SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ
|
|
- Esen Eyüboğlu
- 1 yıl önce
- İzleme sayısı:
Transkript
1 SAYISAL ANALİZ Doç.Dr. Cüneyt BAYILMIŞ Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz
2 SAYISAL ANALİZ SAYISAL TÜREV Numercal Derentaton Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz
3 İÇİNDEKİLER Sayısal Türev Ger Farklar İle Sayısal Türev İler Farklar İle Sayısal Türev Merkez Farklar İle Sayısal Türev Taylor Sers İle Sayısal Türev Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz 3
4 Sayısal Türev Türev, bağımlı br değşkenn bağımsız br değşkene göre değşme mktarıdır. Analtk olarak türev ya da ntegral almanın mümkün olmadığı yerlerde sayısal türev veya sayısal ntegral şlemler kullanılmalıdır. Brçok olayda değşm oranları kullanılır. Örnek: Br rmanın yıllık satış mktarı crosu Geometrk olarak Türev, br onksyona at eğrnn er ang br noktasındak yatayla yaptığı açı yada dğer br adeyle noktasındak teğetnn eğm olarak görüleblr. ' lm 0 Sayısal türev, br onksyonun bağlı olduğu değşkenlere göre değşm ızının br ölçüsüdür. Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz 4
5 Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz 5 Ger Farklar İle Sayısal Türev ' '
6 Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz 6 İler Farklar İle Sayısal Türev ' '
7 Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz 7 Merkez Farklar İle Sayısal Türev ' '
8 Sayısal Türev Örnek: onksyonunun noktasındak türevn 0. kullanarak er üç yöntemle esaplayınız? Çözüm: Ger arklar ' İler arklar ' Merkez arklar ' * Analtk Çözüm 4 Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz 8
9 Taylor Sers le Sayısal Türev Br onksyonun noktasındak türev Taylor Sers yardımıyla elde edleblr. Br onksyonun cvarındak değer cvarındak değernn kuvvetler cnsnden, Taylor Sersne açılarak bulunablr. 3 ' '' '''!! 3! n! n n Taylor sersnde sernn keslen noktadan sonrak atanın mertebes, keslen noktadak n mertebesne eşt olur. Örnek: Taylor sersnde knc term den sonrak termler atılacak olursa, yapılan atanın mertebes olacaktır. Taylor Sers le çok noktalı türev yaklaşımı gerçekleştrlr. Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz 9
10 Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz 0 Taylor Sers le İler Fark Yöntem onksyonun cvarındak ve cvarındak değerlern nn kuvvetler cnsnden. kuvvetne kadar açıp, y çekelm.! ''! '! ''! ' -4 '' 4 ' '' 4 ' ' [ 4 3 Taylor sers çn ler ark ormülü [ ] ' 4 3
11 Taylor Sers le Ger Fark Yöntem İler ark yöntemndek şlemler onksyonun - cvarındak ve - cvarındak değerlern nn kuvvetler cnsnden. kuvvetne kadar açıp, y çeklmes şeklnde tekrar edlerek elde edlr. '! ''! - - '!! '' - - Taylor sers çn ger ark ormülü ' [ 3 4 ] Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz
12 Sayısal Türev Örnek: onksyonunun yaklaşık türevn gördüğünüz tüm yöntemlerle esaplayınız. 0. ve analtk çözüm 8 Çözüm: Bast ler arkla çözüm ' *. * Taylor sers le k noktalı ler arkla çözüm. * 9 * * ' *0. [ 3 4 ] '.6 0. [ 3*9 4* ] 8 Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz
13 Sayısal Türev Örnek: e onksyonunun noktasındak türevn 0. adımlarla ler, ger, merkez arklar ve taylor sers. kuvvetn sayısal türev yöntemlern kullanarak ayrı ayrı esaplayınız. Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz 3
14 d komutu le sembolk türev alma Tanımlanan br denklemn türevn alır. d denklem, değşken türev şlemnde kullanılacak değşkennadı çözümü yapılacak sembolk adelerden oluşan denklem % sembol tanımlama >> syms % d komutu le sembolk türev alma >> d ^ ans * % sembol tanımlama >> syms t % d komutu le sntnn t ye göre türev >> d sn**t, t ans **cos*t* Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz 4
15 d komutu le sembolk katlı türev alma Katlı türev alma durumu. d denklem, değşken, türevdereces % sembol tanımlama >> syms % d komutu le nn. dereceden türev >> d ^,, ans Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz 5
16 d komutu le br dznn türevn alma MATLAB ta dz elemanları arasındak ark d komutu le elde edleblr. t sn yt % zaman artışını belrt >> dt0.5; % dzy belrt >> y [ ]; % dznn türev >> dydt d y/dt dydt Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz 6
17 % Sayısal Türev %%%%%%%%%%%%%%%% [0:0.5*p:*p]; y*sn; nlengt; %ler arklar dydy:n-y:n-./:n-:n-; :n-; %ger arklar dydgy:n--y:n./:n--:n; g:n; %merkez arklar dydmy3:n-y:n-./3:n-:n-; m:n-; %analtk türev dyd*cos; Sayısal Türev MATLAB Uygulama % türev arklarının ortalaması ler meanabsdyd:end-- dyd ger meanabsdyd:end- dydg merkez meanabsdyd:end-- dydm plot,dyd,':rs',,dyd,'-.ko',g,dydg,'--<',m,dydm,'-g*' legend'analtk','ler','ger','merkez',- Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz 7
18 ÖDEV Ödevler dersn Araştırma Görevlsne, takben eden ata teslm edlecektr. Not: Vaktnde teslm edlmeyen ödevler alınmayacaktır. e -3 onksyonunun çn, 0. adımlar le gördüğünüz tüm yöntemler kullanarak türevn esaplayınız. Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz 8
19 KAYNAKLAR İlyas ÇANKAYA, Devrm AKGÜN, Sezgn KAÇAR Müendslk Uygulamaları İçn MATLAB, Seçkn Yayıncılık Steven C. Capra, Raymond P. Canale Çev. H. Heperkan ve U. Kesgn, Yazılım ve Programlama Uygulamalarıyla Müendsler İçn Sayısal Yöntemler, Lteratür Yayıncılık. Serat YILMAZ, Blgsayar İle Sayısal Çözümleme, Kocael Ünv. Yayınları, No:68, Kocael, 005. Yüksel YURTAY, Sayısal Analz Ders Notları, Sakarya Ünverstes Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz 9
SAYISAL ANALİZ. Doç. Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ
SAYISAL ANALİZ Doç. Dr. Cüneyt BAYILMIŞ 1 SAYISAL ANALİZ 1. Hafta SAYISAL ANALİZE GİRİŞ 2 AMAÇ Mühendislik problemlerinin çözümünde kullanılan sayısal analiz yöntemlerinin algoritmik olarak çözümü ve bu
1. Hafta SAYISAL ANALİZE GİRİŞ
SAYISAL ANALİZ 1. Hafta SAYISAL ANALİZE GİRİŞ 1 AMAÇ Mühendislik problemlerinin çözümünde kullanılan sayısal analiz yöntemlerinin algoritmik olarak çözümü ve bu çözümlemelerin MATLAB ile bilgisayar ortamında
ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU
6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız
Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler
6.4.7 NÜMERİK ANALİZ Yrd. Doç. Dr. Hatce ÇITAKOĞLU 6 Müendslk sstemlernn analznde ve ugulamalı dsplnlerde türev çeren dferansel denklemlern analtk çözümü büük öneme saptr. Sınır değer ve/vea başlangıç
Merkezi Eğilim (Yer) Ölçüleri
Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına
4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ
Ünsal M.; Varol, A.: Soğutma Kulelernn Boyutlandırılması İçn Br Kuramsal 8 Mayıs 990, S: 8-85, Adana 4.5. SOĞUTMA KULELERİNİN BOYUTLANDIRILMASI İÇİN BİR ANALIZ Asaf Varol Fırat Ünverstes, Teknk Eğtm Fakültes,
Fizik 101: Ders 15 Ajanda
zk 101: Ders 15 Ajanda İk boyutta elastk çarpışma Örnekler (nükleer saçılma, blardo) Impulse ve ortalama kuvvet İk boyutta csmn elastk çarpışması Önces Sonrası m 1 v 1, m 1 v 1, KM KM V KM V KM m v, m
ZKÜ Mühendislik Fakültesi - Makine Mühendisliği Bölümü ISI VE TERMODİNAMİK LABORATUVARI Sudan Suya Türbülanslı Akış Isı Değiştirgeci Deney Föyü
ZKÜ Müendslk Fakültes - Makne Müendslğ Bölümü Sudan Suya Türbülanslı Akış Isı Değştrge Deney Föyü Şekl. Sudan suya türbülanslı akış ısı değştrge (H950 Deneyn adı : Boru çnde sudan suya türbülanslı akışta
Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç
Sayısal Türev Sayısal İtegrasyo İterpolasyo Ekstrapolasyo Bölüm Üç Bölüm III 8 III-. Pvot Noktaları Br ( ) oksyouu değer, geellkle ekse üzerdek ayrık oktalarda belrler. Bu oktalara pvot oktaları der. Bu
KARMAŞIK SAYILAR. Derse giriş için tıklayın...
KARMAŞIK SAYILAR Derse grş çn tıklayın A Tanım B nn Kuvvetler C İk Karmaşık Sayının Eştlğ D Br Karmaşık Sayının Eşlenğ E Karmaşık Sayılarda Dört İşlem Toplama - Çıkarma Çarpma Bölme F Karmaşık Dülem ve
KOCAELİ ÜNİVERSİTESİ Mühendislik Fakültesi Makina Mühendisliği Bölümü Mukavemet I Vize Sınavı (2A)
KOCELİ ÜNİVERSİTESİ Mühendslk akültes Makna Mühendslğ Bölümü Mukavemet I Vze Sınavı () dı Soyadı : 18 Kasım 013 Sınıfı : No : SORU 1: Şeklde verlen levhalar aralarında açısı 10 o la 0 o arasında olacak
Ara Değer Hesabı (İnterpolasyon)
Ar Değer Hesbı İterpolso Ardeğer hesbı mühedsl problemlerde sılıl rşılşıl br şlemdr. İterpolso Ble değerlerde blmee rdeğer d değerler bulumsı şlemdr. Geel olr se br osouu 0,,, gb rı otlrd verle 0,,, değerler
Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı
SRY ÜNİVERSİESİ Djtal ontrol Laboratuvar Deney Föyü Deney No: 2 Sıvı Sevye ontrol Deney 2.. Deneyn macı Bu deneyn amacı, doğrusal olmayan sıvı sevye sstemnn belrlenen br çalışma noktası cvarında doğrusallaştırılmış
TEKNOLOJĐK ARAŞTIRMALAR
www.teknolojkarastrmalar.com ISSN:134-4141 Makne Teknolojler Elektronk Dergs 28 (1) 61-68 TEKNOLOJĐK ARAŞTIRMALAR Kısa Makale Tabakalı Br Dskn Termal Gerlme Analz Hasan ÇALLIOĞLU 1, Şükrü KARAKAYA 2 1
Rasgele Değişken Üretme Teknikleri
Rasgele Değşken Üretme Teknkler Amaç Smülasyon modelnn grdlern oluşturacak örneklern üretlmes Yaygın olarak kullanılan ayrık veya sürekl dağılımların örneklenmes sürecn anlamak Yaygın olarak kullanılan
JFM316 Elektrik Yöntemler ( Doğru Akım Özdirenç Yöntemi)
JFM316 Elektrk Yöntemler ( Doğru Akım Özdrenç Yöntem) yeryüzünde oluşturacağı gerlm değerler hesaplanablr. Daha sonra aşağıdak formül kullanılarak görünür özdrenç hesaplanır. a K I K 2 1 1 1 1 AM BM AN
Calculating the Index of Refraction of Air
Ankara Unversty Faculty o Engneerng Optcs Lab IV Sprng 2009 Calculatng the Index o Reracton o Ar Lab Group: 1 Teoman Soygül Snan Tarakçı Seval Cbcel Muhammed Karakaya March 3, 2009 Havanın Kırılma Đndsnn
bir yol oluşturmaktadır. Yine i 2 , de bir yol oluşturmaktadır. Şekil.DT.1. Temel terimlerin incelenmesi için örnek devre
Devre Analz Teknkler DEE AAĐZ TEKĐKEĐ Bu zamana kadar kullandığımız Krchoffun kanunları ve Ohm kanunu devre problemlern çözmek çn gerekl ve yeterl olan eştlkler sağladılar. Fakat bu kanunları kullanarak
Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri
Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.
Ercan Kahya. Hidrolik. B.M. Sümer, İ.Ünsal, M. Bayazıt, Birsen Yayınevi, 2007, İstanbul
Ercan Kahya 1 Hdrolk. B.M. Sümer, İ.Ünsal, M. Bayazıt, Brsen Yayınev, 007, İstanbul se se da Brm kanal küçük gen kestl br kanalda, 1.14. KANAL EGIMI TANIMLARI Brm kanal genşlğnden geçen deb q se, bu q
DÜŞEY ELEKTRİK SONDAJI VERİLERİNİN YORUMU
DÜŞEY ELEKTRİK SONDAJI VERİLERİNİN YORUMU Prof.Dr. Ahmet Tuğrul BAŞOKUR Jeofzk Mühendslğ Bölümü Mayıs 4 İletşm: Prof. Dr. Ahmet T. BAŞOKUR Ankara Ünverstes, Mühendslk Fakültes Jeofzk Mühendslğ Bölümü 6
ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ
BÖLÜM 6 ALTERNATİF AKIM DEVRE ÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ 6. ÇEVRE AKIMLAR ÖNTEMİ 6. SÜPERPOZİSON TEOREMİ 6. DÜĞÜM GERİLİMLER ÖNTEMİ 6.4 THEVENİN TEOREMİ 6.5 NORTON TEOREMİ Tpak GİRİŞ Alternatf akımın
VEKTÖRLER Koordinat Sistemleri. KONULAR: Koordinat sistemleri Vektör ve skaler nicelikler Bir vektörün bileşenleri Birim vektörler
11.10.011 VEKTÖRLER KONULR: Koordnat ssteler Vektör ve skaler ncelkler r vektörün bleşenler r vektörler Koordnat Ssteler Karteen (dk koordnatlar: r noktaı tesl etenn en ugun olduğu koordnat ssten kullanırı.
11. z = 1 2i karmaşık sayısının çarpmaya göre tersinin eşleniğinin sanal kısmı kaçtır? 14. eşitliğini sağlayan z karmaşık sayısı kaçtır? 15.
GD. + se Re() + Im()? www.gkhandemr.rg, 007 Cebr Ntları Gökhan DEMĐR, gdemr@yah.cm.tr Karmaşık sayılar 9. + + sayısı kaça eşttr? 7 890. ( x y) + + ( x + y) se x + y tplamı kaçtır?. x + y ( x) ve se y kaçtır?.
ITAP Fizik Olimpiyat Okulu
Eylül Deneme Sınavı (Prof.Dr.Ventsslav Dmtrov) Konu: Elektrk Devrelernde İndüktans Soru. Şekldek gösterlen devrede lk anda K ve K anahtarları açıktır. K anahtarı kapatılıyor ve kondansatörün gerlm U ε/
Açık Poligon Dizisinde Koordinat Hesabı
Açık Polon Dzsnde Koordnat Hesabı Problem ve numaralı noktalar arasında açılacak tüneln doğrultusunu belrlemek amacıyla,,3,4, noktalarını çeren açık polon dzs tess edlmş ve şu ölçme değerler elde edlmştr.
YAYILI YÜK İLE YÜKLENMİŞ YAPI KİRİŞLERİNDE GÖÇME YÜKÜ HESABI. Perihan (Karakulak) EFE
BAÜ Fen Bl. Enst. Dergs (6).8. YAYII YÜK İE YÜKENİŞ YAPI KİRİŞERİNDE GÖÇE YÜKÜ HESABI Perhan (Karakulak) EFE Balıkesr Ünverstes ühendslk marlık Fakültes İnşaat üh. Bölümü Balıkesr, TÜRKİYE ÖZET Yapılar
BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER İki Boyutlu Rasgele Değişkenler
BÖLÜM 5 İKİ VEYA DAHA YÜKSEK BOYUTLU RASGELE DEĞİŞKENLER 5.. İk Boyutlu Rasgele Değşkenler Br deney yapıldığında, aynı deneyle lgl brçok rasgele değşkenn aynı andak durumunu düşünmek gerekeblr. Böyle durumlarda
Tanımlayıcı İstatistikler
Dr. Mehmet AKSARAYLI MERKEZİ EĞİLİM ve DEĞİŞKENLİK ÖLÇÜLERİ Ders / Tanımayıcı İstatstker Yer Öçüer (Merkez Eğm Öçüer) Duyarı Ortaamaar Artmetk ort. Tartıı Artmetk Geometrk ort. Kare ort. Harmonk ort. Duyarı
MİNİMAL SİSTEMLERDE DURUM GERİBESLEMESİ İLE KUTUP ATAMA PROBLEMİNİN NÜMERİK ANALİZİ
MİNİMAL SİSTEMLERDE DURUM GERİBESLEMESİ İLE KUTUP ATAMA PROBLEMİNİN NÜMERİK ANALİZİ Erkam Murat BOZKURT Mehmet Turan SÖYLEMEZ Kontrol ve Otomasyon Mühendslğ Bölümü, Elektrk-Elektronk Fakültes, İstanbul
İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ
Türkye İnşaat Mühendslğ, XVII. Teknk Kongre, İstanbul, 2004 İÇME SUYU ŞEBEKELERİNİN GÜVENİLİRLİĞİ Nur MERZİ 1, Metn NOHUTCU, Evren YILDIZ 1 Orta Doğu Teknk Ünverstes, İnşaat Mühendslğ Bölümü, 06531 Ankara
X, R, p, np, c, u ve diğer kontrol diyagramları istatistiksel kalite kontrol diyagramlarının
1 DİĞER ÖZEL İSTATİSTİKSEL KALİTE KONTROL DİYAGRAMLARI X, R, p, np, c, u ve dğer kontrol dyagramları statstksel kalte kontrol dyagramlarının temel teknkler olup en çok kullanılanlarıdır. Bu teknkler ell
SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ
SAYISAL ANALİZ 1 SAYISAL ANALİZ 3. Hafta SAYISAL ANALİZDE HATA KAVRAMI VE HATA TÜRLERİ 2 İÇİNDEKİLER 1. de Problem Çözümünde İzlenilecek Adımlar 2. Matematiksel Modelleme 3. de Hata Kavramı 4. de Hataların
ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ
ÇUKUROVA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ Gülesen ÜSTÜNDAĞ BAZI PARAMETRİK OLMAYAN İSTATİSTİKSEL YÖNTEMLERİN İNCELENMESİ İSTATİSTİK ANABİLİM DALI ADANA, 005 ÇUKUROVA ÜNİVERSİTESİ
1981 ÜYS Soruları. 1. Bir top kumaşın önce i, sonra da kalanın ü. satılıyor. Geriye 26 m kumaş kaldığına göre, kumaşın tümü kaç metredir?
98 ÜYS Sorulrı. r top kumşın önce, sonr d klnın ü 5 stılıor. Gere 6 m kumş kldığın göre, kumşın tümü kç metredr? ) 7 ) 65 ) 6 ) 55 ) 5 4. r şekln, u brm uzunluğun göre ln ölçüsü, v brm uzunluğun göre ln
DENEY 4: SERİ VE PARALEL DEVRELER,VOLTAJ VE AKIM BÖLÜCÜ KURALLARI, KIRCHOFF KANUNLARI
A. DNYİN AMACI : Bast ser ve bast paralel drenç devrelern analz edp kavramak. Voltaj ve akım bölücü kurallarını kavramak. Krchoff kanunlarını deneysel olarak uygulamak. B. KULLANILACAK AAÇ V MALZML : 1.
UYUM ĐYĐLĐĞĐ TESTĐ. 2 -n olup. nin dağılımı χ dir ve sd = (k-1-p) dir. Burada k = sınıf sayısı, p = tahmin edilen parametre sayısıdır.
UYUM ĐYĐLĐĞĐ TESTĐ Posson: H o: Ver Posson dağılıma sahp br ktleden gelmektedr. H a : Ver Posson dağılıma sahp br ktleden gelmemektedr. Böyle br hpotez test edeblmek çn, önce Posson dağılım parametres
AYLIK ORTALAMA GÖL SU SEVİYESİNİN BULANIK-OLASILIK YAKLAŞIMI İLE GÖZLENMİŞ ZAMAN SERİSİNDEN TAHMİNİ
AYLIK ORTALAMA GÖL SU SEVİYESİİ BULAIK-OLASILIK YAKLAŞIMI İLE GÖZLEMİŞ ZAMA SERİSİDE TAHMİİ Veysel GÜLDAL, Hakan TOGAL 2 S.D.Ü.Mühendslk Mmarlık Fakültes İnşaat Müh Böl., Isparta/TÜRKİYE vguldal@mmf.sdu.edu.tr
04.10.2012 SU İHTİYAÇLARININ BELİRLENMESİ. Suİhtiyacı. Proje Süresi. Birim Su Sarfiyatı. Proje Süresi Sonundaki Nüfus
SU İHTİYAÇLARII BELİRLEMESİ Suİhtyacı Proje Süres Brm Su Sarfyatı Proje Süres Sonundak üfus Su ayrım çzs İsale Hattı Su Tasfye Tess Terf Merkez, Pompa İstasyonu Baraj Gölü (Hazne) Kaptaj Su Alma Yapısı
Akköse, Ateş, Adanur. Matris Yöntemleri ile dış etkilerden meydana gelen uç kuvvetlerinin ve uç yerdeğiştirmelerinin belirlenmesinde;
MATRİS ÖNTEMER 1. GİRİŞ Matrs öntemler; gerçek sürekl apının erne, matrs bçmnde ade edleblen blnen atalet (elemslk) ve elastklk öellklerne sahp sonl büüklüktek apısal elemanlardan olşan matematksel br
DÜ EY ELEKTRİK SONDAJI VERİLERİNİN YORUMU
DÜ EY ELEKTRİK SONDAJI VERİLERİNİN YORUMU Prof.Dr. Ahmet Tuğrul BA OKUR TMMOB JEOFİZİK MÜHENDİSLERİ ODASI EĞİTİM YAYINLARI NO: 5 ISBN 978-9944-89-969-7 Mll Müdafaa Cad. N: /7 Kızılay/ANKARA Tel: 3 48 4
ENERJİ. Isı Enerjisi. Genel Enerji Denklemi. Yrd. Doç. Dr. Atilla EVCİN Afyon Kocatepe Üniversitesi 2007
Yrd. Doç. Dr. Atlla EVİN Afyon Kocatepe Ünverstes 007 ENERJİ Maddenn fzksel ve kmyasal hal değşm m le brlkte dama enerj değşm m de söz s z konusudur. Enerj değşmler mler lke olarak Termodnamğn Brnc Yasasına
ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE TEK ÇARPIMSAL SİNİR HÜCRELİ YAPAY SİNİR AĞI MODELİNİN EĞİTİMİ İÇİN ABC VE BP YÖNTEMLERİNİN KARŞILAŞTIRILMASI ÖZ
ANADOLU ÜNİVERSİTESİ Blm ve Teknoloj Dergs A-Uygulamalı Blmler ve Mühendslk Clt: 14 Sayı: 3 013 Sayfa: 315-38 ARAŞTIRMA MAKALESİ/RESEARCH ARTICLE Faruk ALPASLAN 1, Erol EĞRİOĞLU 1, Çağdaş Hakan ALADAĞ,
Dersin Yürütülmesi Hakkında. (Örgün / Yüz Yüze Eğitim için) (Harmanlanmış Eğitim için) (Uzaktan Eğitim için)
Ders Kodu Teork Uygulama Lab. Uluslararası Muhasebe ve Fnansal Raporlama Standartları Ulusal Kred Öğretm planındak AKTS 344000000000510 3 0 0 3 6 Ön Koşullar : Bu dersn ön koşulu ya da yan koşulu bulunmamaktadır.
Basel II Geçiş Süreci Sıkça Sorulan Sorular
Basel II Geçş Sürec Sıkça Sorulan Sorular Soru No: 71 Cevaplanma Tarh: 06.03.2012 İlgl Hüküm: --- Konu: Gayrmenkul İpoteğyle Temnatlandırılmış Alacaklar İçn KR510AS Formunun Doldurulmasına İlşkn Örnek
) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit
Karadez Te Üverstes Blgsayar Mühedslğ Bölümü 5-6 Güz Yarıyılı Sayısal Çözümleme Ara Sıav Soruları Tarh: Kasım 5 Perşembe Süre: daa. f ( ( + a e fosyouu sabt otası olmadığı bldğe göre, a 'ı alableceğ e
Deprem Tepkisinin Sayısal Metotlar ile Değerlendirilmesi (Newmark-Beta Metodu) Deprem Mühendisliğine Giriş Dersi Doç. Dr.
Deprem Tepksnn Sayısal Metotlar le Değerlendrlmes (Newmark-Beta Metodu) Sunum Anahat Grş Sayısal Metotlar Motvasyon Tahrk Fonksyonunun Parçalı Lneer Interpolasyonu (Pecewse Lnear Interpolaton of Exctaton
Sabit Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2
X Sabt Varyans Y Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern eşt varyanslı olmasıdır Her hata term varyansı bağımsız değşkenlern verlen değerlerne
SEK Yönteminin Güvenilirliği Sayısal Bir Örnek. Ekonometri 1 Konu 11 Sürüm 2,0 (Ekim 2011)
İk Değşkenl Bağlanım Model SEK Yöntemnn Güvenlrlğ Ekonometr 1 Konu 11 Sürüm,0 (Ekm 011) UADMK Açık Lsans Blgs İşbu belge, Creatve Commons Attrbuton-Non-Commercal ShareAlke 3.0 Unported (CC BY-NC-SA 3.0)
A İSTATİSTİK. 4. X kesikli rasgele (random) değişkenin moment çıkaran. C) 4 9 Buna göre, X in beklenen değeri kaçtır?
. Br torbada 6 syah, 4 beyaz top vardır. Bu torbadan yerne koyarak top seçlyor. A İSTATİSTİK KPSS/-AB-PÖ/006. Normal dağılıma sahp br rasgele (random) değşkenn varyansı 00 dür. Seçlen topların ksnn de
YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.
YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,
Anlık ve Ortalama Güç
ALTERNATİF AK-Dere Analz Bölü-4 AC Güç Anlık Güç Oralaa güç Güç fakörü Akf, reakf güç Kpleks güç Reakf güç düzele (Kpanzasyn aksu akf güç ransfer Anlık Güç, p( (herhang br ank güç p Anlık e Oralaa Güç
2.a: (Zorunlu Değil):
Uygulaa 5-7:.7 6 7 Baar Yarıyılı Jeodezk Ağlar e Uygulaaları UYGULAMA FÖYÜ,..7.a: (Zorunlu Değl: Yanına arılaayan br kule yükeklğnn trgonoetrk yükeklk belrlee yönteyle eaplanaı UYGULAMA.b : (Zorunlu C3
Tek Yönlü Varyans Analizi
Tek Yönlü Varyan Analz Nedr ve hang durumlarda kullanılır? den fazla grupların karşılaştırılmaı öz konuu e, çok ayıda t-tet nn kullanılmaı, Tp I hatanın artmaına yol açar; Örneğn, eğer 5 grubu kşerl olarak
EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER
EŞİTLİK KISITLI TÜREVLİ YÖNTEMLER LAGRANGE YÖNTEMİ Bu metodu incelemek için Amaç fonksiyonu Min.z= f(x) Kısıtı g(x)=0 olan problemde değişkenler ve kısıtlar genel olarak şeklinde gösterilir. fonksiyonlarının
SEK Tahmincilerinin Arzulanan Özellikleri. SEK Tahmincilerinin Arzulanan Özellikleri. Ekonometri 1 Konu 9 Sürüm 2,0 (Ekim 2011)
SEK Tahmnclernn Arzulanan Özellkler İk Değşkenl Bağlanım Model SEK Tahmnclernn Arzulanan Özellkler Ekonometr 1 Konu 9 Sürüm 2,0 (Ekm 2011) http://www.ackders.org.tr SEK Tahmnclernn Arzulanan Özellkler
>> 5*3-4+6/2^0 ans = 17 ( Matlab da sayılar arası işlemler [ +, -, /, *, ^ ] bu şekilde ifade edilmektedir.)
7. Diferensiyel Denklemlerin Çözümünde Matlab Uygulamaları MATLAB, Matrislere dayanan ve problemlerin çözümlerinde kullanılan Matematik metotların bilgisayar ortamında kullanılmasını sağlayan yazılım paketidir.
Konumsal Enterpolasyon Yöntemleri Uygulamalarında Optimum Parametre Seçimi: Doğu Karadeniz Bölgesi Günlük Ortalama Sıcaklık Verileri Örneği
S. ZENGİN KAZANCI, E. TANIR KAYIKÇI Konumsal Enterpolasyon Yöntemler Uygulamalarında Optmum Parametre Seçm: Doğu Karadenz Bölges Günlük Ortalama Sıcaklık S. ZENGİN KAZANCI 1, E. TANIR KAYIKÇI 1 1 Karadenz
KAFES SİSTEMLERİN UYGULAMAYA YÖNELİK OPTİMUM TASARIMI
PAMUKKALE ÜNİ VERSİ TESİ MÜHENDİ SLİ K FAKÜLTESİ PAMUKKALE UNIVERSITY ENGINEERING COLLEGE MÜHENDİ SLİ K BİLİMLERİ DERGİ S İ JOURNAL OF ENGINEERING SCIENCES YIL CİLT SAYI SAYFA : 1999 : 5 : 1 : 951-957
DİNAMİK ANALİZ PROBLEMLERİ İÇİN YENİ BİR ADIM ADIM SAYISAL ÇÖZÜMLEME YÖNTEMİ
. Türkye Deprem Mühendslğ ve Ssmoloj Konferansı 5-7 Eylül 0 MKÜ HATAY DİNAMİK ANALİZ PROBLEMLERİ İÇİN YENİ BİR ADIM ADIM SAYISAL ÇÖZÜMLEME YÖNTEMİ ÖZET: H. Çlsalar ve K. Aydın Yüksek Lsans Öğrencs, İnşaat
Lineer Olmayan Yapı Sistemlerinin Analizi İçin Yay-Boyu Metodu
Fıra Ünv. Fen ve Müh. Bl. Dergs Scence and Eng. J of Fıra Unv. 9 (4), 55-530, 007 9 (4), 55-530, 007 Lneer Olmayan Yaı Ssemlernn Analz İçn Yay-Boyu Meodu Cengz OLA ve Yusuf CALAYIR Fıra Ünverses eknk Blmler
Kütle Merkezi ve Merkezler. Konular: Kütle/Ağırlık merkezleri Merkez kavramı Merkez hesabına yönelik yöntemler
Kütle Merkez ve Merkezler Konular: Kütle/ğırlık merkezler Merkez kavramı Merkez hesabına önelk öntemler ğırlıklı Ortalama Merkez kavramının brçok ugulama alanı vardır. Öncelkle ağırlıklı ortalama kavramına
MATLAB GUI İLE DA MOTOR İÇİN PID DENETLEYİCİLİ ARAYÜZ TASARIMI INTERFACE DESING WITH PID CONTROLLER FOR DC MOTOR BY MATLAB GUI
İler Teknoloj Blmler Dergs Clt 2, Sayı 3, 10-18, 2013 Journal of Advanced Technology Scences Vol 2, No 3, 10-18, 2013 MATLAB GUI İLE DA MOTOR İÇİN PID DENETLEYİCİLİ ARAYÜZ TASARIMI M. Fath ÖZLÜK 1*, H.
2.7 Bezier eğrileri, B-spline eğrileri
.7 Bezer eğrler, B-splne eğrler Bezer eğrler ve B-splne eğrler blgsaar grafklernde ve Blgsaar Destekl Tasarım (CAD) ugulamalarında çok kullanılmaktadır.. B-splne eğrler sadece br grup ver noktası çn tanımlanan
BİLGİSAYAR PROGRAMCILIĞI 1 UYGULAMA DERSLERİ
BİLGİSAYAR PROGRAMCILIĞI 1 UYGULAMA DERSLERİ YER ANS KAMPÜSÜ ALİ ÇETİNKAYA KAMPÜSÜNDE ANS KAMPÜSÜ ANS KAMPÜSÜ BİLGİSAYAR TEKNOLOJİLERİ 1 UYGULAMA DERSLERİ YER ALİ ÇETİNKAYA KAMPÜSÜNDE ANS KAMPÜSÜ ANS KAMPÜSÜ
YATIRIM PROJELERi ANALiziNDE BLACK-SCHOLES OPSiYON FiYATLAMA MODELiNiN KULLANIMI
YATIRIM PROJELER ANALzNDE BLACK-SCHOLES OPSYON FYATLAMA MODELNN KULLANIMI Yrd. Doç. Dr. Erkan Uysal Ankara Ünverstes Syasal Blgler Fakültes Özet Bu çalışmada, fnansal opsyon fyatlama modellernn yatınm
MESLEK SEÇİMİ PROBLEMİNDE ÇOK ÖZELLİKLİ KARAR VERME VE ÇÖZÜME YÖNELİK GELİŞTİRİLEN BİREYSEL KARİYER PLANLAMA PROGRAMI
MESLEK SEÇİMİ PROBLEMİNDE ÇOK ÖZELLİKLİ KARAR VERME VE ÇÖZÜME YÖNELİK GELİŞTİRİLEN BİREYSEL KARİYER PLANLAMA PROGRAMI Fath ÇİL GAZİ ÜNİVERSİTESİ Mühendslk Mmarlık Fakültes Endüstr Mühendslğ Bölümü 4. Sınıf
DENEY 8 İKİ KAPILI DEVRE UYGULAMALARI
T.C. Maltepe Ünverstes Müendslk ve Doğa Blmler Fakültes Elektrk-Elektronk Müendslğ Bölümü EK 0 DERE TEORİSİ DERSİ ABORATUAR DENEY 8 İKİ KAP DERE UYGUAMAAR Haırlaanlar: B. Demr Öner Same Akdemr Erdoğan
Ercan Kahya. Hidrolik. B.M. Sümer, İ.Ünsal, M. Bayazıt, Birsen Yayınevi, 2007, İstanbul
Ercan Kaha 1 Hdrolk. B.M. Sümer, İ.Ünsal, M. Baazıt, Brsen Yaınev, 2007, İstanbul BÖLÜM 12 AÇIK KANALLARDA AKIM: ÜNİFORM OLMAYAN AKIMLAR 12.1 GİRİŞ - --- --.;! Baraj sonrak su üze öncek su üze.. Vnfom
FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ
FLYBACK DÖNÜŞTÜRÜCÜ TASARIMI VE ANALİZİ 1 Nasır Çoruh, Tarık Erfdan, 3 Satılmış Ürgün, 4 Semra Öztürk 1,,4 Kocael Ünverstes Elektrk Mühendslğ Bölümü 3 Kocael Ünverstes Svl Havacılık Yüksekokulu ncoruh@kocael.edu.tr,
UZAY ÇERÇEVE SİSTEMLERİN ELASTİK-PLASTİK ANALİZİ İÇİN BİR YÖNTEM
ECAS Uluslararası Yapı ve Deprem ühendslğ Sempozyumu, Ekm, Orta Doğu Teknk Ünverstes, Ankara, Türkye UZAY ÇERÇEVE SİSTEERİN STİK-PASTİK ANAİZİ İÇİN BİR YÖNTE Erdem Damcı, Turgay Çoşgun, Tuncer Çelk, Namık
Üç Boyutlu Yapı-Zemin Etkileşimi Problemlerinin Kuadratik Sonlu Elemanlar ve Sonsuz Elemanlar Kullanılarak Çözümü
ECAS Uluslararası Yapı ve Deprem Mühendslğ Sempozyumu, Ekm, Orta Doğu Teknk Ünverstes, Ankara, Türkye Üç Boyutlu Yapı-Zemn Etkleşm Problemlernn Kuadratk Sonlu Elemanlar ve Sonsuz Elemanlar Kullanılarak
MONTE CARLO SİMÜLASYON METODU VE MCNP KOD SİSTEMİ MONTE CARLO SIMULATION METHOD AND MCNP CODE SYSTEM
Ekm 26 Clt:14 No:2 Kastamonu Eğtm Dergs 545-556 MONTE CARLO SİMÜLASYON METODU VE MCNP KOD SİSTEMİ Özet Aybaba HANÇERLİOĞULLARI Kastamonu Ünverstes, Fen-Edebyat Fakültes, Fzk Bölümü, Kastamonu. Monte Carlo
HİSSE SENETLERİNİN BEKLENEN GETİRİ VE RİSKLERİNİN TAHMİNİNDE ALTERNATİF MODELLER
İstanbul Ünverstes İktsat Fakültes Malye Araştırma Merkez Konferansları 47. Ser / Yıl 005 Prof. Dr. Türkan Öncel e Armağan HİSSE SENETLERİNİN BEKLENEN GETİRİ VE RİSKLERİNİN TAHMİNİNDE ALTERNATİF MODELLER
ÖZET Yüksek Lisans Tezi. Kinematik Modelde Kalman Filtreleme Yöntemi ile Deformasyon Analizi. Serkan DOĞANALP. Selçuk Üniversitesi
ÖZE Yüksek Lsans ez Knematk Modelde Kalman Fltreleme Yöntem le Deformasyon Analz Serkan DOĞANALP Selçuk Ünverstes Fen Blmler Ensttüsü Jeodez ve Fotogrametr Anablm Dalı Danışman: Yrd. Doç. Dr. Bayram URGU
THOMAS-FİERİNG MODELİ İLE SENTETİK AKIŞ SERİLERİNİN HESAPLANMASINDA YENİ BİR YAKLAŞIM
Osmangaz Ünverstes Müh.Mm.Fak.Dergs C.XVII, S., 004 Eng.&Arch.Fac.Osmangaz Unversty, Vol.XVII, No :, 004 THOMAS-FİERİNG MODELİ İLE SENTETİK AKIŞ SERİLERİNİN HESAPLANMASINDA YENİ BİR YAKLAŞIM Recep BAKIŞ,
Biyomedikal Amaçlı Basınç Ölçüm Cihazı Tasarımı
Byomedkal Amaçlı Basınç Ölçüm Chazı Tasarımı Barış Çoruh 1 Onur Koçak 2 Arf Koçoğlu 3 İ. Cengz Koçum 4 1 Ayra Medkal Yatırımlar Ltd. Şt, Ankara 2,4 Byomedkal Mühendslğ Bölümü, Başkent Ünverstes, Ankara,
DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME. Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cinemre
1 DOĞRUSAL HEDEF PROGRAMLAMA İLE BÜTÇELEME Hazırlayan: Ozan Kocadağlı Danışman: Prof. Dr. Nalan Cnemre 2 BİRİNCİ BÖLÜM HEDEF PROGRAMLAMA 1.1 Grş Karar problemler amaç sayısına göre tek amaçlı ve çok amaçlı
= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama
TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl aksarayl@deu.edu.tr Yer Ölçüler (Merkez Eğlm Ölçüler)
ATIK POLİMERİK MALZEME KATKILI BETONUN YALITIM ÖZELLİĞİNİN DENEYSEL OLARAK İNCELENMESİ
Isı Blm ve Teknğ Dergs, 26,, 5-20, 2006 J. of Thermal Scence and Technology 2006 TIBTD Prnted n Turkey ISSN 300-365 ATIK POLİMERİK MALZEME KATKILI BETONUN YALITIM ÖZELLİĞİNİN DENEYSEL OLARAK İNCELENMESİ
1. KEYNESÇİ PARA TALEBİ TEORİSİ
DERS NOTU 07 KEYNESÇİ PARA TALEBİ TEORİSİ, LM EĞRİSİ VE PARA TALEBİ FAİZ ESNEKLİĞİ Bugünk dersn çerğ: 1. KEYNESÇİ PARA TALEBİ TEORİSİ... 1 1.1 İŞLEMLER (MUAMELELER) TALEBİ... 2 1.2 ÖNLEM (İHTİYAT) TALEBİ...
Servis Amaçlı Robotlarda Modüler ve Esnek Boyun Mekanizması Tasarımı ve Kontrolü
Servs Amaçlı Robotlarda Modüler ve Esnek Boyun Mekanzması Tasarımı ve Kontrolü Neşe Topuz, Hüseyn Burak Kurt, Pınar Boyraz, Chat Bora Yğt Makna Mühendslğ Bölümü İstanbul Teknk Ünverstes İnönü Cd. No:65,
Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi DÜZ DİŞLİ ÇARKLARIN SONLU ELEMANLAR METODU İLE MODELLENMESİ
Journal of Engneerng and Natural Scences Mühendslk ve Fen Blmler Dergs Sgma 2004/2 DÜZ DİŞLİ ÇARKLARIN SONLU ELEMANLAR METODU İLE MODELLENMESİ M. Cüneyt FETVACI *, C. Erdem İMRAK İstanbul Teknk Ünverstes,
Communication Theory
Communcaton Theory ENFORMASYON TEORİSİ KODLAMA Doç. Dr. Hakan Doğan ENFORMASYON DEYİMİ NEDEN KULLANILMIŞ? Kaynaklarn, kanalların,alıcıların blg karakterstklern ncelemek. Blgnn letmn optmze etmek çn İletmn
A A A FEN BİLİMLERİ SINAVI FİZİK TESTİ 1 FİZ (LYS2)
DİAT! SORU İTAÇIĞINIZIN TÜRÜNÜ A OARA CEVA ÂĞIDINIZA İŞARETEMEİ UNUTMAINIZ. FEN BİİMERİ SINAVI FİZİ TESTİ 1. Bu testte 30 soru vardır.. Cevaplarınızı, cevap kâğıdının Fzk Test çn ayrılan kısına şaretleynz.
SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ
SAYISAL ANALİZ Doç.Dr. Cüet BAYILMIŞ Doç.Dr. Cüet BAYILMIŞ Sısl Alz SAYISAL ANALİZ EĞRİ UYDURMA (Curve Fttg) Doç.Dr. Cüet BAYILMIŞ Sısl Alz İÇİNDEKİLER Eğr Udurm (Curve Fttg) E Küçük Kreler Yötem Doç.Dr.
Farklı Varyans. Var(u i X i ) = Var(u i ) = E(u i2 ) = s 2 Eşit Varyans
Farklı Varyans Var(u X ) = Var(u ) = E(u ) = s Eşt Varyans Y X 1 Farklı Varyans Hata Var(u X ) = Var(u ) = E(u ) = s Farklı Varyans Zaman EKKY nn varsayımlarından br anakütle regresyon fonksyonu u lern
Tanımlayıcı İstatistikler
Taımlayıcı İstatstkler Taımlayıcı İstatstkler br değerler dzs statstksel olarak geel özellkler taımlaya ölçülerdr Taımlayıcı İstatstkler Yer Göstere Ölçüler Yaygılık Ölçüler Yer Göstere Ölçüler Br dağılımı
Türk Dilinin Biçimbilim Yapısından Yararlanarak Türkçe Metinlerin Farklı İmgelere Ayrılarak Kodlanması ve Sıkıştırılması
Türk Dlnn Bçmblm Yapısından Yararlanarak Türkçe Metnlern Farklı İmgelere Ayrılarak Kodlanması ve Sıkıştırılması Banu DİRİ, M.Yahya KARSLIGİL Yıldız Teknk Ünverstes Elektrk Elektronk Fakültes - Blgsayar
SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ
SAYISAL ANALİZ Doç.Dr. Cüe BAYILMIŞ Doç.Dr. Cüe BAYILMIŞ Sısl Aliz SAYISAL ANALİZ SAYISAL İNTEGRAL Numericl Iegrio Doç.Dr. Cüe BAYILMIŞ Sısl Aliz İÇİNDEKİLER Sısl İegrl Trpez Ymuk Yöemi Simpso Yöemi /
ÜNİTE. İSTATİSTİĞE GİRİŞ Doç.Dr.Suphi Özçomak İÇİNDEKİLER HEDEFLER TEMEL KAVRAMLAR
HEDEFLER İÇİNDEKİLER TEMEL KAVRAMLAR İstatstğn Tanımı Anakütle ve Örnek Kavramları Tam Sayım ve Örnekleme Anakütle ve Örnek Hacm Parametre ve İstatstk Kavramları İSTATİSTİĞE GİRİŞ Doç.Dr.Suph Özçomak Bu
Finansal Riskten Korunma Muhasebesinde Etkinliğin Ölçülmesi
Fnansal Rskten Korunma Muhasebesnde Etknlğn Ölçülmes Dr. Fahreddn OKUDAN * Fath Ünverstes, İİBF. Özet Bu makalenn amacı, etknlk test yöntemlernn ncelenmesdr. TMS 39, rskten korunma muhasebes uygulanablmes
ROBİNSON PROJEKSİYONU
ROBİNSON PROJEKSİYONU Cengzhan İPBÜKER ÖZET Tüm yerkürey kapsayan dünya hartalarının yapımı çn, kartografk lteratürde özel br öneme sahp olan Robnson projeksyonu dk koordnatlarının hesabı brçok araştırmacı
Regresyon ve Korelasyon Analizi. Regresyon Analizi
Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)
3. Telin kesit alanı, 4. lsıtılan telin diren ci, R = R o. 5. Devreden geçen proton sayısı, q = (N e. 6. X ve Y ilet ken le ri nin di renç le ri,
. ÖÜ EETİ ODE SOU - DEİ SOUN ÇÖZÜEİ. Teln kest alanı, 400 mm 4.0 4 m. a a a a n boyu,, a n kest alanı, a.a a a a Teln drenc se, ρ., 500 4.0 6. 4 5 Ω dur. 40. Telden geçen akım, ohm kanunundan, 40 48 amper
ASİMETRİK BİR DİELEKTRİK DİLİM DALGA KILAVUZUNUN ETKİN KIRILMA İNDİSİNİN TEORİK OLARAK HESAPLANMASI
Eskşehr Osmangaz Ünverstes Mühendslk Mmarlık Fakültes Dergs Clt:XXII, Sayı:, 009 Journal of Engneerng and Archtecture Faculty of Eskşehr Osmangaz Unversty, Vol: XXII, No:, 009 Makalenn Gelş Tarh : 06.0.009
SAYISAL ANALİZ. 2. Hafta SAYISAL ANALİZDE HATA KAVRAMI VE HATA TÜRLERİ
SAYISAL ANALİZ 2. Hafta SAYISAL ANALİZDE HATA KAVRAMI VE HATA TÜRLERİ 1 İÇİNDEKİLER 1. de Problem Çözümünde İzlenilecek Adımlar 2. de Hata Kavramı 3. de Hataların Sebepleri 4. Sayısal Hata ve Hata Türleri
Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü
Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7 Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required
YÜKSEK LİsANS VE DOKTORA PROGRAMLARI
, EK-A YÜKSEK LİsANS VE DOKTORA PROGRAMLARI Değerl Arkadaşlar, --e------ Bldğnz üzere, ş dünyası sthdam edeceğ adaylarda, ünverste mezunyet sonrası kendlerne ne ölçüde katma değer ekledklern de cddyetle
TEMEL DEVRE KAVRAMLARI VE KANUNLARI
TDK Temel Devre Kavramları ve Kanunları /0 TEMEL DEVRE KAVRAMLARI VE KANUNLARI GĐRĐŞ: Devre analz gerçek hayatta var olan fzksel elemanların matematksel olarak modellenerek gerçekte olması gereken sonuçların