Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Sayısal Türev Sayısal İntegrasyon İnterpolasyon Ekstrapolasyon. Bölüm Üç"

Transkript

1 Sayısal Türev Sayısal İtegrasyo İterpolasyo Ekstrapolasyo Bölüm Üç

2 Bölüm III 8 III-. Pvot Noktaları Br ( ) oksyouu değer, geellkle ekse üzerdek ayrık oktalarda belrler. Bu oktalara pvot oktaları der. Bu oktalar arasıdak açıklığı eşt olduğu geel alde erag br oktaı koordatı, ( ) = ± =,,,, olarak esaplaır. Bu oktaya karşılık gele ( ) oksyouu pvotal değer şekl. de görüldüğü gb = ( ) olarak gösterlr. Şekl - () ı erag br pvotal okta ola dek değer ola başka br pvotal okta ola dek ( ) ve ou türevlere bağlı olarak, bu oksyou oktası cvarıda Taylor sers açılımları kullaılarak elde edlr. Eğer, = ± m se,

3 Bölüm III 9 ( ) ( ) m m = ( ı± m) = ± m + ± +!! elde edlr. Özel olarak m= vem= alıırsa, ( ) ( ) = + + (.)!! ( ) ( ) = + + (.)!! ( ) ( ) + = (.)!! ( ) ( ) + = (.4)!! elde edlr. III-. Sayısal Türev Formüller (.), (.), (.) ve (.4) deklemler dkkate alarak ç, ( ) ( ) = + + (.5)!! ( ) ( ) = + + (.6)!! 5 () 5 ( ) ( ) + = +! 5! ( ) ( ) + = + + (.7)!! ( ) ( ) + = + + (.8)!! olarak elde edlr. Bu deklemlerde paratez çdek termlerde görüle yüksek mertebede türevler oksyoları pvotal değerler kullaılarak asıl elde edleceğ ayrı br sorudur. (.) deklem le (.) deklem tara taraa toplaarak, + + ( 4) = + Acak paratez çdek termler mal edlerek oksyoları pvotal değerler kullaılarak brc ve kc mertebede türevler yaklaşık değerler elde edleblr.

4 Bölüm III ÖRNEK y= ( ) = e oksyou = oktasıdak brc ve kc türev değer =. alarak esaplayıız = = = = = = = = = = = = III. Fark tabloları Farklar: a- Ger arklar b- Merkez arklar c- Ger arklar olarak üç gurupta celer. III.. Ger Farklar. = = = = + = = + = : Brc ger arktır. :İkc ger arktır. :Üçücü ger arktır. : c ger arktır. = + + Fark tablosua gelce,

5 Bölüm III Örek III. Tablo Ger ark tablosu = =. alarak tablosuu azırlayıız. [PROGRAM.] = = - = 4= 4 4= 4 = 5= 5 4 5= 5 4 = 6= 6 5 6= 6 5 = 7= 7 6 7= 7 6 = 8= 8 7 8= 8 7 = 9= 9 8 9= 9 8 = = = olmak üzere y cos( ) EFBL A-Z OPEN "BWIF.SON" FOR OUTPUT AS# IM BWIF(,) EF FN Y(X)=COS(X) XILK= XSON= AIM= FARKAEI= STP=(XSON-XILK)/AIM FOR I= TO AIM+ BWIF(I,)=XILK BWIF(I,)=FN Y(XILK) PRINT USING"##.######"; BWIF(I,);BWIF(I,) XILK=XILK+STP PRINT FOR I= TO FARKAEI+ FOR J=I- TO AIM+ BWIF(J,I)=BWIF(J,I-)-BWIF(J-,I-) FOR I= TO AIM+ PRINT #,USING" ##"; I; PRINT #,USING" ##.#"; BWIF(I,); FOR J= TO FARKAEI+ PRINT #,USING" ##.########## "; BWIF(I,J); PRINT #, 9 9 = oksyou ç üçücü ger arka kadar ark

6 Bölüm III Tablo - =. alarak olmak üzere y cos( ) üçücü ger arka kadar ark tablosu = oksyou ç III.. İler Farklar. = = + :Brc ler arktır. = = = + :İkc ler arktır. = + :Üçücü ler arktır. = : c ler arktır. = Fark tablosua gelce, Tablo - İler ark tablosu = = = 4 = = = = = = = = 4 4= 5 4 5= 6 5 6= 7 6 7= = = = 4 = = = = = =

7 Bölüm III Örek III. =. alarak tablosuu azırlayıız. olmak üzere y cos( ) = oksyou ç üçücü ler arka kadar ark [PROGRAM.] EFBL A-Z OPEN "FWIF.SON" FOR OUTPUT AS# IM FWIF(,) EF FN Y(X)=COS(X) XILK= XSON= AIM= FARKAEI= STP=(XSON-XILK)/AIM FOR I= TO AIM+ FWIF(I,)=XILK FWIF(I,)=FN Y(XILK) PRINT USING"##.######"; FWIF(I,);FWIF(I,) XILK=XILK+STP PRINT FOR I= TO FARKAEI+ FOR J= TO AIM+-I+ FWIF(J-,I)=FWIF(J,I-)-FWIF(J-,I-) FOR I= TO AIM+ PRINT #,USING" ##"; I; PRINT #,USING" ##.#"; FWIF(I,); FOR J= TO FARKAEI+ PRINT #,USING" ##.########## "; FWIF(I,J); PRINT #, Tablo - =. alarak olmak üzere y cos( ) ç üçücü ler arka kadar ark tablosu = oksyou

8 Bölüm III 4 III.. Merkez Farklar. Merkez arklarda durum braz değşktr. Bua göre ç brc merkez ark, δ( ) = δ= + olarak yazılır. yere + yazılırsa, δ + = ( + ) ( ) = = δ( + ) + = = elde edlr. + + δ = δ = : Brc merkez arktır. ( ) ( ) δ = δ+ ( + ) δ+ ( ) δ = + ( ) ( ) ( ) ( ) ( ) ( ) + ( ) δ = + = + :İkc merkez arktır. δ + Fark tablosua gelce, Tablo -4 Merkez ark tablosu -/ / / - -/ / δ δ = - - δ / / / δ / δ / / / / / / / / / / / δ = δ / = δ δ - = δ = δ/ δ / δ = δ δ δ = δ / = δ δ - δ = / / Örek III. =. alarak tablosuu azırlayıız. olmak üzere y cos( ) = oksyou ç üçücü merkez arka kadar ark

9 Bölüm III 5 [PROGRAM.] EFBL A-Z OPEN "CIF.SON" FOR OUTPUT AS# IM CIF(,) EF FN Y(X)=COS(X) XILK= XSON= AIM= FARKAEI= STP=(XSON-XILK)/AIM/ FOR I= TO *AIM+ CIF(I,)=XILK CIF(I,)=FN Y(XILK) PRINT USING"##.######"; CIF(I,);CIF(I,) XILK=XILK+STP PRINT FOR I= TO FARKAEI+ FOR J=I TO *AIM+-I+ CIF(J-,I)=CIF(J,I-)-CIF(J-,I-) FOR I= TO *AIM+ PRINT #,USING" ##"; I; PRINT #,USING" ##.##"; CIF(I,); FOR J= TO FARKAEI+ PRINT #,USING" ##.########## "; CIF(I,J); PRINT #, Tablo -4 =. alarak olmak üzere y cos( ) ç üçücü merkez arka kadar ark tablosu = oksyou δ δ δ

10 Bölüm III 6 III.4 Sayısal Türev III.4. Ger Farklar le Hesap Yötem (.) adesde, d d = d d = d d =... d d = değşklkler yapalım. Bua göre ade ye şekl, 4 4 = + +!! 4! (.4) ale gelr. Paratez çdek ade, ades, e Maclaur serse açılmış aldr. Bua göre (.) e = (.5) olarak da yazılablr. = olduğu atırlaarak, (.) adesde ( ) = e (.6) buluur. (.4) adesde açıkça görüleceğ gb ger ark operatörü ç, = e (.7) şeklde br ade elde edlr. Bu adede de türev operatörü çeklrse, 4 5 ( ) l = = = (.8) elde edlr. Burada brc ger ark operatörü, operatörüdür. kc ger ark operatörü, üçücü ger ark

11 Bölüm III 7 Örek III.4 =. alarak y= cos( ) oksyouu üçücü ger arka kadar ark tablosuu azırlayıız ve =. 5 oktasıda bu oksyou brc türev esaplayıız. ( ) = = ( ) + +. = d cos = s( ) = =. 5 d III.4. İler Farklar le Hesap Yötem (.) adesde ye, d d = d d = d d =... d d = değşklkler yapalım. Bua göre ade ye şekl, = !! 4! (.9) ale gelr. Paratez çdek ade, e Maclaur serse açılmış aldr. Bua göre (.) ades, e + = (.) olarak da yazılablr. + = olduğu atırlaarak, (.) adesde ( ) = e (.) buluur. (.4) adesde açıkça görüleceğ gb ler ark operatörü ç, = e (.) şeklde br ade elde edlr. Bu adede de türev operatörü çeklrse,

12 Bölüm III ( + ) l = = = (.) elde edlr. Burada brc ler ark operatörü, operatörüdür. Örek III.5. = alarak y cos( ) kc ler ark operatörü, üçücü ler ark = oksyouu üçücü ler arka kadar ark tablosuu azırlayıız ve =. 5 oktasıda bu oksyou brc türev esaplayıız ( ) = ( ) - +. = d cos = s( ) = =. 5 d =. 5 III.4. Merkez Farklar le Hesap Yötem (.) adesde yere / yazarak, ( ) ( ) + ve (.) adesde ye yere / yazarak, adeler elde ederz. Ye bu adelerde, ( ) ( ) = + + (.4) ( + ) + ( )!! ( ) ( ) = (.5)!! d d = d d = d d =... d d = değşklkler yapalım ve (.5) adesde(.4) ades çıkartalım.

13 Bölüm III 9 ( ) ( ) ( ) = ( ) !! ( + ) + + ( ) = e ( ) ( ) ( ) = ( ) + + +!! = e ( + ) + + ( ) ( ) = e e = δ elde edlr. Burada açıkça görülür k, brc merkez ark operatörü d, s δ= e e = ( ) olarak elde edlr. Burada türev operatörü çeklrse, 5 ( ) arcs δ δ 9δ = δ = + + +! 8 5! buluur. Örek III.6 =. alarak y= cos( ) oksyouu üçücü merkez arka kadar ark tablosuu azırlayıız ve =. 5 oktasıda bu oksyou brc türev esaplayıız. δ δ δ ( ) = +.! 8 = d cos = s( ) = =. 5 d =. 5

14 Bölüm III 4 III-. Sayısal Etegral Formüller + () = ( ) = ( + ) I d zdz z ( + z) = + z + +! z z I( ) = ( zdz ) z + = z=!! ( ) ( ) I( ) = ( ) + + +!! ( ) ( ) + = = +!! ( ) ( ) ( ) ( ) + I = +! + +! ( ) I( ) = ( ) + ( + ) + +!! ( ) ( ) I = ( ) Özel olarak = alıırsa I + ( ) = [ + ]

15 Bölüm III 4 Elde edlr. Bu trapez metodua karşılık gelr.

16 Bölüm III 4 ÖRNEK =. alarak ed tegral trapez kadese göre esaplayıız. () = e ( ) ( ) + ( ) =.86 ( ) + ( ) =.64 ( ) + ( ) 4 =.4947 ( ) + ( ) 4 5 =.865 ( ) + ( ) 5 6 = ( ) + ( ) 6 7 =.4776 ( ) + ( ) 7 8 =.549 ( ) + ( ) 8 9 =.5768 ( ) + ( ) 9 = ( ) + ( ) =.7748 TOPLAM Aaltk çözüm ed= e = = e e = =

17 Bölüm III 4 Eğer çt se I d zdz zdz + () ( ) = = + + = + ( + ) z z z + z = + z ( 4) + + +! +! + 4! + ( ) 4 () z z z ( 4) I = zdz z + = dz ( + ) ! +! + 4! z z z z () () 4 = ! +! + 4! + 5! + I z I () = + + +! ! 4! 5! Çt derecel üsler sıır olacağıda 5 () ( 4) I = ! + 5! + ( 4) +

18 Bölüm III 44 elde edlr. okta dkkate alıarak, ve ç sayısal türev eşdeğer yazılarak, + = ( 4) () ( 4) () 4 I = + +! ! () I = +! +! +! 5 ( 4) + + 5!! I = () () elde edlr. = ç I 64 5 () ( 4) I = { } () ( 4) = elde edlr. Bu se bldğmz Smpso kadesdr.

19 Bölüm III 45 ÖRNEK =. alarak ed tegral trapez kadese göre esaplayıız. () = e ( ) ( ) + 4 ( ) + ( ) =.685 ( ) + 4 ( ) + ( ) 4 5 =.758 ( ) + 4 ( ) + ( ) =.8978 ( ) + 4 ( ) + ( ) =.9666 ( ) + 4 ( ) + ( ) 9 =.949 TOPLAM Aaltk çözüm ed= e = = e e = = III-4. İterpolasyo İterpolasyo, çeştl ölçümler soucuda bağımsız br değşkee bağlı olarak değşe zksel büyüklükler at oktalar düzlemde şaretledğde, bağımsız değşkee, bağımlı değşkee ( ) der sek, bağımsız değşkee at k pvot oktası arasıa tekabül ede ( ) oksyou değer belrlemek demektr. Eğer bağımlı değşke le bağımsız değşke arasıda oksyoel br müasebet bulua blseyd, k pvot oktası arasıa dek gele erag br değere karşılık gele ( ) kolaylıkla esaplaablrd. Acak böyle br lşk kurulamaz se, k pvot değer arasıa dek gele ( ) değer belrleye blmek ç yapıla şleme terpolasyo der. İterpolasyo yapablmek ç pvot oktalar arasıdak bağımlı değşke ç öcede br değşm kauu ortaya koymak gerekr. Eğer k pvot oktası arasıda bağımlı değşke leer olarak değştğ kabul edlrse yapıla şleme leer terpolasyo, üç pvot oktası dkkate alıarak bu pvot oktaları arasıda bağımlı değşke parabolk değştğ kabul edlerek şlem yapılırsa bu şleme parabolk terpolasyo der.

20 Bölüm III 46 Leer İterpolasyo ( ) ı P ve Q veya Q ve R oktaları arasıdak değşm kauu leerdr. Öyleyse, ( ) ( ) = = A + B yazılarak, = ç ( ) + = A + B = B = A + = ç ( ) + = A elde edlr. Q ve R arasıda bağımlı değşke ç doğru deklem, ÖRNEK ( ) + = + + şeklde buluur. veya = + + Aşağıdak tablo ( ) = s( ) oksyouda türetlmştr. Leer terpoasyo ormüller kullaarak ( s 48) y esaplayıız. (derece) ( ) s < 48 < 5 olduğuda, = + + ( ) ( s 48 s 4) 48 4 = ( ) ( s 5 s 4) 5 4 ( s 48) = ( s 48) =. 749 ( [ s 48) =. 7445] Parabolk İterpolasyo 48 ya 4, 5 ve 6 arasıda veya, 4 ve 5 arasıda yer almaktadır. ( ) ı P, Q ve R oktaları arasıdak değşm kauu parabolktr.. Öyleyse, ( ) ( ) ( ) = = A + B + C yazılarak,

21 Bölüm III 47 = ç ( ) ( ) = A + B + C A B C = + = ç ( ) ( ) = A + B + C = C = ç ( ) ( ) + A= B= C= = A + B + C + + = A + B + C ÖRNEK elde edlr. Artık P, Q ve R oktalarıda geçe parabol deklem, + = ( ) + ( ) şeklde buluur. Aşağıdak tablo ( ) = s( ) oksyouda türetlmştr. Leer terpoasyo ormüller kullaarak ( s 48) y esaplayıız. (derece) ( ) s , 5, 6 y dkkate alarak, = ( 48 5) + ( 48 5) = ( s 48) = ( [ s 48) =. 7445], 4, 5 y dkkate alarak, = ( 48 4) + ( 48 5) = ( s 48) = ( [ s 48) =. 7445] elde edlr. Lagrage İterpolasyou Eğer pvotal oktalar arasıdak açıklıklar eşt değlse Lagrage taraıda tekl edle terpolasyo oksyoları kullaılır. Bua göre, p ( ) = P( ) + P( ) + + P( ) + + P ( ) m m

22 Bölüm III 48 polomlar taımlamak gerekr. Bu polomlar ( ) = ( )( )( ) ( )( ) ( ) P A + m şeklde olup = oktasıda ( )( )( ) ( )( + ) ( ) = A m olmalıdır. Öyleyse, A ÖRNEK = ( )( )( ) ( )( + ) ( m) elde edldkte sora, P( ) = ( )( )( ) ( )( + ) ( m) ( )( )( ) ( )( + ) ( m) buluur. Souç olarak, p ( ) = P( ) + P( ) + + P( ) + + P ( ) m m ( )( ) ( ) ( )( ) ( m) ( )( ) ( m) ( )( ) ( ) ( )( ) ( ) ( )( ) ( m) ( )( ) ( m) ( )( ) ( ) m m P( ) = + m + + elde edlr. m ( )( ) ( m ) ( )( ) ( ) 5 9 m m m m 6 olarak verldğe göre ( 6) değer Lagrage terpolasyo yötemyle esaplayıız. A A A A = ( )( )( ) ( )( )( ) = = ( )( )( ) = = = = = ( )( )( ) ( )( )( ) ()( )( ) = = = = ( )( )( ) ( )( )( ) ( )()( ) = ( )( )( ) ( )( )( ) = = ()( )( ) = m

23 Bölüm III 49 p( ) ( )( )( ) ( )( )( ) = ( )( )( 9) + ( )( )( 5) 48 4 p ( ) ( )( )( ) ( )( )( ) 6 = ( 6 )( 6 )( 6 9) + ( 6 )( 6 )( 6 5) p ( ) ( )()( ) ()()( ) ()( )( ) ()( )() 6 = = Eğer pvotal oktalar eşt aralıklı se, = = = = = = = yazılablr. p= = p yazarak, = + = ( ) = p = ( p ) = + = ( ) = p = ( p ) = + = ( ) = p = ( p ) = + = = p = p ve = yazılarak, = = ( ) ( ) = + = ( ) = = ( ) = + = ( ) = = ( ) = + = ( ) = = ( ) = + = = = ( ) ( ) ( ) ( ) = + = = + = = + = ( ) = m= ( m ) m m m

24 Bölüm III 5 ( ) = ( )( )( ) ( )( ) ( ) P A A A ÖRNEK + m = ( )( )( ) ( )( + ) ( m) = m ( )( ) ()( ) ( m) m ( ) A= m! ( m )! P( ) = A[ p]( p ) ( p ) { p ( ) } { p ( + ) } ( p m ) m ( ) m P( ) = [ p]( p )( p ) { p ( ) } { p ( + ) } ( p m) m! ( m )! m ( ) P( ) [ ]( )( ) ( ) ( ) { }{ ( )}!! ( ) = p p p p p + p m m elde edldkte sora, m m ( ) p ( ) ( )( ) [ ( ) ][ ( ) ] m = p p p p p ( p m + ) [( ) =! m!] elde edlr.., (. ),. oktalarıdak e değerler kullaarak =. 4 ç ( ) = e oksyouu değer elrleyz.. 4 =. p= =. 4 m=. m ( ) P( ) = p( p )( p ) p ( ) p ( + ) ( p m)! ( m )! ( ) P( ) ( )( )( ). 4 = =. 56 =! [( )!] ( ) P( ) ( )( ). 4 = =. 88! [( )!] ( ) P( ) ( )( ). 4 = =. 8! [( )!] ( ) P( ) ( )( ). 4 = =. 4! [( )!] =. 57 =. 4 = p( ) ( ). 4 = P. 4 = (. 4) = e =. 749 =

Polinom İnterpolasyonu

Polinom İnterpolasyonu Polom İterpolasyou (Ara Değer Bulma Br foksyou solu sayıdak, K, R oktalarıda aldığı f (, f (,, f ( değerler bls (foksyou keds blmyor. Bu oktalarda geçe. derecede br tek, P a + a + a + + a (... polumu vardır

Detaylı

Regresyon ve Korelasyon Analizi. Regresyon Analizi

Regresyon ve Korelasyon Analizi. Regresyon Analizi Regresyo ve Korelasyo Aalz Regresyo Aalz Regresyo Aalz Regresyo aalz, aralarıda sebep-souç lşks bulua k veya daha fazla değşke arasıdak lşky belrlemek ve bu lşky kullaarak o kou le lgl tahmler (estmato)

Detaylı

(DERS NOTLARI) Hazırlayan: Prof.Dr. Orhan ÇAKIR. Ankara Üniversitesi, Fen Fakültesi, Fizik Bölümü

(DERS NOTLARI) Hazırlayan: Prof.Dr. Orhan ÇAKIR. Ankara Üniversitesi, Fen Fakültesi, Fizik Bölümü FİZ433 FİZİKTE BİLGİSAYAR UYGULAMALARI DERS NOTLARI Hazırlaya: Pro.Dr. Orha ÇAKIR Akara Üverstes, Fe Fakültes, Fzk Bölümü Akara, 7! İÇİNDEKİLER. LİNEER OLMAYAN DENKLEMLERİN KÖKLERİNİN BULUNMASI I/II. LİNEER

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

MERKEZİ EĞİLİM ÖLÇÜLERİ

MERKEZİ EĞİLİM ÖLÇÜLERİ MERKEZİ EĞİLİM ÖLÇÜLERİ Gözlee ver düzeleerek çzelgelerle, graklerle suulması çoğu kez yeterl olmaz. Geel durumu yasıtacak br takım ölçülere gereksm vardır. Bu ölçüler verler yalızca özlü br bçmde belrtmekle

Detaylı

Doç. Dr. Mehmet AKSARAYLI

Doç. Dr. Mehmet AKSARAYLI Doç. Dr. Mehmet AKSARALI www.mehmetaksarayl İstatstksel araştırmalarda k yada daha çok değşke arasıdak lşk celemes ç e çok kullaıla yötemlerde brs regresyo aalzdr. Değşkeler arasıdak lşk matematksel br

Detaylı

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama

= k. Aritmetik Ortalama. Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER. Sınıflanmış Seriler İçin Aritmetik Ortalama TANIMLAYICI İSTATİSTİKLER Taımlayıcı İstatstkler MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F..B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl aksarayl@deu.edu.tr Yer Ölçüler (Merkez Eğlm Ölçüler)

Detaylı

1. GAZLARIN DAVRANI I

1. GAZLARIN DAVRANI I . GZLRIN DRNI I İdeal Gazlar ç: lm 0 RT İdeal gazlar ç: RT Hacm() basıçla() değşk sıcaklıklarda değşm ekl.. de gösterlmştr. T >T 8 T T T 3 asıç T 4 T T 5 T 7 T 8 Molar Hacm ekl.. Gerçek br gazı değşk sıcaklıklardak

Detaylı

Değişkenler Arasındaki İlişkiler Regresyon ve Korelasyon. Dr. Musa KILIÇ

Değişkenler Arasındaki İlişkiler Regresyon ve Korelasyon. Dr. Musa KILIÇ Değşkeler Arasıdak İlşkler Regresyo ve Korelasyo Dr. Musa KILIÇ http://ks.deu.edu.tr/musa.klc 1. Grş Buda öcek bölümlerde celedğmz koular, br tek değşke ç yorumlamalar yapmaya yöelk statstk yötemler üzerde

Detaylı

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR

ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR ÖLÇÜM, ÖLÇÜM HATALARI ve ANLAMLI RAKAMLAR Ölçme, her deeysel blm temel oluşturur. Fzk blmde de teorler sıaması ç çeştl deeyler tasarlaır ve bu deeyler sırasıda çok çeştl ölçümler yapılır. Br fzksel celğ

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Taımlayıcı İstatstkler br değerler dzs statstksel olarak geel özellkler taımlaya ölçülerdr Taımlayıcı İstatstkler Yer Göstere Ölçüler Yaygılık Ölçüler Yer Göstere Ölçüler Br dağılımı

Detaylı

HĐPERSTATĐK SĐSTEMLER

HĐPERSTATĐK SĐSTEMLER HĐPERSTATĐK SĐSTELER Taım: Bütü kest zorları, şekldeğştrmeler ve yerdeğştrmeler belrlemes ç dege deklemler yeterl olmadığı sstemlere hperstatk sstemler der. Hperstatk sstemler hesabı ç, a) Dege deklemlere,

Detaylı

BÖLÜM 4 KLASİK OPTİMİZASYON TEKNİKLERİ (KISITLI OPTİMİZASYON)

BÖLÜM 4 KLASİK OPTİMİZASYON TEKNİKLERİ (KISITLI OPTİMİZASYON) BÖÜM 4 KASİK OPTİMİZASYON TEKNİKERİ KISITI OPTİMİZASYON 4. GİRİŞ Öcek bölülerde de belrtldğ b optzaso probleler çoğuluğu kısıtlaıcı oksolar çerektedr. Kısıtlaasız optzaso problelerde optu değer ede oksou

Detaylı

BEKLENEN DEĞER VE VARYANS

BEKLENEN DEĞER VE VARYANS BEKLEE DEĞER VE VARYAS.1. İadel ve adesz öreklemede tüm mümkü örekler.. Beklee değer.3. Varyas.4. İk değşke ortak dağılımı.5. İstatstksel bağımsızlık.6. Tesadüf değşkeler doğrusal kombasyolarıı beklee

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit Karadez Te Üverstes Blgsayar Mühedslğ Bölümü 5-6 Güz Yarıyılı Sayısal Çözümleme Ara Sıav Soruları Tarh: Kasım 5 Perşembe Süre: daa. f ( ( + a e fosyouu sabt otası olmadığı bldğe göre, a 'ı alableceğ e

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde azla dağılışı karşılaştırmak ç kullaıla ve ayrıca örek verlerde hareket le rekas dağılışlarıı sayısal olarak özetleye değerlere taımlayıcı statstkler der. Aalzlerde

Detaylı

KUVVET SİSTEMLERİ KUVVET. Vektörel büyüklük. - Kuvvetin büyüklüğü - Kuvvetin doğrultusu - Kuvvetin uygulama noktası - Kuvvetin yönü. Serbest vektör.

KUVVET SİSTEMLERİ KUVVET. Vektörel büyüklük. - Kuvvetin büyüklüğü - Kuvvetin doğrultusu - Kuvvetin uygulama noktası - Kuvvetin yönü. Serbest vektör. İ.T.Ü. aka akültes ekak Aa Blm Dalı STATİK - Bölüm KUVVET SİSTELEİ KUVVET Vektörel büyüklük - Kuvvet büyüklüğü - Kuvvet doğrultusu - Kuvvet uygulama oktası - Kuvvet yöü S = (,,..., ) = + +... + = Serbest

Detaylı

Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ

Tanımlayıcı İstatistikler (Descriptive Statistics) Dr. Musa KILIÇ Taımlayıcı İstatstkler (Descrptve Statstcs) Dr. Musa KILIÇ TANIMLAYICI ÖRNEK İSTATİSTİKLERİ YER ÖLÇÜLERİ (Frekas dağılışıı abss eksedek durumuu belrtr.) DEĞİŞİM ÖLÇÜLERİ ( Frekas dağılışıı şekl belrtr.).

Detaylı

SAYISAL ANALİZ. Ders Notları MART 27, 2016 PAMUKKALE ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ

SAYISAL ANALİZ. Ders Notları MART 27, 2016 PAMUKKALE ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL ANALİZ Ders Notları MART 7, 06 PAMUKKALE ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ PAÜ, Müh. Fak., Make Müh. Böl., Sayısal Aalz Ders Notları, Z.Grg Ösöz Mühedslkte aaltk olarak

Detaylı

TABAKALI ŞANS ÖRNEKLEME

TABAKALI ŞANS ÖRNEKLEME 6 TABAKAI ŞA ÖREKEME 6.. Populasyo ortalaması ve populasyo toplamıı tam 6.. Populasyo ortalamasıı ve toplamıı varyası 6... Populasyo ortalamasıı varyası 6... Populasyo toplamıı varyası 6..3. Ortalama ve

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu Br KANUN ve Br TEOREM Büyük Türkçe Sözlük kau Đg. law Doğa olaylarıı oluş edeler ortaya koya ve gelecektek olayları öcede kestrme olaağı vere bağıtı; Newto kauu, Kepler kauları. (BSTS / Gökblm Termler

Detaylı

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç.Dr. Cüneyt BAYILMIŞ Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz SAYISAL ANALİZ SAYISAL TÜREV Numercal Derentaton Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz İÇİNDEKİLER Sayısal Türev Ger Farklar

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

çözüm: C=19500 TL n=4 ay t=0,25 I i 1.yol: Senedin iskonto tutarı x TL olsun. Bu durumda senedin peşin değeri: P C I (19500 x) TL olarak alınabilir.

çözüm: C=19500 TL n=4 ay t=0,25 I i 1.yol: Senedin iskonto tutarı x TL olsun. Bu durumda senedin peşin değeri: P C I (19500 x) TL olarak alınabilir. 1 6)Kred değer 19500 TL ola br seet vadese 4 ay kala, yıllık %25 skoto oraı üzerde br bakaya skoto ettrlyor. Hesaplamada ç skoto metodu kullaıldığıa göre, seed skoto tutarı kaç TL dr? C=19500 TL =4 ay

Detaylı

KONTROL KARTLARI 1)DEĞİŞKENLER İÇİN KONTROL KARTLARI

KONTROL KARTLARI 1)DEĞİŞKENLER İÇİN KONTROL KARTLARI 1 KONTOL KATLAI 1)DEĞİŞKENLE İÇİN KONTOL KATLAI Ölçe,gözle veya deey yolu le elde edle verler değşke(ölçüleblr-sürekl) ve özellk (sayılablr-keskl) olak üzere başlıca k gruba ayrılır. Değşke verler belrl

Detaylı

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ

5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ 5 İKİNCİ MERTEBEDEN LİNEER DİF. DENKLEMLERİN SERİ ÇÖZÜMLERİ Bir lieer deklemi geel çözümüü bulmak homoje kısmı temel çözümlerii belirlemesie bağlıdır. Sabit katsayılı diferasiyel deklemleri temel çözümlerii

Detaylı

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler...

İÇİNDEKİLER. Ön Söz Polinomlar II. ve III. Dereceden Denklemler Parabol II. Dereceden Eşitsizlikler... İÇİNDEKİLER Ö Söz... Poliomlar... II. ve III. Derecede Deklemler... Parabol... 9 II. Derecede Eşitsizlikler... 8 Trigoometri... 8 Logaritma... 59 Toplam ve Çarpım Sembolü... 7 Diziler... 79 Özel Taımlı

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler TANIMLAYICI İSTATİSTİKLER MERKEZİ EĞİLİM ÖLÇÜLERİ Dr. Mehmet AKSARAYLI D.E.Ü. İ.İ.B.F. EKONOMETRİ BÖLÜMÜ mehmet.aksarayl@deu.edu.tr Taımlayıcı İstatstkler Yer Ölçüler (Merkez Eğlm Ölçüler) Duyarlı Ortalamalar

Detaylı

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV (

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir.

değerine bu matrisin bir girdisi(elemanı,bileşeni) denir. Bir sütundan (satırdan) oluşan bir matrise bir sütun (satır) matrisi denir. Bölüm 2 Matrsler aım 2.1 F br csm, m, brer doğal sayı olsu. a F ( 1,.., m; j 1,..., ) olmak üzere, a11... a1 fadese m satır sütuda oluşa (veya m tpde) br F matrs der. am 1... a m Böyle br matrs daha sade

Detaylı

Zaman Skalasında Box-Cox Regresyon Yöntemi

Zaman Skalasında Box-Cox Regresyon Yöntemi Dokuz Eylül Üverstes İktsad ve İdar Blmler Fakültes Dergs, Clt:7, Sayı:, Yıl:0, ss.57-70. Zama Skalasıda Bo-Co Regresyo Yötem Atlla Özur İŞÇİ Sbel PAŞALI GÖKTAŞ ATMACA 3 M. Nyaz ÇANKAYA 4 Özet Hata term

Detaylı

HARDY-CROSS METODU VE UYGULANMASI

HARDY-CROSS METODU VE UYGULANMASI HRY-ROSS MTOU V UYGUNMSI ğ şebekelerde debi bir oktaya çeşitli yollarda gelebildiği içi, şebekei er agi bir borusua suyu agi yolda geldiğii ilk bakışta söyleyebilmek geellikle mümkü değildir. Çözümleme

Detaylı

Yüksek Mertebeden Sistemler İçin Ayrıştırma Temelli Bir Kontrol Yöntemi

Yüksek Mertebeden Sistemler İçin Ayrıştırma Temelli Bir Kontrol Yöntemi Yüksek Mertebede Sstemler İç Ayrıştırma Temell Br Kotrol Yötem Osma Çakıroğlu, Müjde Güzelkaya, İbrahm Eks 3 Kotrol ve Otomasyo Mühedslğ Bölümü Elektrk Elektrok Fakültes İstabul Tekk Üverstes,34369, Maslak,

Detaylı

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz;

Örnek A. Benzer tipteki 40 güç kaynağının dayanma süreleri aşağıdaki gibidir. Genişletilmiş frekans tablosu oluşturunuz; Öre A. Bezer pe 40 güç ayağıı dayama süreler aşağıda gbdr. Geşlelmş reas ablosu oluşuruuz;, 4,7 3, 3,4 3,3 3, 3,9 4, 3,4 4, 3,8 3,7 3,6 3,8 3,7 3,0,,6 3, 3,,6,9 3, 3,0 3,3 4,3 3, 4, 4,6 3, 3,3 4,4 3,9,9

Detaylı

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1

ĐÇI DEKILER 1. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR 1 ĐÇI DEKILER Sayfa. TEMEL ĐSTATĐSTĐK KAVRAMLAR VE OTASYO LAR.. Grş.. Đstatstk.3. Populasyo.4. Örek.5. Brm.6. Parametre.7. Değşke 3.8. Ver ve Ver Tpler 3.9. Toplama Sembolü 4 ÇALIŞMA PROBLEMLERĐ 6. VERĐLERĐ

Detaylı

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU

ÇOKLU REGRESYON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESYON ÇÖZÜMLEMESİ,REGRES-YON KATSAYILARININ YORUMU 6.07.0 ÇOKLU REGRESON MODELİ, ANOVA TABLOSU, MATRİSLERLE REGRESON ÇÖZÜMLEMESİ,REGRES-ON KATSAILARININ ORUMU ÇOKLU REGRESON MODELİ Ekonom ve şletmeclk alanlarında herhang br bağımlı değşken tek br bağımsız

Detaylı

Yard. Doç. Dr. Mustafa Akkol

Yard. Doç. Dr. Mustafa Akkol Yard. Doç. Dr. Mustaa Akkol Değişim Oraı: oksiouu değişimii ile, i değişimii İle östere. Değişim oraı olur. Diğer tarata olduğuda, Değişim oraı ve 0, alalım. Örek: Yard. Doç. Dr. Mustaa Akkol olur. 0,

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde fazla dağılışı karşılaştırmak ç kullaıla veya ayrıca örek verlerde hareketle frekas dağılışlarıı sayısal olarak düzeleye değerlere taımlayıcı statstkler der. Aalzlede

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 5- SONLU FARKLAR VE İNTERPOLASYON TEKNİKLERİ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 İNTERPOLASYON Tablo halinde verilen hassas sayısal değerler veya ayrık noktalardan

Detaylı

Tanımlayıcı İstatistikler

Tanımlayıcı İstatistikler Taımlayıcı İstatstkler Br veya brde azla dağılışı karşılaştırmak ç kullaıla ve ayrıca örek verlerde hareket le rekas dağılışlarıı sayısal olarak özetleye değerlere taımlayıcı statstkler der. Aalzlerde

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

PAMUKKALE ÜNİVERSİTESİ. Mühendislik Fakültesi, Makine Mühendisliği Bölümü. Zekeriya Girgin DENİZLİ, 2015 OTOMATİK KONTROL DERS NOTLARI

PAMUKKALE ÜNİVERSİTESİ. Mühendislik Fakültesi, Makine Mühendisliği Bölümü. Zekeriya Girgin DENİZLİ, 2015 OTOMATİK KONTROL DERS NOTLARI PAMUKKALE ÜNİVERSİTESİ Mühedlk Fakülte, Make Mühedlğ Bölümü Zekerya Grg DENİZLİ, 05 OTOMATİK KONTROL DERS NOTLARI Ööz Mühedlkte vermeye başladığım Otomatk Kotrol der daha y alaşılablme ç bu otlar hazırlamaya

Detaylı

limiti reel sayı Sonuç:

limiti reel sayı Sonuç: 6 TÜREV MAT Bara Yücel Taı: a, br veriliş ols. olak üzere : a, b R oksiyo ab, içi li liiti reel sayı ise, b liit değerie oksiyo oktasıdaki türevi deir ve d dy, ya da biçiide gösterilir. d d Ba göre, li

Detaylı

Veri Eliminasyonu. (Chauvenet Kriteri) d max / Ölçüm sayısı

Veri Eliminasyonu. (Chauvenet Kriteri) d max / Ölçüm sayısı Ver Elmasou Brçok durumda apıla ölçümler çde değşk hatalar edele gerçeğ asıtmaa az saıda üük ölçekl hatalı ver uluacaktır. Bu tür ölçümler ver aalz öces elmasou, apıla statstk aalz duarlılığıı arttıracaktır.

Detaylı

FREKANS CEVABI YÖNTEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI

FREKANS CEVABI YÖNTEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI FREKANS CEVABI YÖNEMLERİ FREKANS ALANI CEVABI VEYA SİNUSOİDAL GİRİŞ CEVABI G(s (r(t ı Laplace döüşümü; A(s B(s A(s (s p (s p L(s p C(s G(sR(s R(s R s A(s B(s R(s A(s R a C(s L B(s s s j s j s p a b b s

Detaylı

Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine

Genelleştirilmiş Ortalama Fonksiyonu ve Bazı Önemli Eşitsizliklerin Öğretimi Üzerine Geelleşrlmş Oralama Foksyou ve Bazı Öeml Eşszlkler Öğrem Üzere Gabl ADİLOV, Gülek TINAZTEPE & Serap KEALİ * Öze Armek oralama, Geomerk oralama, Harmok oralama, Kuvadrak oralama ve bular arasıdak lşk vere

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

Bir Kompleks Sayının n inci Kökü.

Bir Kompleks Sayının n inci Kökü. Prof.Dr.Hüsy ÇAKALLI Br Komplks Sayıı c Kökü. hrhag br sab doğal sayı olmak ür, br komplks sayıı c kökü, c kuvv bu sayıya ş ola komplks sayıdır. ( r(cos s olsu v (cos s dylm. Bu akdrd ( [ (cos s] dr v

Detaylı

Tarihli Mühendislik ekonomisi final sınavı. Sınav süresince görevlilere soru sormayın. Başarılar dilerim.

Tarihli Mühendislik ekonomisi final sınavı. Sınav süresince görevlilere soru sormayın. Başarılar dilerim. 6..27 Tarhl Mühedslk ekooms fal sıavı Süre 9 dakka Sıav Saat: Sıav süresce görevllere soru sormayı. Başarılar dlerm. D: SOYD: ÖĞRENCİ NO: İMZ: Tek ödemel akümüle değer faktörü Tek ödemel gücel değer faktörü

Detaylı

BÉZIER YAKLAŞIMI İLE BİR YÜZEYİN OLUŞTURULMASI VE C PROGRAMLAMA İLE CAM KODLARININ TÜRETİLMESİ

BÉZIER YAKLAŞIMI İLE BİR YÜZEYİN OLUŞTURULMASI VE C PROGRAMLAMA İLE CAM KODLARININ TÜRETİLMESİ İMAK-asarım İmalat Aalz Kogres 6-8 Nsa 6 - ALIKESİR ÉZIER YAKLAŞIMI İLE İR YÜZEYİN OLUŞURULMASI VE C PROGRAMLAMA İLE CAM KODLARININ ÜREİLMESİ Cha ÖZEL, Erol KILIÇKAP Fırat Üverstes, Maka Mühedslğ ölümü-elaziğ

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı TOBB Ekoom ve Tekoloj Üverstes İKT351 Ekoometr I, Ara Sıavı Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sıav toplam 100 pua değerde 4 soruda oluşmaktadır. Sıav süres 90 dakkadır ve

Detaylı

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R İ H S A N T İ M U Ç İ N D O L A P C İ, Y İ Ğ İ T A K S O Y M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R P U B L I S H E R O F T H I S B O O K Copyright 13 İHSAN TİMUÇİN DOLAPCİ, YİĞİT AKSOY

Detaylı

III.4. YÜKSEK MERTEBE TAYLOR METODLARI. ( t)

III.4. YÜKSEK MERTEBE TAYLOR METODLARI. ( t) III.4. YÜKSEK MEREBE AYLOR MEODLARI Saısal tekkler amacı mmum çaba le olablğce uarlı aklaşımlar ele etmektr. Bu eele çeştl aklaşım ötemler vermllğ karşılaştıracak br krtere gereksm varır. İlk ele alıacak

Detaylı

Parametrik Olmayan İstatistik Çözümlü Sorular - 2

Parametrik Olmayan İstatistik Çözümlü Sorular - 2 Parametrk Olmaya İstatstk Çözümlü Sorular - Soru Böbrek hastalarıa at Kreat (KRT) değerlere lşk br araştırma yapılmak stemektedr. Buu ç rasgele seçle hastaya at Kreat değerler aşağıdak gb elde edlmştr

Detaylı

POLĐNOMLAR YILLAR ÖYS

POLĐNOMLAR YILLAR ÖYS YILLAR 4 5 6 7 8 9 ÖSS - - - - - - ÖYS POLĐNOMLAR a,a,a,..., a P () = a + a +... + a R ve N olmak üzere; ifadesie Reel katsayılı.ci derecede bir değişkeli poliom deir. P()= a sabit poliom, (a ) P()= sıfır

Detaylı

Merkezi Eğilim (Yer) Ölçüleri

Merkezi Eğilim (Yer) Ölçüleri Merkez Eğlm (Yer) Ölçüler Ver setn tanımlamak üzere kullanılan ve genellkle tüm elemanları dkkate alarak ver setn özetlemek çn kullanılan ölçülerdr. Ver setndek tüm elemanları temsl edeblecek merkez noktasına

Detaylı

Matematik olarak normal dağılım fonksiyonu. 1 exp X 2

Matematik olarak normal dağılım fonksiyonu. 1 exp X 2 Matematk olarak ormal dağılım foksyou f ( ) ep ( ) Şeklde fade edlr. Burada μ artmetk ortalama, σ se stadart sapma değer gösterr ve dağılım foksyou N(μ, σ) otasyou le gösterlr. Bu deklem geometrk görütüsü

Detaylı

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi

Cebirsel Olarak Çözüme Gitmede Wegsteın Yöntemi 3 Cebirsel Olarak Çözüme Gitmede Wegsteı Yötemi Bu yötem bir izdüşüm tekiğie dayaır ve yalış pozisyo olarak isimledirile matematiksel tekiğe yakıdır. Buradaki düşüce f() çizgisi üzerideki bilie iki oktada

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN BİLİMLERİ DERGİSİ

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN BİLİMLERİ DERGİSİ DEÜ MÜHENDİSLİK FAKÜLTESİ FEN BİLİMLERİ DERGİSİ Clt: 2 Sayı: 3 sh 87-02 Ekm 200 VOLTERRA SERİLERİ METODU İLE DOĞRUSAL OLMAYAN SİSTEMLERİN FREKANS BOYUTUNDA ANALİZİ İÇİN NET TABANLI ARAYÜZ TASARIMI (DESIGN

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

BÖLÜM 3 SAYISAL TÜREV VE İNTEGRAL

BÖLÜM 3 SAYISAL TÜREV VE İNTEGRAL BÖLÜM SAYISAL TÜREV VE İNTEGRAL. Blgsyrl türe.. Bölümüş rk tblolrıyl türe.. Eşt rlıklı er oktlrı ç türe.. Eşt rlıklı er oktlrı ç er oktlrıd türe.. Yüksek mertebede türeler. Syısl tegrl.. Trpez krlı.. Romberg

Detaylı

AMORTİSMAN MALİYETİ SAPTAMA YÖNTEMLERİ

AMORTİSMAN MALİYETİ SAPTAMA YÖNTEMLERİ AMORTİSMAN MALİYETİ SAPTAMA YÖNTEMLERİ Geel olrk 4 tp yötem kullılır.. Düz çzg yötem: Mlı değer zml doğrusl olrk zldığı vrsyılır. Mlı hzmet ömrü boyuc her yıl ç yı mktr mortsm olrk yrılır. V V d = S d:

Detaylı

KİMYASAL DENGE (GİBBS SERBEST ENERJİSİ MİNİMİZASYONU) MODELLEMESİ

KİMYASAL DENGE (GİBBS SERBEST ENERJİSİ MİNİMİZASYONU) MODELLEMESİ KİMYASAL DENGE (GİBBS SERBEST ENERJİSİ MİNİMİZASYONU) MODELLEMESİ M. Turha ÇOBAN Ege Üiversitesi, Mühedislik Fakultesi, Makie Mühedisliği Bölümü, Borova, İZMİR Turha.coba@ege.edu.tr Özet: Kimyasal degei

Detaylı

Yrd.Doç. Dr. Mustafa Akkol

Yrd.Doç. Dr. Mustafa Akkol komşuluğu: Taım: ; isteildiği kadar küçük seçilebile poziti bir sayı olmak üzere a a açık aralığıa a R sayısıı komşuluğu deir Örek : Taım: a a a a ve 0 00 olsu ' i 0 00 0 00 999 00 : Z R bir dizi deir

Detaylı

12. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

12. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 1. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi SONLU FARKLAR İNTERPOLASYONU İleri Yönlü Sonlu Farklar İterpolasyonu

Detaylı

F= 360. L sayıdaki kapitalin t ortak faiz oranı üzerinden getirecekleri faiz tutarları toplamı gerçek faiz metoduna göre: formülü ile hesaplanır.

F= 360. L sayıdaki kapitalin t ortak faiz oranı üzerinden getirecekleri faiz tutarları toplamı gerçek faiz metoduna göre: formülü ile hesaplanır. BİRDEN AZA KAPİTAE İİŞKİN AİZ İŞEMERİ: =,,,, >0 olmk üzere syıdk kpller, süreler ç fz orlrı üzerde fze verldğde oplu olrk bs fz urlrı: = formülü le hesplblr. ork fz orı olmk üzere, syıdk kpl ork fz orı

Detaylı

X = 11433, Y = 45237,

X = 11433, Y = 45237, A.Ü. SBF, IV Malye EKONOMETRİ I ARA SINAVI 4..006 Süre 90 dakkadır..,. ve 3. sorular 0 ar, 4. ve 5. sorular 30 ar pua, ödev 0 pua değerdedr. Tüm formüller ve şlemlerz açıkça gösterz. ) Y = Xβ + u doğrusal

Detaylı

Dış Etki Olarak Sıcaklık Değişmesi ve/veya Mesnet Çökmelerinin Göz Önüne Alınması Durumu

Dış Etki Olarak Sıcaklık Değişmesi ve/veya Mesnet Çökmelerinin Göz Önüne Alınması Durumu Dış Etk Olrk Sıcklık Değşmes ve/vey eset Çökmeler Göz Öüe Alımsı Durumu Dış etk olrk göz öüe lı sıcklık eğşm ve meset çökmeler hpersttk sstemlere şekl eğştrme le brlkte kest zoru mey getrr. Sıcklık eğşm:

Detaylı

8. Niteliksel ( Ölçülemeyen Özellikler İçin) Kontrol Diyagramları

8. Niteliksel ( Ölçülemeyen Özellikler İçin) Kontrol Diyagramları 1 8. Ntelksel ( Ölçüleeye Özellkler İç) Kotrol Dyagraları Ürüler taşıası gereke kalte karakterstkler br ya da br kaçı belrlee sesfkasyolara uyayablr. Ntelk olarak adladırıla bu özellk edeyle ürü belrl

Detaylı

Vektör bileşenleri için dikey eksende denge denklemi yazılırak, aşağıdaki eşitlik elde edilir. olarak elde edilir. 2

Vektör bileşenleri için dikey eksende denge denklemi yazılırak, aşağıdaki eşitlik elde edilir. olarak elde edilir. 2 Açıklama Sorusu : V kayışlar, ayı mekaizma büyüklükleride düz kayışlara göre daha yüksek dödürme mometlerii taşıyabildikleri bilimektedir. V kayışları düz kayışlara göre gözlee bu üstülüğü sebebi "kama

Detaylı

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç.Dr. Cüet BAYILMIŞ Doç.Dr. Cüet BAYILMIŞ Sısl Alz SAYISAL ANALİZ EĞRİ UYDURMA (Curve Fttg) Doç.Dr. Cüet BAYILMIŞ Sısl Alz İÇİNDEKİLER Eğr Udurm (Curve Fttg) E Küçük Kreler Yötem Doç.Dr.

Detaylı

Okan Yurduseven 1, Ahmet Serdar Türk 2. Marmara Üniversitesi oyurduseven@marmara.edu.tr. Yıldız Teknik Üniversitesi asturk@yildiz.edu.tr.

Okan Yurduseven 1, Ahmet Serdar Türk 2. Marmara Üniversitesi oyurduseven@marmara.edu.tr. Yıldız Teknik Üniversitesi asturk@yildiz.edu.tr. Mkrodalga Radar Stemler İç Koekat-Kare Işıma Deel Dışbükey Parabolk Yaıtıcı Ate Taarımı Covex Parabolc Reflector Atea Deg Wth Coecat-Squared Radato Patter For Mcrowave Radar Sytem Oka Yurdueve, Ahmet Serdar

Detaylı

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10 KOMBİNASYON tae esei r taesii seçimie elemaı r li kombiasyoları deir ve C(,r) veya ( ile gösterilir. 1) ( ) = ( 0) =1 r) C(;r)= ( r) =! ( r)!.r! 2) ( 1) = ( 1) = 3) ( r) = ( r) 4) ( a) = ( b) (r ) ise

Detaylı

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI Ki-Kare Analizleri

Kİ KARE ANALİZİ. Doç. Dr. Mehmet AKSARAYLI  Ki-Kare Analizleri Kİ KAR ANALİZİ 1 Doç. Dr. Mehmet AKSARAYLI www.mehmetaksarayl K-Kare Analzler OLAY 1: Genelde br statstk sınıfında, öğrenclern %60 ının devamlı, %30 unun bazen, %10 unun se çok az derse geldkler düşünülmektedr.

Detaylı

Bölüm I Sinyaller ve Sistemler

Bölüm I Sinyaller ve Sistemler - Güz Haberleşme Sisemleride emel Bilgiler Güz - uay ERŞ. Haa Bölüm I Siyaller ve Sisemler emel Bilgiler Siyaller ve Sııladırılması Güç ve Eerji Furier Serileri Furier rasrmu ve Özellikleri Dira Dela Fksiyu

Detaylı

Đst201 Đstatistik Teorisi I

Đst201 Đstatistik Teorisi I Đst20 Đstatstk Teors I DERSĐN TÜRÜ Zorulu DERSĐN DÖNEMĐ Yaz DERSĐN KREDĐSĐ Ulusal Kred: (4, 0, 0 ) 4 KTS: 7 DERSĐN VERĐLDĐĞĐ Bölüm: Đstatstk 200/20 Öğretm Yılı DERSĐN MCI Đstatstğ matematksel temeller

Detaylı

VEKTÖRLER Koordinat Sistemleri. KONULAR: Koordinat sistemleri Vektör ve skaler nicelikler Bir vektörün bileşenleri Birim vektörler

VEKTÖRLER Koordinat Sistemleri. KONULAR: Koordinat sistemleri Vektör ve skaler nicelikler Bir vektörün bileşenleri Birim vektörler 11.10.011 VEKTÖRLER KONULR: Koordnat ssteler Vektör ve skaler ncelkler r vektörün bleşenler r vektörler Koordnat Ssteler Karteen (dk koordnatlar: r noktaı tesl etenn en ugun olduğu koordnat ssten kullanırı.

Detaylı

YILLIK ÜCRETLİ İZİN YÖNETMELİĞİ (03.03.2004 tarihli ve 25391 sayılı Resmi Gazete'de yayımlanmıştır.) BİRİNCİ BÖLÜM Amaç, Kapsam ve Dayanak

YILLIK ÜCRETLİ İZİN YÖNETMELİĞİ (03.03.2004 tarihli ve 25391 sayılı Resmi Gazete'de yayımlanmıştır.) BİRİNCİ BÖLÜM Amaç, Kapsam ve Dayanak YILLIK ÜCRETLİ İZİN YÖNETMELİĞİ (03.03.2004 tarhl ve 25391 sayılı Resm Gazete'de yayımlamıştır.) Amaç BİRİNCİ BÖLÜM Amaç, Kapsam ve Dayaak Madde 1 Bu Yöetmelğ amacı, 4857 sayılı İş Kauuu 53 ücü maddes

Detaylı

Filbert Matrislerinin Normları İçin Alt ve Üst Sınırlar. The Upper and Lower Bounds For Norms of Filbert Matrices

Filbert Matrislerinin Normları İçin Alt ve Üst Sınırlar. The Upper and Lower Bounds For Norms of Filbert Matrices lert Matrsler Normları İç lt ve Üst Sıırlar Sülema Demrel Üverstes B Türe E Sarııar e Blmler Esttüsü Dergs - (00 - lert Matrsler Normları İç lt ve Üst Sıırlar Bahr TÜREN E SRIPINR Sülema Demrel Üverstes

Detaylı

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması . Ders ĐSTATĐSTĐKTE SĐMÜLASYON Tahm Edcler ve Test Đstatstkler Smülasyo le Karşılaştırılması Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve

Detaylı

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10

n ile gösterilir. 0) + ( n 1) + ( n 2) + + ( n n) =2n Örnek...4 : ( 8 3) = ( 8 Örnek...5 : ( 7 5) + ( 7 6) + ( 8 7) + ( 9 8) + ( 10 KOMBİNASYON tae esei r taesii seçimie elemaı r li kombiasyoları deir ve C(,r) veya ( ile gösterilir. 1) ( ) = ( 0) =1 r) C(;r)= ( r) =! ( r)!.r! 2) ( 1) = ( 1) = 3) ( r) = ( r) 4) ( a) = ( b) (r ) ise

Detaylı

ZAMAN SKALASINDA BAZI KISMİ DİNAMİK DENKLEMLERİN SALINIMLILIĞI ÜZERİNE

ZAMAN SKALASINDA BAZI KISMİ DİNAMİK DENKLEMLERİN SALINIMLILIĞI ÜZERİNE ZAMAN SKALASINDA BAZI KISMİ DİNAMİK DENKLEMLERİN SALINIMLILIĞI ÜZERİNE DOKTORA TEZİ Dez UÇAR DANIŞMAN Doç. Dr. Yaşar BOLAT MATEMATİK ANABİLİM DALI TEMMUZ AFYON KOCATEPE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

Detaylı

SOYUT CEBİR VE SAYILAR TEORİSİ

SOYUT CEBİR VE SAYILAR TEORİSİ ÇÖZÜMLÜ PROBLEMLERLE SOYUT CEBİR VE SAYILAR TEORİSİ PROF. DR. MEHMET ERDOĞAN Beyket Üverstes Fe-Edebyat Fakültes Matematk-Blgsayar Bölümü YRD. DOÇ. DR. GÜLŞEN YILMAZ Beyket Üverstes Fe-Edebyat Fakültes

Detaylı

Analiz II Çalışma Soruları-2

Analiz II Çalışma Soruları-2 Aaliz II Çalışma Soruları- So gücelleme: 04040 (I Aşağıdaki foksiyoları (ilgili değişkelere göre türevlerii buluuz 7 cos π 8 log (si π ( si ta e 9 4 5 6 + cot 0 sec sit t si( e + e arccos ( e cos(ta (II

Detaylı

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ

ALTERNATİF AKIM DEVRE YÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ BÖLÜM 6 ALTERNATİF AKIM DEVRE ÖNTEM VE TEOREMLER İLE ÇÖZÜMÜ 6. ÇEVRE AKIMLAR ÖNTEMİ 6. SÜPERPOZİSON TEOREMİ 6. DÜĞÜM GERİLİMLER ÖNTEMİ 6.4 THEVENİN TEOREMİ 6.5 NORTON TEOREMİ Tpak GİRİŞ Alternatf akımın

Detaylı

KOMBİNASYON: ve r birer pozitif doğal sayı olmak üzere r olsu. farklı elemaı r elemalı alt kümelerii sayısıa i r 2. Örek:! C(,r) = r!. r! li kombiasyou deir ve gösterilir. C(,r) = r P(,r)! = = r r! r!.

Detaylı

Rasgele Değişken Üretme Teknikleri

Rasgele Değişken Üretme Teknikleri Rasgele Değşken Üretme Teknkler Amaç Smülasyon modelnn grdlern oluşturacak örneklern üretlmes Yaygın olarak kullanılan ayrık veya sürekl dağılımların örneklenmes sürecn anlamak Yaygın olarak kullanılan

Detaylı

ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA

ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA İstabul Tcaret Üverstes Fe Blmler Dergs Yıl: 11 Sayı: Güz 01 s. 19-35 ETKİN SINIR VE BETA KATSAYI KISITLI PORTFÖY SEÇİM MODELİ ÜZERİNE BİR UYGULAMA Cası KAYA 1, Oza KOCADAĞLI Gelş: 30.05.01 Kabul: 14.1.01

Detaylı

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ

ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ ORTALAMA EŞĐTSĐZLĐKLERĐNE GĐRĐŞ Lokma Gökçe Olimpiyat problemlerii çözümüde eşitsizlik teorisi öemli bir yer tutar. Baze bir maksimum miimum değer problemide, baze bir geometrik eşitsizlik kaıtıda, baze

Detaylı

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir.

REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyon Basit doğrusal regresyon modeli: .. + n gözlem için matris gösterimi,. olarak verilir. 203-204 Bahar REGRESYON DENKLEMİNİN HESAPLANMASI Basit Doğrusal Regresyo Basit doğrusal regresyo modeli: y i = β 0 + β x i + ε i Modeli matris gösterimi, y i = [ x i ] β 0 β + ε i şeklidedir. x y 2 gözlem

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim

Detaylı

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI µ µ içi Güve Aralığı ALTERNATİF İTEMLERİN KARŞILAŞTIRILMAI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

PERDE-ÇERÇEVE SİSTEMLERİN. YÜKSEK LISANS TEZI İnş. Müh. Bedri Sinan GÜL 501021123. Prof.Dr. Yalçın AKÖZ (Maltepe Üniversitesi)

PERDE-ÇERÇEVE SİSTEMLERİN. YÜKSEK LISANS TEZI İnş. Müh. Bedri Sinan GÜL 501021123. Prof.Dr. Yalçın AKÖZ (Maltepe Üniversitesi) İSTANBU TEKNİK ÜNİVERSİTESİ FEN BİİMERİ ENSTİTÜSÜ PERDE-ÇERÇEVE SİSTEMERİN DİNAMİK ANAİZİ YÜKSEK SANS TEZ İş. Mü. Bedr Sa GÜ 53 Tez Esttüye Verldğ Tar : 8 Mayıs Tez Savuulduğu Tar : Hazra Tez Daışmaı :

Detaylı

TUTGA ve C Dereceli Nokta Koordinatlarının Gri Sistem ile Tahmin Edilmesi

TUTGA ve C Dereceli Nokta Koordinatlarının Gri Sistem ile Tahmin Edilmesi TMMOB Harita ve Kadastro Mühedisleri Odası, 5. Türkiye Harita Bilimsel ve Tekik Kurultayı, 5 8 Mart 5, Akara. TUTGA ve C Dereceli Nokta Koordiatlarıı Gri istem ile Tahmi Edilmesi Kürşat Kaya *, Levet Taşcı,

Detaylı

TRAFİK SİMÜLASYON TEKNİKLERİ

TRAFİK SİMÜLASYON TEKNİKLERİ TRAFİK SİMÜLASYON TEKNİKLERİ 2. HAFTA Doç. Dr. Haka GÜLER (2015-2016) 1. TRAFİK AKIM PARAMETRELERİ Üç öeml rafk akım parameres vardır: Hacm veya akım oraı, Hız, Yoğuluk. 2. KESİNTİSİZ AKIM HACİM E AKIM

Detaylı