HIZ DALGALANMALARI BİR ROTOR-PALA SİSTEMİNDE KAOTİK DAVRANIŞLARA YOL AÇABİLİR Mİ? (BASİTLEŞTİRİLMİŞ BİR İNCELEME)

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "HIZ DALGALANMALARI BİR ROTOR-PALA SİSTEMİNDE KAOTİK DAVRANIŞLARA YOL AÇABİLİR Mİ? (BASİTLEŞTİRİLMİŞ BİR İNCELEME)"

Transkript

1 . ULUSAL MAKİNA TEORİSİ SEMPOZYUMU Erciyes Üniversitesi, Kayseri 09 - Haziran 005 HIZ DALGALANMALARI BİR ROTOR-PALA SİSTEMİNDE KAOTİK DAVRANIŞLARA YOL AÇABİLİR Mİ? (BASİTLEŞTİRİLMİŞ BİR İNCELEME) Göhan BULUT ve Özgür TURHAN İstanbul Teni Üniversitesi, Maina Faültesi, Gümüşsuyu, İstanbul ÖZET Hız dalgalanmalarının bir rotor-pala sisteminin doğrusal olmayan dinamiği üzerindei olası etilerini görebilme için, rijid bir dise bağlı olara dönen burulma yayı-rijid çubu sisteminden oluşan basitleştirilmiş model ele alınıp incelenmiş ve sistem parametrelerinin bazı bileşimlerinde bu modelin aoti davranışlar göstereceği belirlenmiştir. Kaoti davranışların ortaya çıacağı parametre bölgeleri, Lyapunov üssü hesabına dayalı bir aos artı üzerinde gösterilmiş, aoti olan ve olmayan hareet örneleri için Poincaré tasvirleri, yol-zaman ve hız-zaman grafileri verilmiştir. Anahtar Kelimeler: Rotor-pala sistemi, Kaos, Lyapunov üssü, Poincaré tasviri DOES A SPEED FLUCTUATION CAUSE CHAOTIC VIBRATIONS IN A ROTOR-BLADE SYSTEM? (A SIMPLIFIED ANALYSIS) ABSTRACT The effect of a speed fluctuation on the non-linear dynamics of rotor-blade systems is studied through a simplified model consisting in a rigid bar resiliently attached to a rotating dis. Lyapunov exponent calculations, Poincaré maps and time histories show that the system will exhibit chaotic behaviour at certain combinations of system parameters. Keywords: Rotor-blade system, Chaos, Lyapunov exponent, Poincaré map. GİRİŞ Heliopter ve uça pervaneleri, pompa ve türbinler gibi ço önemli uygulamalara sahip oluşu yüzünden rotor-pala sistemlerinin dinami davranışı, çeşitli açılardan ve çeşitli matematisel modeller yardımıyla ço sayıda araştırmaya onu olmatadır. Araştırma onularından biri de, rotor milindei olası burulma titreşimlerinin pala eğilme titreşimleri üzerindei etisidir. Bu problem, yani mil burulma-pala eğilme bağlaşı titreşimleri problemi, aslında doğrusal olmayan bir matematisel modele götürmele birlite doğrusallaştırılmış modeller yardımıyla incelenmete ve ii titreşim arasında güçlü bağlaşılı etileri bulunduğu görülmetedir [-4]. Öte yandan aynı problem, belli bir soyutlama düzeyinde, rotor hızındai dalgalanmaların pala titreşimleri üzerindei etilerinin incelenmesi problemiyle örtüşür. Bu problem de palanın elasti bir iriş olara alındığı faat doğrusal olmayan etilerin yine göz ardı edildiği bir model yardımıyla incelenmiş ve hız dalgalanmalarının palada dinami ararlılı yitimine yol açabileceği gösterilmiştir [5]. Bu çerçevede ala taılan soru şudur: Mil 7

2 burulma-pala eğilme bağlaşı titreşimleri probleminde, ya da daha basit olan dalgalanan hızla dönen elasti pala probleminde doğrusal olmayan etilerin göz ardı edilmesi acaba hareetin imi nitel özellilerinin, en önemlisi de, olası aoti davranışların gözden açmasına yol açmata mıdır? İşte bu çalışmanın amacı, palanın bir burulma yayı ve ona bağlı rijid bir çubu şelinde modellendiği basit faat doğrusal olmayan bir rotor-pala sistemi modeli yardımıyla, rotor milindei (peryodi) hız dalgalanmalarının aoti titreşimlere yol açıp açmayacağının incelenmesidir. Bu amaçla, aoti davranışların bir göstergesi olara, Lyapunov üssü hesabına başvurulmata ve gerçeten de sistem parametrelerinin bazı bileşimlerinde aoti davranışlar ortaya çıacağı gösterilmetedir. Ortalama rotor hızı ile hız dalgalanma freansının oluşturduğu bir parametre düzleminde aoti davranışların ortaya çıacağı bölgeleri gösteren bir aos artı elde edilmete, bu artın çeşitli notalarına arşılı gelen hareetlere ilişin Poincaré tasvirleri ile yol-zaman ve hız-zaman grafileri de elde edilere aosun varlığına ilişin Lyapunov üssü hesabından elde edilen sonuçlar doğrulanmatadır.. MODEL İncelemede Şeil de gösterilen model esas alınacatır. Modelde Ω(t) dalgalanan hızı ile dönen r yarıçaplı rotora bağlı pala, ütlesi m, boyu l olan rijid bir çubu olara göz önüne alınmıştır. Palanın esneliği ve olası sönüm etileri, rotor ile çubu arasına yerleştirilen bir burulma yayı ve bir c visoz sönüm elemanı ile modellenmiştir. Aslında böyle yay-sönüm-çubu sistemlerinden n tanesini birbirine eleyere n sonsuza gideren elasti çubu modeline yaınsayaca bir model elde edilebileceği bilinmete [6] faat burada, basitli baımından, te serbestli dereceli bir modelle yetinilmetedir. Modelin (t) salınımlarını yöneten diferansiyel denlemin, notalar zamana göre türevleri gösterme üzere Ω(t) && + & ml c + mlrω sin = ml Ω& 3 r mlrω& cos () şelinde olduğu gösterilebilir. Bu denlem, rotorun, Ω 0 ortalama hızı etrafında ν freansı ile Ω t) = Ω + Ω sin t () ( 0 ν şelinde dalgalanara döndüğü abulü altında ve * m = ml, ω =, = νt, 3 * m r c ν α =, ζ =, λ =, (3) l m * ω Ω β =, β ω Ω = ω c 0 0, δ = Ω Ω tanımları ışığında boyutsuzlaştırılırsa δ β = β0 ( + sin ) (4) olma ve üsler ya göre türevleri gösterme üzere ζ + α β sin + α β cos λ λ λ + = β λ λ (5) 0 m, l Şeil Rotor-pala sistemi için basitleştirilmiş model 8

3 elde edilir. Bu denlem, hem parametri hem de doğrudan zorlama etisindei doğrusal olmayan bir sisteme işaret etmetedir ve bu özellileriyle son derece armaşı dinami davranışlar göstermesi belenmelidir. Öte yandan, hareetini yöneten diferansiyel denlem ana hatlarıyla Den.(5) e benzeyen, parametre tahrili saraç [7] ve dalgalanan hızla dönen merezaç regülatörün [8] aoti davranışlar göstereceği bilinmetedir. 3. LYAPUNOV ÜSSÜ HESABI Bir dinami sistemde, sistem davranışlarının başlangıç oşullarına aşırı duyarlılığının aosa neden olduğu bilinmetedir. Bu yüzden, bu duyarlılığın bir ölçüsünü oluşturan Lyapunov üsleri, en önemli aos ölçütlerinden biri olara abul edilir. Özel olara, bir dinami sistemde, belli bir parametre bileşiminde Lyapunov üslerinden en az birinin pozitif olması, sistemin o parametre bileşiminde aoti davranış göstereceğine işaret eder [9,0]. Bu çalışmada Lyapunov üsleri, doğrudan doğruya en büyü üssün elde edilmesine yöneli bir algoritma [0-] yardımıyla hesaplanacatır. Bu algoritmayı sergileme üzere Den. () in durum uzayındai ifadesine geçilirse, =, = ile { } T u = (6) ve F( u) = 3 3 ζ α β sin α β cos β λ λ λ λ λ tanımları altında (7) u = F(u) (8) yazılabilir. Denlem (8) in, sistem parametrelerinin belirli değerlerine ve rasgele başlangıç oşullarına arşılı gelen, [ 0, N ] zaman aralığındai N adımlı çözümü bir sayısal integrasyon yöntemi ile elde edilir. Geçici titreşimlerin etisini silme için bu çözümün il m adımı atılıp, geri alanı referans çözüm adı altında u ( ) ; =m+, m+,...,n şelinde salanır. Lyapunov üssü bu referans çözümün ararlılığının bir ölçüsüdür. Bu nedenle bu çözüm civarındai varyasyonel (üçü sapmalara arşılı gelen) denlemlerin çözümlerinin davranışı incelenere elde edilir. Referans çözümün her anı için varyasyonel denlem, Den. (7) dei F(u) fonsiyonunun Jaobiyeninin bu andai değerini veren F u u( ) = α β cos + α λ ifadesi yardımıyla u~ ( ; ) = F u u( ) β λ u~ ( ; sin λ ζ λ (9) ) ;=m+,...,n (0) şelinde yazılabilir. Bu denlemlerden =m+ inci adıma arşılı gelen birincisinin, u ~ (0; ) = () şelindei bir normal başlangıç oşulu ile sayısal olara bir adım çözülmesiyle u~ ( + ; ) elde edilir ve =m+ nci adıma arşılı gelen iinci denleme geçilir. Bu denlem de, bir öncei denlemden elde edilen çözüm ~ ~ u ( ; ) (0; ) u = + + ~ () u ( + ; ) şelinde normalize edilip başlangıç oşulu alınara bir adım çözülür ve işlemler bu düzende [ m+, N ] aralığı boyunca sürdürülür. Bu algoritma çerçevesinde en büyü Lyapunov üssünün N σ = ln u ~ ( + ; ) (3) N m+ = m+ şelinde hesaplanacağı gösterilebilir [0,]. = 9

4 4. UYGULAMALAR Bilindiği gibi, bir hareete ait faz yörüngesinin, sisteme ait arateristi bir zaman aralığı tetileme aralığı alınara elde edilmiş strobosopi bir görüntüsünden ibaret olan Poincaré tasviri, Lyapunov üssü dışındai en önemli aos ölçütüdür. Bu ölçüte göre, Poincaré tasviri fratal bir şeil olan hareet aotitir. Öte yandan, Poincaré tasvirinin bir veya birden ço, anca sonlu sayıda notadan ibaret olması da, hareetin harmoni (bir nota) veya harmoni altı (bir ço nota) peryodi bir hareet olacağını gösterir. Bu çalışmada tetileme aralığı olara parametri zorlama ile dış zorlamanın orta peryodu olan T=π alınmıştır. Bu bölümde, α=0.5, δ=.0, ζ=0. parametreleriyle tanımlı bir rotor-pala sistemi örneği ele alınara aoti davranışlar gösterip göstermeyeceği incelenecetir. Bu amaçla, hız dalgalanma freansını tanımlayan λ ve rotorun ortalama dönme hızını tanımlayan β 0 boyutsuz parametrelerinden oluşan parametre düzlemi nota nota taranara her bir nota için Bölüm de anlatılan hesap adımlarının atılmasıyla en büyü Lyapunov üssü hesaplanmıştır. Hesaplarda, bu amaçla özel olara geliştirilen ve sayısal integrasyonda Runge-Kutta(4) yöntemini ullanan bir FORTRAN programından yararlanılmış, parametre düzleminin toplam 5865 notasında hesap yapılmış, Lyapunov üssü hesabının yaınsama ölçütü olara en az 6000 integrasyon adımı boyunca üs dalgalanmasının ±0 5 li bir aralıta alması gözetilmiş, ve sonuçta, Lyapunov üssünün pozitif değer aldığı notalar işaretlenere Şeil de gösterilen aos artı elde edilmiştir. Bu şele göre, ele alınan rotor-pala modelinin aoti davranış göstereceği geniş parametre bölgelerinin bulunacağı anlaşılmatadır. Belli başlı dört aos bölgesi ayırt edilmete, bu bölgelerin sınırlarının ço esin olmadığı, içlerinde, yer yer, aoti olmayan üçü bölgeciler barındırdıları görülmetedir. Bunların yanı sıra, tarama sılığının yetersiz alışı yüzünden opulular gösteren ince aoti hatlar da bulunmatadır. Bu aos artını doğrulama amacıyla, parametre düzlemindei bazı notalar için Poincaré tasvirleri ile yol-zaman ve hızzaman grafileri de elde edilmiştir. Yol-zaman ve hız-zaman grafilerine gelince; bunlar, te başlarına, bir hareetin aoti olup olmadığını ayırt etme olanağı vermemele birlite, aoti hareetlerde düzensiz bir gidiş sergileyeceleri bilinmetedir. Aşağıda, Şe. üzerinde seçilen yedi farlı nota için elde edilen Poincaré tasvirleri ile yol-zaman ve hız-zaman grafileri verilip değerlendirilecetir. Şeil de verilen aos artındai dört belirgin aoti bölge soldan sağa numaralandırılırsa, Şe.3, birinci bölge içindei bir notaya ait Poincaré tasviri, yolzaman ve hız-zaman grafilerini göstermetedir. Bu notada en büyü Lyapunov üssünün değeri σ=0.54 olup bu notanın aoti bir parametre bileşimine arşılı geldiğini göstermetedir. Fratal bir şeil veren Poincaré tasviri ile düzensiz bir gidiş sergileyen yol-zaman ve hız-zaman grafileri de Lyapunov üssü hesabı ile varılan sonucu doğrular nitelitedir. β 0 λ Şeil α=0.5, δ=.0, ζ=0. için aos artı 0

5 Şeil 4, birinci ve iinci bölge arasında bir notaya arşılı gelmetedir. Bu notada en büyü Lyapunov üssü σ= 0.06 değerine sahip olup bu notanın aoti olmayan bir parametre bileşimine arşılı geldiğini göstermetedir. Poincaré tasvirinde de n= nota ayırt edilmete, bu da hareetin, harmoni altı titreşimlere arşılı gelen, nt=4π peryodlu peryodi bir hareet olduğunu göstermetedir. Yol-zaman ve hızzaman grafileri de bu peryodla peryodi bir hareete işaret etmetedir. Diğer şeillere de ısaca değinilece olursa; Şe.5, Şe.6 ve Şe.8, sırasıyla, üçüncü bölgenin sınırına, içine ve dördüncü bölgenin içine arşılı gelen notalardır ve bu notalardai en büyü Lyapunov üsleri pozitiftir. Bu da hareetin bu notalarda aoti olduğunu göstermetedir. Bu notalara ait Poincaré tasvirleri fratal şeil vermete, yol-zaman ve hız-zaman grafileri de hareetin düzensiz bir gidişe sahip olduğunu göstermetedir. Şe.7 ve Şe.9 ise, sırasıyla, üçüncü ve dördüncü bölgelerin içindei aoti olmayan esimlere ait notalara arşılı gelmetedir. Bu notalarda en büyü Lyapunov üssünün değeri negatiftir. Şe.7 dei Poincaré tasviri n=5 notadan ibaret olup nt=0π peryodlu, Şe.9 dai Poincaré tasviri ise n= notadan ibaret olup nt=4π peryodlu peryodi, yani harmoni altı hareetler göstermetedir. Bu özelliler, ilgili yol-zaman ve hız-zaman grafilerinden de görülebilmetedir. Şeil 3-9 da verilen sonuçlar (ve burada verilmeyen daha bir ço inceleme) Şe. dei aos artını doğrular nitelitedir. Bununla birlite, özellile ince aoti hatlar üzerindei az sayıda notada, hesaplanan en büyü Lyapunov üssü pozitif olduğu halde Poincaré tasvirinin peryodi bir hareet gösterdiği ters örnelere de rastlanmıştır. Bu çelişinin, ullanılan en büyü Lyapunov üssü hesaplama algoritmasının sayısal duyarlılığının bazı notalarda yetersiz almasından aynalanmış olabileceği düşünülmete, anca, uramsal bir soruna işaret etmesi olasılığına arşı inceleme sürdürülmetedir. & & Şeil 3 λ=.6, β 0 =3.8 için Poincaré tasviri, yol-zaman ve hız-zaman grafileri (σ=0.54) & & Şeil 4 λ=.65, β 0 =3.6 için Poincaré tasviri, yol-zaman ve hız-zaman grafileri (σ=-0.06)

6 & & Şeil 5 λ=.0, β 0 =.9 için Poincaré tasviri, yol-zaman ve hız-zaman grafileri (σ=0.) & & Şeil 6 λ=.85, β 0 =.5 için Poincaré tasviri, yol-zaman ve hız-zaman grafileri (σ=0.097) & & Şeil 7 λ=.4, β 0 =.6 için Poincaré tasviri, yol-zaman ve hız-zaman grafileri (σ=-0.008) & & Şeil 8 λ=4.0, β 0 =. için Poincaré tasviri, yol-zaman ve hız-zaman grafileri (σ=0.054)

7 & & Şeil 9 λ=5.0, β 0 =.4 için Poincaré tasviri, yol-zaman ve hız-zaman grafileri (σ=-0.0) 5. SONUÇLAR Rotor-pala sistemleri için basit faat doğrusal olmayan bir model ele alınara, rotordai hız dalgalanmalarının palada aoti davranışlara yol açıp açmayacağı sorusuna bir yanıt bulunmaya çalışılmıştır. Lyapunov üsleri ile yapılan inceleme sonucu modelin aoti davranış göstereceği parametre bileşimleri bulunacağı saptanmış ve bu sonuç, Poincaré tasvirleri, yol-zaman ve hız-zaman grafileri ile de doğrulanmıştır. İncelenen basit modelin gerçe rotor-pala sistemlerini temsil yeteneği düşü olmala birlite, bu çalışmadan elde edilen sonuçlar, pratite ullanılan rotor-pala sistemlerinde de aoti davranışlara rastlanabilme olasılığının gözden uza tutulmaması geretiğini düşündürmetedir. Bu önemli olasılığı daha sağlam temellerde test edebilme için benzer bir çalışmanın, daha gerçeçi rotor-pala sistemi modelleri üzerinde terarlanmasının gereli olduğu düşünülmete ve çalışma bu yönde sürdürülmetedir. 6. SEMBOLLER Sembol c l m r ν Ω Açılama Açısal visoz damperin sönüm atsayısı Burulma yayının yay atsayısı Pala (çubu) boyu Pala (çubu) ütlesi Göbe yarıçapı Rotor açısal hızı dalgalanma freansı Rotor açısal hızı 7. KAYNAKLAR. Oabe A. ve ar., An Equivalent Reduced Modelling Method and Its Application to Shaft-Blade Coupled Torsional Vibration Analysis of A Turbine-Generator Set, J. of Power and Energy, 05, 99, Huang S. C., Ho K. B., Coupled Shaft- Torsion and Blade-Bending Vibrations of A Rotating Shaft-Dis-Blade Unit, J. of Eng. for Gas Turbines and Power, 8, 996, Turhan Ö., Bulut G., Linearly Coupled Shaft-Torsional and Blade-Bending Vibrations in Rotor-Blade Systems, J. of Sound and Vibration (Gönderildi). 4. Turhan Ö., Bulut G., Coupled Shaft- Torsional and Blade-Bending Vibrations in Multi-Stage Rotor-Blade Systems, J. of Sound and Vibration (Gönderildi). 5. Turhan Ö., Bulut G., Dynamic Stability of Rotating Blades (Beams) Eccentrically Clamped to A Shaft with Fluctuating Speed, J. of Sound and Vibration, 80, 005, Wang C. Y., Free Vibration of a Lin Rod, J. of Sound and Vibration,74, 004, Bishop S. R., Clifford M. J., Zones of Chaotic Behaviour in The Paramatrically Excited Pendulum, J. of Sound and Vibration, 89(), 996,

8 8. Zhu Q., Ishitobi M., Ngano S., Condition of Chaotic Vibration in A Centrifugal Governor, J. of Sound and Vibration, 68(3), 003, Moon F. C., Chaotic and Fractal Dynamics, John Wiley & Sons, Inc., Argyris J., Faust G., Haase M., An Exploration of Chaos, North-Holland, Wolf A., Swift J. B., Harry L. S., Vastano J. A., Determining Lyapunov Exponents From A Time Series, Physica D,6, 985, Rosenstein M. T., Collins J. J.,De Luca C. J., A Practical Method for Calculating Largest Lyapunov Exponents from Small Data Sets, Physica D, 65,993,

ELEKTRİK GÜÇ SİSTEMLERİNDE SALINIM DİNAMİKLERİNİN KAOTİK OLAYLARININ İNCELENMESİ

ELEKTRİK GÜÇ SİSTEMLERİNDE SALINIM DİNAMİKLERİNİN KAOTİK OLAYLARININ İNCELENMESİ ELEKTRİK GÜÇ SİSTEMLERİNDE SALINIM DİNAMİKLERİNİN KAOTİK OLAYLARININ İNCELENMESİ Yılmaz Uyaroğlu M. Ali Yalçın Saarya Üniversitesi, Mühendisli Faültesi, Eletri Eletroni Mühendisliği Bölümü, Esentepe Kampüsü,

Detaylı

KONTROL SİSTEMLERİ YIL İÇİ UYGULAMA. Problem No

KONTROL SİSTEMLERİ YIL İÇİ UYGULAMA. Problem No KONTRO SİSTEMERİ YI İÇİ UYGUAMA Problem No AD SOYAD 10 haneli öğrenci NO Şeil 1 Şeil 1 dei sistem için transfer fonsiyonunu bulalım. Sistem ii serbestli derecesine sahiptir.her bir ütle diğerinin sabit

Detaylı

TEK SERBESTLİK DERECELİ TİTREŞİM SİSTEMİNİN LAGUERRE POLİNOMLARI İLE MATRİS ÇÖZÜMÜ

TEK SERBESTLİK DERECELİ TİTREŞİM SİSTEMİNİN LAGUERRE POLİNOMLARI İLE MATRİS ÇÖZÜMÜ EK SERBESLİK DERECELİ İREŞİM SİSEMİNİN LAGUERRE POLİNOMLARI İLE MARİS ÇÖZÜMÜ Mehmet ÇEVİK a, Nurcan BAYKUŞ b a Celal Bayar Üniversitesi Maine Mühendisliği Bölümü, Muradiye 454, Manisa. b Douz Eylül Üniversitesi,

Detaylı

BİR FONKSİYONUN FOURİER SERİSİNE AÇILIMI:

BİR FONKSİYONUN FOURİER SERİSİNE AÇILIMI: FOURIER SERİERİ GİRİŞ Elastisite probleminin çözümünde en büyü zorlu sınır şartlarının sağlatılmasındadır. Bu zorluğu gidermenin yollarından biride sınır yülerini Fourier serilerine açmatır. Fourier serilerinin

Detaylı

KATI CİSİMLERİN BAĞIL İVME ANALİZİ:

KATI CİSİMLERİN BAĞIL İVME ANALİZİ: KATI CİSİMLERİN BAĞIL İVME ANALİZİ: Genel düzlemsel hareket yapmakta olan katı cisim üzerinde bulunan iki noktanın ivmeleri aralarındaki ilişki, bağıl hız v A = v B + v B A ifadesinin zamana göre türevi

Detaylı

Tremalarla Oluşum: Kenar uzunluğu 1 olan bir eşkenar üçgenle başlayalım. Bu üçgene S 0

Tremalarla Oluşum: Kenar uzunluğu 1 olan bir eşkenar üçgenle başlayalım. Bu üçgene S 0 SİERPİNSKİ ÜÇGENİ Polonyalı matematiçi Waclaw Sierpinsi (1882-1969) yılında Sierpinsi üçgeni veya Sierpinsi şapası denilen bir fratal tanıttı. Sierpinsi üçgeni fratalların il örneğidir ve tremalarla oluşturulur.

Detaylı

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-2 Yıl: 2010 199-206

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3-2 Yıl: 2010 199-206 99 EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 3- Yıl: 99-6 İKİNCİ MERTEBEDEN BİR DİFERENSİYEL DENKLEM SINIFI İÇİN BAŞLANGIÇ DEĞER PROBLEMİNİN DİFERENSİYEL DÖNÜŞÜM YÖNTEMİ İLE TAM ÇÖZÜMLERİ THE

Detaylı

ÖZEL EGE LİSESİ 13. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI

ÖZEL EGE LİSESİ 13. OKULLAR ARASI MATEMATİK YARIŞMASI 8. SINIF ELEME SINAVI TEST SORULARI 1. x,y,z pozitif tam sayılardır. 1 11 x + = 8 y + z olduğuna göre, x.y.z açtır? 3 B) 4 C) 6 D)1 3 1 4. {,1,1,1,...,1 } 1 ümesinin en büyü elemanının diğer 1 elemanın toplamına oranı, hangi tam sayıya en

Detaylı

KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES

KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES KİNETİK MODELLERDE OPTİMUM PARAMETRE BELİRLEME İÇİN BİR YAZILIM: PARES Mehmet YÜCEER, İlnur ATASOY, Rıdvan BERBER Anara Üniversitesi Mühendisli Faültesi Kimya Mühendisliği Bölümü Tandoğan- 0600 Anara (berber@eng.anara.edu.tr)

Detaylı

Cahit Arf Liseler Arası Matematik Yarışması 2008

Cahit Arf Liseler Arası Matematik Yarışması 2008 Cahit Arf Liseler Arası Matemati Yarışması 2008 İinci Aşama 11 Mayıs 2008 Notlar: Birnci tasla. 1. Tamsayılardan gerçel sayılara tanımlı fonsiyonlar ümesi üzerinde şöyle bir operatörü tanımlayalım: f(x)

Detaylı

Kollektif Risk Modellemesinde Panjér Yöntemi

Kollektif Risk Modellemesinde Panjér Yöntemi Douz Eylül Üniversitesi İtisadi ve İdari Bilimler Faültesi Dergisi, Cilt:6, Sayı:, Yıl:, ss.39-49. olletif Ris Modellemesinde anér Yöntemi ervin BAYAN İRVEN Güçan YAAR Özet Hayat dışı sigortalarda, olletif

Detaylı

Kİ KARE TESTLERİ. Biyoistatistik (Ders 2: Ki Kare Testleri) Kİ-KARE TESTLERİ. Sağlıktan Yakınma Sigara Var Yok Toplam. İçen. İçmeyen.

Kİ KARE TESTLERİ. Biyoistatistik (Ders 2: Ki Kare Testleri) Kİ-KARE TESTLERİ. Sağlıktan Yakınma Sigara Var Yok Toplam. İçen. İçmeyen. Biyoistatisti (Ders : Ki Kare Testleri) Kİ KARE TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Saarya Üniversitesi Tıp Faültesi Biyoistatisti Anabilim Dalı uerormaz@saarya.edu.tr Kİ-KARE TESTLERİ 1. Ki-are testleri

Detaylı

Basitleştirilmiş Kalman Filtresi ile Titreşimli Ortamda Sıvı Seviyesinin Ölçülmesi

Basitleştirilmiş Kalman Filtresi ile Titreşimli Ortamda Sıvı Seviyesinin Ölçülmesi Basitleştirilmiş Kalman Filtresi ile Titreşimli Ortamda Sıvı Seviyesinin Ölçülmesi M. Ozan AKI Yrd.Doç Dr. Erdem UÇAR ABSTRACT: Bu çalışmada, sıvıların seviye ölçümünde dalgalanmalardan aynalı meydana

Detaylı

Biyoistatistik (Ders 7: Bağımlı Gruplarda İkiden Çok Örneklem Testleri)

Biyoistatistik (Ders 7: Bağımlı Gruplarda İkiden Çok Örneklem Testleri) ÖRNEKLEM TESTLERİ BAĞIMLI GRUPLARDA ÖRNEKLEM TESTLERİ Yrd. Doç. Dr. Ünal ERKORKMAZ Saarya Üniversitesi Tıp Faültesi Biyoistatisti Anabilim Dalı uerormaz@saarya.edu.tr BAĞIMLI İKİDEN ÇOK GRUBUN KARŞILAŞTIRILMASINA

Detaylı

MAK341 MAKİNA ELEMANLARI I 2. Yarıyıl içi imtihanı 24/04/2012 Müddet: 90 dakika Ögretim Üyesi: Prof.Dr. Hikmet Kocabas, Doç.Dr.

MAK341 MAKİNA ELEMANLARI I 2. Yarıyıl içi imtihanı 24/04/2012 Müddet: 90 dakika Ögretim Üyesi: Prof.Dr. Hikmet Kocabas, Doç.Dr. MAK3 MAKİNA EEMANARI I. Yarıyıl içi imtihanı /0/0 Müddet: 90 daia Ögretim Üyesi: Prof.Dr. Himet Kocabas, Doç.Dr. Cemal Bayara. (0 puan) Sıı geçmelerde sürtünme orozyonu nasıl ve neden meydana gelir? Geçmeye

Detaylı

MIXED REGRESYON TAHMİN EDİCİLERİNİN KARŞILAŞTIRILMASI. The Comparisions of Mixed Regression Estimators *

MIXED REGRESYON TAHMİN EDİCİLERİNİN KARŞILAŞTIRILMASI. The Comparisions of Mixed Regression Estimators * MIXED EGESYON TAHMİN EDİCİLEİNİN KAŞILAŞTIILMASI The Comparisions o Mixed egression Estimators * Sevgi AKGÜNEŞ KESTİ Ç.Ü.Fen Bilimleri Enstitüsü Matemati Anabilim Dalı Selahattin KAÇIANLA Ç.Ü.Fen Edebiyat

Detaylı

Erciyes Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü İNŞ-201 Nümerik Analiz Dersi Final Sınavı

Erciyes Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü İNŞ-201 Nümerik Analiz Dersi Final Sınavı Erciyes Üniversitesi, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü İNŞ-201 Nümerik Analiz Dersi Final Sınavı (30)1.a) İki reel sayının mantissa ları (gövde kısımları) eşit ve mantissa1 = mantissa2

Detaylı

SERVOVALF VE HİDROLİK SİSTEMDEN OLUŞAN ELEKTROHİDROLİK BİR DÜMEN SİSTEMİNİN KONUM KONTROLÜ

SERVOVALF VE HİDROLİK SİSTEMDEN OLUŞAN ELEKTROHİDROLİK BİR DÜMEN SİSTEMİNİN KONUM KONTROLÜ GEMİ İNŞAATI VE DENİZ TEKNOLOJİSİ TEKNİK KONGRESİ 08 BİLDİRİLER KİTABI SERVOVALF VE HİDROLİK SİSTEMDEN OLUŞAN ELEKTROHİDROLİK BİR DÜMEN SİSTEMİNİN KONUM KONTROLÜ Fevzi ŞENLİTÜRK, Fuat ALARÇİN ÖZET Bu çalışmada

Detaylı

Dinamik Sistem Karakterizasyonunda Averajlamanın Hurst Üsteli Üzerinde Etkisi

Dinamik Sistem Karakterizasyonunda Averajlamanın Hurst Üsteli Üzerinde Etkisi Uluslararası Katılımlı 7. Maina eorisi Sempozyumu, Izmir, 4-7 Haziran 205 Dinami Sistem Karaterizasyonunda Averalamanın Hurst Üsteli Üzerinde Etisi Ç. Koşun * S. Özdemir İzmir Institute of echnology İzmir

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Silindirik Kabuk Yapıların Burulmalı Titreşim Davranışının İncelenmesi

Silindirik Kabuk Yapıların Burulmalı Titreşim Davranışının İncelenmesi Silindirik Kabuk Yapıların Burulmalı Titreşim Davranışının İncelenmesi M. Arda * M. Aydoğdu Trakya Üniversitesi Trakya Üniversitesi Edirne Edirne Özet İçi boş silindirik çubukların burulmalı titreşimi

Detaylı

Bu deneyin amacı Ayrık Fourier Dönüşümü (DFT) ve Hızlu Fourier Dönüşümünün (FFT) tanıtılmasıdır.

Bu deneyin amacı Ayrık Fourier Dönüşümü (DFT) ve Hızlu Fourier Dönüşümünün (FFT) tanıtılmasıdır. Deney : Ayrı Fourier Dönüşümü (DFT) & Hızlı Fourier Dönüşümü (FFT) Amaç Bu deneyin amacı Ayrı Fourier Dönüşümü (DFT) ve Hızlu Fourier Dönüşümünün (FFT) tanıtılmasıdır. Giriş Bir öncei deneyde ayrı-zamanlı

Detaylı

LYS Matemat k Deneme Sınavı

LYS Matemat k Deneme Sınavı LYS Matemat Deneme Sınavı. ii basamalı doğal saıdır. 6 en büü saısı ile en üçü saısının toplamı açtır? 8 89 8 6. için, 9 ( ) ifadesinin sonucu aşağıdailerden hangisidir? 6. ile saıları arasındai çift saıların

Detaylı

Hızlı Ağırlık Belirleme İçin Yük Hücresi İşaretlerinin İşlenmesi

Hızlı Ağırlık Belirleme İçin Yük Hücresi İşaretlerinin İşlenmesi Gazi Üniversitesi Fen Bilimleri Dergisi Part:C, Tasarım Ve Tenoloji GU J Sci Part:C 4(3):97-102 (2016) Hızlı Ağırlı Belirleme İçin Yü Hücresi İşaretlerinin İşlenmesi Zehan KESİLMİŞ 1,, Tarı BARAN 2 1 Osmaniye

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

TESİSLERDE MEYDANA GELEN PARALEL REZONANS OLAYININ BİLGİSAYAR DESTEKLİ ANALİZİ

TESİSLERDE MEYDANA GELEN PARALEL REZONANS OLAYININ BİLGİSAYAR DESTEKLİ ANALİZİ TESİSLERDE MEYDANA GELEN PARALEL REZONANS OLAYNN BİLGİSAYAR DESTEKLİ ANALİZİ Cen GEZEGİN Muammer ÖZDEMİR Eletri Eletroni Mühendisliği Bölümü Mühendisli Faültesi Ondouz Mayıs Üniversitesi, 559, Samsun e-posta:

Detaylı

RASGELE SÜREÇLER. Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk fonksiyonu aşağıdaki gibi olmalıdır.

RASGELE SÜREÇLER. Bir X rasgele değişkenin, a ve b arasında tekdüze dağılımlı olabilmesi için olasılık yoğunluk fonksiyonu aşağıdaki gibi olmalıdır. RASGELE SÜREÇLER Eğer bir büyülüğün her t anında alacağı değeri te bir şeilde belirleyen matematisel bir ifade verilebilirse bu büyülüğün deterministi bir büyülü olduğu söylenebilir. Haberleşmeden habere

Detaylı

Düzce Üniversitesi Bilim ve Teknoloji Dergisi

Düzce Üniversitesi Bilim ve Teknoloji Dergisi Düzce Üniversitesi Bilim ve Tenoloji Dergisi, 3 (2015) 414-431 Düzce Üniversitesi Bilim ve Tenoloji Dergisi Araştırma Maalesi Moment Taşıyan Çeli Çerçeveli Sistemlerin Titreşim Periyotları ve Deprem Yülerinin

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 5 Sayı: 1 sh. 89-101 Ocak 2003

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 5 Sayı: 1 sh. 89-101 Ocak 2003 DEÜ MÜENDİSLİK FAKÜLTESİ FEN ve MÜENDİSLİK DERGİSİ Cilt: 5 Sayı: 1 sh. 89-101 Oca 00 PERDE ÇERÇEVELİ YAPILARDA a m PERDE KATKI KATSAYISININ DİFERANSİYEL DENKLEM YÖNTEMİ İLE BULUNMASI VE GELİŞTİRİLEN BİLGİSAYAR

Detaylı

k olarak veriliyor. Her iki durum icin sistemin lineer olup olmadigini arastirin.

k olarak veriliyor. Her iki durum icin sistemin lineer olup olmadigini arastirin. LINEER SISTEMLER Muhendislite herhangibir sistem seil(ref: xqs402) dei gibi didortgen blo icinde gosterilir. Sisteme disaridan eti eden fatorler giris, sistemin bu girislere arsi gosterdigi tepi ciis olara

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

Menemen Bölgesinde Rüzgar Türbinleri için Rayleigh ve Weibull Dağılımlarının Kullanılması

Menemen Bölgesinde Rüzgar Türbinleri için Rayleigh ve Weibull Dağılımlarının Kullanılması Politeni Dergisi Cilt:3 Sayı: 3 s. 09-3, 00 Journal of Polytechnic Vol: 3 No: 3 pp. 09-3, 00 Menemen Bölgesinde Rüzgar Türbinleri için Rayleigh ve Weibull Dağılımlarının Kullanılması Tevfi GÜLERSOY, Numan

Detaylı

T.C. HARRAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. HARRAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. HARRAN ÜNİVERSİTESİ FEN BİİMERİ ENSTİTÜSÜ YÜKSEK İSANS TEZİ ÇATAK İÇEREN DEĞİŞKEN KESİTİ KİRİŞERDE TİTREŞİM PROBEMİNİN SONU EEMANAR METODUYA MODEENMESİ Mehmet HASKU MAKİNE MÜHENDİSİĞİ ANABİİM DAI

Detaylı

Posta Adresi: Sakarya Üniversitesi, Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, 54187 Esentepe Kampüsü/Sakarya

Posta Adresi: Sakarya Üniversitesi, Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, 54187 Esentepe Kampüsü/Sakarya DİNAMİK YÜKLER ETKİSİ ALTINDAKİ ÜSTYAPI-ZEMİN ORTAK SİSTEMİNİN EMPEDANS FONKSİYONLARINA DAYALI ÇÖZÜMÜ SUBSTRUCTURING ANALYSIS BASED ON IMPEDANCE FUNCTIONS FOR SOIL-STRUCTURE COUPLING SYSTEM SUBJECTED TO

Detaylı

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ KATI CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ Bu bölümde, düzlemsel kinematik, veya bir rijit cismin düzlemsel hareketinin geometrisi incelenecektir. Bu inceleme, dişli, kam ve makinelerin yaptığı birçok işlemde

Detaylı

BTÜ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI DERSİ

BTÜ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI DERSİ 1 BTÜ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI DERSİ ROTORLARDA STATİK VE DİNAMİKDENGE (BALANS) DENEYİ 1. AMAÇ... 2 2. GİRİŞ... 2 3. TEORİ... 3 4. DENEY TESİSATI... 4 5. DENEYİN YAPILIŞI... 7 6.

Detaylı

LOGRANK TESTİ İÇİN GÜÇ ANALİZİ VE ÖRNEK GENİŞLİĞİNİN HESAPLANMASI ÖZET

LOGRANK TESTİ İÇİN GÜÇ ANALİZİ VE ÖRNEK GENİŞLİĞİNİN HESAPLANMASI ÖZET IAAOJ, Scientific Science, 05, 3(), 9-8 LOGRANK TESTİ İÇİN GÜÇ ANALİZİ VE ÖRNEK GENİŞLİĞİNİN HESAPLANMASI Nesrin ALKAN, Yüsel TERZİ, B. Barış ALKAN Sinop Üniversitesi, Fen Edebiyat Faültesi, İstatisti

Detaylı

SAÜ Fen Edebiyat Dergisi (2009-II) ÜÇ BOYUTLU LORENTZ UZAYI MANNHEİM EĞRİ ÇİFTİ ÜZERİNE A. ZEYNEP AZAK

SAÜ Fen Edebiyat Dergisi (2009-II) ÜÇ BOYUTLU LORENTZ UZAYI MANNHEİM EĞRİ ÇİFTİ ÜZERİNE A. ZEYNEP AZAK SAÜ Fen Edebiyat Dergisi (009-II) ÜÇ BOYUTLU LORENTZ UZAYI L DE TIMELIKE MANNHEİM EĞRİ ÇİFTİ ÜZERİNE A. ZEYNEP AZAK Saarya Üniversitesi, Fen-Edebiyat Faültesi Matemati Bölümü, 5487, SAKARYA apirdal@saarya.edu.tr

Detaylı

DÜŞÜK GÜÇLÜ RÜZGAR TÜRBİNLERİ İÇİN MAKSİMUM GÜÇ NOKTASINI İZLEYEN BİR AKÜ ŞARJ SİSTEMİ

DÜŞÜK GÜÇLÜ RÜZGAR TÜRBİNLERİ İÇİN MAKSİMUM GÜÇ NOKTASINI İZLEYEN BİR AKÜ ŞARJ SİSTEMİ DÜŞÜK GÜÇLÜ RÜZGAR TÜRBİNLERİ İÇİN MAKSİMUM GÜÇ NOKTASINI İZLEYEN BİR AKÜ ŞARJ SİSTEMİ ABSTRACT Şürü Ertie 1, Deniz Yıldırım 2, Efe Turhan 3, Taha Taner İnal 4 İstanbul Teni Üniversitesi, Eletri Mühendisliği

Detaylı

RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU

RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU Amaçlar: a) Korunumlu kuvvetlerin potansiyel enerjisinin hesabı. b) Enerjinin korunumu prensibinin uygulanması. ENERJİNİN KORUNUMU Enerjinin korunumu

Detaylı

Çok Yüksek Mobiliteli Sönümlemeli Kanallardaki OFDM Sistemleri için Kanal Kestirimi

Çok Yüksek Mobiliteli Sönümlemeli Kanallardaki OFDM Sistemleri için Kanal Kestirimi 9-11 Aralı 2009 Ço Yüse Mobiliteli Sönümlemeli Kanallardai OFDM Sistemleri için Kanal Kestirimi İstanbul Üniversitesi Eletri-Eletroni Mühendisliği Bölümü {myalcin, aan}@istanbul.edu.tr Sunum İçeriği Giriş

Detaylı

Üzerinde birden fazla yay-kütle sistemi bulunan eksenel yük etkisi altındaki kirişlerin serbest titreşim analizi

Üzerinde birden fazla yay-kütle sistemi bulunan eksenel yük etkisi altındaki kirişlerin serbest titreşim analizi Makine Teknolojileri Elektronik Dergisi Cilt: 8, No: 3, 011 (1-11) Electronic Journal of Machine Technologies Vol: 8, No: 3, 011 (1-11) TEKNOLOJĐK ARAŞTIRMALAR www.teknolojikarastirmalar.com e-issn:1304-4141

Detaylı

Ders Kodu Dersin Adı Yarıyıl Teori Uygulama Lab Kredisi AKTS EC503 Finansal Piyasalar

Ders Kodu Dersin Adı Yarıyıl Teori Uygulama Lab Kredisi AKTS EC503 Finansal Piyasalar İçerik Ders Kodu Dersin Adı Yarıyıl Teori Uygulama Lab Kredisi AKTS EC503 Finansal Piyasalar 1 3 0 0 3 6 Ön Koşul Derse Kabul Koşulları Dersin Dili Türü Dersin Düzeyi Dersin Amacı İçerik Kaynaklar Türkçe

Detaylı

ENDEKS SAYILAR. fiyat, üretim, yatırım, ücret ve satış değişimlerinin belirlenmesi. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör.

ENDEKS SAYILAR. fiyat, üretim, yatırım, ücret ve satış değişimlerinin belirlenmesi. Doç.Dr. Ali Kemal ŞEHİRLİOĞLU Araş.Gör. ENDEKS SLAR Bir değişenin farlı birimler üzerinde veya zaman içerisindei değişimini oransal olara ifade sayılara ENDEKS SLAR adı verilir. Endes sayılar ısaca endesler olara ifade edilir. Kullanım alanları;

Detaylı

MAKİNA TEORİSİ ÖDEV 3. A) Problemlerin Yanıtları

MAKİNA TEORİSİ ÖDEV 3. A) Problemlerin Yanıtları MAK3 Makina Teorisi MAKİNA TEORİSİ ÖDEV 3 A) Problemlerin Yanıtları ) Birinci soruda verilen sistem statik denge konumunda kabul edilsin. Buna göre sistem geometrisinden aşağıdaki Şekil elde edilebilir.

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

ATALET MOMENTİ. Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması.

ATALET MOMENTİ. Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması. ATALET MOMENTİ Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması. UYGULAMALAR Şekilde gösterilen çark büyük bir kesiciye bağlıdır. Çarkın kütlesi, kesici bıçağa

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

GENETİK ALGORİTMALARDA TEK VE ÇOK NOKTALI ÇAPRAZLAMANIN SÖZDE RASSAL POPULASYONLARA ETKİSİ

GENETİK ALGORİTMALARDA TEK VE ÇOK NOKTALI ÇAPRAZLAMANIN SÖZDE RASSAL POPULASYONLARA ETKİSİ GENETİK ALGORİTMALARDA TEK VE ÇOK NOKTALI ÇARAZLAMANIN SÖZDE RASSAL OULASYONLARA ETKİSİ ınar SANAÇ Ali KARCI Bilgisayar Mühendisliği Bölümü Mühendisli Faültesi Fırat Üniversitesi 239 Elazığ ÖZET Geneti

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 1- GİRİŞ Doç. Dr. Ali Rıza YILDIZ 1 Mühendislikte, herhangi bir fiziksel sistemin matematiksel modellenmesi sonucu elde edilen karmaşık veya analitik çözülemeyen denklemlerin

Detaylı

BÖLÜM 4 TEK SERBESTLİK DERECELİ SİSTEMLERİN HARMONİK OLARAK ZORLANMIŞ TİTREŞİMİ

BÖLÜM 4 TEK SERBESTLİK DERECELİ SİSTEMLERİN HARMONİK OLARAK ZORLANMIŞ TİTREŞİMİ BÖLÜM 4 TEK SERBESTLİK DERECELİ SİSTEMLERİN HARMONİK OLARAK ZORLANMIŞ TİTREŞİMİ Kaynaklar: S.S. Rao, Mechanical Vibrations, Pearson, Zeki Kıral Ders notları Mekanik veya yapısal sistemlere dışarıdan bir

Detaylı

k = sabit için, Nikuradse diyagramını şematik olarak çiziniz. Farklı akım türlerinin

k = sabit için, Nikuradse diyagramını şematik olarak çiziniz. Farklı akım türlerinin İ. T. Ü İ N Ş A A T F A K Ü L T E S İ - H İ R O L İ K E R S İ BORU İÇERİSİNEKİ BASINÇLI AKIMLAR - 1 Ci sabit için, Niuradse diyagramını şemati olara çiziniz. Farlı aım türlerinin i bölgelerini gösteriniz

Detaylı

Gerilme Dönüşümleri (Stress Transformation)

Gerilme Dönüşümleri (Stress Transformation) Gerilme Dönüşümleri (Stress Transformation) Bu bölümde, bir noktaya etkiyen ve bir koordinat ekseni ile ilişkili gerilme bileşenlerini, başka bir koordinat sistemi ile ilişkili gerilme bileşenlerine dönüştürmek

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

SAKARYA HAVZASI AYLIK YAĞIŞLARININ OTOREGRESİF MODELLEMESİ

SAKARYA HAVZASI AYLIK YAĞIŞLARININ OTOREGRESİF MODELLEMESİ PAMUKKALE ÜNİVERSİTESİ MÜHENDİ SLİK FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİSLİK B İ L İ MLERİ DERGİSİ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 006 : : : 7-6 SAKARYA HAVZASI

Detaylı

Malzeme Bağıyla Konstrüksiyon

Malzeme Bağıyla Konstrüksiyon Shigley s Mechanical Engineering Design Richard G. Budynas and J. Keith Nisbett Malzeme Bağıyla Konstrüsiyon Hazırlayan Prof. Dr. Mehmet Fırat Maine Mühendisliği Bölümü Saarya Üniversitesi Çözülemeyen

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

HARAKETLİ YÜK PROBLEMİNİN DENEYSEL OLARAK İNCELENMESİ

HARAKETLİ YÜK PROBLEMİNİN DENEYSEL OLARAK İNCELENMESİ Kıral, Malgaca ve Akdağ, UMTS27, C:1,351-36 HARAKETLİ YÜK PROBLEMİNİN DENEYSEL OLARAK İNCELENMESİ Zeki KIRAL*, Levent MALGACA*, Murat AKDAĞ* (*) Dokuz Eylül Üniversitesi, Mühendislik Fakültesi, Makina

Detaylı

2 Serbestlik Dereceli Taşıt Modeli PID Kontrolü

2 Serbestlik Dereceli Taşıt Modeli PID Kontrolü Serbestli Dereceli Taşıt Modeli PID Kontrolü Matematisel Modelin Çıarılması: Hareet denlemlerinin çıarılmasında Lagrange yöntemi ullanılmıştır. Lagrange yöntemi haında detaylı bilgi (Francis,978; Pasin,984;

Detaylı

Bulanık Hedef Programlama Yöntemi ile Süre-Maliyet-Kalite Eniyilemesi

Bulanık Hedef Programlama Yöntemi ile Süre-Maliyet-Kalite Eniyilemesi Bulanı Programlama Yöntemi ile Süre-- Eniyilemesi Eran Karaman, Serdar Kale BAÜ Mühendisli Mimarlı Faültesi, 045, Çağış, Balıesir Tel: (266) 62 94 E-posta: earaman@baliesir.edu.tr sale@baliesir.edu.tr

Detaylı

ITAP Fizik Olimpiyat Okulu 2011 Seçme Sınavı

ITAP Fizik Olimpiyat Okulu 2011 Seçme Sınavı ITAP Fizik Olimpiyat Okulu 11 Seçme Sınavı 1. Dikey yönde atılan bir taş hareketin son saniyesinde tüm yolun yarısını geçmektedir. Buna göre taşın uçuş süresinin en fazla olması için taşın zeminden ne

Detaylı

SORU 1: En az iki elemana sahip bir X kümesi ile bunun P (X) kuvvet. kümesi veriliyor. P (X) üzerinde 0 ; A = 1 ; A

SORU 1: En az iki elemana sahip bir X kümesi ile bunun P (X) kuvvet. kümesi veriliyor. P (X) üzerinde 0 ; A = 1 ; A 2.2 Ölçüler SORU 1: En az iki elemana sahip bir X kümesi ile bunun P (X kuvvet kümesi veriliyor. P (X üzerinde 0 ; A (A : 1 ; A şeklinde tanımlanan dönüşümü ölçü müdür? ÇÖZÜM 1: (i Tanımdan ( 0. (ii A

Detaylı

MEKANİK TİTREŞİMLER DERS NOTLARI

MEKANİK TİTREŞİMLER DERS NOTLARI SAKARYA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MEKANİK TİTREŞİMLER DERS NOTLARI 2015 BAHAR 2 KAYNAKLAR 1. Mekanik Titreşimler, Birsen Kitabevi, Prof. Dr. Fuat Pasin 2. Mechanical

Detaylı

PI KONTROLÖR TASARIMI ÖDEVİ

PI KONTROLÖR TASARIMI ÖDEVİ PI ONTROLÖR TASARIMI ÖDEVİ ONTROLÖR İLE TASARIM ontrolör Taarım riterleri Taarım riterleri genellile itemine yapmaı geretiğini belirtme ve naıl yaptığını değerlendirme için ullanılır. Bu riterler her bir

Detaylı

Fizik 101: Ders 17 Ajanda

Fizik 101: Ders 17 Ajanda izik 101: Ders 17 Ajanda Dönme hareketi Yön ve sağ el kuralı Rotasyon dinamiği ve tork Örneklerle iş ve enerji Dönme ve Lineer Kinematik Karşılaştırma açısal α sabit 0 t 1 0 0t t lineer a sabit v v at

Detaylı

ÜÇ BOYUTLU SINIR TABAKA AKIŞLARININ KARARLILIK ÖZELLİKLERİNİN DOĞRUSAL KARARLILIK TEORİSİ YAKLAŞIMI İLE BELİRLENMESİ

ÜÇ BOYUTLU SINIR TABAKA AKIŞLARININ KARARLILIK ÖZELLİKLERİNİN DOĞRUSAL KARARLILIK TEORİSİ YAKLAŞIMI İLE BELİRLENMESİ V. ULUSAL HAVACILIK VE UZAY KONFERANSI 8-10 Eylül 2014, Erciyes Üniversitesi, Kayseri ÜÇ BOYUTLU SINIR TABAKA AKIŞLARININ KARARLILIK ÖZELLİKLERİNİN DOĞRUSAL KARARLILIK TEORİSİ YAKLAŞIMI İLE BELİRLENMESİ

Detaylı

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni

z z Genel yükleme durumunda, bir Q noktasını üç boyutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni GERİLME VE ŞEKİL DEĞİŞTİRME DÖNÜŞÜM BAĞINTILARI Q z Genel ükleme durumunda, bir Q noktasını üç boutlu olarak temsil eden kübik gerilme elemanı üzerinde 6 bileşeni gösterilebilir: σ, σ, σ z, τ, τ z, τ z.

Detaylı

, t anındaki birey sayısı (popülâsyon büyüklüğü) olmak üzere,

, t anındaki birey sayısı (popülâsyon büyüklüğü) olmak üzere, Kaosu Kaosan Kuraralım ve Rasgeleliğin Haını Verelim Kaos sözcüğü ile ilgili Tür Dil Kurumu web sayfasındai Güncel Türçe Sözlü e yazılı olanlar: aos (isim, a os, Fransızca). Evrenin düzene girmeden öncei

Detaylı

TAŞIT TİTREŞİMLERİNİN TEORİK ANALİZİ VE BİR BİLGİSAYAR MODELLEMESİ THEORETICAL ANALYSIS OF VEHICLE VIBRATIONS AND A COMPUTER MODELLING

TAŞIT TİTREŞİMLERİNİN TEORİK ANALİZİ VE BİR BİLGİSAYAR MODELLEMESİ THEORETICAL ANALYSIS OF VEHICLE VIBRATIONS AND A COMPUTER MODELLING Esişehir Osangai Üniversitesi MühMiFaDergisi CXIX, S, 6 Eng&ArhFa Esişehir Osangai University, Vol XIX, No:, 6 Maalenin Geliş Tarihi : 956 Maalenin Kabul Tarihi : 486 TAŞIT TİTREŞİMLERİNİN TEORİK ANALİZİ

Detaylı

MATRİS DEPLASMAN YÖNTEMİ

MATRİS DEPLASMAN YÖNTEMİ SAARYA ÜNİVERSİTESİ M İNŞAAT MÜHENİSİĞİ BÖÜMÜ epartment of Civil Engineering İNM YAI STATIĞI II MATRİS EASMAN YÖNTEMİ Y.OÇ.R. MUSTAA UTANİS tanis@saarya.ed.tr Saarya Üniversitesi, İnşaat Mühendisliği Bölümü

Detaylı

ÇALIŞMA ŞARTLARINDA MODAL ANALİZ

ÇALIŞMA ŞARTLARINDA MODAL ANALİZ İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇALIŞMA ŞARTLARINDA MODAL ANALİZ YÜKSEK LİSANS TEZİ Y. Müh. Ales KUYUMCUOĞLU Anabilim Dalı: Meatroni Mühendisliği Programı: Meatroni Mühendisliği HAZİRAN

Detaylı

DEPREM HESABI. Doç. Dr. Mustafa ZORBOZAN

DEPREM HESABI. Doç. Dr. Mustafa ZORBOZAN BETONARME YAPI TASARIMI DEPREM HESABI Doç. Dr. Mustafa ZORBOZAN Mart 2009 GENEL BİLGİ 18 Mart 2007 ve 18 Mart 2008 tarihleri arasında ülkemizde kaydedilen deprem etkinlikleri Kaynak: http://www.koeri.boun.edu.tr/sismo/map/tr/oneyear.html

Detaylı

Dr. Mehmet AKSARAYLI

Dr. Mehmet AKSARAYLI Dr. Mehmet AKSARAYLI Şans Değişeni: Bir dağılışı olan ve bu dağılışın yaısına uygun freansta oluşum gösteren değişendir. Şans Değişenleri KESİKLİ RASSAL DEĞİŞKENLER ve OLASILIK DAĞILIMLARI Kesili Şans

Detaylı

Dönmeye Karşı Kontrol Altına Alınmış Basit Mesnetli Çubukların Stoke Dönüşümü Yardımıyla Burkulma Analizi

Dönmeye Karşı Kontrol Altına Alınmış Basit Mesnetli Çubukların Stoke Dönüşümü Yardımıyla Burkulma Analizi XIX. UUSA MEKANİK KONGRESİ 4-8 Ağustos 15, Karadeni Teni Üniversitesi, Trabon Dönmeye Karşı Kontrol Altına Alınmış Basit Mesnetli Çubuların Stoe Dönüşümü Yardımıyla Burulma Analii M. Öür YAYI 1, A. Erdem

Detaylı

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa

ELECO '2012 Elektrik - Elektronik ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 Aralık 2012, Bursa ELECO '2012 Eletri - Eletroni ve Bilgisayar Mühendisliği Sempozyumu, 29 Kasım - 01 ralı 2012, Bursa Lineer Olmayan Dinami Sistemlerin Yapay Sinir ğları ile Modellenmesinde MLP ve RBF Yapılarının Karşılaştırılması

Detaylı

r r r F İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine kuvvetini göstermektedir. Parçacık A noktasından

r r r F İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine kuvvetini göstermektedir. Parçacık A noktasından İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine etkiyenf r kuvvetini göstermektedir. Parçacık A noktasından r r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve d r A dan A ne

Detaylı

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.

Detaylı

G( q ) yer çekimi matrisi;

G( q ) yer çekimi matrisi; RPR (DÖNEL PRİZATİK DÖNEL) EKLE YAPISINA SAHİP BİR ROBOTUN DİNAİK DENKLELERİNİN VEKTÖR-ATRİS FORDA TÜRETİLESİ Aytaç ALTAN Osmancık Ömer Derindere eslek Yüksekokulu Hitit Üniversitesi aytacaltan@hitit.edu.tr

Detaylı

Doğrusal hareket yapan bir maddesel noktanın hız konum bağıntısı

Doğrusal hareket yapan bir maddesel noktanın hız konum bağıntısı DNK1 Dinai Dersi Soru anası Dia! şağıdai soru e çözüler, gözden geçirilediği için haalar içerebilir. Sapadığınız haaları bildireniz dileğiyle. noanın onu-zaan bağınısı sin ise en büyü ie aşağıdailerden

Detaylı

RÜZGAR TÜRBİNİ PERVANE KANADININ TİTREŞİM ANALİZİ. Doç. Dr. Aydoğan ÖZDAMAR*

RÜZGAR TÜRBİNİ PERVANE KANADININ TİTREŞİM ANALİZİ. Doç. Dr. Aydoğan ÖZDAMAR* RÜZGAR TÜRBİNİ PERVANE KANADININ TİTREŞİM ANALİZİ Yrd. Doç. Dr. K. Turgut GÜRSEL* Mak. Müh. Tufan ÇOBAN* Doç. Dr. Aydoğan ÖZDAMAR* * Ege Üniversitesi, Mühendislik Fakültesi, Makina Mühendisliği Bölümü,

Detaylı

Eşdeğer Deprem Yüklerinin Dağılım Biçimleri

Eşdeğer Deprem Yüklerinin Dağılım Biçimleri Eşdeğer Deprem Yüklerinin Dağılım Biçimleri Prof. Dr. Günay Özmen İTÜ İnşaat Fakültesi (Emekli), İstanbul gunayozmen@hotmail.com 1. Giriş Deprem etkisi altında bulunan ülkelerin deprem yönetmelikleri çeşitli

Detaylı

TIMOSHENKO KİRİŞLERİNİN SERBEST TİTREŞİM ANALİZİNİN DİFERANSİYEL TRANSFORMASYON METODU İLE İNCELENMESİ

TIMOSHENKO KİRİŞLERİNİN SERBEST TİTREŞİM ANALİZİNİN DİFERANSİYEL TRANSFORMASYON METODU İLE İNCELENMESİ 14-16 Ekim 015 DEÜ İZMİR TIMOSHEKO KİRİŞLERİİ SERBEST TİTREŞİM AALİZİİ DİFERASİYEL TRASFORMASYO METODU İLE İCELEMESİ Baran Bozyiğit 1, Seval Çatal ve Hikmet Hüseyin Çatal 3 1 Araştırma Görevlisi, İnşaat

Detaylı

BÖLÜM 9 NORMAL DAĞILIM

BÖLÜM 9 NORMAL DAĞILIM 1 BÖLÜM 9 NORMAL DAĞILIM Normal dağılım; 'normal dağılım eğrisi (normaly distribution curve)' ile kavramlaştırılan hipotetik bir evren dağılımıdır. 'Gauss dağılımı' ya da 'Gauss eğrisi' olarak da bilinen

Detaylı

RÜZGAR TÜNELĐNDEKĐ KANAT PROFĐLĐNĐN DĐKEY HAREKETĐNĐN MODELLENMESĐ

RÜZGAR TÜNELĐNDEKĐ KANAT PROFĐLĐNĐN DĐKEY HAREKETĐNĐN MODELLENMESĐ makale RÜZGAR TÜNELĐNDEKĐ KANAT PROFĐLĐNĐN DĐKEY HAREKETĐNĐN MODELLENMESĐ Cem ONAT, Şaban ÇETĐN Yıldız Teknik Üniversitesi, Makina Fakültesi Yatay eksenli rüzgar türbinlerinde, pervane kanatlarına etkiyen

Detaylı

BAZI İLLER İÇİN GÜNEŞ IŞINIM ŞİDDETİ, GÜNEŞLENME SÜRESİ VE BERRAKLIK İNDEKSİNİN YENİ ÖLÇÜMLER IŞIĞINDA ANALİZİ

BAZI İLLER İÇİN GÜNEŞ IŞINIM ŞİDDETİ, GÜNEŞLENME SÜRESİ VE BERRAKLIK İNDEKSİNİN YENİ ÖLÇÜMLER IŞIĞINDA ANALİZİ Güneş Günü Sempozyumu 99-28 Kayseri, 2-27 Haziran 1999 BAZI İLLER İÇİN GÜNEŞ IŞINIM ŞİDDETİ, GÜNEŞLENME SÜRESİ VE BERRAKLIK İNDEKSİNİN YENİ ÖLÇÜMLER IŞIĞINDA ANALİZİ Hüsamettin BULUT Çukurova Üni. Müh.

Detaylı

Doğrusal Olmayan Devreler, Sistemler ve Kaos

Doğrusal Olmayan Devreler, Sistemler ve Kaos Dğrusal Olmayan Devreler Sistemler ve Kas Neslihan Serap Şengör da n:07 tel n:0 85 360 sengrn@itu.edu.tr Özan Karabaca da n:7 tel n:0 85 3506 zan97@yah.cm Dğrusal Olmayan Devreler Sistemler ve Kas 6 Şubat

Detaylı

2. TRANSFORMATÖRLER. 2.1 Temel Bilgiler

2. TRANSFORMATÖRLER. 2.1 Temel Bilgiler . TRANSFORMATÖRLER. Temel Bilgiler Transformatörlerde hareet olmadığından dolayı sürtünme ve rüzgar ayıpları mevcut değildir. Dolayısıyla transformatörler, verimi en yüse (%99 - %99.5) olan eletri maineleridir.

Detaylı

a : Uydu yörüngesinin büyük yarı ekseni, b: Uydu yörüngesinin küçük yarı ekseni,

a : Uydu yörüngesinin büyük yarı ekseni, b: Uydu yörüngesinin küçük yarı ekseni, Kepler Kannları Nota onmlarının belirlenmesi için bilgi alınan ydların yörüngelerinin ve b yörüngedei onmlarının bilinmesi gereir. Uyd yörüngeleri ve b yörüngedei hareetlerini belirleme için Kepler annlarından

Detaylı

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İKİ PARAMETRELİ VLASOV ZEMİNİNE OTURAN HOMOJEN İZOTROP PLAKLARIN, KARIŞIK SONLU ELEMANLAR METODU İLE ANALİZİ YÜKSEK LİSANS TEZİ İnş. Müh. Ahmet Anıl

Detaylı

Açık işletme Dizaynı için Uç Boyutlu Dinamik Programlama Tekniği

Açık işletme Dizaynı için Uç Boyutlu Dinamik Programlama Tekniği MADENCİLİK Haziran June 1991 Cilt Volume XXX Sayı No 2 Açı işletme Dizaynı için Uç Boyutlu Dinami Programlama Teniği A Three Dimensional Dynamic Programming Technique for Open Pit Design Ercüment YALÇE\(*)

Detaylı

İş Bir sistem ve çevresi arasındaki etkileşimdir. Sistem tarafından yapılan işin, çevresi üzerindeki tek etkisi bir ağırlığın kaldırılması olabilir.

İş Bir sistem ve çevresi arasındaki etkileşimdir. Sistem tarafından yapılan işin, çevresi üzerindeki tek etkisi bir ağırlığın kaldırılması olabilir. ermodinami rensipler ermodinamiğin birinci anunu enerjinin orunumu prensibinin bir ifadesidir. Enerji bir bölgeden diğerine taşındığında eya bir bölge içinde şeil değiştirdiğinde toplam enerji mitarı sabit

Detaylı

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş

Hipotez Testlerine Giriş. Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Hipotez Testlerine Giriş Gözlem ya da deneme sonucu elde edilmiş sonuçların, raslantıya bağlı olup olmadığının incelenmesinde kullanılan istatistiksel

Detaylı

Dinamik Programlama Tekniğindeki Gelişmeler

Dinamik Programlama Tekniğindeki Gelişmeler MADENCİLİK Aralı December 1991 Cilt Volume XXX Sayı No 4 Dinami Programlama Teniğindei Gelişmeler Developments in Dynamic Programming Technique Ercüment YALÇIN (*) ÖZET Bu yazıda, optimum nihai açı işletme

Detaylı

3.Seviye Deneme Sınavı ITAP_12_14_2011 Titreşim

3.Seviye Deneme Sınavı ITAP_12_14_2011 Titreşim 3.Seviye Deneme Sınavı TAP_1_14_011 Titreşim 1. Notasa bir cisim şeidei çemberin A notasından sıfır i hızı ie AB doğrutuda yer çeim aaında hareet etmetedir. Çemberin çapı BC= ye eşit oduğuna öre cisim

Detaylı

Leyla Bugay Doktora Nisan, 2011

Leyla Bugay Doktora Nisan, 2011 ltanguler@cu.edu.tr Çukurova Üniversitesi, Matematik Bölümü Doktora 2010913070 Nisan, 2011 Yarıgrup Teorisi Nedir? Yarıgrup teorisi cebirin en temel dallarından biridir. Yarıgrup terimi ilk olarak 1904

Detaylı

Titreşim nedir? x(t)=x(t+nt)

Titreşim nedir? x(t)=x(t+nt) MEKANİK TİTREŞİMLER Titreşi nedir? Bir sistein denge onuu civarında yapış olduğu salını hareetine titreşii denir. Eğer yapılan salını hareeti T saniyede endini terar ediyorsa böyle hareetlere peryodi hareet

Detaylı

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ 3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F

Detaylı

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İSTANBUL TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ TEKİLLİK İÇEREN REISSNER PLAKLARININ SONLU ELEMAN ÇÖZÜMÜNDE GEÇİŞ ELEMANLARI KULLANILARAK AĞ SIKLAŞTIRMASI YÜKSEK LİSANS TEZİ İnş. Müh. Tuğrul ÇELİK

Detaylı

Şekil 1. DEÜ Test Asansörü kuyusu.

Şekil 1. DEÜ Test Asansörü kuyusu. DOKUZ EYLÜL ÜNĐVERSĐTESĐ TEST ASANSÖRÜ KUYUSUNUN DEPREM YÜKLERĐ ETKĐSĐ ALTINDAKĐ DĐNAMĐK DAVRANIŞININ ĐNCELENMESĐ Zeki Kıral ve Binnur Gören Kıral Dokuz Eylül Üniversitesi, Mühendislik Fakültesi, Makine

Detaylı

Yavaş Değişen Kritik-Altı Açık Kanal Akımının k-ε Türbülans Kapatma Modelleri ile Sayısal Hesabı

Yavaş Değişen Kritik-Altı Açık Kanal Akımının k-ε Türbülans Kapatma Modelleri ile Sayısal Hesabı Çuurova Üniversitesi Mühendisli Mimarlı Faültesi Dergisi, 9(1), ss. 145-155, Haziran 014 Çuurova University Journal of the Faculty of Engineering and Architecture, 9(1), pp. 145-155, June 014 Yavaş Değişen

Detaylı