turkey Tabakalı Kompozit Bir Malzemenin Genetik Algoritma Yöntemiyle Rijitlik Optimizasyonu Ö. Soykasap e K. B. Sugözü Afyon

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Altın Oran (Golden Section Search) Arama Metodu Tek değişkenli bir f(x) fonksiyonunu ele alalım. [Bazı x ler için f

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Genetik Algoritma (Genetic Algorithm) Doç.Dr. M. Ali Akcayol Genetik Algoritma 1970 li yıllarda John Holland tarafından geliştirilmiştir. 1989 yılında David E. Goldberg Genetik

Detaylı

Taş Dolgu Dalgakıranların Yapay Sinir Ağları ile Ön Tasarımı 1

Taş Dolgu Dalgakıranların Yapay Sinir Ağları ile Ön Tasarımı 1 İMO Teknik Dergi, 2004 3351-3375, Yazı 225 Taş Dolgu Dalgakıranların Yapay Sinir Ağları ile Ön Tasarımı 1 M. Levent KOÇ * Can E. BALAS ** Abdussamet ARSLAN *** ÖZ Yapay sinir ağları, karmaşık sistemlerin

Detaylı

Evrimsel Çok amaçlı eniyileme. Tahir Emre Kalaycı Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 25 Mart 2010

Evrimsel Çok amaçlı eniyileme. Tahir Emre Kalaycı Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 25 Mart 2010 Evrimsel Çok amaçlı eniyileme Tahir Emre Kalaycı Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 25 Mart 2010 Gündem Çok amaçlı eniyileme Giriş Evrimsel çok amaçlı eniyileme Sonuç Giriş Gerçek dünya problemleri

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Tabu Arama (Tabu Search) Doç.Dr. M. Ali Akcayol Tabu Arama 1986 yılında Glover tarafından geliştirilmiştir. Lokal minimum u elimine edebilir ve global minimum u bulur. Değerlendirme

Detaylı

Sıvı Depolarının Statik ve Dinamik Hesapları

Sıvı Depolarının Statik ve Dinamik Hesapları Sıvı Depolarının Statik ve Dinamik Hesapları Bu konuda yapmış olduğumuz yayınlardan derlenen ön bilgiler ve bunların listesi aşağıda sunulmaktadır. Bu başlık altında depoların pratik hesaplarına ilişkin

Detaylı

GÜVENĐLĐRLĐK-TABANLI YORULMA ÖMRÜ TAHMĐNĐ Erdem ACAR Orta Doğu Teknik Üniversitesi, Havacılık ve Uzay Mühendisliği Bölümü

GÜVENĐLĐRLĐK-TABANLI YORULMA ÖMRÜ TAHMĐNĐ Erdem ACAR Orta Doğu Teknik Üniversitesi, Havacılık ve Uzay Mühendisliği Bölümü makale GÜVENĐLĐRLĐK-TABANLI YORULMA ÖMRÜ TAHMĐNĐ Erdem ACAR Orta Doğu Teknik Üniversitesi, Havacılık ve Uzay Mühendisliği Bölümü Bu makalede metalik yapılardaki yorulma çatlak ilerlemesi güvenilirlik-tabanlı

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

Gevşek Hesaplama (COMPE 474) Ders Detayları

Gevşek Hesaplama (COMPE 474) Ders Detayları Gevşek Hesaplama (COMPE 474) Ders Detayları Ders Adı Gevşek Hesaplama Ders Kodu COMPE 474 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Bahar 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin Dili Dersin

Detaylı

İTME ANALİZİ KULLANILARAK YÜKSEK RİSKLİ DEPREM BÖLGESİNDEKİ BİR PREFABRİK YAPININ SİSMİK KAPASİTESİNİN İNCELENMESİ

İTME ANALİZİ KULLANILARAK YÜKSEK RİSKLİ DEPREM BÖLGESİNDEKİ BİR PREFABRİK YAPININ SİSMİK KAPASİTESİNİN İNCELENMESİ İTME ANALİZİ KULLANILARAK YÜKSEK RİSKLİ DEPREM BÖLGESİNDEKİ BİR PREFABRİK YAPININ SİSMİK KAPASİTESİNİN İNCELENMESİ ÖZET: B. Öztürk 1, C. Yıldız 2 ve E. Aydın 3 1 Yrd. Doç. Dr., İnşaat Müh. Bölümü, Niğde

Detaylı

Sayı : OB.00018 07.01.2016

Sayı : OB.00018 07.01.2016 Sayı : OB.00018 07.01.2016 Konu : Gemi Mühendisleri Odası Serbest Mühendislik, Müşavirlik Hizmetleri, Büro Tescil Ve Meslekî Denetim Yönetmeliğinde Değişiklik Yapılmasına İlişkin Yönetmelik ve Mesleki

Detaylı

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTUSÜ BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİMDALI. I. GENEL BİLGİLER Ders Adı

ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTUSÜ BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİMDALI. I. GENEL BİLGİLER Ders Adı BİM618 Evrimsel Algoritmalar Öğretim Üyesi Prof. Dr. Derviş Karaboğa Görüşme Saatleri 8.00-17.00 E posta: karaboga@erciyes.edu.tr http://abis.erciyes.edu.tr/sorgu.aspx?sorgu=236 Erciyes Üniversitesi, Mühendislik

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Quadratic Programming Bir karesel programlama modeli aşağıdaki gibi tanımlanır. Amaç fonksiyonu: Maks.(veya Min.) z

Detaylı

Bulanık Mantık Tabanlı Uçak Modeli Tespiti

Bulanık Mantık Tabanlı Uçak Modeli Tespiti Bulanık Mantık Tabanlı Uçak Modeli Tespiti Hüseyin Fidan, Vildan Çınarlı, Muhammed Uysal, Kadriye Filiz Balbal, Ali Özdemir 1, Ayşegül Alaybeyoğlu 2 1 Celal Bayar Üniversitesi, Matematik Bölümü, Manisa

Detaylı

DEPREM ETKİSİNDEKİ BİNALARIN GÜVENİLİRLİK ANALİZİ

DEPREM ETKİSİNDEKİ BİNALARIN GÜVENİLİRLİK ANALİZİ Altıncı Ulusal Deprem Mühendisliği Konferansı, 16-20 Ekim 2007, İstanbul Sixth National Conference on Earthquake Engineering, 16-20 October 2007, Istanbul, Turkey DEPREM ETKİSİNDEKİ BİNALARIN GÜVENİLİRLİK

Detaylı

Fonksiyon Optimizasyonunda Genetik Algoritmalar

Fonksiyon Optimizasyonunda Genetik Algoritmalar 01-12-06 Ümit Akıncı Fonksiyon Optimizasyonunda Genetik Algoritmalar 1 Fonksiyon Optimizasyonu Fonksiyon optimizasyonu fizikte karşımıza sık çıkan bir problemdir. Örneğin incelenen sistemin kararlı durumu

Detaylı

ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ANKARA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ SANAL ARTIRILMIŞ VE AKILLI TEKNOLOJİLER (SAAT) LABORATUVARI SAAT Laboratuvarı Koordinatör: Yrd. Doç. Dr. Gazi Erkan BOSTANCI SAAT

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Ara sınav - 25% Ödev (Haftalık) - 10% Ödev Sunumu (Haftalık) - 5% Final (Proje Sunumu) - 60% - Dönem sonuna kadar bir optimizasyon tekniğiyle uygulama geliştirilecek (Örn:

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik (Eşitlik Kısıtlı Türevli Yöntem) Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde

Detaylı

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Sıra İstatistikleri ve Uygulama Alanlarından Bir Örneğin Değerlendirmesi 89 SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Esin Cumhur PİRİNÇCİLER Araş. Gör. Dr., Çanakkale Onsekiz

Detaylı

Yrd.Doç. Dr. Tülin ÇETİN

Yrd.Doç. Dr. Tülin ÇETİN Yrd.Doç. Dr. Tülin ÇETİN ÖĞRENİM DURUMU Derece Üniversite Bölüm / Program Lisans Ege Üniversitesi Bilgisayar Mühendisliği 1987-1992 Lisans Celal Bayar Üniversitesi İnşaat Mühendisliği 2001-2004 Y. Lisans

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik İkiye Bölme / Yarılama Yöntemi Genel olarak f x = 0 gerek şartını sağlamak oldukça doğrusal olmayan ve bu sebeple çözümü

Detaylı

Kimya Mühendisliğinde Uygulamalı Matematik

Kimya Mühendisliğinde Uygulamalı Matematik Fen Bilimleri Enstitüsü Kimya Mühendisliği Anabilim Dalı Kimya Mühendisliğinde Uygulamalı Matematik DERS BİLGİ FORMU DERS BİLGİLERİ Dersin Adı Kodu Yarıyıl Kimya Mühendisliğinde Uygulamalı Matematik T

Detaylı

ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU

ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU ALTIN ORAN ARAMA (GOLDEN SECTION SEARCH) METODU Tek değişkenli bir f(x) fonksiyonunu ele alalım. [Bazı x ler için f (x) bulunamayabilir.] Aşağıdaki DOP modelini çözmek istediğimizi var sayalım. Max f(x)

Detaylı

Olasılık ve İstatistik (IE 220) Ders Detayları

Olasılık ve İstatistik (IE 220) Ders Detayları Olasılık ve İstatistik (IE 220) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Olasılık ve İstatistik IE 220 Her İkisi 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin

Detaylı

THE EFFECT OF PRODUCT NUMBER ON SOLVING THE JOP-SHOP SCHEDULING PROBLEM BY USING GENETIC ALGORITHM

THE EFFECT OF PRODUCT NUMBER ON SOLVING THE JOP-SHOP SCHEDULING PROBLEM BY USING GENETIC ALGORITHM GENETİK ALGORİTMA İLE ÇÖZÜMÜ GERÇEKLEŞTİRİLEN ATÖLYE ÇİZELGELEME PROBLEMİNDE ÜRÜN SAYISININ ETKİSİ Serdar BİROĞUL*, Uğur GÜVENÇ* (*) Gazi Üniversitesi Teknik Eğitim Fakültesi Elektrik Eğitimi Bölümü, Beşevler

Detaylı

DOĞRUSAL OLMAYAN REGRESYON ANALİZİNDE GERÇEK DEĞER KODLAMALI GENETİK ALGORİTMA

DOĞRUSAL OLMAYAN REGRESYON ANALİZİNDE GERÇEK DEĞER KODLAMALI GENETİK ALGORİTMA Istanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi Yıl:8 Sayı:15 Bahar 2009 s.167-178 DOĞRUSAL OLMAYAN REGRESYON ANALİZİNDE GERÇEK DEĞER KODLAMALI GENETİK ALGORİTMA Timur KESKİNTÜRK * Serap ŞAHİN ÖZET

Detaylı

Olasılık ve İstatistik (IE 220) Ders Detayları

Olasılık ve İstatistik (IE 220) Ders Detayları Olasılık ve İstatistik (IE 220) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Olasılık ve İstatistik IE 220 Her İkisi 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

RİSK ANALİZİ VE AKTÜERYAL MODELLEME SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla

Detaylı

Türkiye Kömür Madenciliği Yatırımları için Bir Risk Analiz Modeli

Türkiye Kömür Madenciliği Yatırımları için Bir Risk Analiz Modeli Türkiye Kömür Madenciliği Yatırımları için Bir Risk Analiz Modeli A Risk Analysis Model for Coal Mining Investments in Turkey Neş'e ÇELEBİ * Tünay SEYRANTEPE ** ÖZET Bu yazıda, Türk Kömür Madenciliği koşullarına

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ FORMU

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ FORMU BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ FORMU KİŞİSEL BİLGİLER Adı Soyadı Tolga YÜKSEL Ünvanı Birimi Doğum Tarihi Yrd. Doç. Dr. Mühendislik Fakültesi/ Elektrik Elektronik Mühendisliği 23.10.1980

Detaylı

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI

ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI SORU- 1 : ISTATISTIK VE OLASILIK SINAVI EKİM 2016 WEB SORULARI X ve Y birbirinden bağımsız iki rasgele değişken olmak üzere, sırasıyla aşağıdaki moment çıkaran fonksiyonlarına sahiptir: 2 2 M () t = e,

Detaylı

Ders Kodu Dersin Adı Yarıyıl Teori Uygulama Lab Kredisi AKTS IND 621 Stokastik Süreçler

Ders Kodu Dersin Adı Yarıyıl Teori Uygulama Lab Kredisi AKTS IND 621 Stokastik Süreçler İçerik Ders Kodu Dersin Adı Yarıyıl Teori Uygulama Lab Kredisi AKTS IND 621 Stokastik Süreçler 1 3 0 0 3 8 Ön Koşul Derse Kabul Koşulları Dersin Dili Türü Dersin Düzeyi Dersin Amacı İngilizce Zorunlu Doktora

Detaylı

ÖĞRENİM DURUMU Derece Üniversite Bölüm / Program Yıllar Lisans Atatürk Üniversitesi İnşaat Mühendisliği Y. Lisans - - -

ÖĞRENİM DURUMU Derece Üniversite Bölüm / Program Yıllar Lisans Atatürk Üniversitesi İnşaat Mühendisliği Y. Lisans - - - Doç. Dr. Erkan DOĞAN ÖĞRENİM DURUMU Derece Üniversite Bölüm / Program Yıllar Lisans Atatürk Üniversitesi İnşaat Mühendisliği 998-00 Y. Lisans - - - Doktora Adres Orta Doğu Teknik Üniversitesi Fen Bilimleri

Detaylı

MONTE CARLO BENZETİMİ

MONTE CARLO BENZETİMİ MONTE CARLO BENZETİMİ U(0,1) rassal değişkenler kullanılarak (zamanın önemli bir rolü olmadığı) stokastik ya da deterministik problemlerin çözümünde kullanılan bir tekniktir. Monte Carlo simülasyonu, genellikle

Detaylı

Klasik optimizasyon, maksimum, minimum, eğer noktaları, kısıtlamalı ve kısıtlamasız problemler. Geleneksel olmayan optimizasyon metotları:

Klasik optimizasyon, maksimum, minimum, eğer noktaları, kısıtlamalı ve kısıtlamasız problemler. Geleneksel olmayan optimizasyon metotları: DERS BİLGİ FORMU ENSTİTÜ/ PROGRAM: FEN BİLİMLERİ ENSTİTÜSÜ / MAKİNE MÜHENDİSLİĞİ DERS BİLGİLERİ Adı Kodu Dili ÇOK-DİSİPLİNLİ TASARIM OPTİMİZASYONU Türü Zorunlu/ Seçmeli MAK 741 Türkçe Seçmeli Yarıyılı

Detaylı

ÖZGEÇMİŞ. Derece Alan Üniversite Yıl

ÖZGEÇMİŞ. Derece Alan Üniversite Yıl ÖZGEÇMİŞ Adı Soyadı : Hasan Karakul Doğum Tarihi : 04.05.1980 Unvanı : Yrd.Doç.Dr Öğrenim Durumu : Doktora (Üniversite) Çalıştığı Kurum :İzmir Kâtip Çelebi Üniversitesi Derece Alan Üniversite Yıl Lisans

Detaylı

Markov Zinciri Monte Carlo Yaklaşımı. Aktüeryal Uygulamaları

Markov Zinciri Monte Carlo Yaklaşımı. Aktüeryal Uygulamaları Markov Zinciri Monte Carlo Yaklaşımı ve Aktüeryal Uygulamaları ŞİRZAT ÇETİNKAYA Aktüer Sistem Araştırma Geliştirme Bölümü AKTÜERLER DERNEĞİ 2.0.20080 2008 - İSTANBUL Sunum Planı. Giriş 2. Bayesci Metodun

Detaylı

AST416 Astronomide Sayısal Çözümleme - II. 6. Monte Carlo

AST416 Astronomide Sayısal Çözümleme - II. 6. Monte Carlo AST416 Astronomide Sayısal Çözümleme - II 6. Monte Carlo Bu derste neler öğreneceksiniz? Monte Carlo Yöntemleri Markov Zinciri (Markov Chain) Rastgele Yürüyüş (Random Walk) Markov Chain Monte Carlo, MCMC

Detaylı

Temel ve Uygulamalı Araştırmalar için Araştırma Süreci

Temel ve Uygulamalı Araştırmalar için Araştırma Süreci BÖLÜM 8 ÖRNEKLEME Temel ve Uygulamalı Araştırmalar için Araştırma Süreci 1.Gözlem Genel araştırma alanı 3.Sorunun Belirlenmesi Sorun taslağının hazırlanması 4.Kuramsal Çatı Değişkenlerin açıkça saptanması

Detaylı

Altın Oran Arama Metodu(Golden Search)

Altın Oran Arama Metodu(Golden Search) Altın Oran Arama Metodu(Golden Search) Bir f(x) (tek değişkenli) fonksiyonunu ele alalım. [Bazı x ler için f (x) bulunamayabilir.] Aşağıdaki DOP modelini çözmek istediğimizi var sayalım. Max f(x) a x b

Detaylı

Genetik Algoritma ile Türkiye Net Elektrik Enerjisi Tüketiminin 2020 Yılına Kadar Tahmini

Genetik Algoritma ile Türkiye Net Elektrik Enerjisi Tüketiminin 2020 Yılına Kadar Tahmini International Journal of Engineering Research and Development, Vol.3, No.2, June 2011 37 Genetik Algoritma ile Türkiye Net Elektrik Enerjisi Tüketiminin 2020 Yılına Kadar Tahmini Vecihi Yigit Industrial

Detaylı

BAZI İLLER İÇİN GÜNEŞ IŞINIM ŞİDDETİ, GÜNEŞLENME SÜRESİ VE BERRAKLIK İNDEKSİNİN YENİ ÖLÇÜMLER IŞIĞINDA ANALİZİ

BAZI İLLER İÇİN GÜNEŞ IŞINIM ŞİDDETİ, GÜNEŞLENME SÜRESİ VE BERRAKLIK İNDEKSİNİN YENİ ÖLÇÜMLER IŞIĞINDA ANALİZİ Güneş Günü Sempozyumu 99-28 Kayseri, 2-27 Haziran 1999 BAZI İLLER İÇİN GÜNEŞ IŞINIM ŞİDDETİ, GÜNEŞLENME SÜRESİ VE BERRAKLIK İNDEKSİNİN YENİ ÖLÇÜMLER IŞIĞINDA ANALİZİ Hüsamettin BULUT Çukurova Üni. Müh.

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ

ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ Adı Soyadı : Ömer AKGÖBEK Doğum Tarihi : 01.01.1970 Unvanı : Yardımcı Doçent Öğrenim Durumu: Derece Bölüm/Program Üniversite Yıl Lisans Endüstri Mühendisliği İstanbul

Detaylı

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics

2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics 2011 Third International Conference on Intelligent Human-Machine Systems and Cybernetics Özet: Bulanık bir denetleyici tasarlanırken karşılaşılan en önemli sıkıntı, bulanık giriş çıkış üyelik fonksiyonlarının

Detaylı

Yrd. Doç. Dr. Mehmet Güçlü

Yrd. Doç. Dr. Mehmet Güçlü Dersin Adı DERS ÖĞRETİM PLANI Ekonometri I Dersin Kodu ECO 301 Dersin Türü (Zorunlu, Seçmeli) Dersin Seviyesi (Ön Lisans, Lisans, Yüksek Lisans, Doktora) Dersin AKTS Kredisi 6 Haftalık Ders Saati 4 Haftalık

Detaylı

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ YAZ OKULU DERS İÇERİGİ. Bölümü Dersin Kodu ve Adı T P K AKTS

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ YAZ OKULU DERS İÇERİGİ. Bölümü Dersin Kodu ve Adı T P K AKTS Bir Dönemde Okutulan Ders Saati MAT101 Genel I (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri) 1 Kümeler, reel sayılar, bir denklem veya eşitsizliğin grafiği 2 Fonksiyonlar,

Detaylı

LOGİSTİC DAĞILIM VE RANDOM SAYI ÜRETİMİ

LOGİSTİC DAĞILIM VE RANDOM SAYI ÜRETİMİ C.Ü. İktisadi ve İdari Bilimler Dergisi, Cilt 3, Sayı, 9 LOGİSTİC DAĞILIM VE RANDOM SAYI ÜRETİMİ Yalçın KARAGÖZ Cumhuriyet Üniversitesi, İ.İ.B.F. İşletme Bölümü Özet Bu çalışmada logistic dağılım hakkında

Detaylı

Ö Z G E Ç M İ Ş. 1. Adı Soyadı: Mustafa GÖÇKEN. 2. Doğum Tarihi: 12 Haziran 1976. 3. Unvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu: Ph.D.

Ö Z G E Ç M İ Ş. 1. Adı Soyadı: Mustafa GÖÇKEN. 2. Doğum Tarihi: 12 Haziran 1976. 3. Unvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu: Ph.D. Ö Z G E Ç M İ Ş 1. Adı Soyadı: Mustafa GÖÇKEN 2. Doğum Tarihi: 12 Haziran 1976 3. Unvanı: Yrd. Doç. Dr. 4. Öğrenim Durumu: Ph.D. Derece Alan Üniversite Yıl Lisans Endüstri Mühendisliği Çukurova Üniversitesi

Detaylı

91-03-01-517 YAPAY ZEKA (Artificial Intelligence)

91-03-01-517 YAPAY ZEKA (Artificial Intelligence) 91-03-01-517 YAPAY ZEKA (Artificial Intelligence) Dersi Veren Öğretim Üyesi Y. Doç. Dr. Aybars UĞUR Ders Web Sayfası : http://yzgrafik.ege.edu.tr/~ugur 27.09.2009 Y. Doç. Dr. Aybars UĞUR (517 Yapay Zeka)

Detaylı

KARADENİZ İÇİN DETERMİNİSTİK YÖNTEMLE TASARLANAN KIYI MAHMUZLARININ GÜVENİRLİĞE DAYALI YÖNTEMLERLE İRDELENMESİ. Emrah Cem TOZLU

KARADENİZ İÇİN DETERMİNİSTİK YÖNTEMLE TASARLANAN KIYI MAHMUZLARININ GÜVENİRLİĞE DAYALI YÖNTEMLERLE İRDELENMESİ. Emrah Cem TOZLU KARADENİZ İÇİN DETERMİNİSTİK YÖNTEMLE TASARLANAN KIYI MAHMUZLARININ GÜVENİRLİĞE DAYALI YÖNTEMLERLE İRDELENMESİ Emrah Cem TOZLU YÜKSEK LİSANS TEZİ İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI GAZİ ÜNİVERSİTESİ FEN

Detaylı

CRYSTAL BALL Eğitimi

CRYSTAL BALL Eğitimi CRYSTAL BALL Eğitimi İki günlük bu kursun ilk yarısında, Crystal Ball Fusion Edition kullanılarak Excel tablolarına dayalı risk analizi öğretilecektir. Monte Carlo simülasyonu, tornado analizi ve Crystal

Detaylı

İSTATİSTİKSEL TAHMİNLEME. Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir.

İSTATİSTİKSEL TAHMİNLEME. Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir. İSTATİSTİKSEL TAHMİNLEME Örneklem istatistiklerinden hareketle ana kütle parametreleri hakkında genelleme yapmaya istatistiksel tahminleme denir. 1 ŞEKİL: Evren uzay-örneklem uzay İstatistiksel tahmin

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Hessien Matris-Quadratik Form Mutlak ve Bölgesel Maksimum-Minimum Noktalar Giriş Kısıtlı ve kısıtsız fonksiyonlar için

Detaylı

Yaz Stajı II (IE 499) Ders Detayları

Yaz Stajı II (IE 499) Ders Detayları Yaz Stajı II (IE 499) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Yaz Stajı II IE 499 Güz 0 0 0 0 6 Ön Koşul Ders(ler)i IE 399 Dersin Dili Dersin Türü

Detaylı

DOĞAL GAZ & ENERJİ YÖNETİMİ BİLDİRİLER KİTABI

DOĞAL GAZ & ENERJİ YÖNETİMİ BİLDİRİLER KİTABI TMMOB MAKİNA MÜHENDİSLERİ ODASI İİ DOĞAL GAZ & ENERJİ YÖNETİMİ KONGRE ve SERGİSİ BİLDİRİLER KİTABI GAZİANTEP EYLÜL 2001 TMMOB MAKİNA MÜHENDİSLERİ ODASİ Sümer Sok. 36/1-A Uemirtepc /ANKARA Tel : 0(312)231

Detaylı

Olasılık Teorisi ve İstatistik (MATH392) Ders Detayları

Olasılık Teorisi ve İstatistik (MATH392) Ders Detayları Olasılık Teorisi ve İstatistik (MATH392) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Olasılık Teorisi ve İstatistik MATH392 Güz 4 0 0 4 7 Ön Koşul Ders(ler)i

Detaylı

ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER

ANADOLU ÜNİVERSİTESİ BEKLENEN DEĞER. X beklenen değeri B[X] ile gösterilir. B[X] = İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER ANADOLU ÜNİVERSİTESİ İST 213 OLASILIK DERSİ BEKLENEN DEĞER VE MOMENTLER DOÇ. DR. NİHAL ERGİNEL 2015 X beklenen değeri B[X] ile gösterilir. B[X] = BEKLENEN DEĞER Belli bir malzeme taşınan kolilerin ağırlıkları

Detaylı

ÖZGEÇMİŞ. Adı Soyadı : Mevlüt YETKİN. İletişim Bilgileri:

ÖZGEÇMİŞ. Adı Soyadı : Mevlüt YETKİN. İletişim Bilgileri: ÖZGEÇMİŞ Adı Soyadı : Mevlüt YETKİN Ünvanı : Yard. Doç. Dr. İletişim Bilgileri: İş Adresi İzmir Kâtip Çelebi Üniversitesi, Mühendislik-Mimarlık Fakültesi, Harita Mühendisliği Bölümü, Balatçık Mahallesi,

Detaylı

ONARILABĐLĐR ELEMANLARA ÖNLEYĐCĐ BAKIMIN ETKĐSĐ VE OPTĐMĐZASYONU*

ONARILABĐLĐR ELEMANLARA ÖNLEYĐCĐ BAKIMIN ETKĐSĐ VE OPTĐMĐZASYONU* makale Ayşe KAHVEĐOĞLU * Yrd. Doç. Dr., Anadolu Üniversitesi ONAILABĐLĐ ELEMANLAA ÖNLEYĐĐ BAKIMIN EKĐSĐ VE OĐMĐZASYONU* GĐĐŞ Bakım faaliyetinin temel amacı, olabilecek muhtemel arızaların önlenmesi veya

Detaylı

PARALEL MAKĠNALARIN GENETĠK ALGORĠTMA ĠLE ÇĠZELGELENMESĠNDE MUTASYON ORANININ ETKĠNLĠĞĠ

PARALEL MAKĠNALARIN GENETĠK ALGORĠTMA ĠLE ÇĠZELGELENMESĠNDE MUTASYON ORANININ ETKĠNLĠĞĠ Ege Akademik BakıĢ / Ege Academic Review 10 (1) 2010: 199-210 PARALEL MAKĠNALARIN GENETĠK ALGORĠTMA ĠLE ÇĠZELGELENMESĠNDE MUTASYON ORANININ ETKĠNLĠĞĠ EFFICIENCY OF MUTATION RATE FOR PARALLEL MACHINE SCHEDULING

Detaylı

Yrd. Doç. Dr.Yiğit Aksoy

Yrd. Doç. Dr.Yiğit Aksoy Yrd. Doç. Dr.Yiğit Aksoy ÖĞRENİM DURUMU Derece Üniversite Bölüm / Program Lisans Celal Bayar Üniversitesi Makine Mühendisliği 00 Y. Lisans Celal Bayar Üniversitesi Makine Mühendisliği 00 Doktora Celal

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ

ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ VE ESERLER LİSTESİ 1. Adı Soyadı : Metin ZEYVELİ 2. DoğumTarihi : 30 Haziran 1971 3. Unvanı : Yrd. Doç. Dr. 4. Öğrenim Durumu : Derece Alan Üniversite Yıl Lisans Makine Eğitimi Gazi Üniversitesi

Detaylı

Olasılık ve İstatistik II (IE 202) Ders Detayları

Olasılık ve İstatistik II (IE 202) Ders Detayları Olasılık ve İstatistik II (IE 202) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Olasılık ve İstatistik II IE 202 Bahar 3 0 0 3 5 Ön Koşul Ders(ler)i Olasılık

Detaylı

Olasılık ve Rastgele Süreçler (EE213) Ders Detayları

Olasılık ve Rastgele Süreçler (EE213) Ders Detayları Olasılık ve Rastgele Süreçler (EE213) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Olasılık ve Rastgele Süreçler EE213 Güz 3 0 0 3 7 Ön Koşul Ders(ler)i

Detaylı

Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ANKARA

Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ANKARA i GENETİK ALGORİTMA YAKLAŞIMIYLA ATÖLYE ÇİZELGELEME Serdar BİROĞUL YÜKSEK LİSANS TEZİ (ELEKTRİK EĞİTİMİ) GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ OCAK 2005 ANKARA ii Serdar BİROĞUL tarafından hazırlanan

Detaylı

ÖZGEÇMİŞ. Derece Bölüm/Program Üniversite Yıl. Lisans İSTATİSTİK ANADOLU Yüksek Lisans İŞLETME / SAYISAL YÖNTEMLER ANADOLU 1999

ÖZGEÇMİŞ. Derece Bölüm/Program Üniversite Yıl. Lisans İSTATİSTİK ANADOLU Yüksek Lisans İŞLETME / SAYISAL YÖNTEMLER ANADOLU 1999 ÖZGEÇMİŞ Adı Soyadı E-posta : Metin BAŞ : metin.bas@dpu.edu.tr Telefon : 2207 Doğum Tarihi : 30 Eylül 1971 Ünvanı : Yardımcı Doçent Doktor Öğrenim Durumu: Derece Bölüm/Program Üniversite Yıl Lisans İSTATİSTİK

Detaylı

28 C j -Z j /2 0

28 C j -Z j /2 0 3.2.6. Dual Problem ve Ekonomik Yorumu Primal Model Z maks. = 4X 1 + 5X 2 (kar, pb/gün) X 1 + 2X 2 10 6X 1 + 6X 2 36 8X 1 + 4X 2 40 (işgücü, saat/gün) (Hammadde1, kg/gün) (Hammadde2, kg/gün) 4 5 0 0 0

Detaylı

T.C. İZMİR KÂTİP ÇELEBİ UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE DEPARTMENT OF CIVIL ENGINEERING. Course Name T P L ECTS

T.C. İZMİR KÂTİP ÇELEBİ UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE DEPARTMENT OF CIVIL ENGINEERING. Course Name T P L ECTS FIRST YEAR 1st semesr T.C. İZMİR KÂTİP ÇELEBİ UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE DEPARTMENT OF CIVIL ENGINEERING MAT101 Calculus I Mamatik I PHY101 Physics I Fizik I 3 0 2 7 CHE101 Chemistry

Detaylı

Kalkülüs II (MATH 152) Ders Detayları

Kalkülüs II (MATH 152) Ders Detayları Kalkülüs II (MATH 152) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kalkülüs II MATH 152 Güz 4 2 0 5 7.5 Ön Koşul Ders(ler)i Math 151 Kalkülüs I Dersin

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015 RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015 SORU 2: Motosiklet sigortası pazarlamak isteyen bir şirket, motosiklet kaza istatistiklerine bakarak, poliçe başına yılda ortalama 0,095 kaza olacağını tahmin

Detaylı

Antenler ve Radyo Dalga Yayılımı (EE 531) Ders Detayları

Antenler ve Radyo Dalga Yayılımı (EE 531) Ders Detayları Antenler ve Radyo Dalga Yayılımı (EE 531) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Antenler ve Radyo Dalga Yayılımı EE 531 Seçmeli 3 0 0 3 7.5 Ön Koşul

Detaylı

OPTİMUM TOLERANSLARIN BELİRLENMESİNDE CEVAP YÜZEYİ YÖNTEMLERİNİN KULLANILMASI ÜZERİNE BİR İNCELEME 1 Cenk ÖZLER 2

OPTİMUM TOLERANSLARIN BELİRLENMESİNDE CEVAP YÜZEYİ YÖNTEMLERİNİN KULLANILMASI ÜZERİNE BİR İNCELEME 1 Cenk ÖZLER 2 D.E.Ü.İ.İ.B.F. Dergisi Cilt:1 Sayı:1, Yıl:006, ss: 71-83 OPTİMUM TOLERANSLARIN BELİRLENMESİNDE CEVAP YÜZEYİ YÖNTEMLERİNİN KULLANILMASI ÜZERİNE BİR İNCELEME 1 Cenk ÖZLER ÖZET Bir montajı oluşturan bileşenlerin

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I 1/19 İçerik Yöneylem Araştırmasının Dalları Kullanım Alanları Yöneylem Araştırmasında Bazı Yöntemler Doğrusal (Lineer) Programlama, Oyun Teorisi, Dinamik Programlama, Tam Sayılı

Detaylı

Görev Unvanı Alan Üniversite Yıl Prof. Dr. Elek.-Eln Müh. Çukurova Üniversitesi Eylül 2014

Görev Unvanı Alan Üniversite Yıl Prof. Dr. Elek.-Eln Müh. Çukurova Üniversitesi Eylül 2014 ÖZGEÇMİŞ 1. Adı Soyadı : MUSTAFA GÖK 2. Doğum Tarihi: : 1972 3. Unvanı : Prof. Dr. 4. Öğrenim Durumu Derece Alan Üniversite Yıl Lisans Elektronik Mühendisliği İstanbul Üniversitesi 1995 Yüksek Lisans Electrical

Detaylı

Kalkülüs I (MATH 151) Ders Detayları

Kalkülüs I (MATH 151) Ders Detayları Kalkülüs I (MATH 151) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Kalkülüs I MATH 151 Güz 4 2 0 5 7.5 Ön Koşul Ders(ler)i Dersin Dili Dersin Türü Dersin

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR

ÖZGEÇMİŞ. 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR Resim ÖZGEÇMİŞ 1. Adı Soyadı : Kamile ŞANLI KULA İletişim Bilgileri : Ahi Evran Üniversitesi, Fen Edebiyat Fakültesi, Adres Matematik Bölümü, KIRŞEHİR Telefon : 386 280 45 50 Mail : kskula@ahievran.edu.tr

Detaylı

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

GENETİK ALGORİTMALAR. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ GENETİK ALGORİTMALAR Genetik algoritmalar, Darwin in doğal seçim ve evrim teorisi ilkelerine dayanan bir arama ve optimizasyon yöntemidir.

Detaylı

İSTATİSTİK DERS NOTLARI

İSTATİSTİK DERS NOTLARI Balıkesir Üniversitesi İnşaat Mühendisliği Bölümü umutokkan@balikesir.edu.tr İSTATİSTİK DERS NOTLARI Yrd. Doç. Dr. Umut OKKAN Hidrolik Anabilim Dalı Balıkesir Üniversitesi Balıkesir Üniversitesi İnşaat

Detaylı

4 th International Advanced Technologies Symposium September 28 30, 2005 Konya / Türkiye DÜZ DİŞLİ HIZ KUTUSUNUN GENETİK ALGORİTMA İLE ENİYİLENMESİ

4 th International Advanced Technologies Symposium September 28 30, 2005 Konya / Türkiye DÜZ DİŞLİ HIZ KUTUSUNUN GENETİK ALGORİTMA İLE ENİYİLENMESİ 4 th International Advanced Technologies Symposium September 8 3, 5 Konya / Türkiye DÜZ DİŞLİ HIZ KUTUSUNUN GENETİK ALGORİTMA İLE ENİYİLENMESİ Metin ZEYVELİ Cevdet GÖLOĞLU Kürşad DÜNDAR ) Gazi Üniversitesi

Detaylı

ÇİFT ANADAL TABLOSU. ME 203 Statics NA NA ME 211 Thermodynamics I NA NA

ÇİFT ANADAL TABLOSU. ME 203 Statics NA NA ME 211 Thermodynamics I NA NA ÇİFT ANADAL TABLOSU Makine Mühendisliği Programında Çift Anadal a başvuran değişik bölüm öğrencilerinin alması gereken dersler aşağıda verilmiştir. (Alınması gerekmeyen dersler koyu hücreler içerisinde

Detaylı

English for Academic Reading & Speaking I İngilizce Akademik Okuma ve Konuşma I. Introduction to Civil Engineering İnşaat Mühendisliğine Giriş

English for Academic Reading & Speaking I İngilizce Akademik Okuma ve Konuşma I. Introduction to Civil Engineering İnşaat Mühendisliğine Giriş T.C. İZMİR KÂTİP ÇELEBİ ÜNİVERSİTESİ MÜHENDİSLİK VE MİMARLIK FAKÜLTESİ İNŞAAT MÜHENDİSLİĞİ BÖLÜMÜ 2015-16 GÜZ YARIYILI VE SONRASINDA UYGULANACAK LİSANS PROGRAMI (%100 İNGİLİZCE) BİRİNCİ YIL 1. DÖNEM Ön

Detaylı

YZM 2116 Veri Yapıları

YZM 2116 Veri Yapıları YZM 2116 Veri Yapıları Yrd. Doç. Dr. Deniz KILINÇ Celal Bayar Üniversitesi Hasan Ferdi Turgutlu Teknoloji Fakültesi Yazılım Mühendisliği BAŞLAMADAN ÖNCE Bu dersi alan öğrencilerin aşağıdaki konuları bildiği

Detaylı

ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ YÖNEYLEM ARAŞTIRMASI (OPERATIONAL RESEARCH) ÖZLEM AYDIN TRAKYA ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ SUNUM PLANI Yöneylem araştırmasının Tanımı Tarihçesi Özellikleri Aşamaları Uygulama alanları Yöneylem

Detaylı

DALGAKIRAN KORUMA TABAKASI TİPİNİN, BOYUTUNUN VE YERLEŞTİRME ŞEKLİNİN DALGA AŞMASINA ETKİLERİ

DALGAKIRAN KORUMA TABAKASI TİPİNİN, BOYUTUNUN VE YERLEŞTİRME ŞEKLİNİN DALGA AŞMASINA ETKİLERİ - 167 - DALGAKIRAN KORUMA TABAKASI TİPİNİN, BOYUTUNUN VE YERLEŞTİRME ŞEKLİNİN DALGA AŞMASINA ETKİLERİ Engin BİLYAY, İnşaat Yük.Müh., Selahattin BACANLI, Makina Müh., Dr. Bergüzar ÖZBAHÇECİ, İnşaat Yük.Müh.,

Detaylı

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19

İÇİNDEKİLER. Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11. 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 YÖNEYLEM ARAŞTIRMASINA GİRİŞ 11 1.1. Temel Kavramlar 14 1.2. Modeller 17 1.3. Diğer Kavramlar 17 Değerlendirme Soruları 19 Bölüm 2 DOĞRUSAL PROGRAMLAMA 21 2.1 Doğrusal Programlamanın

Detaylı

Düzlem Kafes Sistemlerin ANSYS Paket Programı ile Optimum Geometri Tasarımı

Düzlem Kafes Sistemlerin ANSYS Paket Programı ile Optimum Geometri Tasarımı Fırat Üniv. Fen ve Müh. Bil. Dergisi Science and Eng. J of Fırat Univ. 19 (2), 201-207, 2007 19 (2), 201-207, 2007 Düzlem Kafes Sistemlerin ANSYS Paket Programı ile Optimum Geometri Tasarımı M. Yavuz SOLMAZ

Detaylı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı

Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım. Mehmet Ali Aytekin Tahir Emre Kalaycı Gezgin Satıcı Probleminin İkili Kodlanmış Genetik Algoritmalarla Çözümünde Yeni Bir Yaklaşım Mehmet Ali Aytekin Tahir Emre Kalaycı Gündem Gezgin Satıcı Problemi GSP'yi Çözen Algoritmalar Genetik Algoritmalar

Detaylı

ÖZGEÇMİŞ ve ESERLER LİSTESİ

ÖZGEÇMİŞ ve ESERLER LİSTESİ ÖZGEÇMİŞ ve ESERLER LİSTESİ Dr. Aslı Numanoğlu Genç E-posta: asli.genc@atilim.edu.tr Tel: +90 312 5868321 Eğitim 2004 Doktora, Orta Doğu Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisliği

Detaylı

ÖZGEÇMİŞ 2003 MÜHENDİSLİĞİ İSTANBUL ÜNİVERSİTESİ ÜNİVERSİTESİ

ÖZGEÇMİŞ 2003 MÜHENDİSLİĞİ İSTANBUL ÜNİVERSİTESİ ÜNİVERSİTESİ ÖZGEÇMİŞ 1. Adı Soyadı: İPEK EKER 2. Doğum Tarihi: 31.01.1980 3. Ünvanı: ÖĞRETİM GÖREVLİSİ 4. Öğrenim Durumu: Derece Alan Üniversite Yıl Lisans ENDÜSTRİ İSTANBUL KÜLTÜR 2003 MÜHENDİSLİĞİ ÜNİVERSİTESİ Y.Lisans

Detaylı

KATMANLI KOMPOZİT KİRİŞLERİN GENETİK ALGORİTMA İLE OPTİMİZASYONU

KATMANLI KOMPOZİT KİRİŞLERİN GENETİK ALGORİTMA İLE OPTİMİZASYONU KATMANLI KOMPOZİT KİRİŞLERİN GENETİK ALGORİTMA İLE OPTİMİZASYONU Fatih Karaçam ve Taner Tımarcı Trakya Üniversitesi, MMF Makine Mühendisliği Bölümü 030 Edirne e-mail: tanert@trakya.edu.tr Bu çalışmada

Detaylı

Küçük ve Mikro Ölçekli Enerji Yatırımları için Hibrit Enerji Modeli

Küçük ve Mikro Ölçekli Enerji Yatırımları için Hibrit Enerji Modeli Küçük ve Mikro Ölçekli Enerji Yatırımları için Hibrit Enerji Modeli Mustafa Yıldız Enerji Mühendisliği Yüksek Lisans Programı Bitirme Tezi Danışman: Yard. Doç. Dr. Ferhat Bingöl 4. İzmir Rüzgar Sempozyumu

Detaylı

ULUSLARARASI SCI / SCI-Expanded KAPSAMINDAKİ DERGİLERDEKİ MAKALELER. Yayın NO. Yazarlar Başlık Dergi Adı Yıl

ULUSLARARASI SCI / SCI-Expanded KAPSAMINDAKİ DERGİLERDEKİ MAKALELER. Yayın NO. Yazarlar Başlık Dergi Adı Yıl ULUSLARARASI SCI / SCI-Expanded KAPSAMINDAKİ DERGİLERDEKİ MAKALELER Yazarlar Başlık Dergi Adı Yıl Barbaros Preveze, Aysel Şafak 2 Barbaros Preveze Effects of Routing Algorithms on Novel Throughput Improvement

Detaylı

Sigma 2006/3 Araştırma Makalesi / Research Article A SOLUTION PROPOSAL FOR INTERVAL SOLID TRANSPORTATION PROBLEM

Sigma 2006/3 Araştırma Makalesi / Research Article A SOLUTION PROPOSAL FOR INTERVAL SOLID TRANSPORTATION PROBLEM Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Sigma 6/ Araştırma Makalesi / Research Article A SOLUTION PROPOSAL FOR INTERVAL SOLID TRANSPORTATION PROBLEM Fügen TORUNBALCI

Detaylı

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem 3.2. DP Modellerinin Simpleks Yöntem ile Çözümü 3.2.1. Primal Simpleks Yöntem Grafik çözüm yönteminde gördüğümüz gibi optimal çözüm noktası, her zaman uygun çözüm alanının bir köşe noktası ya da uç noktası

Detaylı