3. TERMODİNAMİĞİN BİRİNCİ YASASI Kapalı Sistemler

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "3. TERMODİNAMİĞİN BİRİNCİ YASASI. 3.1. Kapalı Sistemler"

Transkript

1 3. TERMODİNAMİĞİN BİRİNCİ YASASI 3.1. Kapalı Sistemler Termodinamiğin birinci yasasına (Enerjinin korunumu) göre, sistem ile çevresinin etkileşimi sırasında, sistem tarafından kazanılan enerji çevresi tarafından kaybedilen enerjiye eşit olmak zorundadır. Enerji kapalı bir sistemin sınırlarından İŞ ve ISI olmak üzere iki şekilde geçebilir. Bir cisim sıcaklığı kendisinden farklı olan bir ortama bırakıldığında ortam ile cisim arasında enerji akışı görülür ve bu aktarım cismin sıcaklığı ortam sıcaklığına gelinceye kadar devam eder ve böylece ısıl denge sağlanmış olur. Isıl denge, her zaman yüksek sıcaklıktan düşük sıcaklığa enerji aktarımı ile gerçekleşir. Isı geçişi (veya ısı) iki sistem arasında sıcaklık farkından kaynaklanan bir enerji aktarımıdır. Termodinamikte ısı, enerji geçişini vurgular ve sadece sistem sınırlarını geçişi sırasında tanımlanabilir. Isı geçişinin olmadığı bir hal değişimi adyabatik hal değişimi olarak tanımlanır (Şekil.3.1). Adyabatik sözcüğü Latince geçilmez anlamına gelen adiabatos sözcüğünden gelmektedir. Bir adyabatik hal değişimi, sistem sınırlarının çok iyi bir şekilde izole edilmesi veya sistem ile çevresinin aynı sıcaklıkta olması durumunda gerçekleşebilir. Sabit sıcaklık (izotermal) hal değişimi ile adiyabatik hal değişimleri birbirinden farklıdır. Adiyabatik hal değişimi sırasında ısı geçişi olmasa da, iş yapılması sonucu sistemin enerjisi ve buna bağlı olarak sıcaklığı değişebilir. İzolasyon Adiyabatik sistem SİSTEM Giren ısı Çıkan ısı Q = 5 kj Q = - 5 kj Şekil.3.1. Adiyabatik sistem. Şekil.3.2. Isı geçişi için işaretleme. Enerji geçişini temsil ettiği için ısı birimi, kj, Kcal, Btu gibi enerji birimleri ile fade edilir. 1 ve 2 halleri arasındaki bir hal değişimi için ısı geçişi Q 12 veya Q ile; sistemin birim kütlesi başına ısı miktarı ise q ile gösterilir ve aşağıdaki gibi temsil edilir. Bazı durumlarda belirli bir zaman süresince geçen toplam ısı yerine, birim zamanda geçen ısı miktarı istenir, birim zamanda ısı geçişi, kj/s veya kw ile ifade edilir. zamanla değişiyorsa, hesaplanır. bir hal değişimi sırasındaki toplam ısı geçişi, aşağıdaki gibi nun integrali alınarak 1

2 Hal değişimi sırasında, birim zamanda geçen ısı miktarı sabit kalıyorsa, toplam ısı miktarı aşağıdaki gibi hesaplanır; Isı geçişinin yönü sayısal değerin önüne artı (+) veya eksi (-) işareti konmak suretiyle ifade edilmelidir. Genel olarak, sisteme giren ısı pozitif (+), sistemden çıkan ısı ise negatif (-) işareti ile gösterilir (Şekil.3.2). Başka bir anlatımla, sistemin enerjisini artıran yönde ısı geçişi pozitif, sistemin enerjisini azaltan yönde enerji geçişi negatif işaretli olur. Katı veya akışkan bir durgun ortam içinde, bir sıcaklık farkı olması durumunda ortam içinde gerçekleşen ısı geçişi için iletim (conduction) terimi kullanılır. İletim (Şekil.3.3), bir maddenin enerjisi fazla olan moleküllerinden yakındaki daha az enerjili diğer moleküllere, moleküller arasındaki etkileşim sonucunda enerji geçişi olarak tanımlanır. Sıvı ve gazlarda iletim, moleküllerin rastgele hareketleri sırasında birbirleriyle çarpışmaları sonucu gerçekleşir. Katılarda ise moleküllerin sabit düzen içindeki titreşimleri ve serbest elektronların hareketleri sonucu gerçekleşir. T Hava hızının değişimi, V T 2 T Q x T 1 T(x) Hava akışı Hava sıcaklığının değişimi Q taşınım T 2 T 1 x Şekil.3.3. İletimle ısı geçişi. Şekil.3.4. Taşınımla ısı geçişi. kalınlığındaki bir tabakadan birim zamanda iletimle geçen ısı Q iletim, sıcaklık farkı ve ısı geçişine dik yüzey alanı A ile doğru orantılı, tabakanın kalınlığı ile ters orantılı olarak değişir. Burada, Q x : birim zamanda geçen ısı (W), k: ısı iletim katsayısı, (W/mK), A: ısı geçişi doğrultusuna dik yüzey alanı (m 2 ) ve dt/dx, x-doğrultusunda sıcaklık gradienti olarak tanımlanır. Denklem (3.4) Fourier Isı İletim Yasası olarak bilinir ve verilen bir yöndeki ısı iletiminin o yöndeki sıcaklık gradienti ile orantılı olduğunu belirtir. Isı sıcaklığın azaldığı yönde iletildiğinden, artan x değerleri için sıcaklık azalıyorsa, sıcaklık gradienti eksi değer alacağından denklemin önüne (-) işareti konmuştur. Bu eşitlikte görülen ısı iletim katsayısı k, maddenin ısı iletiminin bir göstergesidir. Isı iletim katsayısı yüksek olan metaller (bakır, gümüş, vs.) ısı ve elektriği iyi iletirler. 2

3 Bir yüzey ile hareket halindeki bir akışkan farklı sıcaklıklarda ise, aralarında gerçekleşen ısı geçişi, taşınım (convection) (Şekil.3.4) olarak tanımlanır. Newton un Soğuma Yasası olarak bilinen taşınımla ısı geçişi için kullanılan denklem aşağıdaki gibi verilir; Burada taşınımla ısı akısı q (W/m 2 ), yüzey ile akışkan sıcaklıkları arasındaki fark (T w -T ) ile doğru orantılıdır, h (W/m 2 K), ısı taşınım katsayısı olarak adlandırılır. İletim ve taşınım ile enerji aktarımı, bir maddi ortamın varlığını gerekli kılarken, ışınım (Şekil.3.5) için bu şart yoktur. Hatta, ışınımla aktarım boşlukta daha etkin olarak gerçekleşir. Yüzeyin yaydığı ışınım, yüzeyi sardığı cismin ısıl enerjisinden kaynaklanır ve birim zamanda birim yüzeyden serbest bırakılan enerji (W/m 2 ) yüzeyin yayma gücü E olarak adlandırılır. Yayma gücünün Stefan - Boltzman Yasası ile tanımlanan bir üst sınırı vardır. Burada T s, yüzeyin mutlak sıcaklığı (K), σ, Stefan-Boltzman sabiti (σ = 5.67x10-8 W/m 2 K 4 ). Böyle bir yüzey, ideal ışınım yayıcı veya siyah cisim olarak adlandırılır. Gerçek bir yüzeyin yaydığı ısı akısı; Burada ε, yayma oranı olarak adlandırılır ve yüzeyin bir ışınım özeliğidir, (0 ε 1). Bir yüzey üzerine çevresinden gelen ışınım da söz konusudur. Yüzeyin Gaz birim alanına birim zamanda gelen bu ışınımın tümü gelen ışınım olarak adlandırılır. Gelen ışınımın bir kısmı yada tümü yüzey tarafından yutulabilir. Yüzeyin birim alanında birim zamanda yutulan ışınım enerjisi, yutma Q ışın Q taş oranı α bilindiği takdirde hesaplanabilir. Bu özelik, 0 α 1 olmak üzere aşağıdaki gibi tanımlanır;g abs = αg, Şekil.3.5. Işınımla ısı iletimi. α<1 ve yüzey ışınım geçirmez ise, gelen ışınımın bir kısmı yansıtılır. Yüzeyin birim alanından birim zamanda ışınımla net ısı geçişi için aşağıdaki denklem yazılabilir: 3.2. İş, W İş, bir kuvvetin belirli bir yol boyunca bir cisme etkide bulunması sonucu oluşur. İş de ısı geçişi gibi, sistemle çevresi arasında bir enerji alışverişidir ve birimi, örneğin kj gibi bir enerji birimidir. 1 ve 2 halleri arasında yapılan iş W 12 veya sadece W ile gösterilir. Isı geçişi kolaylıkla belirlenebilir, çünkü ona neden olan etken sistemle çevresi arasındaki sıcaklık farkıdır. Bu durumda, kapalı bir sistemle çevresi arasında sıcaklık farkının neden olmadığı enerji alışverişi, İŞ olarak tanımlanır. Hareket halindeki bir piston, dönen bir mil, sistem sınırlarını geçen bir elektrik kablosu, sistemle çevresi arasında bir iş etkileşiminin olduğunu gösterir. Sistemin birim kütlesi için yapılan iş w ile gösterilir ve aşağdaki gibi tanımlanır; 3

4 Sistem tarafından yapılan İŞ artı (+), sistem üzerinde yapılan iş eksi (-) kabul edilir. Fakat, sisteme olan ISI geçişi artı (+) işaretli veya pozitif, sistemden olan ısı geçişi ise eksi (-) işaretlidir veya negatif kabul edilir (Şekil.3.6). Birim zamanda yapılan iş GÜÇ olarak adlandırılır ve ile gösterilir, J/s (Watt, W), kj/s (kilowatt, kw) gibi birimlerle ifade edilir. P V A = 3 m 3, W A = 8 kj Q gir 1 V B = 3 m 3, W A = 12 kj Sistem Q çık W gir w çık A işlemi B işlemi V, m 3 Şekil.3.6. Isı ve iş için işaret kuralı. Şekil.3.7. Isı ve iş yola bağlı fonksiyonlardır. İşaret kuralına göre bir otomobil motoru, buhar veya gaz türbini tarafından yapılan iş artı (+), bir kompresör, pompa veya elektrikli karıştırıcı (mikser) tarafından tüketilen iş ise eksi, (-) işaretli olacaktır. Başka bir deyişle, bir işlem sırasında üretilen iş artı, tüketilen iş eksi alınacaktır. Bir dış kuvvetin sistemin hareket yönünde etki ederek yaptığı iş negatif, sistemin hareket yönüne ters etki eden bir kuvvete karşı yaptığı iş ise pozitiftir. İş ve ısı etkileşiminin yönü belirlenirken, giren, g ve çıkan, ç, şeklinde kısaltmalar daha uygun olur. Sisteme olan ısı geçişi, Q g, sistemden çevreye olan ısı geçişi Q ç ile gösterilir. İş gerektiren sistemlerde negatif iş yerine W g terimi daha mantıklıdır. Isı ve iş hal değişiminin nasıl geliştiğinin fonksiyonudur (Şekil.3.7). Bu tür fonksiyonlar, yola bağlı fonksiyonlar diye adlandırılır. Yola bağımlı fonksiyonların tam olmayan diferansiyelleri vardır. Değişimleri δ simgesi ile diferansiyel miktardaki ısı Q, iş W ile gösterilir. Diğer taraftan, özelikler nokta fonksiyonlarıdır ve değişimleri d ile gösterilen tam diferansiyelleri vardır (hacim, sıcaklık, iç enerji, entalpi, basınç, vs). Hacimde diferansiyel miktarda bir değişiklik dv ile gösterilir. 1 ve 2 halleri arasındaki toplam hacim değişimi aşağıdaki gibi gösterilir, Diğer yandan 1-2 hal değişimi sırasında yapılan toplam iş ise aşağıdaki gibi gösterilir; 4

5 Elektrik işi Elektrik işi, sistem sınırlarını geçen elektronlar tarafından yapılır. Bir elektriksel alanda bir telden geçen elektronlar, elektromotor kuvvetin etkisi altında hareket ederek bir iş yaparlar. I elektrik akımı (birim zamanda akan elektron miktarı), N Coulomb elektron, V potansiyel farkından geçtiğinde aşağıdaki kadar bir iş ve birim zamanda elektriksel iş (Güç) yapılır; R F F Şekil.3.8. Elektriksel gücün gösterimi. Şekil.3.9. Mekanik iş. Genellikle hem V ve hem de I zamana bağlı olarak değiştiğinden, sonsuz küçük dt zaman aralığında yapılan elektik işi aşağıdaki gibi belirlenir; Eğer dt zaman aralığında V ve I zamanla değişmiyorsa (3.14) eşitliği aşağıdaki gibi olur, Mekanik iş Mekanikte F sabit kuvvetinin etkide bulunduğu bir cisim, kuvvetin etkidiği yönde s uzunluğunda yer değiştiriyorsa yapılan iş aşağıdaki gibi gösterilir. Eğer kuvvet yol boyunca değişiyorsa, toplam iş, diferansiyel miktarlarda işin yol boyunca toplanması ile aşağıdaki gibi belirlenir, Sistem ile çevresi arasında bir iş etkileşminin olabilmesi için, sınırda etki eden bir kuvvetin olması ve sistem sınırının hareketli olması gerekir. Bir gazın vakuma karşı genleşmesi sırasında, harkete karşı gelen bir kuvvet olmadığı için iş yapılmamaktadır. Termodinamik olarak mekanik iş, sistem sınırının yer değiştirmesi veya sistemin bir bütün olarak hareket etmesi sonucu meydana gelir. 5

6 Hareketli sınır işi Uygulamalarda bir gazın piston silindir düzeneğinde genleşmesi veya sıkıştırılması prosesleri ile çok sık karşılaşılır. Bu işlem sırasında sınırın bir bölümü (pistonun iç yüzü) ileri geri yönlerde hareket eder. Bu işlem sırasında pistonun genişleme veya sıkıştırma sırasında yaptığı iş hareketli sınır işi veya sadece sınır işi diye adlandırılır (Şekil.3.9). Başlangıçta gazın basıncı P (mutlak basınç) ve pistonun kesit alanı A olmak üzere piston sanki - dengeli bir biçimde ds kadar hareket ederse hal değişimi sırasında yapılan diferansiyel iş aşağıdaki gibi yazılabilir; Hal değişimi sırasında, piston hareket ederken yapılan toplam sınır işi, ilk 1 ve son haller 2 arasında yapılan diferansiyel işlerin toplamıdır; Bu denklemde P mutlak basıncı gösterir ve her zaman pozitiftir. Ancak hacim değişimi dv genişleme sırasında pozitif, sıkıştırma sırasında ise negatif değer alır. Dolayısıyla sınır işi genişleme sırasında pozitif ve sıkıştırma işlemi sırasında ise negatif değerler alacaktır. Bazı durumlarda sistemin hacim değişimi yerine başlangıç ve son hallerdeki özgül hacimlerden faydalanarak yapılan pasınç işi aşağıdaki eşitlikle hesaplanabilir. Değişim yolu 1 W A = 10 kj W B = 8 kj W C = 8 kj da = PdV V 1 dv V 2 V 2 P V 1 V 2 V Şekil.3.9. Hareketli sınır işi gösterimi. Şekil Hal değişiminde yapılan iş izlenen yola bağlıdır. Şekil.3.9 da gösterildiği gibi yukarıda açıklanan sanki-dengeli genişleme işleminde diferansiyel alan da, diferansiyel iş PdV ye eşittir. 1-2 eğrisi altında kalan alan dferansiyel alanların toplanması ile elde edilir (Şekil.3.9). Buna göre, P-V diyagramında hal değişimi eğrisi altında kalan alan, sanki-dengeli bir genişleme veya sıkıştırma işlemi sırasında yapılan işe eşittir. Bir gaz 1 ===> 2 hal değişimini farklı yollardan yapabileceği için bu işlem sırasında yapılan işler de farklı olacaktır (Şekil.3.10). 6

7 Sabit hacimde bir hal değişimi sırasında yapılan sınır işi her zaman sıfırdır. Eğer iş hal değişimine bağımlı bir fonksiyon olmasaydı, otomobil motorları, güç santralleri gibi termodinamik çevrimi gerçekleştirerek çalışan sistemler üretilemezlerdi. Çevrimin bir bölümünde üretilen iş, çevrimin tamamlanması sırasında tüketilirdi. Bir çevrimin net iş üretebilmesi için genişleme sırasında sistem tarafından yapılan işin (A eğrisi altında kalan alan) sıkıştırma sırasında sistem üzerine yapılan işten (B eğrisi altında kalan alan) büyük olması gerekir (Şekil.3.11). İki eğri arasında kalan alan (taralı alan) net iş, W net, olarak hesaplanır. 2 B W net Şekil Bir çevrimde yapılan net iş. A V 2 V 1 1 Örnek.3.1. İçinde gaz bulunan bir piston silindir düzeneğine (Şekil.3.12) iki farklı yol (a ve b yolu) izlenerek P 1, V 1 ilk halinden P 2, V 2 son haline gelindiğinde yapılacak olan işlerin eşit olup olmadığını gösteriniz. a yolu b yolu Çözüm.3.1. (a) yolundan yapılan iş için, sabit hacimden sonra sabit basınç prosesi dikkate alınır. V 1 V 2 Şekil Örnek.3.1. (b) yolundan yapılan iş için, önce sabit basınç sonra sabit hacim prosesi dikkate alınır. Sonuç: olduğundan yapılan işler birbirinden farklıdır.. Örnek.3.2. İçerisinde başlangıçta 400 kpa basınç ve 150 o C sıcaklıkta 5 kg su buharı bulunan sürtünmesiz bir piston-silindir düzeneği ısıtılarak sıcaklığın 200 o C a kadar çıkması sağlanıyor. Pistonun serbest hareket edebildiğini ve kütlesinin sabit olduğunu kabul ederek su buharının yapmış olduğu işi hesaplayınız. 7

8 Çözüm.3.2. Açıkça belirtilmemiş olmakla birlikte, atmosfer basıncı ve pistonun kütlesi sabit olduğu ve piston serbest hareket edebildiği için hal değişimi sırasında silindir içindeki su buharının basıncı sabit kalmaktadır. Buna göre sabit basınçta sınır işi için uygun eşitlikler (3.18, 3.19) yazılarak işlem yapılır. 1 P o = 400 kpa 2 Alan = W b v 1 v 2 v, m 3 /kg Şekil Örnek.3.2 için sistem ve P-v diyagramı. Özgül hacimler kızgın su buharı tablosundan (Tablo.A-6) (400 kpa, 150 o C) diyagramdaki gibi okunur ve hesaplama yapılır... Örnek.3.3. İçerisinde başlangıçta 100 kpa basınç ve 80 o C sıcaklıkta 0.4 m 3 hava bulunan sürtünmesiz bir piston - silindir düzeneği sabit sıcaklıkta 0.1 m 3 oluncaya kadar sıkıştırılmaktadır. Bu işlem sırasında yapılan işi hesaplayınız. Çözüm.3.3. Sistemin görünümü Şekil.3.14 te P-V diyagramında verilmiştir. Verilen koşullarda hava ideal gaz gibi düşünülerek işlem yapılır. İdeal gaz için sabit sıcaklıkta aşağıdaki ifadeler yazılabilir; Bu basınç değeri (3.18) denkleminde yerine yazılırsa, Bulunan son ifadede sayısal değerler yerine yazılırsa, 8

9 P T o = 80 o C = St V, m 3 Şekil Örnek.3.3 için sistem ve P-V diyagramı. Sonucun sayısal değerinin negatif olması, sistem üzerinde iş yapıldığını gösterir, sıkıştırma işlemi proseslerinde yapılan iş her zaman negatifitr. Politropik Hal Değişimi Gerçek gazların genişleme ve sıkıştırma işlemlerinde, basınç ve hacim ilişkisi aşağıdaki denklemle verilir; Burada n ve C birer sabittir. Bu tür bir hal değişimi politropik bir hal değişimi (Şekil.3.15) olarak adlandırılır. İki farklı durum için, olmak üzere, bu durumda hareketli sınır işi aşağıdaki gibi olur, İdeal gazlar için Pv = mrt olduğundan için aşağıdaki eşitlik yazılabilir, n = 1 olması sabit sıcaklıkta (izotermal koşul) hal değişimidir. Sıcaklık sabit ise PV = mrt denkleminden, PV = sabit, yani PV = C ===> P = C/V, hareketli sınır işi formülünde yazılırsa, 9

10 P P 1 Gaz P 2 V 1 V 2 V, m 3 Şekil Poliprotik hal değişimi ve P-V diyagramında gösterimi. Şaft (Mil) İşi Mühendislik uygulamalarında çok sık karşılaşılan iş çeşitlerinden birisi de şaft (mil) işidir. Genellikle mile uygulanan burulma momenti ve buna bağlı olarak uygulanan kuvvet F sabittir. n milin devir sayısı olmak üzere, moment kolu r ye uygulanan F kuvveti ile burulma momenti, arasında, aşağıdaki ilişki yazılır; s uzunluğundaki bir mesafe için, Mil işi, Mile uygulanan güç, birim zamanda yapılan mil işidir ve aşağıdaki gibi tanımlanır, Mil işi sistem tarafından yapıldığı zaman pozitif, sistem üzerinde yapıldığı zaman negatif olur. Yay İşi Bir F kuvveti uygulandığı yayı dx diferansiyel büyüklüğü kadar uzattığı zaman yapılan iş aşağıdaki gibi hesaplanır, Doğrusal olarak esneyen yaylar için yer değiştirme miktarı x uygulanan F kuvveti ile doğru orantılıdır. k yay katsayısı olarak bilinen bir sabit ve birimi, kn/m olmak üzere, x = 0 ===> F = 0 olur ve yay işi aşağıdaki gibi hesaplanır, 10

11 Şekil Yay işi ve örnek gösterim Termodinamiğin Birinci Yasası Termodinamiğin birinci yasası veya diğer adıyla enerjinin korunumu ilkesi enerjinin değişik biçimleri arasındaki ilişkileri ve genel olarak enerji etkileşimlerini incelemek bakımından sağlam bir temel oluşturur. Termodinamiğin birinci yasası deneysel gözlem ve verilere dayanarak enerjinin var veya yok edilemeyeceğini ancak şekil değiştirebileceğini ifade eder. Ancak birinci yasayı matematiksel olarak ıspatlamak olanak dahilinde olmamakla birlikte doğadaki hal değişimlerinin tamamı birinci yasaya uymaktadır. Değişik adiyabatik hal değişimleriyle belirli 1 halinden belirli 2 haline geçen bir sistem için hal değişimleri sırasında ısı geçişi olmadığı halde bu hal değişimleri sırasında sistemle çevre arasında değişik iş etkileşimleri olabilir. Deneysel çalışmalara göre, kapalı bir sistemin belirli iki hali arasında gerçekleşebilecek tüm adiyabatik hal değişimleri sırasında yapılan net iş, sisteme veya hal değişimlerine bağlı olmaksızın aynıdır. Birinci yasanın en önemli sonuçlarından biri, toplam enerji, E adı verilen özeliğin varlığının ortaya konması ve tanımının yapılmasıdır. Birinci yasa sistemin verilen bir haldeki toplam enerjisinin değeriyle ilgili değildir. Birinci yasa, sadece adiyabatik bir hal değişimi sırasında sistemin toplam enerji değişiminin net işe eşit olduğunu belirtir. Deneysel veriler ve günlük yaşamdan örnekler ele alındığında (bir patatesin fırında pişirilmesi, bir çaydanlıkta suyun kaynatılması, vs.) Bir sistemle çevresi arasında iş etkileşimlerinin olmadığı durumlarda, kapalı sistemin bir değişimi sırasındaki toplam enerji değişimi, sistemle çevresi arasındaki net ısı geçişine eşit olmaktadır. Benzer şekilde, kapalı bir sistemde adiyabatik hal değişimi sırasında yapılan iş, sistemin toplam enerji değişimine eşittir. Kapalı sistem olarak tanımlanan, belirli sınırlar içinde bulunan sabit bir kütle için termodinamiğin birinci yasası veya enerjinin korunumu ilkesi aşağıdaki gibi ifade edilebilir, 11

12 Burada, Q: Sistem sınırlarından olan net ısı geçişi; W: Değişik biçimleri kapsayan net iş; E: Sistemdeki toplam enerji değişimii; Sistemin toplam enerjisi E, iç enerji U, kinetik enerji KE ve potansiyel enerjilerin PE toplamıdır. Bu nedenle bir hal değişimi sırasında sistemin toplam enerjisinin değişimi, iç enerji, kinetik enerji ve potansiyel enerjisindeki değişimlerin bir toplamı olarak ifade edilebilir, Uygulamada hareketsiz kapalı sistemlerin kinetik ve potansiyel enerjileri ihmal edilebilir. Bazı durumlarda iş terimi W diğer ve W s olarak iki kısımda ele almak kolaylık sağlar. Burada W diğer, sınır işi dışında yapılan tüm işlerin toplamıdır. Bu durumda KE ve PE değişimlerinin de ihmal edilmesi durumunda birinci yasa aşağıdaki gibi yazılır; Kapalı sistemler için birinci yasa değişik şekillerde yazılabilir. Birim kütle için; Birim zaman için; Diferansiyel form için; Çevrim oluşturan bir hal değişimi için ilk ve son haller aynı olduğundan Buna göre bir çevrim için birinci yasa, olur. olur. P Şekil Bir çevrim için toplam enerji değişimi sıfırdır.. V 12

13 Örnek.3.4. Sabit hacimli kapalı bir kapta bulunan sıcak bir sıvı soğutulurken, bir taraftan da karıştırılmaktadır (Şekil.3.18). Sıvının başlangıçtaki toplam iç enerjisi 800 kj dür. Soğutma işlemi sırasında çevreye 500 kj kadarlık bir ısı geçişi olmakta ve sıvıyı karıştırmak için 100 kj kadar bir iş yapılmaktadır. Sıvının son haldeki toplam iç enerjisini hesaplayınız. Çözüm.3.4. Şekil.3.18 de gösterilen sistemin sınırlarından kütle geçişi olmadığından kapalı sistem veya kontrol kütlesi olarak düşünülür. Sistem hareketsiz olduğundan potansiyel ve kinetik enerji değişimleri de olmayacaktır. Enerjinin korunumu ilkesi uygulanarak ikinci durumdaki iç enerji hesaplanır. Isı geçişi sistemden çevreye olduğu için negatif ve iş sistem üzerinde dışarıdan yapıldığı için negatif olacaktır. Buna göre, olur. U 1 = 800 kj U 2 =? Sıvı Q çıkış = 500 kj W pw, g = 100 kj Şekil Örnek.3.4 için şematik gösterim... Örnek.3.5. Hacmi 0.1 m 3 olan rijit kapalı bir kapta başlangıçta 500 kpa basınç ve 200 o C sıcaklıkta su buharı bulunmaktadır. Buhar sıcaklığı 50 o C sıcaklığa düşünceye kadar soğutulduğunda, işlem sırasında gerçekleşen ısı geçişini ve son basıncı hesaplayınız. Çözüm.3.5. Problemin çözümü için öncelikle sistemin fiziksel görünümünü veren bir şematik çizim yapılmalı ve çözümlenecek sistem sınırları çizimde kesikli çizgilerle belirtilmelidir. Aynı çizimde problem verileri gösterilebilir (Şekil.3.19). Şekil Örnek.3.5. İncelenen problemde, ilk haldeki basınç ve sıcaklık verilmiş ve bu koşullarda sistemin kızgın buhar olduğu belirlenmiştir. Başlangıç halindeki özgül enerji ve özgül hacim değerleri ilgili tablodan (Tablo.A-6) bulunur. Son halde, sıcaklık 50 o C ve bu sıcaklıkta sistemin özgül hacmi, doymuş sıvının özgül hacmi ile doygun buharın özgül hacmi arasında (v f < v 2 < v g ) olduğundan sistem ıslak buhar bölgesindedir. Buna göre ; Başlangıç hali: P 1 = 500 kpa, ===>v 1 = m 3 /kg T 1 = 200 o C u 1 = kj/kg (Tablo.A-6) 13

14 Son hali: v 2 = v 1 = m 3 /kg (sabit hacimli kap, Tablo.A-4 den) T 2 = 50 o C ===> v f = m 3 /kg; v g = m 3 /kg P 2 = P doy, 50 o C = kpa; u f = kj/kg, u g = kj/kg... Örnek m 3 sabit hacmli kapalı bir kapta başlangıçta 0.80 MPa basınç ve 60 o C sıcaklıkta soğutucu akışkan-12 (Freon-12) bulunmaktadır. Soğutucu akışkan, sıcaklığı -5 o C ye düşünceye kadar soğutulmaktadır. Sistemde kullanılan akışkanın kütlesini, kaptaki son basıncı ve işlem sırasında soğutucu akışkanın verdiği ısı miktarını hesaplayınız. Çözüm.3.6. Kap içindeki soğutucu akışkan sistem olarak alınır ve sistemin hal değişimi T-v diyagramında (Şekil.3.20) gösterilerek çözüm basitleştirilebilir. Hal değişimi sırasında sisteme kütle giriş çıkışı olmadığından kapalı sistem gibi düşünülür. Akışkanın kütlesinin hesaplanabilmesi için ilk haldeki özgül hacminin bilinmesi gerekir. Bunun için ilgili tablo kullanılır. Başlangıç hali: P 1 = 0.80 MPa, ===>v 1 = m 3 /kg T 1 = 60 o C u 1 = kj/kg Şekil Örnek.3.6. Son halde, sıcaklık -5 o C ve bu sıcaklıkta sistemin özgül hacmi, doymuş sıvının özgül hacmi ile doygun buharın özgül hacmi arasında (v f < v 2 < v g ) olduğundan sistem ıslak buhar bölgesindedir. Buna göre ilgili tablodan aşağıdaki doygunluk basıncı okunur; Son hali: v 2 = v 1 = m 3 /kg (sabit hacimli kap) P 2 = P doy, -5 C = MPa 14

15 T 2 = -5 o C ===> v f = m 3 /kg; v g = m 3 /kg u f = kj/kg, u g = kj/kg Sistem hareketsiz ve sabit hacimli olduğundan, her hangi bir iş etkileşiminin olmadığı kabul edilerek potansiyel ve kinetik enerji değişimleri ihmal edilir. Buna göre birinci yasanın matematiksel ifadesi düzenlenirse, İkinci durumdaki özgül iç enerji değerinin hesaplanabilmesi için, son haldeki kuruluk derecesinin (x) bilinmesi gerekir. Soğuma sırasında akışkanın kaybettiği ısı,... Örnek.3.7. Sabit hacimli bir kap metal bir perde ile eşit hacimli iki bölmeye ayrılmıştır. Başlangıçta bölmelerden birinde 200 kpa basınç ve 25 o C sıcaklıkta 5 kg su bulunmakta diğer bölme ise vakumda tutulmaktadır. Daha sonra aradaki bölme kaldırılarak suyun kabın tüm hacmini kaplaması ve çevreye olan ısı alış-verişi sonunda suyun tekrar aynı sıcaklığa gelmesi sağlanmaktadır. Buna göre, kabın toplam hacmini, son haldeki basıncı ve bu hal değişimi sırasındaki ısı geçişini hesaplayınız. Çözüm.3.7. Sistem durgun olduğundan KE ve PE değişimleri ihmal edilir, ısı geçişinin yönü sisteme doğru kabul edilir, tankın hacmi sabit olduğundan sınır işi olmayacaktır, suyun sıcaklığı hal değişimi boyunca sabit kalacaktır. Kap içindeki su ve boşaltılmış hacim sistem olarak alınır, kütle geçişi olmadığından sistem kapalı bir sistem olarak ele alınır, sistemde herhangi bir iş etkileşimi yoktur. Başlangıç hali, sıkıştırılmış sıvı olduğu belirlenmiştir. Sıkıştırılmış sıvı özellikleri aynı sıcaklıktaki doygun sıvı özelliklerine eşit alınabilir; v 1 = v f, 25 o C = m 3 /kg m 3 /kg, u 1 = u f, 25 o C = kj/kg Buna göre suyun başlangıçtaki hacmi, Kabın toplam hacmi bu değerin iki katı kadar olur: Son halde suyun özgül hacmi, 15

16 Sistemin kütlesi sabit olduğu halde hacmin 2 katına çıkmış olması özgül hacimde de aynı oranda artış sağlamıştır. olduğundan son halde su doygun sıvı-buhar karışımı halindedir ve sistemin basıncı doygunluk sıcaklığındaki (25 o C) basınçtır; (Tablo.A-4) Yukarıda açıklanan kabuller sonucunda sistem için aşağıdaki enerji dengesi yazılabilir; Son haldeki özgül iç enerji için kuruluk derecesinin bilinmesi gerekir. Sistem sınırları P, kpa Boşaltılmış bölüm Perde Şekil Örnek.3.7 gösterimi Özgül ısılar, (C p, C v ) Maddelerin enerji depolama yeteneğinin bir ölçüsü olan özgül ısı (C), bir maddenin birim kütlesinin sıcaklığını bir derece artırmak için gerekli enerjidir. Sabit hacimdeki özgül ısı C v ve sabit basınçta özgül ısı C p şeklinde gösterilir. Sabit hacimdeki özgül ısı,cv, maddenin birim kütlesinin sıcaklığını sabit hacimde bir derece yükseltmek için gerekli enerji diye tanımlanır. Aynı işlemi sabit basınçta yapmak için gerekli enerji de sabit basınçta özgül ısıdır, C p. Sistem sabit basınçta genişlerken, yaptığı iş için fazladan bir miktar enerji gerekli olduğundan, sabit basınçtaki özgül ısı, sabit hacimdeki özgül ısıdan her zaman büyüktür (C p > C v ). Sabit hacimde hal değişiminin olduğu hareketsiz kapalı bir sistem için sınır işi sıfır olur ve birinci yasanın diferansiyel hali aşağıdaki gibi yazılır; 16

17 Bu eşitliğin sol tarafı, sisteme iş veya ısı olarak giren enerji miktarıdır ve C v nin tanımına göre bu enerji C v dt ye eşit olacaktır. Sabit hacimdeki özgül ısı, C v, Benzer şekilde, sabit basınçlı bir sistemde, birim kütle için sınır işi, w s, denkleme eklenir. Bu durumda sabit basınçta özgül ısı, C p, aşağıdaki gibi hesaplanır; (3.36) ve (3.37) numaralı eşitliklerde nin iç enerji ile, nin ise entalpi ile ilişkili olduğu görülmektedir. Buna göre, bir maddenin sıcaklığı sabit hacimde bir derece değişirken özgül iç enerjisinde meydana gelen değişim ; bir maddenin sıcaklığı sabit basınçta bir derece değişirken özgül entalpisinde meydana gelen değişim şeklinde daha anlamlı bir şekilde tanımlanabilir. (3.36) ve (3.37) denkelemlerine göre, C p ve C v değerlerinin özelik bağıntıları olduğu ve bu büyüklüklerin hal değişiminin türünden bağımsız olduğunu göstermektedir. Bir maddenin hem içi enerjisi ve hem de entalpisi değişik biçimlerde enerji geçişi ile değişebilir. Isı geçişinde olduğu gibi, enerji geçişinin yalnızca ısı geçişiyle olduğunu hatta enerjinin ısı olarak depolandığını çağrıştıran özgül ısı yerine özgül enerji kavramının kullanılması daha doğru olacaktır. İdeal Gazların İç Enerji, Entalpi ve Özgül Isıları İdeal gaz; sıcaklık, basınç ve özgül hacmi arasındaki ilişki aşağıdaki gibi olan gaz olarak tanımlanır; İdeal gazın iç enerjisi sadece sıcaklığın fonksiyonudur; u = u(t). İdeal gaz hal denklemi ve entalpinin tanımını kullanarak; R, bir sabit, u = u(t) dikkate alınarak aşağıdaki entalpi eşitliği yazılabilir; İdeal gaz için u ve h sadece sıcaklığın bir fonksiyonu oldukları için C v ve C p de sadece sıcaklığa bağlıdır. Bu nedenle verilen bir sıcaklıkta ideal gazın u, h, C v ve C p değerleri basınç ve hacim ne olursa olsun sabit kalacaktır. İdeal gazlar için, (3.36) ve (3.37) denklemlerinin kısmi türevli olarak yazılmasına gerek yoktur ve iç enerji ile entalpi için aşağıdaki eşitlikler yazılır; Bir hal değişiminde ideal gazın iç enerji ve entalpi değişimleri bu iki denklemin integrali alınarak aşağıdaki gibi hesaplanır; 17

18 kj/kmol K Düşük basınç koşullarında, tüm gerçek gazlar ideal gaz davranışına yaklaşır ve özgül ısıları sadece sıcaklığın fonksiyonudur. Gerçek gazların düşük basınçlarda özgül ısıları ideal gaz özgül ısısı diye adlandırılır ve C vo, C po şeklinde gösterilir. İdeal gazların iç enerji ve entalpi değişimlerini hesaplamak için başlıca üç yol izlenir, 1. Tablolarla verilmiş olan u ve h değerleri kullanılabilir. 2. Cp ve Cv değerlerini sıcaklığın fonksiyonu olarak veren bağıntılar (Tablo.A-2c) kullanılarak integraller alınabilir. 3. Ortalama özgül ısı değerleri kullanılabilir ve bu yötem kolayca uygulanabilir (sıcaklık aralığı çok yüksek değil) Sıcaklık, K Şekil Bazı gazların özgül ısıları Cp ve Cv arasındaki ilişkiyi elde etmek için, h = u + RT eşitliğinin türevi alınarak elde edilebilir. Özgül ısılar bazen molar olarak tanımlanabilir. Bu durumda yukarıdaki eşitlikte bulunan R değeri evrensel gaz sabiti R ü ile değiştirilmelidir. Bir diğer önemli özelik ise ideal gazların özgül ısıları oranının, k, tanımlanmasıdır. Tek atomlu gazlar için k = hava ve iki atomlu gazların çoğu için ise k 1.4 değerlerini alır. Katı ve Sıvıların İç Enerji, Entalpi ve Özgül Isıları Katı ve sıvı maddelerin özgül hacimleri, hal değişimleri sırasında yaklaşık olarak sabit kalır ve bu yüzden katı ve sıvılar sıkıştırılamayan madde olarak bilinirler. Sıkıştırılamayan maddeler için sabit basınç ve sabit hacim özgül ısıları birbirine eşittir. 18

19 İdeal gazlardaki gibi sıkıştırılamayan maddelerin özgül ısıları da yalnızca sıcaklığın fonksiyonudur. Buna göre, veya, Sıkıştırılamayan maddeler için bir hal değişimi sırasındaki entalpi değişimi entalpinin tanımından bulunabilir. veya Sabit sıcaklıktaki bir hal değişimi sırasında, sıkıştırılamayan bir maddenin iç enerji değişimi sıfır olduğundan (3.52) denkleminden entalpi değişimi kadar olur.... Örnek cm çapında uzun silindirik alüminyum çubuklar ( = 2700 kg/m 3, C p = kj/kgk) 20 o C sıcaklıktan ortalama sıcaklığı 400 o C olan uzun bir fırından 8 m/dk hızla geçmektedir. Buna göre, çubuklara olan ısı geçişini hesaplayınız. Çözüm.3.8. Çubukların ısıl özelikleri sabittir, KE ve PE değişimleri ihmal edilir, çubukların uçları fırın çıkışında üniform sıcaklıktadır. 8 m olan çubukların boyu sistem olarak alınır ve enerji dengesi aşağıdaki gibi yazılır; 8 m lik parçaya olan ısı transferi belrlenen sıcaklığa ulaşmış halde olacağından, Bu ısı miktarı, 8 m uzunluğundaki herbir parça için dakika başına başına aktarılır. 19

20 3.5. Kontrol Hacimleri Çoğu mühendislik uygulamasında, sistem sınırlarından kütle giriş-çıkışı olduğundan kontrol hacmi, KH kavramına gereksinim duyulur ve bu sistemlerin açık sistem (kontrol hacmi) olarak değerlendirilmesi gerekir (Şekil.3.23). Kontrol hacmi seçiminde dikkat edilmesi gereken nokta, akışın olduğu bölge sınırlarının doğru tespit edilmesidir. Kontrol hacminin sınırları kontrol yüzeyi olarak adlandırılır. Kontrol yüzeyleri çoğunlukla sabit olduğu halde bazen hareketli kontrol yüzeyleri ile de karşılaşılabilir (Şekil.3.23). Kontrol hacmi çözümlemesi kullanılarak; çok sayıda ve değişik termodinamik problemleri, ilgili denklemler en genel haller için türetilerek ve özel durumlar için bu denklemler basitleştirilerek çözümlemeler yapılır. Bu ders kapsamında sürekli ve düzgün terimleri çok sık kullanılır ve bu kavramların iyi anlaşılması gerekir. Giren kütle Kontrol hacmi (KH) Çıkan kütle Sanal sınır KH Lüle Gerçek sınır Hareketli sınır KH Şekil Kontrol hacmine kütle giriş-çıkışı ve sınırları Sürekli Akışlı Açık Sistemler Mühendislikte kullanılan türbin, kompresör, lüle vb. birçok makinenin çalıştıkları sürelerde giriş, çıkış ve diğer çalışma koşulları değişmediği için sürekli akış makineleri olarak tanımlanırlar. Bu makinelerle ilgili yapılacak termodinamik çözümleme sürekli akışlı açık sistem analizi ile yapılabilir. Bu sistemde, akışkanın kontrol hacminden sürekli bir akışı vardır ve akışkanın özelikleri kontrol hacmi içinde bir noktadan diğer bir noktaya farklılıklar gösterdiği halde verilen bir noktada zamanla değişmez (sürekli; zamanla değişmeyen). Kontrol hacmi içinde, kapasite veya şiddet özeliklerinden hiçbiri zamanla değişmez. Dolayısıyla kontrol hacminin kütlesi, m, hacmi, V, ve toplam enerjisi, E, sürekli akışlı açık sistemde sabittir. Kontrol hacmine giren toplam kütle ve enerji, çıkan toplam kütle ve enerjiye eşit olmak zorundadır. Kontrol hacminin sınırlarındaki hiçbir özelik zamanla değişmediğinden, giren ve çıkan akışkanın özelikleri zamana göre sabittir. Kontrol hacminin herhangi bir noktasında tüm özelikler zamana göre değişmediğinden sürekli akışlı açık sistemin herhangi bir giriş veya çıkış kesitindeki kütle debisi de sabittir. 20

21 Giren kütle Çıkan kütle Şekil Sürekli akış ve kütlenin korunumu. Sürekli akışlı açık sistemin çevresiyle ısı ve iş etkileşimleri zamanla değişmediğinden, sistemin çevresiyle birim zamanda yaptığı iş veya ısı alışverişi sabittir. Pistonlu motorlar ve kompresörler gibi çevrim gerçekleştirerek çalışan bazı makineler bu koşulları sağlamazlar ve sürekli sistem olarak değerlendirilemezler, bunlar için bazı kabullerle çözümlemeler yapılır. Kütlenin Korunumu İlkesi Kütlenin korunumu doğanın en temel ilkelerinden biridir. Kütle de enerji korunum yasalarına uyar; başka bir deyişle var veya yok edilemez. Kapalı sistemlerde, sistemin kütlesi hal değişimi sırasında tanım gereği sabit kaldığı için kütlenin korunum ilkesi üstü kapalı biçimde uygulanmaktadır. Öte yandan, kontrol hacmi sınırlarından kütle geçişi olduğu için, kontrol hacmine giren ve çıkan kütlenin hesabını yapmak gerekir. Bir kontrol hacmi için kütlenin korunumu ilkesi, bir kontrol hacmine ve t zaman aralığında olan kütle geçişi, aynı zaman aralığında kontrol hacmindeki toplam kütle miktarındaki değişime eşittir şeklinde ifade edilir ve kontrol hacmi (KH) veya açık sistem için kütlenin korunumu ilkesi aşağıdaki gibi yazılır, Burada g, ç ve KH indisleri sırasıyla giren, çıkan ve kontrol hacmini göstermektedir. Kütlenin korunumu ilkesi, birim zamanda olan geçiş ve değişimleri gözönüne alarak da ifade edilebilir. Kütlenin korunumu denklemi, akışkanlar mekaniğinde genellikle süreklilik denklemi olarak bilinir. Kütlesel Debi ve Hacimsel Debi, Bir kesitten birim zamanda akan kütle miktarına kütlesel debi denir ve ile gösterilir. Bir sıvı veya gaz akışkan kontrol hacmine boru veya kanal vasıtası ile girdiği için bu akış sırasındaki akışkanın kütlesel debisi boru veya kanalın kesit alanı, A, akışkanın yoğunluğu ρ ve hızı, V ile orantılıdır. Diferansiyel bir kesit alanı da dan geçen kütlesel debi, aşağıdaki gibi yazılır; 21

22 V n akışkanın da ya dik yöndeki hızıdır. Bir boru veya kanalın tüm kesitinden geçen kütlesel debi bu eşitliğin integrali alınarak bulunabilir. Uygulamada bir akışkanın boru veya kanal içindeki akışı bir boyutlu akış (özelikler akış yönünde değişir) olarak düşünülebilir. Bunun sonucunda akışa dik bir kesit alanında tüm özelikler düzgün yayılı olduğu kabul edilebilir. Akışkanın hızı, akışkan tabakaları arasındaki sürtünmeden dolayı, boru cidarında (duvarın akışkan yüzeyi) sıfır, boru ortasında ise en büyük değerini alır. V ort kesit alanına dik ortalama akışkan hızı olmak üzere kütlesel debi aşağıdaki gibi hesaplanır; Bir kesitten birim zamanda geçen akışkan hacmine hacimsel debi, ifade edilir; denir ve aşağıdaki gibi Kütlesel debi ile hacimsel debi aşağıdaki gibi ilişkilidir. Bu eşitlikte v terimi özgül hacim olarak tanımlanır. Lüle, türbin, kompresör, pompa gibi birçok mühendislik uygulamasında yalnızca bir akış olduğundan (bir giriş ve bir çıkş), bu sistemlerde giren kütle çıkan kütleye eşit olmalıdır. Buna göre 1 giriş halini, 2 çıkış halini göstermek üzere, süreklilik denklemi aşağıdaki gibi yazılır. Sürekli akış (tek akış) Akışkanın sıkıştırılamaz olduğu (sıvılar) durumlarda, her iki taraftaki yoğunluklar eşit olacağından aşağıdaki hacimsel debi eşitliği yazılır; Enerjinin Korunumu İlkesi Kapalı bir sistemin toplam enerjisi, çevresiyle sadece iş ve ısı etkileşimi sonucu değişebilir. Fakat, açık sistemin veya kontrol hacminin enerjisi yukarıda belirtilenlere ek olarak, kütle girişçıkışı ile de değişebilir (Şekil.3.25). Dolayısıyla, kapalı bir sistemin hal değişimi sırasındaki toplam enerji değişimi, sistem sınırlarında gerçekleşen net ısı ve iş geçişine eşittir. Bu ilke matematiksel olarak aşağıdaki gibi ifade edilebilir; Giren kütlenin bir enerjisi olduğu için kontrol hacmine kütle girişi sırasında kontrol hacminin enerjisi artar, kontrol hacminden kütle çıktığı zaman kontrol hacminin enerjisi azalır. 22

23 Kapalı sistem W Q Giren kütle Kontrol hacmi W Q Çıkan kütle Şekil Kapalı ve açık sistemlerde (KH) enerji geçişi. Genel olarak bir kontrol hacmi için enerjinin korunumu ilkesi aşağıdaki gibi yazılabilir; Kontrol hacmine giren veya çıkan kütle olmadığında (3.64) denkleminde kütle giriş ve çıkışı ile ilgili enerji terimleri sıfır olacak ve sistem kapalı sistem gibi davranacaktır. Kontrol hacmi de kapalı bir sistem gibi aynı anda birçok iş etkileşiminde bulunabilir (mil işi, elektrik işi, vs). Akışkanın kontrol hacmine girmesi veya kontrol haminden çıkması için gerekli olan iş, akış işi veya akış enerjisi olarak tanımlanır. Akış işini matematiksel olarak ifade edebilmek için akışkan hacmi V olan Şekil.3.26 da gösterilen kontrol hacmi üzerinde çalışılır. Bu sistemde V hacmindeki akışkan arkasından gelen akışkan tarafından kontrol hacmine girmeye zorlanmaktadır (F kuvveti) ve itme bir piston sistemini andırmaktadır. Akışkanın basıncı P ve akışkan parçasının kesit alanı A olmak üzere aşağıdaki eşitlikler yazılabilir; Şekil KH de akış işi. Akışkan parçasının tamamını kontrol hacminden içeri itmek için sanal piston L kadar yol alacaktır. Buna göre, akışkan parçasını sınırdan içeri itmek için yapılması gereken akış işi, W akış aşağıdaki gibi hesaplanır. Birim kütle için bu ifadenin her iki tarafı da akışkan kütlesine bölünür. 23

24 Akışkanın Toplam Enerjisi Akış olmayan ortamda (kontrol kütlesi) toplam enerji (iç enerji, kinetik enerji ve potansiyel enerji), birim kütle için aşağıdaki gibi yazılabilir; Bir kontrol hacmine giren ve çıkan akışkan, fazladan bir enerjiye, akış enerjisine (Pv) sahip olduğundan, akış olan bir ortamda, akışkanın birim kütlesinin toplam enerjisi ( ) aşağıdaki gibi yazılabilir; Akış halindeki m kütlesindeki akışkanın toplam enerjisi m dir. Buna göre (3.70a) denklemi aşağıdaki gibi yazılabilir; Akışkan kontrol hacminden geçerken kinetik ve potansiyel enerjilerindeki değişim ihmal ihmal edilebilir ve aşağıdaki düzenleme yapılı; Böylece, bir akış sisteminde, akışkan kütlesinin kontrol hacmine giriş ve çıkışı sırasında yapılan işle ilgili enerji entalpi içinde değerlendirilmektedir. Bu nedenle kontrol hacminin enerji denklemlerinde yer alan iş terimi, W, sınır işi, mil işi, elektrik işi gibi işleri kapsayacak ancak akış işini kapsamayacaktır. Kütlenin Korunumu Sürekli akışlı açık sistemlerde, kontrol hacmi içindeki toplam kütle zamanla değişmez (m KH = st) Bu sistemlerde birim zaman süresince sisteme giren veya çıkan kütleden çok, birim zamanda akan kütle veya kütlesel debi önem kazanır. Birçok giriş ve çıkışı olan genel bir sürekli akışlı açık sistem için kütlenin korunumu ilkesi aşağıdaki gibi yazılır; Giriş (1) ve çıkış (2) ile simgelenirse,, yoğunluk, kg/m 3, v özgül hacim, m 3 /kg, V hız m/s ve A alan, m 2, olmak üzere; 24

25 Özgül hacim (v, ) cinsinden, Hacim korunumlu olmadığından, sürekli akışlı açık sistemlerde giriş ve çıkış akımlarındaki hacimsel debiler farklı olabilir. Enerjinin Korunumu Sürekli akışlı açık sitemlerde, kontrol hacminin toplam enerjisi sabit olduğundan (ΔE KH = 0), bu sistemlerde kontrol hacmine ısı, iş veya kütle akışı ile giren enerji, çıkıştaki enerjiye eşit olmak zorundadır. Sürekli akışlı açık sistem için termodinamiğin birinci yasası veya enerjinin korunumu ilkesi aşağıdaki gibi yazılabilir; Akışkanın birim kütlesinin toplam enerjisi, olduğundan; Bir girişli ve bir çıkışlı (tek akışlı) açık sistemler için girişler ve çıkışlar üzerinde yapılan toplama atılabilir. Giriş ve çıkış halleri sırasıyla 1 ve 2 indisleriyle gösterilebilir. Kütlesel debinin değişmediği göz önüne alınırsa bir girişli ve bir çıkışlı sürekli akışlı açık sistem için enerjinin korunumu denklemi aşağıdaki gibi yazılabilir; Bu denklemler kütlesel debi edilebilir; ile bölünerek termodinamiğin birinci yasası birim kütle için ifade 25

26 Mühendislik sistemlerinin birçoğu, aynı giriş ve çıkış koşullarında üzun süreli çalıştıkları için, örneğin güç sanralinde türbin, kompresör, ısı değiştirici, pompa gibi elemanlar, bu sistemler sürekli akışlı açık sistem olarak çözümlenebilir. Lüleler, akışın hızını arttırmak amacıyla kullanılan mekanik sistemler olarak tanımlanır. Yayıcılar, akışın basıncını arttırmak için kullanılırlar. Akışkanın basıncı, hızı azaltılarak artırılabilir. Bir lüle veya yayıcıdan geçen akışkanın ısı alış-verişi (adiyabatik) ve iş terimi sıfır kabul edilir. Aynı şekilde bu sistemlerde, potansiyel enerji değişimi de sıfır kabul edilir. Ancak lüle ve yayıcılarda çok yüksek hızlar mevcut olduğundan, akışın termodinamik çözümlemesi yapılırken kinetik enerji terimleri hesaba katılmalıdır. Türbinlerde, akışkan türbinden geçerken mil üzerine yerleştirilmiş kanatçıklara karşı iş yapar ve bu şekilde mil dönmek suretiyle türbin iş yapar. Türbin işi akışkan tarafından yapıldığı için pozitiftir. Kompresör, pompa ve fanlar, akışkanın basıncını arttırmak için kullanılırlar. Bu makinelere dönen bir mil yardımıyla dışarıdan bir güç verilir ve kompresörlerde akışkan üzerinde iş yapıldığından, iş terimi negatiftir. Bu makinelerde, ısı geçişi, eğer kompresörlerde olduğu gibi bir soğutma sistemi yoksa ihmal edilebilir, ancak bu sistemlerin tümünde dönen bir mil olduğundan iş terimi ihmal edilemez. türbinler için, üretilen gücü, pompa, fan ve kompresörler için ise sisteme dışarıdan sağlanan gücü gösterir. Bu makinalarda geçen akışkanın potansiyel enerji değişimi ihmal edilebilir. Türbinde yüksek hızlardan dolayı akışkanın kinetik enerjisinde önemli değişiklikler olabildiği halde entalpi değişimlerine göre oldukça düşük kalmakta ve ihmal edilebilir. Kısılma vanaları, akış kesitini azaltarak akışkanın basıncını azaltırlar, vana ve musluklar, kılcal borular ve gözenekli tapalar gibi mekanizmalar bu ekipmanlara örnek olarak verilebilir. Türbinlerden farklı olarak basınç düşüşü sırasında herhangi bir iş yapılmaz ve akışkanın basıncı düşerken genellikle sıcaklığında da bir düşme görülür ve akış adiyabatik olarak kabul edilebilir. Kısılma vanalarında potansiyel ve kinetik enerji değişimleri de ihmal edilebilir ve birinci yasa aşağıdaki gibi düzenlenir. Ayrıca bu sonuçla, kısılma vanaları sabit entalpili sistemler olarak olarak bilinir. Mühendislik uygulamalarından önemli bir uygulama da birden fazla akışın karıştırıldığı karışma odalarıdır. Karışma odaları için kütlenin korunumu ilkesi, giren akışların kütlesel debilerinin toplamının çıkan akışın kütlesel debilerine eşit olmasını gerektirir. Karışma odaları genellikle iyi yalıtılmış (Q = 0) ve iş söz konusu değildir (W = 0). Akışın kinetik ve potansiyel enerji değişimleri de genellikle ihmal edilir. Böylece enerjinin korunumu kütlenin korunumuna benzer şekilde sağlanır. İki akışın karışmadan ısı alış-verişi yaptığı sistemler ısı değiştirici olarak bilinir. Bunlar, içiçe borulu veya gövde boru türü ısı değiştiriler en çok bilinen türleridir. Sürekli akış koşullarında, ısı değiştiriciden geçen her iki akışın kütlesel debileri ayrı ayrı sabittir. Isı değiştiricilerde iş etkileşimi yoktur ve her iki akım için de kinetik ve potansiyel enerji değişimleri ihmal edilir. Bir boru veya kanaldaki akış genellikle sürekli akış koşullarını sağladığı için, bu sistemler sürekli akışlı açık sistem olarak değerlendirilirl. Bu sistemlerde çoğunlukla sistem ile çevresi arasında bir ısı geçişi gerçekleşir. Kontrol hacmi içinde bir ısıtma elemanı, fan veya pompa bulunduğunda iş etkileşimi ihmal edilemez, aksi halde ihmal edilebilir. Bu sistemlerde (sabit kesitli) akış hızları genellikle düşük olduğundan kinetik enerji değişimleri ihmal edilebilir, ancak akışkanın yüksekliği önemli ölçüde değişebildiği için potansiyel enerji değişimleri ihmal edilemez. 26

27 ÇÖZÜMLÜ ÖRNEKLER-3 (Ç.Ö.-3) Ç.Ö.-3/1. Sürtünmesiz bir piston-silindir düzeneğinde başlangıçta 100 kpa basınç ve 300 K sıcaklıkta 2 kg azot gazı bulunmaktadır. Azot gazı daha sonra PV 1.4 = sabit, olacak şekilde sıcaklığı 360 K oluncaya kadar sıkıştırılmaktadır. Bu hal değişimi sırasında yapılan işi hesaplayınız. Çözüm.3/1. Hal değişiminin sanki-dengeli ve azot gazının ideal gaz olduğu kabul edilerek çözüm yapılabilir. Denklem (3.21) kullanılarak çözüme başlayabiliriz; İdeal gazlar için Pv = mrt olduğundan aşağıdaki eşitlik yazılabilir, Sınır işinin negatif işaretli olması dışarıdan sistem üzerine iş yapıldığını gösterir. Şekil ÇÖ.3.1. P-V diyagramı. Şekil ÇÖ.3.2. P-V diyagramı... Ç.Ö.-3/2. Bir gazın hal denklemi, şeklinde verilmektedir. Burada ve P, kpa olarak basıncı göstermektedir. 0.5 kmol gaz 300 K sabit sıcaklıkta sanki-dengeli bir hal değişimi ile 2 m 3 ten 4 m 3 e genleştirilmektedir. Bu denklemde bulunan 10 katsayısının birimini ve sabit sıcaklıktaki hal değişimi sırasında yapılan işi hesaplayınız. Çözüm.3/2. teriminin birimi basınç birimi (kpa) olacağından, 10 katsayısının birimi, kpa.m 6 /kmol 2 olur. Bu proses için sınır işi, Ws, n mol sayısı olmak üzere, aşağıdaki işlemler yapılarak çözümlenir (Şekil.3.28). 27

28 İşin pozitif çıkması sistemin dışarıya iş yaptığını göstermektedir... Ç.Ö.-3/3. Başlangıçta 300 K sıcaklık ve 150 kpa basınçta bulunan 0.2 m 3 hacimli bir silindirde bulunan azot gazı sabit sıcaklıkta yapılan bir hal değişimiyle 800 kpa basınca sıkıştırılmaktadır. Bu hal değişimi sırasında yapılan sınır işini hesaplaynız. Çözüm.3/3. Prosesin sanki-dengeli ve azotun ideal gaz gibi davrandığı kabul edilerek çözüme başlanır. Buna göre, Sınır işinin negatif işaretli çıkması dışarıdan sistem üzerine iş yapıldığını göstermektedir. Şekil ÇÖ.3.3. P-V diyagramı. Şekil ÇÖ.3.4. Sistem ve P-V diyagramı... Ç.Ö.-3/4. Başlangıç hacmi 0.42 m 3 olan bir gaz, hacmi 0.12 m 3 oluncaya kadar sıkıştırılmaktadır. Sanki-dengeli bir hal değişimi ile yapılan bu işlem sırasında basıncın hacimle, P = av + b şeklinde bir ilişki ile değiştiği belirlenmiştir. Burada, a = kpa/m 3 ve b = 600 kpa değerlerinde birer sabittir. Hal değişimi sırasında yapılan işi, P-V diyagramında hal değişim eğrisi çizip altında kalan alanı hesaplayarak ve integrasyon ile hesaplayınız. Çözüm.3/4. Gazın hal değişimi hacim ile lineer olarak değişmekte olduğundan değişim P-V diyagramında bir doğru verecektir. İşlem sırasında yapılan sınır işi bu doğru altında kalan alan hesaplanarak bulunabilir (Şekil.3.30). Diyagramın oluşturulması için herbir hacim değerine karşı gelen basınçlar verilen eşitlik yardımı ile hesaplanır ve P-V diyagramında yerleştirilir. Buna göre, yapılan hesaplamalar ve grafik çiziminden, elde edilen geometrik şeklin (yamuk) alanı hesaplanrak istenen sınır işi hesaplanır. Birinci durum, 28

29 İkinci durum, Sınır işinin negatif işaretli çıkması dışarıdan sistem üzerine iş yapıldığını göstermektedir... Ç.Ö.-3/5. İçinde bir elektrikli ısıtıcı ve bir karıştırıcının bulunduğu yalıtılmış bir piston-silindir düzeneğinde, başlangıçta 175 kpa basınçta 5 L doygun sıvı su bulunmaktadır. Daha sonra düzenek 45 dakika süreyle bir tararaftan karıştırılırken, diğer taraftan içinden 8 A akım geçen bir ısıtıcıyla ısıtılmaktadır. Sabit basınçta gerçekleşen bu hal değişimi sırasında sıvı suyun yarısı buharlaşmakta ve karıştırıcı tarafından 300 kj kadarlık bir iş yapılmaktadır. Elektrik kaynağının potansiyelini Volt olarak hesaplayınız ve hal değişimini doygunluk eğrilerini de göstererek P-v diyagramında çiziniz. Çözüm.3/5. Silindir sabit halde olduğundan kinetik ve potansiyel enerji, sistem yalıtılmış olduğundan sistemden olan ısı transferi ve silindirin gizli termal enerjisi ihmal edilebilir. Buna göre, silindir bir sistem olarak düşünülür ve sisteme giriş ve çıkış akımları olmadığı için bir kapalı sistem olarak değerlendirilir. Sanki-dengeli hal yaklaşım ile, Suyun özelikleri Tablo.A-4-A-6 dan alınır. 29

30 Bu değerler yukarıdaki genel ifadede yazılırsa, Şekil ÇÖ.3.5. P-v diyagramı. Şekil ÇÖ.3.6. Sistem görünümü... Ç.Ö.-3/6. İyice yalıtılmış sabit hacimli kapalı bir kap (Şekil.3.32), metal bir perdeyle iki bölmeye ayrılmıştır. Başlangıçta, bölmelerden birinde 60 o C sıcaklık ve 600 kpa basınçta 2.5 kg sıkıştırılmış sıvı su bulunmakta, diğer bölme ise vakumda tutulmaktadır. Daha sonra metal perde kaldırılarak suyun tüm hacmi kaplaması sağlanmaktadır. Son haldeki basınç 10 kpa olduğuna göre, kabın hacmini ve suyun son haldeki sıcaklığını hesaplayınız. Çözüm.3/6. Tank sabit olduğundan kinetik ve potansiyel enerji, tank yalıtımlı olduğundan kaybolan ısı ve iş etkileşimleri olmadığından ihmal edilir. Giriş koşullarını dikkate alarak sistem oluşturulabilir, giriş ve çıkış akımları olmadığından kapalı sistem olarak düşünülür ve sistem sabit hacimli olduğundan sınır işi olmayacaktır. Buna göre enerji denkliği aşağıdaki gibi yazılır; 30

31 Suyun özelikleri Tablo.A-4-A-6 dan alınır. Sistemin son halinde doygun sıvı-buhar karışımı şeklinde olduğu kabul edilebilir... Ç.Ö.-3/7. Şekil.3.33 deki bir piston silindir düzeneğinde başlangıçta 100 kpa basınç ve 25 o C sıcaklıkta 0.5 kg He gazı bulunmaktadır. Pistonun hareket edebilmesi için basıncın 500 kpa olması gerekmektedir. Bu sistemde pistonu hareket ettirmek için helyuma birim kütle başına verilmesi gereken ısı miktarını hesaplayınız. Çözüm.3/7. He ideal gaz olarak ve sabit özgül ısılı (c v = kj/kg K) düşünülür, kinetik ve potansiyel enerji değişimleri ihmal edilebilir, iş etkileşimleri yok ve sislindirin gizli ısısı ihmal edilir. Buna göre, silindirdeki He gazı sistem olarak düşünülür, sisteme giren ve çıkan akımlar olmadığı için kapalı sistem olarak değerlendirilir ve enerji denkliği aşağıdaki gibi düzenlenir, Son sıcaklık bilinmediği için, ideal gaz ilişkisinden hesaplanmalıdır. Bu değer enerji eşitliğinde yazılırsa, 31

32 Bu ısı sistemde olan 0.5 kg He gazı için verilmesi gereken ısıdır. Birim kütle başına verilmesi gereken ısı, Şekil Örnek.3/7 sistem... Ç.Ö.-3/8. 60 o C sıcaklığındaki sıcak su ile 10 o C sıcaklığındaki soğuk su bir karıştırma odasında karıştırılarak 40 o C sıcaklığında su elde edilecektir. Karışma işleminin 150 kpa sabit basınç altında gerçekleştiğini ve karışma odasından dışarıya olan ısı geçişlerini ihmal ederek, m sıcak /m soğuk oranını hesaplayınız. Çözüm.3/8. Karışma odası sistem olarak seçilir ve sistem Şekil.3.34 deki gibi gösterilebilir. Sistem sınırlarından kütle geçişi olduğundan açık sistem veya kontrol hacmi olarak değerlendirilir. Kontrol hacminde zamanla akımlarda bir değişim olmadığından sürekli akışlı açık sistem olarak düşünülür ve çözümleme yapılır. Sınırlardan iş veya ısı geçişi olmadığından (Q = 0, W = 0) alınır, sistem hareketsiz olduğundan kinetik ve potansiyel enerji değişimleri de ihmal edilir (KE = PE = 0). Bunun gibi birden fazla giriş-çıkış akımı olan bir sitem için kütle denkliği aşağıdaki gibi yazılır; Yukarıdaki kabuller ışığında enerji korunumu denklemi aşağıdaki gibi düzenlenir; Tablo.A-5 den suyun 150 kpa basınçtaki doygunluk sıcaklığı T d, 150 kpa = o C olarak okunur. Giriş ve çıkış akımlarının sıcaklığı bu değerin altında olduğundan, (T < T d ) suyun giriş 32

NOT: Toplam 5 soru çözünüz, sınav süresi 90 dakikadır. SORULAR VE ÇÖZÜMLER

NOT: Toplam 5 soru çözünüz, sınav süresi 90 dakikadır. SORULAR VE ÇÖZÜMLER Adı- Soyadı: Fakülte No : Gıda Mühendisliği Bölümü, 2015/2016 Öğretim Yılı, Güz Yarıyılı 00391-Termodinamik Dersi, Bütünleme Sınavı Soru ve Çözümleri 20.01.2016 Soru (puan) 1 (20) 2 (20) 3 (20) 4 (20)

Detaylı

Termodinamik. Öğretim Görevlisi Prof. Dr. Lütfullah Kuddusi. Bölüm 4: Kapalı Sistemlerin Enerji Analizi

Termodinamik. Öğretim Görevlisi Prof. Dr. Lütfullah Kuddusi. Bölüm 4: Kapalı Sistemlerin Enerji Analizi Termodinamik Öğretim Görevlisi Prof. Dr. Lütfullah Kuddusi 1 Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ 2 Amaçlar Özellikle otomobil motoru ve kompresör gibi pistonlu makinelerde yaygın olarak karşılaşılan

Detaylı

NOT: Toplam 5 soru çözünüz, sınav süresi 90 dakikadır. SORULAR VE ÇÖZÜMLER

NOT: Toplam 5 soru çözünüz, sınav süresi 90 dakikadır. SORULAR VE ÇÖZÜMLER Adı- Soyadı: Fakülte No : Gıda Mühendisliği Bölümü, 2015/2016 Öğretim Yılı, Güz Yarıyılı 00391-Termodinamik Dersi, Dönem Sonu Sınavı Soru ve Çözümleri 07.01.2016 Soru (puan) 1 (20) 2 (20) 3 (20) 4 (20)

Detaylı

NOT: Toplam 5 soru çözünüz, sınav süresi 90 dakikadır. SORULAR VE ÇÖZÜMLER

NOT: Toplam 5 soru çözünüz, sınav süresi 90 dakikadır. SORULAR VE ÇÖZÜMLER Adı- Soyadı: Fakülte No : Gıda Mühendisliği Bölümü, 2016/2017 Öğretim Yılı, Güz Yarıyılı 00391-Termodinamik Dersi, Dönem Sonu Sınavı Soru ve Çözümleri 13.01.2017 Soru (puan) 1 (20) 2 (20) 3 (20) 4 (20)

Detaylı

NOT: Toplam 5 soru çözünüz, sınav süresi 90 dakikadır. SORULAR VE ÇÖZÜMLER

NOT: Toplam 5 soru çözünüz, sınav süresi 90 dakikadır. SORULAR VE ÇÖZÜMLER Adı- Soyadı : Fakülte No : Gıda Mühendisliği Bölümü, 2014/2015 Öğretim Yılı, Güz Yarıyılı 00391-Termodinamik Dersi, Bütünleme Sınavı Soru ve Çözümleri 23.01.2015 Soru (puan) 1 (20) 2 (20) 3 (20) 4 (20)

Detaylı

Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ. Bölüm 4: Kapalı Sistemlerin Enerji Analizi

Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ. Bölüm 4: Kapalı Sistemlerin Enerji Analizi Bölüm 4 KAPALI SİSTEMLERİN ENERJİ ANALİZİ 1 Amaçlar Özellikle otomobil motoru ve kompresör gibi pistonlu makinelerde yaygın olarak karşılaşılan hareketli sınır işi veya PdV işi olmak üzere değişik iş biçimlerinin

Detaylı

SORULAR VE ÇÖZÜMLER. Adı- Soyadı : Fakülte No :

SORULAR VE ÇÖZÜMLER. Adı- Soyadı : Fakülte No : Adı- Soyadı : Fakülte No : Gıda Mühendisliği Bölümü, 2014/2015 Öğretim Yılı, Güz Yarıyılı 00391-Termodinamik Dersi, Dönem Sonu Sınavı Soru ve Çözümleri 06.01.2015 Soru (puan) 1 (15) 2 (15) 3 (15) 4 (20)

Detaylı

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ. Bölüm 5: Kontrol Hacimleri için Kütle ve Enerji Çözümlemesi

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ. Bölüm 5: Kontrol Hacimleri için Kütle ve Enerji Çözümlemesi Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ 1 Amaçlar Kütlenin korunumu ilkesi geliştirilecektir. Kütlenin korunumu ilkesi sürekli ve sürekli olmayan akış sistemlerini içeren çeşitli sistemlere

Detaylı

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ Kütlenin korunumu: Kütle de enerji gibi korunum yasalarına uyar; başka bir deyişle, var veya yok edilemez. Kapalı sistemlerde: Sistemin kütlesi

Detaylı

TERMODİNAMİK SINAV HAZIRLIK SORULARI BÖLÜM 4

TERMODİNAMİK SINAV HAZIRLIK SORULARI BÖLÜM 4 Kapalı Sistem Enerji Analizi TERMODİNAMİK SINAV HAZIRLIK SORULARI BÖLÜM 4 4-27 0.5 m 3 hacmindeki bir tank başlangıçta 160 kpa basınç ve %40 kuruluk derecesinde soğutucu akışkan-134a içermektedir. Daha

Detaylı

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ. Bölüm 5: Kontrol Hacimleri için Kütle ve Enerji Çözümlemesi

Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ. Bölüm 5: Kontrol Hacimleri için Kütle ve Enerji Çözümlemesi Bölüm 5 KONTROL HACİMLERİ İÇİN KÜTLE VE ENERJİ ÇÖZÜMLEMESİ 1 Amaçlar Kütlenin korunumu ilkesi geliştirilecektir. Kütlenin korunumu ilkesi sürekli ve sürekli olmayan akış sistemlerini içeren çeşitli sistemlere

Detaylı

5. ENTROPİ Enerji geçişi, ısı İçten tersinirlik: S Süretim ( 0) Süretim

5. ENTROPİ Enerji geçişi, ısı İçten tersinirlik: S Süretim ( 0) Süretim 5. ENTROPİ Entropi, moleküler düzensizlik olarak görülebilir. Entropi terimi genellikle hem toplam entropi hemde özgül entropi şeklinde tanımlanabilir. Bir sistem daha düzensiz bir hal aldıkça, moleküllerin

Detaylı

Bölüm 8 EKSERJİ: İŞ POTANSİYELİNİN BİR ÖLÇÜSÜ. Bölüm 8: Ekserji: İş Potansiyelinin bir Ölçüsü

Bölüm 8 EKSERJİ: İŞ POTANSİYELİNİN BİR ÖLÇÜSÜ. Bölüm 8: Ekserji: İş Potansiyelinin bir Ölçüsü Bölüm 8 EKSERJİ: İŞ POTANSİYELİNİN BİR ÖLÇÜSÜ 1 Amaçlar Termodinamiğin ikinci yasası ışığında, mühendislik düzeneklerinin verimlerini veya etkinliklerini incelemek. Belirli bir çevrede verilen bir halde

Detaylı

Bölüm 7 ENTROPİ. Bölüm 7: Entropi

Bölüm 7 ENTROPİ. Bölüm 7: Entropi Bölüm 7 ENTROPİ 1 Amaçlar Termodinamiğin ikinci kanununu hal değişimlerine uygulamak. İkinci yasa verimini ölçmek için entropi olarak adlandırılan özelliği tanımlamak. Entropinin artış ilkesinin ne olduğunu

Detaylı

Akışkanların Dinamiği

Akışkanların Dinamiği Akışkanların Dinamiği Akışkanların Dinamiğinde Kullanılan Temel Prensipler Gaz ve sıvı akımıyla ilgili bütün problemlerin çözümü kütlenin korunumu, enerjinin korunumu ve momentumun korunumu prensibe dayanır.

Detaylı

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ

Bölüm 3 SAF MADDENİN ÖZELLİKLERİ Bölüm 3 SAF MADDENİN ÖZELLİKLERİ 1 Amaçlar Amaçlar Saf madde kavramının tanıtılması Faz değişimi işleminin fizik ilkelerinin incelenmesi Saf maddenin P-v-T yüzeylerinin ve P-v, T-v ve P-T özelik diyagramlarının

Detaylı

Akışkanların Dinamiği

Akışkanların Dinamiği Akışkanların Dinamiği Akışkanların Dinamiğinde Kullanılan Temel Prensipler Gaz ve sıvı akımıyla ilgili bütün problemlerin çözümü kütlenin korunumu, enerjinin korunumu ve momentumun korunumu prensibe dayanır.

Detaylı

Termodinamik Termodinamik Süreçlerde İŞ ve ISI

Termodinamik Termodinamik Süreçlerde İŞ ve ISI Termodinamik Süreçlerde İŞ ve ISI Termodinamik Hareketli bir pistonla bağlantılı bir silindirik kap içindeki gazı inceleyelim (Şekil e bakınız). Denge halinde iken, hacmi V olan gaz, silindir çeperlerine

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR II DOĞRUSAL ISI İLETİMİ DENEYİ 1.Deneyin Adı: Doğrusal ısı iletimi deneyi..

Detaylı

3. TERMODİNAMİK KANUNLAR. (Ref. e_makaleleri) Termodinamiğin Birinci Kanunu ÖRNEK

3. TERMODİNAMİK KANUNLAR. (Ref. e_makaleleri) Termodinamiğin Birinci Kanunu ÖRNEK 1 3. TERMODİNAMİK KANUNLAR (Ref. e_makaleleri) Termodinamiğin Birinci Kanunu Termodinamiğin Birinci Kanununa göre, enerji yoktan var edilemez ve varolan enerji yok olmaz, ancak şekil değiştirebilir. Kanun

Detaylı

E = U + KE + KP = (kj) U = iç enerji, KE = kinetik enerji, KP = potansiyel enerji, m = kütle, V = hız, g = yerçekimi ivmesi, z = yükseklik

E = U + KE + KP = (kj) U = iç enerji, KE = kinetik enerji, KP = potansiyel enerji, m = kütle, V = hız, g = yerçekimi ivmesi, z = yükseklik Enerji (Energy) Enerji, iş yapabilme kabiliyetidir. Bir sistemin enerjisi, o sistemin yapabileceği azami iştir. İş, bir cisme, bir kuvvetin tesiri ile yol aldırma, yerini değiştirme şeklinde tarif edilir.

Detaylı

Adı- Soyadı: 01.12.2015 Fakülte No :

Adı- Soyadı: 01.12.2015 Fakülte No : Adı- Soyadı: 01.12.2015 Fakülte No : Gıda Mühendisliği Bölümü, 2015/2016 Öğretim Yılı, Güz Yarıyılı 00391-Termodinamik Dersi, Ara Sınavı Soru ve Çözümleri Soru (puan) 1 (20) 2 (20) 3 (20) 4 (20) 5 (20)

Detaylı

Dr. Osman TURAN. Makine ve İmalat Mühendisliği Bilecik Şeyh Edebali Üniversitesi ISI TRANSFERİ

Dr. Osman TURAN. Makine ve İmalat Mühendisliği Bilecik Şeyh Edebali Üniversitesi ISI TRANSFERİ Dr. Osman TURAN Makine ve İmalat Mühendisliği Bilecik Şeyh Edebali Üniversitesi ISI TRANSFERİ Kaynaklar Ders Değerlendirme Ders Planı Giriş: Isı Transferi Isı İletimi Sürekli Isı İletimi Genişletilmiş

Detaylı

TERMODİNAMİĞİN BİRİNCİ YASASI

TERMODİNAMİĞİN BİRİNCİ YASASI İzotermal ve Adyabatik İşlemler Sıcaklığı sabit tutulan sistemlerde yapılan işlemlere izotermal işlem, ısı alışverişlerine göre yalıtılmış sistemlerde yapılan işlemlere ise adyabatik işlem adı verilir.

Detaylı

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi

Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Bernoulli Denklemi, Basınç ve Hız Yükleri Borularda Piezometre ve Enerji Yükleri Venturi Deney Sistemi Akışkanlar dinamiğinde, sürtünmesiz akışkanlar için Bernoulli prensibi akımın hız arttıkça aynı anda

Detaylı

ME-207 TERMODİNAMİK ÇALIŞMA SORULARI. KTO Karatay Üniversitesi Makine Mühendisliği Bölümü Yrd. Doç. Dr. Remzi ŞAHİN Arş. Gör. Sadık ATA

ME-207 TERMODİNAMİK ÇALIŞMA SORULARI. KTO Karatay Üniversitesi Makine Mühendisliği Bölümü Yrd. Doç. Dr. Remzi ŞAHİN Arş. Gör. Sadık ATA ME-207 TERMODİNAMİK ÇALIŞMA SORULARI Bölümü EKİM 2015 İÇİNDEKİLER BİRİM ANALİZİ 2 SAF MADDENİN ÖZELLİKLERİ 3 TERMODİNAMİĞİN BİRİNCİ YASASI KAPALI SİSTEMLER 5 TERMODİNAMİĞİN BİRİNCİ YASASI AÇIK SİSTEMLER

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 DAİRESEL HAREKET Bölüm 2 İŞ, GÜÇ, ENERJİ ve MOMENTUM

İÇİNDEKİLER ÖNSÖZ Bölüm 1 DAİRESEL HAREKET Bölüm 2 İŞ, GÜÇ, ENERJİ ve MOMENTUM ÖNSÖZ İÇİNDEKİLER III Bölüm 1 DAİRESEL HAREKET 11 1.1. Dairesel Hareket 12 1.2. Açısal Yol 12 1.3. Açısal Hız 14 1.4. Açısal Hız ile Çizgisel Hız Arasındaki Bağıntı 15 1.5. Açısal İvme 16 1.6. Düzgün Dairesel

Detaylı

1. Aşağıda verilen fiziksel büyüklüklerin dönüşümünde? işareti yerine gelecek sayıyı bulunuz.

1. Aşağıda verilen fiziksel büyüklüklerin dönüşümünde? işareti yerine gelecek sayıyı bulunuz. Şube Adı- Soyadı: Fakülte No: NÖ-A NÖ-B Kimya Mühendisliği Bölümü, 2016/2017 Öğretim Yılı, 00323-Akışkanlar Mekaniği Dersi, 2. Ara Sınavı Soruları 10.12.2016 Soru (puan) 1 (20) 2 (20) 3 (20) 4 (20) 5 (20)

Detaylı

Soru No Program Çıktısı 3, ,10 8,10

Soru No Program Çıktısı 3, ,10 8,10 Öğrenci Numarası Adı ve Soyadı İmzası: CEVAP ANAHTARI Açıklama: Sınavda ders notları ve dersle ilgili tablolar serbesttir. Sorular eşit puanlıdır. SORU 1. Bir teknik sisteme 120 MJ enerji verilerek 80000

Detaylı

Bölüm 3 SOĞUTMA ÇEVRİMLERİNDE EKSERJİ UYGULAMASI

Bölüm 3 SOĞUTMA ÇEVRİMLERİNDE EKSERJİ UYGULAMASI ME412 - Soğutma Teknolojisi Bahar, 2017 Bölüm 3 SOĞUTMA ÇEVRİMLERİNDE EKSERJİ UYGULAMASI Ceyhun Yılmaz Afyon Kocatepe Üniversitesi Teknoloji Fakültesi Makine Mühendisliği Bölümü Amaçlar Termodinamiğin

Detaylı

Soru No Puan Program Çıktısı 3, ,8 3,10 1,10

Soru No Puan Program Çıktısı 3, ,8 3,10 1,10 Öğrenci Numarası Adı ve Soyadı İmzası: CEVAP ANAHTARI Açıklama: Sınavda ders notları ve dersle ilgili tablolar serbesttir. SORU. Tersinir ve tersinmez işlemi tanımlayınız. Gerçek işlemler nasıl işlemdir?

Detaylı

2. Basınç ve Akışkanların Statiği

2. Basınç ve Akışkanların Statiği 2. Basınç ve Akışkanların Statiği 1 Basınç, bir akışkan tarafından birim alana uygulanan normal kuvvet olarak tanımlanır. Basıncın birimi pascal (Pa) adı verilen metrekare başına newton (N/m 2 ) birimine

Detaylı

Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin 2. Yasası

Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin 2. Yasası Termal Genleşme İdeal Gazlar Isı Termodinamiğin 1. Yasası Entropi ve Termodinamiğin 2. Yasası Sıcaklık, bir gaz molekülünün kütle merkezi hareketinin ortalama kinetic enerjisinin bir ölçüsüdür. Sıcaklık,

Detaylı

SAKARYA ÜNİVERSİTESİ SAKARYA MESLEK YÜKSEKOKULU

SAKARYA ÜNİVERSİTESİ SAKARYA MESLEK YÜKSEKOKULU TERMODİNAMİK Öğr. Gör. SAKARYA ÜNİVERSİTESİ SAKARYA MESLEK YÜKSEKOKULU ISI Maddenin kütlesine, cinsine ve sıcaklık farkına bağımlı olarak sıcaklığını birim oranda değiştirmek için gerekli olan veri miktarına

Detaylı

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 5 PSİKROMETRİK İŞLEMLERDE ENERJİ VE KÜTLE DENGESİ

BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 5 PSİKROMETRİK İŞLEMLERDE ENERJİ VE KÜTLE DENGESİ BAŞKENT ÜNİVERSİTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAK 402 MAKİNE MÜHENDİSLİĞİ LABORATUVARI DENEY - 5 PSİKROMETRİK İŞLEMLERDE ENERJİ VE KÜTLE DENGESİ BAŞKENT ÜNİVERSİTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MAK 402

Detaylı

Bölüm 2 ENERJİ DÖNÜŞÜMLERİ VE GENEL ENERJİ ÇÖZÜMLEMESİ 1

Bölüm 2 ENERJİ DÖNÜŞÜMLERİ VE GENEL ENERJİ ÇÖZÜMLEMESİ 1 Bölüm 2 ENERJİ DÖNÜŞÜMLERİ VE GENEL ENERJİ ÇÖZÜMLEMESİ 1 Amaçlar Enerji kavramının ve değişik biçimlerinin tanımlanması İç enerjinin tanımlanması Isı kavramının ve ısı yoluyla enerji geçişinin tanımlanması

Detaylı

NÖ-A NÖ-B. Adı- Soyadı: Fakülte No:

NÖ-A NÖ-B. Adı- Soyadı: Fakülte No: Şube Adı- Soyadı: Fakülte No: NÖ-A NÖ-B Kimya Mühendisliği Bölümü, 2016/2017 Öğretim Yılı, 00323-Akışkanlar Mekaniği Dersi, Dönem Sonu Sınavı Soru ve Çözümleri 05.01.2017 Soru (puan) 1 (20) 2 (20) 3 (20)

Detaylı

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1 Y. Doç. Dr. Güray Doğan 1 Kinematik Kinematik: akışkanların hareketlerini tanımlar Kinematik harekete sebep olan kuvvetler ile ilgilenmez. Akışkanlar mekaniğinde

Detaylı

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1 Y. Doç. Dr. Güray Doğan 1 Kinematik Kinematik: akışkanların hareketlerini tanımlar Kinematik harekete sebep olan kuvvetler ile ilgilenmez. Akışkanlar mekaniğinde

Detaylı

O )molekül ağırlığı 18 g/mol ve 1g suyun kapladığı hacimde

O )molekül ağırlığı 18 g/mol ve 1g suyun kapladığı hacimde 1) Suyun ( H 2 O )molekül ağırlığı 18 g/mol ve 1g suyun kapladığı hacimde 10 6 m 3 olduğuna göre, birbirine komşu su moleküllerinin arasındaki uzaklığı Avagadro sayısını kullanarak hesap ediniz. Moleküllerin

Detaylı

EDUCATIONAL MATERIALS

EDUCATIONAL MATERIALS PROBLEM SET 1. (2.1) Mükemmel karıştırılmış, sabit hacimli tank, aynı sıvıyı içeren iki giriş akımına sahiptir. Her akımın sıcaklığı ve akış hızı zamanla değişebilir. a) Geçiş işlemini ifade eden dinamik

Detaylı

NÖ-A NÖ-B. Şube. Alınan Puan. Adı- Soyadı: Fakülte No: 1. Aşağıda verilen fiziksel büyüklüklerin eşit olduğunu gösteriniz. 1/6

NÖ-A NÖ-B. Şube. Alınan Puan. Adı- Soyadı: Fakülte No: 1. Aşağıda verilen fiziksel büyüklüklerin eşit olduğunu gösteriniz. 1/6 Şube NÖ-A NÖ-B Adı- Soyadı: Fakülte No: Kimya Mühendisliği Bölümü, 2015/2016 Öğretim Yılı, 00323-Akışkanlar Mekaniği Dersi, Bütünleme Sınavı Soru ve Çözümleri 20.01.2016 Soru (puan) 1 (20) 2 (20) 3 (20)

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

Gözetmenlere soru sorulmayacaktır. Eksik veya hatalı verildiği düşünülen değerler için mantıklı tahminler yapabilirsiniz.

Gözetmenlere soru sorulmayacaktır. Eksik veya hatalı verildiği düşünülen değerler için mantıklı tahminler yapabilirsiniz. HR. Ü. Mühendislik Fakültesi Makina Mühendisliği Bölümü 0502304-0506304Termodinamik I Ara Sınavı (07/12/2011). Süre: 90 dak. Adı ve Soyadı: No: İmza: Alınan Puanlar: 1.2.3.4.5.6.. Sınav sonucu. Gözetmenlere

Detaylı

BÖLÜM 1: TEMEL KAVRAMLAR

BÖLÜM 1: TEMEL KAVRAMLAR Sistem ve Hal Değişkenleri Üzerinde araştırma yapmak üzere sınırladığımız bir evren parçasına sistem, bu sistemi çevreleyen yere is ortam adı verilir. İzole sistem; Madde ve her türden enerji akışına karşı

Detaylı

ÇÖZÜM 1) konumu mafsallı olup, buraya göre alınacak moment ile küçük pistona etkileyen kuvvet hesaplanır.

ÇÖZÜM 1) konumu mafsallı olup, buraya göre alınacak moment ile küçük pistona etkileyen kuvvet hesaplanır. SORU 1) Şekildeki (silindir+piston) düzeni vasıtası ile kolunda luk bir kuvvet elde edilmektedir. İki piston arasındaki hacimde yoğunluğu olan bir akışkan varıdr. Verilenlere göre büyük pistonun hareketi

Detaylı

Proses Tekniği 3.HAFTA YRD.DOÇ.DR. NEZAKET PARLAK

Proses Tekniği 3.HAFTA YRD.DOÇ.DR. NEZAKET PARLAK Proses Tekniği 3.HAFTA 3.HAFTA YRD.DOÇ.DR. NEZAKET PARLAK Sürekli Akışlı Açık Sistemlerde Enerji Korunumu de = d dt Sistem dt eρdv + eρ V b n A Bu denklemde e = u + m + gz Q net,g + W net,g = d dt eρdv

Detaylı

BÖLÜM 1: TEMEL KAVRAMLAR

BÖLÜM 1: TEMEL KAVRAMLAR BÖLÜM 1: TEMEL KAVRAMLAR Hal Değişkenleri Arasındaki Denklemler Aralarında sıfıra eşitlenebilen en az bir veya daha fazla denklem kurulabilen değişkenler birbirine bağımlıdır. Bu denklemlerden bilinen

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METODLAR -I TAŞINIM VE IŞINIMLA BİRLEŞİK ISI TRANSFERİ DENEY FÖYÜ 1. Deney Amacı Farklı

Detaylı

Sıcaklık (Temperature):

Sıcaklık (Temperature): Sıcaklık (Temperature): Sıcaklık tanım olarak bir maddenin yapısındaki molekül veya atomların ortalama kinetik enerjilerinin ölçüm değeridir. Sıcaklık t veya T ile gösterilir. Termometre kullanılarak ölçülür.

Detaylı

T.C. ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ SANTRĠFÜJ POMPA DENEY FÖYÜ HAZIRLAYANLAR. Prof. Dr.

T.C. ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ SANTRĠFÜJ POMPA DENEY FÖYÜ HAZIRLAYANLAR. Prof. Dr. T.C. ONDOKUZ MAYIS ÜNĠVERSĠTESĠ MÜHENDĠSLĠK FAKÜLTESĠ MAKĠNA MÜHENDĠSLĠĞĠ BÖLÜMÜ SANTRĠFÜJ POMPA DENEY FÖYÜ HAZIRLAYANLAR Prof. Dr. Aydın DURMUŞ EYLÜL 2011 SAMSUN SANTRĠFÜJ POMPA DENEYĠ 1. GĠRĠġ Pompa,

Detaylı

OREN303 ENERJİ YÖNETİMİ KERESTE KURUTMADA ENERJİ ANALİZİ/SÜREÇ YÖNETİMİ

OREN303 ENERJİ YÖNETİMİ KERESTE KURUTMADA ENERJİ ANALİZİ/SÜREÇ YÖNETİMİ OREN303 ENERJİ YÖNETİMİ KERESTE KURUTMADA ENERJİ ANALİZİ/SÜREÇ YÖNETİMİ Enerji analizi termodinamiğin birinci kanununu, ekserji analizi ise termodinamiğin ikinci kanununu kullanarak enerjinin maksimum

Detaylı

KİNETİK GAZ KURAMI. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 1

KİNETİK GAZ KURAMI. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 1 Kinetik Gaz Kuramından Gazların Isınma Isılarının Bulunması Sabit hacimdeki ısınma ısısı (C v ): Sabit hacimde bulunan bir mol gazın sıcaklığını 1K değiştirmek için gerekli ısı alışverişi. Sabit basınçtaki

Detaylı

7. Bölüm: Termokimya

7. Bölüm: Termokimya 7. Bölüm: Termokimya Termokimya: Fiziksel ve kimyasal değişimler sürecindeki enerji (ısı ve iş) değişimlerini inceler. sistem + çevre evren Enerji: İş yapabilme kapasitesi. İş(w): Bir kuvvetin bir cismi

Detaylı

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu Akım ve Direnç Elektriksel olaylarla ilgili buraya kadar yaptığımız tartışmalar durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik yüklerinin hareket halinde olduğu durumları inceleyeceğiz.

Detaylı

ĠKLĠMLENDĠRME DENEYĠ

ĠKLĠMLENDĠRME DENEYĠ ĠKLĠMLENDĠRME DENEYĠ MAK-LAB008 1 GĠRĠġ İnsanlara konforlu bir ortam sağlamak ve endüstriyel amaçlar için uygun koşullar yaratmak maksadıyla iklimlendirme yapılır İklimlendirmede başlıca avanın sıcaklığı

Detaylı

SORULAR - ÇÖZÜMLER. NOT: Toplam 5 (beş) soru çözünüz. Sınav süresi 90 dakikadır. 1. Aşağıdaki çizelgede boş bırakılan yerleri doldurunuz. Çözüm.1.

SORULAR - ÇÖZÜMLER. NOT: Toplam 5 (beş) soru çözünüz. Sınav süresi 90 dakikadır. 1. Aşağıdaki çizelgede boş bırakılan yerleri doldurunuz. Çözüm.1. SORULAR - ÇÖZÜMLER 1. Aşağıdaki çizelgede boş bırakılan yerleri doldurunuz. Çözüm.1. Gıda Mühendisliği Bölümü, 2014/2015 Öğretim Yılı, Bahar Yarıyılı 0216-Akışkanlar Mekaniği Dersi, Dönem Sonu Sınavı Soru

Detaylı

TERMAL ve ENERJİ MÜHENDİSLİĞİ. Rıdvan YAKUT

TERMAL ve ENERJİ MÜHENDİSLİĞİ. Rıdvan YAKUT TERMAL ve ENERJİ MÜHENDİSLİĞİ Rıdvan YAKUT Termal ve Enerji Mühendisliği Bu bölümde, içten yanmalı motorlar, uçak itki sistemleri, ısıtma ve soğutma sistemleri, yenilenebilir enerji kaynakları, yenilenemez

Detaylı

ISI POMPASI DENEY FÖYÜ

ISI POMPASI DENEY FÖYÜ T.C BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK ve MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ ISI POMPASI DENEY FÖYÜ 2015-2016 Güz Yarıyılı Prof.Dr. Yusuf Ali KARA Arş.Gör.Semih AKIN Makine

Detaylı

TAŞINIMIN FİZİKSEL MEKANİZMASI

TAŞINIMIN FİZİKSEL MEKANİZMASI BÖLÜM 6 TAŞINIMIN FİZİKSEL MEKANİZMASI 2 or Taşınımla ısı transfer hızı sıcaklık farkıyla orantılı olduğu gözlenmiştir ve bu Newton un soğuma yasasıyla ifade edilir. Taşınımla ısı transferi dinamik viskosite

Detaylı

MAK104 TEKNİK FİZİK UYGULAMALAR

MAK104 TEKNİK FİZİK UYGULAMALAR MAK04 TEKNİK FİZİK ISI TRANSFERİ ÖRNEK PROBLEMLER Tabakalı düzlem duvarlarda ısı transferi Birleşik düzlem duvarlardan x yönünde, sabit rejim halinde ve duvarlar içerisinde ısı üretimi olmaması ve termofiziksel

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından

İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine kuvveti görülmektedir. Parçacık A noktasından İŞ : Şekilde yörüngesinde hareket eden bir parçacık üzerine etkiyen F kuvveti görülmektedir. Parçacık A noktasından r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve A dan A ne diferansiyel

Detaylı

!" #$%&'! ( ')! *+*,(* *' *, -*.*. /0 1, -*.*

! #$%&'! ( ')! *+*,(* *' *, -*.*. /0 1, -*.* 2. BÖLÜM SAF MADDELERİN ERMODİNAMİK ÖZELLİKLERİ Saf madde Saf madde, her noktasında aynı e değişmeyen bir kimyasal bileşime sahip olan maddeye denir. Saf maddenin sadece bir tek kimyasal element eya bileşimden

Detaylı

T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ

T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ ISI TRANSFERİ LABORATUVARI ISI POMPASI DENEY FÖYÜ 1. DENEYİN AMACI Isı pompası deneyi ile, günümüzde bir çok alanda kullanılan ısı pompalarının

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

GAZLAR GAZ KARIŞIMLARI

GAZLAR GAZ KARIŞIMLARI DALTON KISMİ BASINÇLAR YASASI Aynı Kaplarda Gazların Karıştırılması Birbiri ile tepkimeye girmeyen gaz karışımlarının davranışı genellikle ilgi çekicidir. Böyle bir karışımdaki bir bileşenin basıncı, aynı

Detaylı

Termodinamik İdeal Gazlar Isı ve Termodinamiğin 1. Yasası

Termodinamik İdeal Gazlar Isı ve Termodinamiğin 1. Yasası İdeal Gazlar Isı ve Termodinamiğin 1. Yasası İdeal Gazlar P basıncında, V hacmindeki bir kaba konulan kütlesi m ve sıcaklığı T olan bir gazın özellikleri ele alınacaktır. Bu kavramların birbirleriyle nasıl

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUARI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUARI ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ LABORATUARI DENEY FÖYÜ DENEY ADI SERİ-PARALEL BAĞLI POMPA DENEYİ DERSİN ÖĞRETİM ÜYESİ DENEYİ YAPTIRAN

Detaylı

Proses Tekniği TELAFİ DERSİ

Proses Tekniği TELAFİ DERSİ Proses Tekniği TELAFİ DERSİ Psikometrik diyagram Psikometrik diyagram İklimlendirme: Duyulur ısıtma (ω=sabit) Bu sistemlerde hava sıcak bir akışkanın bulunduğu boruların veya direnç tellerinin üzerinden

Detaylı

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU

HİDROLİK. Yrd. Doç. Dr. Fatih TOSUNOĞLU HİDROLİK Yrd. Doç. Dr. Fatih TOSUNOĞLU Ders Hakkında Genel Bilgiler Görüşme Saatleri:---------- Tavsiye edilen kitaplar: 1-Hidrolik (Prof. Dr. B. Mutlu SÜMER, Prof. Dr. İstemi ÜNSAL. ) 2-Akışkanlar Mekaniği

Detaylı

YILDIZ TEKNİK ÜNİVERSİTESİ

YILDIZ TEKNİK ÜNİVERSİTESİ Rev: 17.09.2014 YILDIZ TEKNİK ÜNİVERSİTESİ Makine Fakültesi Makine Mühendisliği Bölümü Termodinamik ve Isı Tekniği Anabilim Dalı Termodinamik Genel Laboratuvar Föyü Güz Dönemi Öğrencinin Adı Soyadı : No

Detaylı

Termodinamik. Öğretim Görevlisi Prof. Dr. Lütfullah Kuddusi. Bölüm 2 Problemler. Problem numaraları kitabın «5 th Edition» ile aynıdır.

Termodinamik. Öğretim Görevlisi Prof. Dr. Lütfullah Kuddusi. Bölüm 2 Problemler. Problem numaraları kitabın «5 th Edition» ile aynıdır. Termodinamik Öğretim Görevlisi Prof. Dr. Lütfullah Kuddusi Bölüm 2 Problemler Problem numaraları kitabın «5 th Edition» ile aynıdır. 1 2-26 800 kg kütlesi olan bir arabanın yatay yolda 0 dan 100 km/h hıza

Detaylı

YAZ DÖNEMİ UYGULAMA II I. & II.

YAZ DÖNEMİ UYGULAMA II I. & II. 007 008 YAZ DÖNEMİ UYGULAMA II I. & II. Yasa Arş. Gör. Mehmet Akif EZAN Dokuz Eylül Üniversitesi Makina Mühendisliği Bölümü 05/08/08 roblem 4.40 roblem 4.40 q 6 kj/k Hava Soru: Hava sürekli akışlı bir

Detaylı

HR. Ü. Müh. Fak. Makina Mühendisliği Bölümü Termodinamik I Bütünleme Sınavı (02/02/2012) Adı ve Soyadı: No: İmza:

HR. Ü. Müh. Fak. Makina Mühendisliği Bölümü Termodinamik I Bütünleme Sınavı (02/02/2012) Adı ve Soyadı: No: İmza: HR. Ü. Müh. Fak. Makina Mühendisliği Bölümü 050304-0506304-Termodinamik I Bütünleme Sınavı (0/0/0) Adı ve Soyadı: No: İmza: Alınan uanlar:..3.4.5.6.. Sınav sonucu. Süre: 90 dak. Not: erilmediği düşünülen

Detaylı

T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR LABORATUVARI BUHAR TÜRBİNİ DENEYİ FÖYÜ

T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR LABORATUVARI BUHAR TÜRBİNİ DENEYİ FÖYÜ T.C. GAZİ ÜNİVERSİTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR LABORATUVARI BUHAR TÜRBİNİ DENEYİ FÖYÜ 1. GENEL BİLGİLER Buhar türbini, genel olarak yatay ekseni etrafında dönebilen bir rotor,

Detaylı

R-712 SOĞUTMA LABORATUAR ÜNİTESİ DENEY FÖYLERİ

R-712 SOĞUTMA LABORATUAR ÜNİTESİ DENEY FÖYLERİ DENEYSAN EĞİTİM CİHAZLARI SAN. VE TİC. Yeni sanayi sitesi 36.Sok. No:22 BALIKESİR Telefaks:0266 2461075 http://www.deneysan.com R-712 SOĞUTMA LABORATUAR ÜNİTESİ DENEY FÖYLERİ HAZIRLAYAN Yrd.Doç.Dr. Hüseyin

Detaylı

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: SORULAR-CEVAPLAR

MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: SORULAR-CEVAPLAR MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ AKIŞKANLAR MEKANİĞİ II FİNAL SINAVI 22.05.2015 Numara: Adı Soyadı: 1- (24 Puan) Şekildeki 5.08 cm çaplı 38.1 m uzunluğunda, 15.24 cm çaplı 22.86 m uzunluğunda ve 7.62 cm çaplı

Detaylı

BÖLÜM 3. Yrd. Doç.Dr. Erbil Kavcı. Kafkas Üniversitesi Kimya Mühendisliği Bölümü

BÖLÜM 3. Yrd. Doç.Dr. Erbil Kavcı. Kafkas Üniversitesi Kimya Mühendisliği Bölümü BÖLÜM 3 Sürekli Isı iletimi Yrd. Doç.Dr. Erbil Kavcı Kafkas Üniversitesi Kimya Mühendisliği Bölümü Düzlem Duvarlarda Sürekli Isı İletimi İç ve dış yüzey sıcaklıkları farklı bir duvar düşünelim +x yönünde

Detaylı

Gerçek ve ideal çevrimler, Carnot çevrimi, hava standardı kabulleri, pistonlu motolar

Gerçek ve ideal çevrimler, Carnot çevrimi, hava standardı kabulleri, pistonlu motolar Gerçek ve ideal çevrimler, Carnot çevrimi, hava standardı kabulleri, pistonlu motolar 9-16. Kapalı bir sistemde gerçekleşen ideal hava çevirimi aşağıda belirtilen dört hal değişiminden oluşmaktadır. Oda

Detaylı

SORU 1) ÇÖZÜM 1) UYGULAMALI AKIŞKANLAR MEKANİĞİ 1

SORU 1) ÇÖZÜM 1) UYGULAMALI AKIŞKANLAR MEKANİĞİ 1 SORU 1) Şekildeki sistemde içteki mil dönmektedir. İki silindir arasında yağ filmi vardır. Sistemde sızdırmazlık sağlanarak yağ kaçağı önlenmiştir. Verilen değerlere göre sürtünme yolu ile harcanan sürtünme

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

ISI TRANSFER MEKANİZMALARI

ISI TRANSFER MEKANİZMALARI ISI TRANSFER MEKANİZMALARI ISI; sıcaklık farkından dolayı sistemden diğerine transfer olan bir enerji türüdür. Termodinamik bir sistemin hal değiştirirken geçen ısı transfer miktarıyla ilgilenir. Isı transferi

Detaylı

TAM KLİMA TESİSATI DENEY FÖYÜ

TAM KLİMA TESİSATI DENEY FÖYÜ T.C BURSA TEKNİK ÜNİVERSİTESİ DOĞA BİLİMLERİ, MİMARLIK ve MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ TAM KLİMA TESİSATI DENEY FÖYÜ 2015-2016 Bahar Yarıyılı Prof.Dr. Yusuf Ali KARA Arş.Gör.Semih AKIN

Detaylı

Makine Mühendisliği Bölümü Isı Transferi Ara Sınav Soruları. Notlar ve tablolar kapalıdır. Sorular eşit puanlıdır. Süre 90 dakikadır.

Makine Mühendisliği Bölümü Isı Transferi Ara Sınav Soruları. Notlar ve tablolar kapalıdır. Sorular eşit puanlıdır. Süre 90 dakikadır. Makine Mühendisliği Bölümü Isı Transferi Ara Sınav Soruları Notlar ve tablolar kapalıdır. Sorular eşit puanlıdır. Süre 90 dakikadır. 28.11.2011 S.1) Bir evin duvarı 3 m yükseklikte, 10 m uzunluğunda 30

Detaylı

ISI İLETİM KATSAYISININ BELİRLENMESİ DENEYİ

ISI İLETİM KATSAYISININ BELİRLENMESİ DENEYİ MAKİNA MÜHENDİSLİĞİ LABORATUARI II DERSİ ISI İLETİM KATSAYISININ BELİRLENMESİ DENEYİ Hazırlayan Doç.Dr. Nedim SÖZBİR 2014, SAKARYA 1.DENEYİN AMACI ISI İLETİM KATSAYISININ BELİRLENMESİ DENEYİ Değişik malzemelerden

Detaylı

Isı transferi (taşınımı)

Isı transferi (taşınımı) Isı transferi (taşınımı) Isı: Sıcaklık farkı nedeniyle bir maddeden diğerine transfer olan bir enerji formudur. Isı transferi, sıcaklık farkı nedeniyle maddeler arasında meydana gelen enerji taşınımını

Detaylı

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ

BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE VE İMALAT MÜHENDİSLİĞİ BÖLÜMÜ MÜHENDİSLİKTE DENEYSEL METOTLAR II ZAMANA BAĞLI ISI İLETİMİ 1.Deneyin Adı: Zamana bağlı ısı iletimi. 2. Deneyin

Detaylı

Fizik 203. Ders 6 Kütle Çekimi-Isı, Sıcaklık ve Termodinamiğe Giriş Ali Övgün

Fizik 203. Ders 6 Kütle Çekimi-Isı, Sıcaklık ve Termodinamiğe Giriş Ali Övgün Fizik 203 Ders 6 Kütle Çekimi-Isı, Sıcaklık ve Termodinamiğe Giriş Ali Övgün Ofis: AS242 Fen ve Edebiyat Fakültesi Tel: 0392-630-1379 ali.ovgun@emu.edu.tr www.aovgun.com Kepler Yasaları Güneş sistemindeki

Detaylı

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ MOTORLAR LABORATUARI

ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ MOTORLAR LABORATUARI ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ENERJİ SİSTEMLERİ MÜHENDİSLİĞİ BÖLÜMÜ MOTORLAR LABORATUARI DENEY FÖYÜ DENEY ADI LAMİNER VİSKOZ AKIM ISI DEĞİŞTİRİCİSİ DERSİN ÖĞRETİM ÜYESİ YRD. DOÇ. DR. GÜLŞAH

Detaylı

ISI DEĞĠġTĠRGEÇLERĠ DENEYĠ

ISI DEĞĠġTĠRGEÇLERĠ DENEYĠ ISI DEĞĠġTĠRGEÇLERĠ DENEYĠ 1. Teorik Esaslar: Isı değiştirgeçleri, iki akışın karışmadan ısı alışverişinde bulundukları mekanik düzeneklerdir. Isı değiştirgeçleri endüstride yaygın olarak kullanılırlar

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 2 : KUVVET VE HAREKET A BASINÇ VE BASINÇ BİRİMLERİ (5 SAAT) Madde ve Özellikleri 2 Kütle 3 Eylemsizlik 4 Tanecikli Yapı 5 Hacim 6 Öz Kütle (Yoğunluk) 7 Ağırlık 8

Detaylı

TERMODİNAMİĞİN TEMEL EŞİTLİKLERİ

TERMODİNAMİĞİN TEMEL EŞİTLİKLERİ Serbest İç Enerji (Helmholtz Enerjisi) Ve Serbest Entalpi (Gibbs Enerjisi) Fonksiyonları İç enerji ve entalpi fonksiyonları yalnızca termodinamiğin birinci yasasından tanımlanır. Entropi fonksiyonu yalnızca

Detaylı

Bölüm 6 AKIŞ SİSTEMLERİNİN MOMENTUM ANALİZİ

Bölüm 6 AKIŞ SİSTEMLERİNİN MOMENTUM ANALİZİ Akışkanlar Mekaniği Bölüm 6 AKIŞ SİSTEMLERİNİN MOMENTUM ANALİZİ Doç. Dr. İ. Gökhan AKSOY Denizanasının (Aurelia aurita) düzenli yüzme hareketi. Denizanası gövdesini kasıp akışkanı ittikten sonra süzülerek

Detaylı

Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü

Selçuk Üniversitesi. Mühendislik-Mimarlık Fakültesi. Kimya Mühendisliği Bölümü. Kimya Mühendisliği Laboratuvarı. Venturimetre Deney Föyü Selçuk Üniversitesi Mühendislik-Mimarlık Fakültesi Kimya Mühendisliği Bölümü Kimya Mühendisliği Laboratuvarı Venturimetre Deney Föyü Hazırlayan Arş.Gör. Orhan BAYTAR 1.GİRİŞ Genellikle herhangi bir akış

Detaylı

YOĞUŞMA DENEYİ. Arş. Gör. Emre MANDEV

YOĞUŞMA DENEYİ. Arş. Gör. Emre MANDEV YOĞUŞMA DENEYİ Arş. Gör. Emre MANDEV 1. Giriş Yoğuşma katı-buhar ara yüzünde gerçekleşen faz değişimi işlemi olup işlem sırasında gizli ısı etkisi önemli rol oynamaktadır. Yoğuşma yoluyla buharın sıvıya

Detaylı

TEMEL KAVRAMLAR. Öğr. Gör. Adem ÇALIŞKAN

TEMEL KAVRAMLAR. Öğr. Gör. Adem ÇALIŞKAN KÜTLE: Yeryüzünde hacim kaplayan cisimlerin değişmez madde miktarıdır. ( sıcaklığa, basınca, çekim ivmesine bağlı olarak değişmez. ) Terazi ile ölçülür. Kütle birimi SI birim sisteminde Kg dır. Herhangi

Detaylı

f = 1 0.013809 = 0.986191

f = 1 0.013809 = 0.986191 MAKİNA MÜHNDİSLİĞİ BÖLÜMÜ-00-008 BAHAR DÖNMİ MK ISI TRANSFRİ II (+) DRSİ YIL İÇİ SINAVI SORULARI ÇÖZÜMLRİ Soruların çözümlerinde Yunus A. Çengel, Heat and Mass Transfer: A Practical Approach, SI, /, 00,

Detaylı

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ

AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ AKM 205-BÖLÜM 2-UYGULAMA SORU VE ÇÖZÜMLERİ 1 Bir otomobil lastiğinin basıncı, lastik içerisindeki havanın sıcaklığına bağlıdır Hava sıcaklığı 25 C iken etkin basınç 210 kpa dır Eğer lastiğin hacmi 0025

Detaylı