Özörgütlemeli Öğrenme (SOM) A. Cumhur KINACI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Özörgütlemeli Öğrenme (SOM) A. Cumhur KINACI"

Transkript

1 Özörgütlemeli Öğrenme (SOM) A. Cumhur KINACI

2 Öğrenme Türleri Eğiticili Öğrenme Eğiticisiz Öğrenme: Ağın verilerin sınıflandırmasını dışarıdan yardım almadan kendi başına yapmasıdır. Bunun olabilmesi için verilerin ortak özelliklere sahip verilerden oluştuğunu kabul etmemiz gerekir. Destekleyicili Öğrenme

3 Rekabetçi Öğrenme Sinir Hücreleri arasında girdi vektörünü en iyi temsil edenin belirlenmesi.

4 Rekabetçi Öğrenme - 2 Eğiticisiz öğrenmenin bir türü olarak rekabetçi öğrenme; çıktı katmanı sinir hücrelerinin etkin olabilmek için kendi aralarında yarışmalarına dayanır. Sonuç olarak herhangi bir anda sadece bir tane kazanan sinir hücresi olur. Bu rekabet sonunda sinir hücreleri organize olmaya zorlanır.

5 Topografik Harita (Eşlem) Topografi : Bir kara parçasının doğal engebe ve özelliklerini kâğıt üzerinde çizgilerle gösterme işi.

6 WEBSOM: Belgelerin konularına göre topografik eşlemi. ebsom/

7 Topografik Harita (Eşlem) - 2 Biyolojik sinir sistemi çalışmaları göstermiştir ki tüm motor, görsel, işitsel vb. girdiler serebral kortekste bir düzen içerisinde eşlenmiştir.

8 Topografik Harita (Eşlem) - 3 İki özelliği vardır: 1.Sürecin herhangi bir aşamasında gelen her bir bilgi parçası kendisine uygun içerikte tutulur. 2.Yakın alakalı bilgilerle ilgilenen sinir hücreleri birbirlerine yakın konumlanırlar. Böylece daha az sinaptik bağlantıyla haberleşebilirler. Hedef : Yapay topografi eşlemlerini özörgütlemeli bir şekilde sinir sisteminden esinlenen bir bakış açısıyla oluşturmaktır.

9 Topoloji Geometrik cisimlerin nitelikleriyle ilgili özelliklerini ve bağıl konumlarını, biçim ve büyüklüklerinden ayrı olarak alıp inceleyen geometri dalı.

10 SOM'un öncelikli hedefi, herhangi bir boyuta sahip desen sinyallerini bir veya iki boyutlu sonlu eşlemlere dönüştürmektir. R, R 2, R 3

11 Eşleme (Mapping)

12 Özörgütlemeli Öğrenmenin Bileşenleri Dört bileşenden oluşur. 1- İlklendirme: Tüm bağlantı ağırlıkları küçük rastgele sayılarla ilklendirilirler. Başka ilklendirme stratejileri de uygulanabilir. 2- Rekabet: Her girdi deseni için hücreler rekabetin temelini oluşturan ayırt etme fonksiyonu değerlerine göre yarışırlar. Bu fonksiyonun en küçük değeri verdiği hücre kazanan olur.

13 Özörgütlemeli Öğrenmenin Bileşenler İşbirliği: Kazanan hücre uyarılacak hücrelerin topolojik komşuluğunun uzaysal konumunu belirler. Böylece komşu hücreler arasında işbirliği temelleri oluşturulur. 4- Uyum: Uyarılan hücreler ayırt edici fonksiyondan elde ettikleri değeri düşürecek şekilde bağlantı ağırlıklarını ayarlarlar.

14 Rekabetçi Süreç D boyutlu girdilerin olduğunu kabul edelim. girdi desenlerini şu şekilde ifade edebiliriz : Girdi birimi i ile j'inci sinir hücresi arasındaki ağırlıklar da şu şekilde gösterilebilir. N toplam sinir hücresi sayısı.

15 Rekabetçi Süreç - 2 Ayırt edici fonksiyon olarak Öklid uzaklığının karesini alabiliriz. Girdi vektörü X ile her j'inci sinir hücresi için ağırlık vektörü wj arasındaki uzaklık:

16 Rekabetçi Süreç - 3 Bir başka deyişle hangi sinir hücresinin ağırlık vektörü girdi vektörüne yakınsa o hücre kazanır. Bu şekilde sinir hücrelerinin rekabeti sayesinde sürekli girdi uzayı kesikli çıktı uzayıyla eşleştirilmiş olur.

17 İşbirliği Süreci Biyolojik araştırmalar bir sinir hücresi ateşlendiğinde en yakın komşularının da diğer uzaktakilere oranla uyarılmaya eğilimli olduğu gözlemlenmiş. Bu uzaklıkla azalan topolojik komşuluk anlamına gelir. SOM'da komşuluk fonksiyonu zamanla azalan bir fonksiyon olmalıdır.

18 Kazanan Hücre ve Komşuları

19 Uyum süreci Sadece kazanan hücre değil komşuları da girdi vektörüne yaklaşacak şekilde ağırlıkları düzenlenir. Böylece topolojik düzen sağlanmış olur. Ağırlık güncelleme katsayısı da zamana bağlı olarak azalan fonksiyon olmalıdır.

20 Self Organizing Map Mimarisi

21 SOM Algoritması - 1 İlklendirme Örneğin ağa gösterimi Eşleme Güncelleme Döngüye devam

22 SOM Algoritması Rekabet 2. İşbirliği 3. Komşuluk Fonksiyonu 4. Uyum

23 Kullanım Alanları Veri Analizi Kümeleme Risk Analizi

24 Renk Kümeleme Örneği

25 SOM ile Sezgisel TSP çözümü

26 Growing SOM SOM katmanının hücre sayısının ne kadar olması gerektiğini düşünmeden dinamik olarak ağın büyümesi mantığını kullanır.

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ

YAPAY SİNİR AĞLARI. Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ YAPAY SİNİR AĞLARI Araş. Gör. Nesibe YALÇIN BİLECİK ÜNİVERSİTESİ İÇERİK Sinir Hücreleri Yapay Sinir Ağları Yapısı Elemanları Çalışması Modelleri Yapılarına Göre Öğrenme Algoritmalarına Göre Avantaj ve

Detaylı

YZM 3217 YAPAY ZEKA DERS#10: KÜMELEME

YZM 3217 YAPAY ZEKA DERS#10: KÜMELEME YZM 317 YAPAY ZEKA DERS#10: KÜMELEME Sınıflandırma (Classification) Eğiticili (supervised) sınıflandırma: Sınıflandırma: Sınıf sayısı ve bir grup örneğin hangi sınıfa ait olduğunu bilinir Eğiticisiz (unsupervised)

Detaylı

Uzaktan Algılama Uygulamaları

Uzaktan Algılama Uygulamaları Aksaray Üniversitesi Uzaktan Algılama Uygulamaları Doç.Dr. Semih EKERCİN Harita Mühendisliği Bölümü sekercin@aksaray.edu.tr 2010-2011 Bahar Yarıyılı Uzaktan Algılama Uygulamaları GÖRÜNTÜ İŞLEME TEKNİKLERİ

Detaylı

Bahadır KARASULU, Aybars UĞUR Ege Üniversitesi, Bilgisayar Mühendisliği Bölümü

Bahadır KARASULU, Aybars UĞUR Ege Üniversitesi, Bilgisayar Mühendisliği Bölümü ÖZÖRGÜTLEMELİ YAPAY SİNİR AĞI MODELİ NİN KULLANILDIĞI KUTUP DENGELEME PROBLEMİ İÇİN PARALEL HESAPLAMA TEKNİĞİ İLE BİR BAŞARIM ENİYİLEŞTİRME YÖNTEMİ Bahadır KARASULU, Aybars UĞUR Ege Üniversitesi, Bilgisayar

Detaylı

İş Zekası. Hafta 6 Kestirimci Modelleme Teknikleri. Yrd. Doç. Dr. H. İbrahim CEBECİ

İş Zekası. Hafta 6 Kestirimci Modelleme Teknikleri. Yrd. Doç. Dr. H. İbrahim CEBECİ İş Zekası Hafta 6 Kestirimci Modelleme Teknikleri Business Intelligence and Analytics: Systems for Decision Support 10e isimli eserden adapte edilmiştir Bölüm Amaçları Yapay Sinir Ağları (YSA) kavramını

Detaylı

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN

VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN VERİ MADENCİLİĞİ (Kümeleme) Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr İçerik Kümeleme İşlemleri Kümeleme Tanımı Kümeleme Uygulamaları Kümeleme Yöntemleri Kümeleme (Clustering) Kümeleme birbirine

Detaylı

1- Matematik ve Geometri

1- Matematik ve Geometri GEOMETRİ ÖĞRETİMİ 1- Matematik ve Geometri Matematik ve Geometri Bir çok matematikçi ve matematik eğitimcisi matematiği «cisimler, şekiller ve sembollerle ilişkiler ve desenler inşa etme etkinliği» olarak

Detaylı

Yapay Sinir Ağları. (Artificial Neural Networks) DOÇ. DR. ERSAN KABALCI

Yapay Sinir Ağları. (Artificial Neural Networks) DOÇ. DR. ERSAN KABALCI Yapay Sinir Ağları (Artificial Neural Networks) J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - I DOÇ. DR. ERSAN KABALCI Yapay Sinir Ağları Tarihçe Biyolojik

Detaylı

İnsan beyni, birbiri ile karmaşık ilişkiler içinde bulunan nöron hücreleri kitlesidir. Tüm aktivitelerimizi kontrol eder, yaradılışın en görkemli ve

İnsan beyni, birbiri ile karmaşık ilişkiler içinde bulunan nöron hücreleri kitlesidir. Tüm aktivitelerimizi kontrol eder, yaradılışın en görkemli ve YAPAY SİNİRAĞLARI İnsan beyni, birbiri ile karmaşık ilişkiler içinde bulunan nöron hücreleri kitlesidir. Tüm aktivitelerimizi kontrol eder, yaradılışın en görkemli ve gizemli harikalarından biridir. İnsan

Detaylı

Esnek Hesaplamaya Giriş

Esnek Hesaplamaya Giriş Esnek Hesaplamaya Giriş J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - I DOÇ. DR. ERSAN KABALCI Esnek Hesaplama Nedir? Esnek hesaplamanın temelinde yatan

Detaylı

Yapay Bağışık Sistemler ve Klonal Seçim. Bmü-579 Meta Sezgisel Yöntemler Yrd. Doç. Dr. İlhan AYDIN

Yapay Bağışık Sistemler ve Klonal Seçim. Bmü-579 Meta Sezgisel Yöntemler Yrd. Doç. Dr. İlhan AYDIN Yapay Bağışık Sistemler ve Klonal Seçim Bmü-579 Meta Sezgisel Yöntemler Yrd. Doç. Dr. İlhan AYDIN Bağışık Sistemler Bağışıklık sistemi insan vücudunun hastalıklara karşı savunma mekanizmasını oluşturan

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Denetimsiz Öğrenmenin Temelleri Kümeleme Uzaklık Fonksiyonları Öklid Uzaklığı Manhattan

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

3.2. Raster Veriler. Satırlar. Sütunlar. Piksel/hücre büyüklüğü

3.2. Raster Veriler. Satırlar. Sütunlar. Piksel/hücre büyüklüğü 3.2. Raster Veriler Satırlar Piksel/hücre büyüklüğü Sütunlar 1 Görüntü formatlı veriler Her piksel için gri değerleri kaydedilmiştir iki veya üç bant (RGB) çok sayıda bant Fotoğraf, uydu görüntüsü, ortofoto,

Detaylı

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Akış Makine Öğrenmesi nedir? Günlük Hayatımızdaki Uygulamaları Verilerin Sayısallaştırılması Özellik Belirleme Özellik Seçim Metotları Bilgi Kazancı (Informaiton Gain-IG) Sinyalin Gürültüye Oranı: (S2N

Detaylı

KLASİK FRAKTALLAR FRAKTAL ÖZELLİKLERİ VE BOYUT

KLASİK FRAKTALLAR FRAKTAL ÖZELLİKLERİ VE BOYUT KLASİK FRAKTALLAR FRAKTAL ÖZELLİKLERİ VE BOYUT.. KENDİNE BENZERLİK VE AFİNİTE Fraktal özelliklerinden bir diğeri de kendine benzerlikdir. Geometrik açıdan, aynı şekle sahip olan geometrik şekiller birbirine

Detaylı

FRAKTAL VE FRAKTAL GEOMETRİ KAVRAMI

FRAKTAL VE FRAKTAL GEOMETRİ KAVRAMI FRAKTAL VE FRAKTAL GEOMETRİ KAVRAMI Fraktal geometri, yaklaşık çeyrek asırdır bilim dünyasının gündeminde olan ve doğadaki karmaşık biçim ve süreçleri gittikçe daha iyi anlamamıza yardımcı olan özel bir

Detaylı

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

Akış YILDIZ TEKNİK ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ Akış Makine Öğrenmesi nedir? Günlük Hayatımızdaki Uygulamaları Verilerin Sayısallaştırılması Özellik Belirleme Özellik Seçim Metotları Bilgi Kazancı (Informaiton Gain-IG) Sinyalin Gürültüye Oranı: (S2N

Detaylı

Görüntü Sınıflandırma

Görüntü Sınıflandırma Görüntü Sınıflandırma Chapter 12 https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0 CBwQFjAA&url=http%3A%2F%2Ffaculty.une.edu%2Fcas%2Fszeeman%2Frs%2Flect%2FCh%2 52012%2520Image%2520Classification.ppt&ei=0IA7Vd36GYX4Uu2UhNgP&usg=AFQjCNE2wG

Detaylı

KLASİK FRAKTALLAR, FRAKTAL ÖZELLİKLERİ VE BOYUT ( C L A S S I C A L F R AC TA L S, F R AC TA L P R O P E R T I E S AND D I M E N S I O N )

KLASİK FRAKTALLAR, FRAKTAL ÖZELLİKLERİ VE BOYUT ( C L A S S I C A L F R AC TA L S, F R AC TA L P R O P E R T I E S AND D I M E N S I O N ) KLASİK FRAKTALLAR, FRAKTAL ÖZELLİKLERİ VE BOYUT ( C L A S S I C A L F R AC TA L S, F R AC TA L P R O P E R T I E S AND D I M E N S I O N ) KENDİNE BENZERLİK VE AFİNİTE (SELF SIMILARITY AND AFFINITY) Mandelbrot

Detaylı

2. Topolojik Uzaylarda Ba¼glant l l k Ba¼glant l Topolojik Uzaylar. Tan m (X; ) topolojik uzay n n her biri boş kümeden farkl olan ayr k

2. Topolojik Uzaylarda Ba¼glant l l k Ba¼glant l Topolojik Uzaylar. Tan m (X; ) topolojik uzay n n her biri boş kümeden farkl olan ayr k 2. Topolojik Uzaylarda Ba¼glant l l k 2.1. Ba¼glant l Topolojik Uzaylar Tan m 2.1.1. (X; ) topolojik uzay n n her biri boş kümeden farkl olan ayr k iki aç ktan oluşan bir örtüsü yok ise, (X; ) topolojik

Detaylı

MATEMATİK VE FEN BİLİMLERİ EĞTİMİ ANABİLİM DALI MATEMATİK EĞİTİMİ BİLİM DALI TEZLİ YÜKSEK LİSANS PROGRAMI

MATEMATİK VE FEN BİLİMLERİ EĞTİMİ ANABİLİM DALI MATEMATİK EĞİTİMİ BİLİM DALI TEZLİ YÜKSEK LİSANS PROGRAMI I.YARIYIL MATEMATİK VE FEN BİLİMLERİ EĞTİMİ ANABİLİM DALI MATEMATİK EĞİTİMİ BİLİM DALI TEZLİ YÜKSEK LİSANS PROGRAMI 3715055832012 Z Uzmanlık Alan Dersi 3715055702017 Z Bilimsel Araştırma Yöntemleri ve

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 6 Kenar, Köşe, Yuvarlak Tespiti Alp Ertürk alp.erturk@kocaeli.edu.tr KENAR TESPİTİ Kenar Tespiti Amaç: Görüntüdeki ani değişimleri / kesintileri algılamak Şekil bilgisi elde

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

Koordinat Referans Sistemleri

Koordinat Referans Sistemleri Koordinat Referans Sistemleri Harita yapımında geometrik süreç Küre Referans yüzeyin seçimi Elipsoit Ölçek küçültme Dünya/Jeoit Harita düzlemine izdüşüm Harita Fiziksel yer yüzünün belli bir şekli yok,

Detaylı

Dr.Eyyüp GÜLBANDILAR Dr.Eyyüp GÜLBANDILAR

Dr.Eyyüp GÜLBANDILAR Dr.Eyyüp GÜLBANDILAR YAPAY SĐNĐR AĞLARI BĐYOLOJĐK SĐNĐR SĐSTEMĐ Biyolojik sinir sistemi, merkezinde sürekli olarak bilgiyi alan, yorumlayan ve uygun bir karar üreten beynin (merkezi sinir ağı) bulunduğu 3 katmanlı bir sistem

Detaylı

İlk Yapay Sinir Ağları. Dr. Hidayet Takçı

İlk Yapay Sinir Ağları. Dr. Hidayet Takçı İlk Yapay Sinir Ağları Dr. Hidayet htakci@gmail.com http://htakci.sucati.org Tek katmanlı algılayıcılar (TKA) Perceptrons (Rosenblat) ADALINE/MADALINE (Widrow and Hoff) 2 Perseptron eptronlar Basit bir

Detaylı

Görüntü İşleme. K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI. Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003

Görüntü İşleme. K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI. Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003 Görüntü İşleme K.Sinan YILDIRIM Cenk İNCE Tahir Emre KALAYCI Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 2003 İçerik Görüntü İşleme Nedir? Görüntü Tanımlamaları Görüntü Operasyonları Görüntü İşleme

Detaylı

1- Geometri ve Öklid

1- Geometri ve Öklid GEOMETRİ ÖĞRETİMİ 1- Geometri ve Öklid Matematik ve Geometri Bir çok matematikçi ve matematik eğitimcisi matematiği «cisimler, şekiller ve sembollerle ilişkiler ve desenler inşa etme etkinliği» olarak

Detaylı

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA

UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA UYDU GÖRÜNTÜLERİ VE SAYISAL UZAKTAN ALGILAMA Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında ucuz ve hızlı sonuç alınabilen uzaktan algılama tekniğinin, yenilenebilir

Detaylı

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun.

TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Doç.Dr.Mehmet MISIR-2013 TÜRKİYE CUMHURİYETİ DEVLETİNİN temellerinin atıldığı Çanakkale zaferinin 100. yılı kutlu olsun. Son yıllarda teknolojinin gelişmesi ile birlikte; geniş alanlarda, kısa zaman aralıklarında

Detaylı

Makine Öğrenmesi 8. hafta

Makine Öğrenmesi 8. hafta Makine Öğrenmesi 8. hafa Takviyeli Öğrenme (Reinforcemen Learning) Q Öğrenme (Q Learning) TD Öğrenme (TD Learning) Öğrenen Vekör Parçalama (LVQ) LVQ2 LVQ-X 1 Takviyeli Öğrenme Takviyeli öğrenme (Reinforcemen

Detaylı

Muhammet Fatih AKBAŞ, Enis KARAARSLAN, Cengiz GÜNGÖR

Muhammet Fatih AKBAŞ, Enis KARAARSLAN, Cengiz GÜNGÖR Yazılım Tanımlı Ağların Güvenliğinde Yapay Zeka Tabanlı Çözümler: Ön İnceleme Muhammet Fatih AKBAŞ, Enis KARAARSLAN, Cengiz GÜNGÖR İzmir Katip Çelebi Üniversitesi, Muğla Sıtkı Koçman Üniversitesi, Ege

Detaylı

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21

2.1 Bir Sınıfı Örneklerinden Öğrenme... 15 2.2 Vapnik-Chervonenkis (VC) Boyutu... 20 2.3 Olası Yaklaşık Doğru Öğrenme... 21 İçindekiler Önsöz İkinci Basım için Önsöz Türkçe Çeviri için Önsöz Gösterim xiii xv xvii xix 1 Giriş 1 1.1 Yapay Öğrenme Nedir?......................... 1 1.2 Yapay Öğrenme Uygulamalarına Örnekler...............

Detaylı

Ders Adı : Nesne Tabanlı Programlama-I Ders No : Teorik : 3 Pratik : 1 Kredi : 3.5 ECTS : 4. Ders Bilgileri.

Ders Adı : Nesne Tabanlı Programlama-I Ders No : Teorik : 3 Pratik : 1 Kredi : 3.5 ECTS : 4. Ders Bilgileri. Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : Nesne Tabanlı Programlama-I Ders No : 0690130114 Teorik : 3 Pratik : 1 Kredi : 3.5 ECTS : 4 Ders Bilgileri Ders Türü Öğretim

Detaylı

Kümeleme Algoritmaları. Tahir Emre KALAYCI

Kümeleme Algoritmaları. Tahir Emre KALAYCI Tahir Emre KALAYCI 2010 Gündem En önemli gözetimsiz öğrenme (unsupervised learning) problemi olarak değerlendirilmektedir Bu türdeki diğer problemler gibi etiketsiz veri kolleksiyonları için bir yapı bulmakla

Detaylı

COĞRAFİ BİLGİ SİSTEMLERİ VE UZAKTAN ALGILAMA

COĞRAFİ BİLGİ SİSTEMLERİ VE UZAKTAN ALGILAMA Coğrafi Bilgi Sistemleri ve Uzaktan Algılama Taşınmaz Değerleme ve Geliştirme Tezsiz Yüksek Lisans Programı COĞRAFİ BİLGİ SİSTEMLERİ VE UZAKTAN ALGILAMA 1 Coğrafi Bilgi Sistemleri ve Uzaktan Algılama İçindekiler

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

Çok-öbekli Veri için Aradeğerlemeci Ayrışım

Çok-öbekli Veri için Aradeğerlemeci Ayrışım Interpolative Decomposition for Data with Multiple Clusters Çok-öbekli Veri için Aradeğerlemeci Ayrışım İsmail Arı, A. Taylan Cemgil, Lale Akarun. Boğaziçi Üniversitesi, Bilgisayar Mühendisliği 25 Nisan

Detaylı

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur.

Görüntü İşleme. Dijital Görüntü Tanımları. Dijital görüntü ise sayısal değerlerden oluşur. Görüntü İşleme Görüntü işleme, dijital bir resim haline getirilmiş olan gerçek yaşamdaki görüntülerin bir girdi resim olarak işlenerek, o resmin özelliklerinin ve görüntüsünün değiştirilmesidir. Resimler

Detaylı

1.3. Normal Uzaylar. Bu bölümde; regülerlikten daha kuvvetli bir ay rma aksiyomu tan mlanarak. baz temel özellikleri incelenecektir.

1.3. Normal Uzaylar. Bu bölümde; regülerlikten daha kuvvetli bir ay rma aksiyomu tan mlanarak. baz temel özellikleri incelenecektir. 1.3. Normal Uzaylar Bu bölümde; regülerlikten daha kuvvetli bir ay rma aksiyomu tan mlanarak baz temel özellikleri incelenecektir. Tan m 1.3.1. (X; ) bir Hausdor uzay olsun. E¼ger, 8F; K 2 F; F \ K = ;

Detaylı

A 11. A) Olayın karışık ve anlaşılması zor bir ifadeyle yazılmış. Bu ön koşul işlemiyle ilgili olarak,

A 11. A) Olayın karışık ve anlaşılması zor bir ifadeyle yazılmış. Bu ön koşul işlemiyle ilgili olarak, 43. Bir öğretim programına öğrenci seçmek için mülakat yapılacaktır. Bu mülakata bir genel yetenek testinden 0 ve daha üstü standart T puanı alanlar başvurabilecektir. Yetenek testinden elde edilen puanlar

Detaylı

İLERİ ALGORİTMA ANALİZİ TABU ARAMA ALGORİTMASI (TABU SEARCH)

İLERİ ALGORİTMA ANALİZİ TABU ARAMA ALGORİTMASI (TABU SEARCH) İLERİ ALGORİTMA ANALİZİ TABU ARAMA ALGORİTMASI (TABU SEARCH) Tabu Arama Algoritması, optimizasyon problemlerinin çözümü için F.Glover tarafından geliştirilmiş iteratif bir araştırma algoritmasıdır. Temel

Detaylı

Boyut: Belirli bir doğrultuda ölçülmüş bir büyüklüğü ifade etmek için kullanılan geometrik bir terim.

Boyut: Belirli bir doğrultuda ölçülmüş bir büyüklüğü ifade etmek için kullanılan geometrik bir terim. FRAKTALLAR 1 2 * 3 Boyut: Belirli bir doğrultuda ölçülmüş bir büyüklüğü ifade etmek için kullanılan geometrik bir terim. Bir nokta «sıfır boyutlu» ludur. Doğrusal nokta toplulukları «bir boyutlu» bir doğru

Detaylı

Ders 10: Düzlemde cebirsel eğriler

Ders 10: Düzlemde cebirsel eğriler Ders 10: Düzlemde cebirsel eğriler İzdüşümsel geometride bir doğruyu derecesi 1 olan homojen bir polinomun sıfırları kümesi olarak tarif ettik. Bir kuadrik, derecesi 2 olan homojen bir polinomla anlatılıyordu

Detaylı

Gelişim Psikolojisi Ders Notları

Gelişim Psikolojisi Ders Notları Gelişim Psikolojisi Ders Notları Doç. Dr. Şaziye Senem BAŞGÜL www.gunescocuk.com Tanımlar Büyüme: Organizmada meydana gelen sayısal (hacimsel) değişiklikler Olgunlaşma: Potansiyel olarak var olan işlevin

Detaylı

Veri ve Metin Madenciliği

Veri ve Metin Madenciliği Veri ve Metin Madenciliği Zehra Taşkın Veri Madenciliği Bir kutu toplu iğne İçine 3 boncuk düşürdünüz Nasıl alacağız? Fikirler? Veri Madenciliği Data Information Knowledge Veri madenciliği; Büyük yoğunluklu

Detaylı

EĞİTİM ÖĞRETİM YILI İLKOKULU 1/. SINIFI GÖRSEL SANATLAR YILLIK PLANI

EĞİTİM ÖĞRETİM YILI İLKOKULU 1/. SINIFI GÖRSEL SANATLAR YILLIK PLANI EYLÜL 25 EYLÜL 29 EYLÜL (2. Hafta) EYLÜL 18 EYLÜL 22 EYLÜL (1. Hafta) 2017-2018 EĞİTİM ÖĞRETİM YILI İLKOKULU 1/. SINIFI GÖRSEL SANATLAR YILLIK PLANI ÖĞRENME ALANI: 1.1. Görsel İletişim ve Biçimlendirme

Detaylı

ArcGIS ile Su Yönetimi Eğitimi

ArcGIS ile Su Yönetimi Eğitimi ArcGIS ile Su Yönetimi Eğitimi http://facebook.com/esriturkey https://twitter.com/esriturkiye egitim@esriturkey.com.tr Kursun Süresi: 5 Gün 30 Saat ArcGIS ile Su Yönetimi Genel Bir platform olarak ArcGIS,

Detaylı

Görüntü Segmentasyonu (Bölütleme)

Görüntü Segmentasyonu (Bölütleme) Görüntü Segmentasyonu (Bölütleme) Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. 20 Aralık 2014 Cumartesi 1 Görüntü Segmentasyonu 20 Aralık 2014 Cumartesi 2 Gestalt kanunları Görüntü

Detaylı

Bilgisayarla Görüye Giriş

Bilgisayarla Görüye Giriş Bilgisayarla Görüye Giriş Ders 10 Nesne / Yüz Tespiti ve Tanıma Alp Ertürk alp.erturk@kocaeli.edu.tr Nesne Tespiti Belirli bir nesnenin sahne içindeki konumunun tespitidir Tespit edilecek nesne önceden

Detaylı

Coğrafi Bilgi Sistemlerine Giriş

Coğrafi Bilgi Sistemlerine Giriş Coğrafi Bilgi Sistemlerine Giriş İçerik Mekansal veri ve bileşenleri Mekansal verinin CBS ortamında sunumu ve Vektör Model Hücresel Model Modeller arası dönüşüm ve temel karşılaştırmalar Mekansal veri

Detaylı

GÖRSEL YAZILIM GELİŞTİRME ORTAMI İLE BERABER BİR YAPAY SİNİR AĞI KÜTÜPHANESİ TASARIMI VE GERÇEKLEŞTİRİMİ

GÖRSEL YAZILIM GELİŞTİRME ORTAMI İLE BERABER BİR YAPAY SİNİR AĞI KÜTÜPHANESİ TASARIMI VE GERÇEKLEŞTİRİMİ EGE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ (YÜKSEK LİSANS TEZİ) GÖRSEL YAZILIM GELİŞTİRME ORTAMI İLE BERABER BİR YAPAY SİNİR AĞI KÜTÜPHANESİ TASARIMI VE GERÇEKLEŞTİRİMİ Ahmet Cumhur KINACI Bilgisayar Mühendisliği

Detaylı

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz.

MATEMATİK ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI DENEME. Diğer sayfaya geçiniz. MATEMATİK. DENEME ÖĞRETMENLİK ALAN BİLGİSİ - DENEME SINAVI. f : X tanımlı y = f() fonksiyonu için lim f ( ) = L ise aşağıdaki önermelerden kaç tanesi kesinlikle doğrudur? 0 I. X dir. 0 II. f() fonksiyonu

Detaylı

Kareköklü Sayılar. sayısını en yakın onda birliğe kadar tahmin edelim.

Kareköklü Sayılar. sayısını en yakın onda birliğe kadar tahmin edelim. 1 2 sayısını en yakın onda birliğe kadar tahmin edelim. 3 sayısını en yakın onda birliğe kadar tahmin edelim. 28 sayısına en yakın tam kare sayılar 25 ve 36 dır. 4 sayısını en yakın onda birliğe kadar

Detaylı

Çekişmeli Üretici Ağlar Kullanarak Dış Mekan Görüntülerinin Geçici Niteliklerini Düzenleme

Çekişmeli Üretici Ağlar Kullanarak Dış Mekan Görüntülerinin Geçici Niteliklerini Düzenleme Çekişmeli Üretici Ağlar Kullanarak Dış Mekan Görüntülerinin Geçici Niteliklerini Düzenleme Adjusting Transient Attributes of Outdoor Images using Generative Adversarial Networks Levent Karacan, Aykut Erdem,

Detaylı

Kalkınma Politikasının Temelleri

Kalkınma Politikasının Temelleri MIT OpenCourseWare http://ocw.mit.edu 14.74- Kalkınma Politikasının Temelleri Bahar 2009 Ders materyallerini alıntılamak için bilgi almak ya da Kullanım Koşulları nı öğrenmek için lütfen aşağıdaki siteyi

Detaylı

SAYISAL KARARLILIK. Zaman Uzayı Sonlu Farklar Yöntemi

SAYISAL KARARLILIK. Zaman Uzayı Sonlu Farklar Yöntemi Dr. Serkan Aksoy SAYISAL KARARLILIK Sayısal çözümlerin kararlı olması zorunludur. Buna göre ZUSF çözümleri de uzay ve zamanda ayrıklaştırma kapsamında kararlı olması için kararlılık koşullarını sağlaması

Detaylı

Makine Öğrenmesine Giriş (Machine Learning ML)

Makine Öğrenmesine Giriş (Machine Learning ML) Makine Öğrenmesine Giriş (Machine Learning ML) Doç.Dr.Banu Diri Doğal Dil Đşlemede Eğilimler Önce : Yapay Zeka Tabanlı, Tam olarak anlama Şimdi : Külliyat(Corpus)-tabanlı, Đstatistiki, Makine Öğrenmesi

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN

Lineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,

Detaylı

Robot Yaz Okulu 1. DÖNEM 21 Haziran 9 Temmuz 2010

Robot Yaz Okulu 1. DÖNEM 21 Haziran 9 Temmuz 2010 Robot Yaz Okulu Diğer Dönemler: 2. Dönem : 12 Temmuz- 30 Temmuz 3. Dönem : 2 Ağustos- 20 Ağustos 4. Dönem : 23 Ağustos - 10 Eylül Robot Eğitim Paketleri Eğitim Paketi 1: Başlangıç Eğitim Paketi 2: Temel

Detaylı

Kültür Varlıklarının Web Otomasyonu

Kültür Varlıklarının Web Otomasyonu Kültür Varlıklarının Web Otomasyonu SUNUM İÇERİĞİ PROJE GEREKLİLİĞİ PROJE İHTİYAÇLARI SİSTEM TASARIMINA GÖRE TEKNOLOJİK ALT YAPI DÜZENLENEN SİSTEMİN GETİRDİĞİ AVANTAJLAR PROJE GEREKLİLİĞİ Taşınmaz kültür

Detaylı

A. ATOMUN TEMEL TANECİKLERİ

A. ATOMUN TEMEL TANECİKLERİ ÜNİTE 3 MADDENİN YAPISI VE ÖZELLİKLERİ 1. BÖLÜM MADDENİN TANECİKLİ YAPISI 1- ATOMUN YAPISI Maddenin taneciklerden oluştuğu fikri yani atom kavramı ilk defa demokritus tarafından ortaya atılmıştır. Örneğin;

Detaylı

ÖZET...V ABSTRACT...VII TEŞEKKÜR... IX ŞEKİLLER DİZİNİ... XIV SÖZLÜK... XIX

ÖZET...V ABSTRACT...VII TEŞEKKÜR... IX ŞEKİLLER DİZİNİ... XIV SÖZLÜK... XIX XI İÇİNDEKİLER ÖZET...V ABSTRACT...VII TEŞEKKÜR... IX ŞEKİLLER DİZİNİ... XIV SÖZLÜK... XIX 1. GİRİŞ... 1 2. PLANLAMANIN TARİHÇESİ... 7 2.1 Literatürdeki Planlayıcılar ve Kullandıkları Problem... Gösterimi

Detaylı

Eski Yunanca'dan batı dillerine giren Fotogrametri sözcüğü 3 kök sözcükten oluşur. Photos(ışık) + Grama(çizim) + Metron(ölçme)

Eski Yunanca'dan batı dillerine giren Fotogrametri sözcüğü 3 kök sözcükten oluşur. Photos(ışık) + Grama(çizim) + Metron(ölçme) FOTOGRAMETRİ FOTOGRAMETRİ Eski Yunanca'dan batı dillerine giren Fotogrametri sözcüğü 3 kök sözcükten oluşur. Photos(ışık) + Grama(çizim) + Metron(ölçme) Buna göre ışık yardımı ile ölçme (çizim yapabilme)

Detaylı

DİNAMİK (4.hafta) İKİ PARÇACIĞIN BAĞIMLI MUTLAK HAREKETİ (MAKARALAR) Örnek 1

DİNAMİK (4.hafta) İKİ PARÇACIĞIN BAĞIMLI MUTLAK HAREKETİ (MAKARALAR) Örnek 1 DİNAMİK (4.hafta) İKİ PARÇACIĞIN BAĞIMLI MUTLAK HAREKETİ (MAKARALAR) Bazı problemlerde bir cismi hareket ettirdiğimizde ona halatla bağlı başka bir cisimde farklı bir konumda hareket edebilir. Bu iki cismin

Detaylı

koşullar nelerdir? sağlamaktadır? 2. Harita ile kroki arasındaki fark nedir?

koşullar nelerdir? sağlamaktadır? 2. Harita ile kroki arasındaki fark nedir? 1. Bir çizimin harita özelliği taşıması için gerekli koşullar nelerdir? 2. Harita ile kroki arasındaki fark nedir? 3. Haritalar günlük hayatımızda ne gibi kolaylıklar sağlamaktadır? 4. Haritalar hangi

Detaylı

A; e A; A kümelerini tan mlay n z. (x) = fb 2 B : x 2 Bg

A; e A; A kümelerini tan mlay n z. (x) = fb 2 B : x 2 Bg Genel Topolojiye Giriş I Ara S nav Sorular 30 Kas m 2010 1 (X; T ) bir topolojik uzay ve A X olsun. 2 (a) Ikinci say labilir topolojik uzay ne demektir? Tan mlay n z. A; e A; A ve @A kümelerini tan mlay

Detaylı

YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ İNTİBAK ÇİZELGESİ 2010-2011 1.SINIF / GÜZ DÖNEMİ

YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ İNTİBAK ÇİZELGESİ 2010-2011 1.SINIF / GÜZ DÖNEMİ YAZILIM MÜHENDİSLİĞİ BÖLÜMÜ İNTİBAK ÇİZELGESİ 2010-2011 1.SINIF / GÜZ DÖNEMİ Bu ders 1. Sınıf güz döneminden 2. Sınıf güz dönemine alınmıştır. gerektiği halde alamayan öğrenciler 2010-2011 öğretim yılı

Detaylı

Bekleme Hattı Teorisi

Bekleme Hattı Teorisi Bekleme Hattı Teorisi Sürekli Parametreli Markov Zincirleri Tanım 1. * +, durum uzayı * +olan sürekli parametreli bir süreç olsun. Aşağıdaki özellik geçerli olduğunda bu sürece sürekli parametreli Markov

Detaylı

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu

Tanımlar, Geometrik ve Matemetiksel Temeller. Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ. JDF329 Fotogrametri I Ders Notu FOTOGRAMETRİ I Tanımlar, Geometrik ve Matemetiksel Temeller Yrd. Doç. Dr. Saygın ABDİKAN Yrd. Doç. Dr. Aycan M. MARANGOZ JDF329 Fotogrametri I Ders Notu 2015-2016 Öğretim Yılı Güz Dönemi İçerik Tanımlar

Detaylı

CBS Veri. CBS Veri Modelleri. Prof.Dr. Emin Zeki BAŞKENT. Karadeniz Teknik Üniversitesi Orman Fakültesi 2010, EZB

CBS Veri. CBS Veri Modelleri. Prof.Dr. Emin Zeki BAŞKENT. Karadeniz Teknik Üniversitesi Orman Fakültesi 2010, EZB Modelleri Prof.Dr. Emin Zeki BAŞKENT Karadeniz Teknik Üniversitesi Orman Fakültesi Objelerin temsili Raster -- Grid Piksel Konum ve değeri Uydu görüntüleri ve hava fotoları bu formatta Vector -- Linear

Detaylı

Görüntü Segmentasyonu (Bölütleme) Dijital Görüntü İşleme Fevzi Karslı, KTÜ Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır.

Görüntü Segmentasyonu (Bölütleme) Dijital Görüntü İşleme Fevzi Karslı, KTÜ Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. Görüntü Segmentasyonu (Bölütleme) Segmentasyon, görüntüyü aynı cinsten obje ve bölgelere ayırmaktır. 16 Ocak 2014 Perşembe 1 Görüntü Segmentasyonu 16 Ocak 2014 Perşembe 2 Görüntüden Objelere Bir objeyi

Detaylı

(AYIRIM) DENLİ. Emre KUZUGÜDENL. Doç.Dr.Serdar CARUS

(AYIRIM) DENLİ. Emre KUZUGÜDENL. Doç.Dr.Serdar CARUS DİSKRİMİNANT ANALİZİ (AYIRIM) Emre KUZUGÜDENL DENLİ Doç.Dr.Serdar CARUS Bu analiz ile; Bir bireyin hangi gruptan geldiği (p değişkeni kullanarak, bireyi uygun bir gruba atar ) Her bir değişkenin atama

Detaylı

Trafik Yoğunluk Harita Görüntülerinin Görüntü İşleme Yöntemleriyle İşlenmesi

Trafik Yoğunluk Harita Görüntülerinin Görüntü İşleme Yöntemleriyle İşlenmesi Trafik Yoğunluk Harita Görüntülerinin Görüntü İşleme Yöntemleriyle İşlenmesi ISITES 2016 4 TH INTERNATIONAL SYMPOSIUM ON INNOVATIVE TECHNOLOGIES IN ENGINEERING AND SCIENCE Dr. G. Çiğdem Çavdaroğlu ISITES,

Detaylı

Modelleme bir sanattan çok bir Bilim olarak tanımlanabilir. Bir model kurucu için en önemli karar model seçiminde ilişkileri belirlemektir.

Modelleme bir sanattan çok bir Bilim olarak tanımlanabilir. Bir model kurucu için en önemli karar model seçiminde ilişkileri belirlemektir. MODELLEME MODELLEME Matematik modelleme yaklaşımı sistemlerin daha iyi anlaşılması, analiz edilmesi ve tasarımının etkin ve ekonomik bir yoludur. Modelleme karmaşık parametrelerin belirlenmesi için iyi

Detaylı

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE

GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE ÖZEL EGE LİSESİ GENELLEŞTİRİLMİŞ FUZZY KOMŞULUK SİSTEMİ ÜZERİNE HAZIRLAYAN ÖĞRENCİ: Berk KORKUT DANIŞMAN ÖĞRETMEN: Gizem GÜNEL İZMİR 2013 İÇİNDEKİLER 1. PROJENİN AMACI 3.33 2. GİRİŞ... 3 3. YÖNTEM 3 4.

Detaylı

MEKANİZMA TEKNİĞİ (1. Hafta)

MEKANİZMA TEKNİĞİ (1. Hafta) Giriş MEKANİZMA TEKNİĞİ (1. Hafta) Günlük yaşantımızda çok sayıda makina kullanmaktayız. Bu makinalar birçok yönüyle hayatımızı kolaylaştırmakta, yaşam kalitemizi artırmaktadır. Zaman geçtikce makinalar

Detaylı

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI

İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI İSTANBUL TİCARET ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BİLGİSAYAR SİSTEMLERİ LABORATUARI Lineer Ayrılabilen Paternlerin Yapay Sinir Ağı ile Sınıflandırılması 1. Biyolojik Sinirin Yapısı Bilgi işleme

Detaylı

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Şekil Tanıma Final Projesi. Selçuk BAŞAK 08501008

Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü. Şekil Tanıma Final Projesi. Selçuk BAŞAK 08501008 Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü Bilgisayar Mühendisliği Bölümü Şekil Tanıma Final Projesi Selçuk BAŞAK 08501008 Not: Ödevi hazırlamak için geliştirdiğim uygulama ve kaynak kodları ektedir.

Detaylı

DENEY 1 SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET

DENEY 1 SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET DENEY 1 SABİT HIZLA DÜZGÜN DOĞRUSAL HAREKET AMAÇ: Bir nesnenin sabit hızda, net gücün etkisi altında olmadan düzgün bir hat üzerinde hareket etmesini doğrulamak ve bu hızı hesaplanmaktır. GENEL BİLGİLER:

Detaylı

M. MARANGOZ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ

M. MARANGOZ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ ÖLÇME BİLGİSİ II Poligon İstikşafı ve Yerüstü Tesisleri, Poligon Ölçüsü ve Türleri Yrd. Doç. Dr. Aycan M. MARANGOZ GEOMATİK MÜHENDİSLİĞİ BÖLÜMÜ JDF120 ÖLÇME BİLGİSİ II DERSİ NOTLARI http://geomatik.beun.edu.tr/marangoz

Detaylı

ÖNYÜKLEME 1 ÖĞRENCİ İŞ DEFTERİ

ÖNYÜKLEME 1 ÖĞRENCİ İŞ DEFTERİ Öğrenci İsmi: ÖNYÜKLEME 1 ÖĞRENCİ İŞ DEFTERİ 1 Ünite 1 Tersine Mühendislik: NinjaKedi nasıl çalışır? Oyundaki şeyler Neleri Değişiyor? Daha Detaylı bulut pozisyon x-koordinatı 2 Oyunun Bölümleri - NinjaKedi!

Detaylı

Topoloji (MATH571) Ders Detayları

Topoloji (MATH571) Ders Detayları Topoloji (MATH571) Ders Detayları Ders AdıDers Kodu Dönemi Ders Uygulama Saati Saati Laboratuar Saati Kredi AKTS Topoloji MATH571 Güz 3 0 0 3 5 Ön Koşul Ders(ler)i Bölüm isteği Dersin Dili Dersin Türü

Detaylı

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 7. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN

SİDRE 2000 ORTAOKULU EĞİTİM-ÖĞRETİM YILI 7. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN SİDRE 000 ORTAOKULU 06-07 EĞİTİM-ÖĞRETİM YILI 7. SINIFLAR MATEMATİK DERSİ ÜNİTELENDİRİLMİŞ YILLIK PLAN ÜNİTE ÖĞRENME ALANI ALT ÖĞRENME ALANI Ders Saati 9.09.06/.09.06 Tam Sayılarla Çarpma ve Bölme i 7...

Detaylı

Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble.

Rastgele Süreçler. Rastgele süreç konsepti (Ensemble) Örnek Fonksiyonlar. deney. Zaman (sürekli veya kesikli) Ensemble. 1 Rastgele Süreçler Olasılık taması Rastgele Deney Çıktı Örnek Uzay, S (s) Zamanın Fonksiy onu (t, s) Olayları Tanımla Rastgele süreç konsepti (Ensemble) deney (t,s 1 ) 1 t Örnek Fonksiyonlar (t,s ) t

Detaylı

SU DALGALARINDA GİRİŞİM

SU DALGALARINDA GİRİŞİM SU DALGALARINDA GİRİŞİM Yukarıda iki kaynağın oluşturduğu dairesel su dalgalarının meydana getirdiği girişim deseni gösterilmiştir Burada kesikli çizgiler dalga çukurlarını, düz çizgiler dalga tepelerini

Detaylı

Yapay Sinir Ağları. (Artificial Neural Networks) DOÇ. DR. ERSAN KABALCI E S N E K H E S A P L A M A Y Ö N T E M L E R İ - II

Yapay Sinir Ağları. (Artificial Neural Networks) DOÇ. DR. ERSAN KABALCI E S N E K H E S A P L A M A Y Ö N T E M L E R İ - II Yapay Sinir Ağları (Artificial Neural Networks) J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - II DOÇ. DR. ERSAN KABALCI Yapay Sinir Ağları Tarihçe Biyolojik

Detaylı

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok

Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok Gauss Yasası Bu bölümde Coulomb yasasının bir sonucu olarak ortaya çıkan Gauss yasasının kullanılmasıyla simetrili yük dağılımlarının elektrik alanlarının çok daha kullanışlı bir şekilde nasıl hesaplanabileceği

Detaylı

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü DİNAMİK - 7 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü 7. HAFTA Kapsam: Parçacık Kinetiği, Kuvvet İvme Yöntemi Newton hareket

Detaylı

Akıllı Ortamlarda Sensör Kontrolüne Etmen Tabanlı Bir Yaklaşım: Bir Jadex Uygulaması

Akıllı Ortamlarda Sensör Kontrolüne Etmen Tabanlı Bir Yaklaşım: Bir Jadex Uygulaması Akıllı Ortamlarda Sensör Kontrolüne Etmen Tabanlı Bir Yaklaşım: Bir Jadex Uygulaması Özlem Özgöbek ozlem.ozgobek@ege.edu.tr Ege Üniversitesi Bilgisayar Mühendisliği Bölümü İZMİR Sunum Planı - Giriş - Benzer

Detaylı

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET

TİTREŞİM VE DALGALAR BÖLÜM PERİYODİK HAREKET TİTREŞİM VE DALGALAR Periyodik Hareketler: Belirli aralıklarla tekrarlanan harekete periyodik hareket denir. Sabit bir nokta etrafında periyodik hareket yapan cismin hareketine titreşim hareketi denir.

Detaylı

Sunum ve Sistematik 1. ÜNİTE: TEMEL GEOMETRİK KAVRAMLAR VE KOORDİNAT GEOMETRİYE GİRİŞ

Sunum ve Sistematik 1. ÜNİTE: TEMEL GEOMETRİK KAVRAMLAR VE KOORDİNAT GEOMETRİYE GİRİŞ Sunum ve Sistematik 1. ÜNİT: TML GOMTRİK KVRMLR V KOORİNT GOMTRİY GİRİŞ KONU ÖZTİ u başlık altında, ünitenin en can alıcı bilgileri, kazanım sırasına göre en alt başlıklara ayrılarak hap bilgi niteliğinde

Detaylı

BLM-431 YAPAY ZEKA. Ders-3 Durum Uzayında Arama. Yrd. Doç. Dr. Ümit ATİLA

BLM-431 YAPAY ZEKA. Ders-3 Durum Uzayında Arama. Yrd. Doç. Dr. Ümit ATİLA BLM-431 YAPAY ZEKA Ders-3 Durum Uzayında Arama Yrd. Doç. Dr. Ümit ATİLA umitatila@karabuk.edu.tr http://web.karabuk.edu.tr/umitatilla/ Dersin Hedefleri Durum uzayı temsilini öğrenmek ve durum uzayında

Detaylı

Uzaktan Algılama Teknolojileri

Uzaktan Algılama Teknolojileri Uzaktan Algılama Teknolojileri Ders 10 Hiperspektral Görüntülerde Öznitelik Çıkarımı ve Boyut Azaltımı Alp Ertürk alp.erturk@kocaeli.edu.tr Öznitelik Çıkarımı Veriden ayırt edici yapıda nitelikler çıkarma

Detaylı

x 2i + A)( 1 yj 2 + B) u (v + B), y 1

x 2i + A)( 1 yj 2 + B) u (v + B), y 1 Ders 11: Örnekler 11.1 Kulplarla inşalar Bu bölümde kulpları birbirine yapıştırıp tanıdık manifoldlar elde edeceğiz. Artık bu son ders. Özellikle dersin ikinci bölümünde son meyveleri toplamak adına koşarak

Detaylı

MALZEME BİLGİSİ DERS 6 DR. FATİH AY.

MALZEME BİLGİSİ DERS 6 DR. FATİH AY. MALZEME BİLGİSİ DERS 6 DR. FATİH AY www.fatihay.net fatihay@fatihay.net GEÇEN HAFTA TEMEL KAVRAMLAR BİRİM HÜCRE METALLERDE KRİSTAL YAPILAR YOĞUNLUK HESAPLAMA BÖLÜM III KATILARDA KRİSTAL YAPILAR KRİSTAL

Detaylı

KAVRAM HARĠTALARI. Kavram Haritaları. Kavram Haritası Nedir? Kim Tarafından GeliĢtirilmiĢtir? Kavram Haritaları Ne ĠĢe Yarar?

KAVRAM HARĠTALARI. Kavram Haritaları. Kavram Haritası Nedir? Kim Tarafından GeliĢtirilmiĢtir? Kavram Haritaları Ne ĠĢe Yarar? KAVRAM HARĠTALARI Tanımı Hazırlanışı Örnek Haritaları Puanlandırılması Özet Haritaları Öğretimde çeşitli şemalardan ve farklı grafik türlerinden faydalanırız. haritaları da bir tür grafik ve şema olmasına

Detaylı