Ders 10. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay. Simpleks Yöntemine Giriş Alıştırmalar 10

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Ders 10. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay. Simpleks Yöntemine Giriş Alıştırmalar 10"

Transkript

1 Bölüm 10 Ders 10 Simpleks Yöntemine Giriş 10.1 Alıştırmalar 10 Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 197

2 198 BÖLÜM 10. DERS Soru 1 1. Aşağıda verilen simpleks tablolarında temel, temel olmayan, giren ve çıkan değişkenleri, anahtar girdiyi belirleyiniz ve giren değişkeni temel değişkene dönüştüren anahtar işlemleri yapınız. a) Temel değişkenler s 1, s 2,K Giren değişken x 1 Anahtar girdi 1 Çıkan değişken s 1 Anahtar işlemler (sırasıyla) (1) (3) (-7) Tablo 10.1: Soru 10-1a 3s 1 + s 2 s 2 7s 1 + s 3 s 3

3 10.1. ALIŞTIRMALAR b) Temel değişkenler x 2, s 2, s 3,K Giren değişken s 1 Anahtar girdi 2 çıkan değişken s 3 Anahtar işlemler (sırasıyla) x 1 x 2 s 1 s 2 s 3 K (-4) Tablo 10.2: Soru 10-1b 1 2 s 3 s s 3 + s 2 s s 3 + s 1 s s 3 + s 4 s 4

4 200 BÖLÜM 10. DERS Soru 2 Aşağıda verilen simpleks tablolarından her birinde temel ve temel olmayan değişkenleri seçiniz, bu seçime karşılık gelen temel çözümü yazınız, başka anahtar işlemler gerekip gerekmediğini, en iyi çözümün bulunup bulunmadığını belirleyiniz. En iyi çözüm varsa, ne olduğunu belirleyiniz. a) Tablo 10.3: Soru 10-2a Temel değişkenler x 2, s 1,K Temel çözüm x 1 = 0, x 2 = 13, s 1 = 24, s 2 = 0,K = 0 en iyi çözümdür. b) Tablo 10.4: Soru 10-2b Temel değişkenler x 2, x 3, s 3,K Temel çözüm x 1 = 0, x 2 = 12, x 3 = 6, s 1 = 0,, s 2 = 0, s 3 = 12,K = 54 en iyi çözümdür.

5 10.1. ALIŞTIRMALAR Soru 3 Aşağıdaki doğrusal programlama problemlerinden her biri için, aylak değişkenler atayarak başlangıç sistemini, başlangıç simpleks tablosunu yazınız; anahtar girdiyi, giren ve çıkan değişkenleri belirleyiniz ve problemi simpleks yöntemi ile çözünüz. a) K (x 1, x 2 ) = 10x x 2 fonksiyonunu 3x 1 + x 2 16 x 1 + 2x 2 12 kısıtlamaları altında maksimize ediniz. K (x 1, x 2 ) = 10x x 2 3x 1 + x x 1 + x 2 + s 1 = 16 x 1 + 2x 2 12 x 1 + 2x 2 + s 2 = 12 x 1, 10x 1 15x 2 + K = 0 s s K s x 2 1/ / K s 2 s 2 ( 1)s 2 + S 1 s 1 s 1 5/ / s 2 1/ / K 5/2 0 15/

6 202 BÖLÜM 10. DERS 10 15s 2 + S 3 s s 1 s 1 x /5 1/5 0 4 x 2 1/ / K 5/ / s 1 + S 2 s s 1 + s 3 s 3 x /5 1/5 0 4 x /5 7/ K En iyi çözüm: x 1 = 4, x 2 = 4, s 1 = 0, s 2 = 0 için K = 100

7 10.1. ALIŞTIRMALAR b) K (x 1, x 2 ) = 15x 1 + 6x 2 fonksiyonunu 3x 1 + 5x x 1 + x 2 18 kısıtlamaları altında maksimize ediniz. 3x 1 + 5x 2 + s 1 = 30 3x 1 + x 2 + s 2 = 18 15x 1 6x 2 + K = 0 s s K s x 1 1 1/3 0 1/ K S 2 S 2 ( 3)S 2 + S 1 S 1 15S 2 + S 3 S 3 x x 1 1 1/3 0 1/ K x /4 1/4 0 3 x 1 1 1/3 0 1/ K S 1 S 1

8 204 BÖLÜM 10. DERS 10 s 1 + s 3 s s 1 + s 2 s 2 x /4 1/4 0 3 x /12 5/ K 0 0 1/4 19/ En iyi çözüm: x 1 = 5, x 2 = 3, s 1 = 0, s 2 = 0 için K = 93.

9 10.1. ALIŞTIRMALAR c) K (x 1, x 2 ) = 45x x 2 fonksiyonunu 2x 1 + x 2 30 x 1 + x 2 16 x 1 + 2x 2 24 kısıtlamaları altında maksimize ediniz. K (x 1, x 2 ) = 45x x 2 2x 1 + x 2 + s 1 = 30 x 1 + x 2 + s 2 = 16 x 1 + 2x 2 + s 3 = 24 45x 1 60x 2 + K = Anahtar işlemler yapıldığında; En iyi çözüm: x 1 = 8, x 2 = 8 için K = 840 çıkar.

10 206 BÖLÜM 10. DERS 10 d) K (x 1, x 2, x 3 ) = 50x 1 10x x 3 fonksiyonunu x 1 x 2 + x 3 5 2x 1 + 3x 2 + 4x 3 15 x 3 0 kısıtlamaları altında maksimize ediniz. K (x 1, x 2, x 3 ) = 50x 1 10x x 3 x 1 x 2 + x 3 + s 1 = 5 2x 1 + 3x 2 + 4x 3 + s 2 = 16 50x x 2 20x 3 + K = 0 x 1 x 2 x 3 s 1 s 2 K s s K Anahtar ilemler yapıldığında; En iyi çözüm: x 1 = 6, x 2 = 1, x 3 = 0 için K = 290 çıkar.

11 10.1. ALIŞTIRMALAR Soru 4 Aşağıdaki doğrusal programlama problemlerim simpleks yöntemi ile çözünüz. a) K (x 1, x 2 ) = 30x x 2 fonksiyonunu x 1 2x 2 2 x 1 x 2 5 x 1 6 kısıtlamaları altında maksimize ediniz. K (x 1, x 2 ) = 30x x 2 x 1 2x 2 + s 1 = 2 x 1 x 2 + s 2 = 5 x 1 + s 3 = 6 30x 1 50x 2 + K = 0 x 1 x 2 s 1 s 2 s 3 K s s s K Anahtar sütunda pozitif girdi olmadığından çözüm yoktur.

12 208 BÖLÜM 10. DERS 10 b) K (x 1, x 2, x 3 ) = 2x 1 + 4x 2 + 6x 3 fonksiyonunu x 1 + x 2 + 4x x 1 + 3x 2 + 2x x 1 + 2x 2 + x x 3 0 kısıtlamaları altında maksimize ediniz. K (x 1, x 2, x 3 ) = 2x 1 + 4x 2 + 6x 3 x 1 + x 2 + 4x 3 + s 1 = 300 x 1 + 3x 2 + 2x 3 + s 2 = 600 3x 1 + 2x 2 + x 3 + s 3 = 400 2x 1 4x 2 + 6x 3 + K = 0 s s s K x 1 1/4 1/4 1 1/ x 2 1/2 5/2 0 1/ s 3 11/4 7/4 0 1/ K 1/2 5/2 0 3/ x 3 1/4 1/4 1 1/ x 2 1/ /5 2/ s 3 11/4 7/4 0 1/ K

13 10.1. ALIŞTIRMALAR x 3 1/4 1/4 1 1/ x 2 1/ /5 2/ s 3 12/ /10 7/ K / x 3 1/ /10 1/ x 2 1/ /5 2/ s 3 12/ /10 7/ K En iyi çözüm: x 1 = 0, x 2 = 180, x 3 = 30, s 1 = 0, s 2 = 0, s 3 = 10 için K = 900 çıkar.

14 210 BÖLÜM 10. DERS Soru 5 Bir küçük şirket üç tür bilgisayar parçası üretiyor. A türü bir parça, yapım için 2 iş saati, montaj iem l iş saati gerektiriyor. B turu bir parça, yapım için 3 iş saati, montaj için 2 iş saati ve C türü bir parça da yapım için 2 iş saati, montaj için 2 iş saati gerektiriyor. Şirketin mevcut günlük iş gücü, yapım için 200 iş saati, montaj için 160 iş saatidir. A, B ve C türü parçaların hor birinden, sırasıyla, 35 TL, 40 TL ve 50 Ti, kâr sağlanacaktır. Şirketin günlük kârının maksimum olması için her tür parçadan günde ne kadar üretmesi gerektiğini ve günlük maksimum karın ne olacağım belirleyiniz. Yapım Montaj Kâr A B C İş Gücü Tablo 10.5: Soru 10-5 K (x 1, x 2, x 3 ) = 35x x x 3 2x 1 + 3x 2 + 2x x 1 + 2x 2 + 2x x 3 0 2x 1 + 3x 2 + 2x 3 + s 1 = 200 x 1 + 2x 2 + 2x 3 + s 2 = x 1 40x 2 500x 3 + K = 0 x 1 x 2 x 3 s 1 s 2 K s s K

15 10.1. ALIŞTIRMALAR s 2 s 2 50s 2 + s 3 s 3 ( 2)s 2 + s 1 s 1 x 1 x 2 x 3 s 1 s 2 K x x 3 1/ / K s 1 + s 2 s 2 15s 1 + s 3 s 3 x 1 x 2 x 3 s 1 s 2 K x x 3 1/ / K x 1 x 2 x 3 s 1 s 2 K x x 3 0 1/2 1 1/ K adet A türü, 60 adet C türü parça üretilince max kâr 4400 TL olur.

16 212 BÖLÜM 10. DERS Soru 6 Bundan Önceki problemi günlük toplam parça üretiminin 84 adedi geçememesi ek kısıtlaması ile çözünüz. b) K (x 1, x 2, x 3 ) = 35x x x 3 fonksiyonunu x 1 x 2 + x x 1 + 3x 2 + 2x x 1 + 2x 2 + 2x x 3 0 kısıtları altında çözeceğiz. Aylak değişkenleri kullanırsak, sistemi K (x 1, x 2, x 3 ) = 35x x x 3 x 1 + x 2 + x 3 + s 1 = 84 2x 1 + 3x 2 + 2x 3 + s 2 = 200 x 1 + 2x 2 + 2x 3 + s 3 = x 1 40x 2 50x 3 + K = 0 olur. Buradan s s s K s 3 + s 4 s 4 s 1 1/ /2 0 4 s x 3 1/ / K

17 10.1. ALIŞTIRMALAR s 1 s s 1 + s 3 s 3 ( 1)s 1 + 2s 2 s 2 x s x 3 1/ / K x s x K x 1 = 8, x 2 = 0, x 3 = 72, s 1 = 0, s 2 = 32, s 3 = 0 için K = 3880 çıkar.

18 214 BÖLÜM 10. DERS Soru7 Bir yatırımcı. 100 bin TL sini devlet tahvillerine, A tipi fona ve B tipi fona yatırmak istiyor. Devlet tahvilleri,,4 tipi fonlar ve B tipi tonlar, sırasıyla, %8, %1Ü ve %12 getiri sağlıyor. Yatırımcı, A ve B tipi fonlara yaptığı toplanı yatırımın devlet tahvillerine yaptığı yatırımı asla geçmemesini istiyor. Bu yatırımcının maksimum getiri için devlet tahvillerine, A tipi fona ve B tipi fona ne kadar yatırım yapması gerekir? Maksimum getiri ne olur? D: devlet tahvili, A: tipi fon, B: tipi fon olsun D A B x 1 x 2 x 3 Tablo 10.6: Soru 10-7 K (x 1, x 2, x 3 ) = 0.08x x x 3 denklemini verilen aşağıdaki kısıtlar altında çözmeliyiz. x 1 + x 2 + x x 2 + x 3 (100 x 2 x 3 ) x 3 0 İkinci denklemi düzenlersek; elde edilir. x 1 + x 2 + x x 2 + 2x x 3 0 Aylak değişkenler kullanırsak, yukarıdaki sistemi aşağıdaki gibi yazabiliriz. x 1 + x 2 + x 3 + s 1 = 100 2x 2 + 2x 3 + s 2 = x x 2 012x 3 + K = 0

19 10.1. ALIŞTIRMALAR Bu sistemi matris olarak ifade edersek; x 1 x 2 x 3 s 1 s 2 K s s K ( 1)s s s 2 + s 3 s 3 x 1 x 2 x 3 s 1 s 2 K s s K x 1 x 2 x 3 s 1 s 2 K s s K s 1 + s 3 s s 1 + s 3 s 3 x 1 x 2 x 3 s 1 s 2 K x x K Devlet tahvili D: 50 bin TL B tipi fon B: 50 bin TL K (50,0,50) = Kâr: 10 bin TL olur.

20 216 BÖLÜM 10. DERS Soru 8 Bundan önceki problemi, /? tipi fona 30 bin TL den daha fazla yatırılmaması ek kısıtlaması altında çözünüz. D: devlet tahvili, A: tipi fon, B: tipi fon olsun D A B x 1 x 2 x 3 Tablo 10.7: Soru 10-8 K (x 1, x 2, x 3 ) = 0.08x x x 3 denklemini verilen aşağıdaki kısıtlar altında çözmeliyiz. x 1 + x 2 + x x 2 + x 3 (100 x2 x 3 ) x 3 30 x 3 0 İkinci denklemi düzenlerdek; elde edilir. x 1 + x 2 + x x 2 + x 3 50 x 3 0 Aylak değişkenler kullanırsak, yukarıdaki sistemi aşağıdaki gibi yazabiliriz. x 1 + x 2 + x 3 + s 1 = 100 x 2 + x 3 + s 2 = 50 x 3 + s 3 = x x 2 012x 3 + K = 0

21 10.1. ALIŞTIRMALAR Bu sistemi matris olarak ifade edersek; s s s K ( 1)s 3 + s 1 s 1 ( 1)s 3 + s 2 s s 3 + s 4 s 4 s s x K ( 1)s 2 + s 1 s s 2 + s 4 s 4 s s x K s 1 + s 4 s 4 x x x K Devlet tahvili D: 50 bin TL A tipi fon B: 20 bin TL B tipi fon B: 30 bin TL K (50,20,30) = 9.6 Kâr: 9.6 bin TL olur.

22 218 BÖLÜM 10. DERS Soru 9 Bir fabrikada üretilen.4, B ve C ürünleri için hammadde olarak çelik ve krom kullanılmakta; fabrikadaki iş gücü bu ürünlerden herhangi birini üretmek için uygun bulunmaktadır. A ürününün bir tanesini üretmek için 40 kg çelik, 30 kg krom kullanılmakta ve hu ürün 5 saatlik bir çalışmayı gerektirmektedir, B ürününün bir tanesini üretmek için 30 kg çelik, 30 kg krom kullanılmakta ve bu urun de 5 saatte üretilebilmektedir. C ürününün bir tanesini üretmek için 40 kg çelik, 40 kg krom kullanılmakta ve bu ürünün üretimi 10 saatlik çalışma gerektirmektedir. Bu fabrikada toplanı 1800 kg çelik, 1600 kg krom vardır ve iş gücü kapasitesi 300 saattir. Fabrika, A ürününün tanesinden 200 TL, B ürününün tanesinden 180 TL, C ürününün tanesinden 240 TL kâr ettiğine göre maksimum kâr için her üründen kaç tane üretmelidir ve maksimim kârı ne olur? K (x 1, x 2, x 3 ) = 200x x x 3 denklemini verilen aşağıdaki kısıtlar altında çözmeliyiz. 40x x x x x x x 1 + 5x x x 1 180x 2 240x 3 + K = 0 x 3 30 x 3 0 Aylak değişkenler kullanarak sistemi 40x x x 3 + s 1 = x x x 3 + s 2 = x 1 + 5x x 3 + s 3 = 300 Burda değişkenlerin negatif olamayacağını kabul ediyoruz. Şimdi bu sistemi matris ile ifade edelim:

23 10.1. ALIŞTIRMALAR s s s K Anahtar işlemler uygulanırsa; A ürünüğnden 20 B ürününden 20 C ürününden 10oldoğunda max kâr K (20,20,10) = TL olur.

24 220 BÖLÜM 10. DERS Soru 10 Bir siyaset bilimci, bir seçimin bir gün Öncesi kapı-kapı dolaşılıp anket uygulanarak seçmen eğiliminin araştırılacağı proje için TL lik bir fon kullanacaktır. Anket uygulamaları için lisans ve yüksek lisans öğrencileri ile araştırma görevlileri çalıştırılacaktır. Her bir lisans öğrencisi 18 anket uygulayacak ve bunun karşılığında 100 TL alacak, her bir yüksek lisans öğrencisi 25 anket uygulayacak ve 150 TL alacak, her bir araştırma görevlisi de 30 anket uygulayacak ve 200 TL alacaktır. Ulaşım olanakları sınırlı olduğundan en çok 200 anketçi çalıştırılabilecektir. Yapılacak anket sayısının maksimum olabilmesi için kaç lisans öğrencisi, kaç yüksek lisans Öğrencisi ve kaç araştırma görevlisi çalıştırılmazdır? Lisans öğrenci sayısı x 1, yüksek lisans x 2, araştırma görevlisi x 3 olsun. K (x 1, x 2, x 3 ) = 18x x x 3 denklemini verilen aşağıdaki kısıtlar altında çözmeliyiz. x 1 + x 2 + x x x x x 3 30 x 3 0 Aylak değişkenler kullanarak sistemi x 1 + x 2 + x x x x 3 + s 2 = x 1 25x 2 30x 3 + K = 0 Burda değişkenlerin negatif olamayacağını kabul ediyoruz. Şimdi bu sistemi matris ile ifade edelim: x 1 x 2 x 3 s 1 s 2 K s s K Anahtar işlemler uygulanırsa; Yüksek Lisns öğrencisi: 16 Araştırma Görevlisi : 4 (Lisans öğrncisi çalıştırılmayacak) K = 520 anket gerçekleştirilir.

Ders 12. Karma Kısıtlamalı Doğrusal programlama problemleri Alıştırmalar 12. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 1...

Ders 12. Karma Kısıtlamalı Doğrusal programlama problemleri Alıştırmalar 12. Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 1... 114 Bölüm 12 Ders 12 Karma Kısıtlamalı Doğrusal programlama problemleri 12.1 Alıştırmalar 12 Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 1.... 1. Aşağıdaki problemlerde; (i) Aylak, artık ve yapay değişkenleri

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I /0 İçerik Matematiksel Modelin Kurulması Grafik Çözüm DP Terminolojisi DP Modelinin Standart Formu DP Varsayımları 2/0 Grafik Çözüm İki değişkenli (X, X2) modellerde kullanılabilir,

Detaylı

Temelleri. Doç.Dr.Ali Argun Karacabey

Temelleri. Doç.Dr.Ali Argun Karacabey Doğrusal Programlamanın Temelleri Doç.Dr.Ali Argun Karacabey Doğrusal Programlama Nedir? Bir Doğrusal Programlama Modeli doğrusal kısıtlar altında bir doğrusal ğ fonksiyonun değerini ğ maksimize yada minimize

Detaylı

Total Contribution. Reduced Cost. X1 37,82 480 18.153,85 0 basic 320 512. X2 22,82 320 7.302,56 0 basic 300 M. Slack or

Total Contribution. Reduced Cost. X1 37,82 480 18.153,85 0 basic 320 512. X2 22,82 320 7.302,56 0 basic 300 M. Slack or HRS şirketi BRN Endüstrileri ile bir anlaşma yapmış ve her ay BRN ye üretebildiği kadar A ürününden sağlamayı garanti etmiştir. HRS de vasıflı ustalar ve çıraklar çalışmaktadır. Bir usta, bir saatte 3

Detaylı

TAMSAYILI PROGRAMLAMA

TAMSAYILI PROGRAMLAMA TAMSAYILI PROGRAMLAMA Doğrusal programlama problemlerinde sık sık çözümün tamsayı olması gereken durumlar ile karşılaşılır. Örneğin ele alınan problem masa, sandalye, otomobil vb. üretimlerinin optimum

Detaylı

Yöneylem Araştırması I Dersi 2. Çalışma Soruları ve Cevapları/

Yöneylem Araştırması I Dersi 2. Çalışma Soruları ve Cevapları/ Yöneylem Araştırması I Dersi 2. Çalışma Soruları ve Cevapları/25.12.2016 1. Bir deri firması standart tasarımda el yapımı çanta ve bavul üretmektedir. Firma üretmekte olduğu her çanta başına 400TL, her

Detaylı

4.1. Gölge Fiyat Kavramı

4.1. Gölge Fiyat Kavramı 4. Gölge Fiyat Kavramı 4.1. Gölge Fiyat Kavramı Gölge fiyatlar doğrusal programlama modellerinde kısıtlarla açıklanan kaynakların bizim için ne kadar değerli olduklarını gösterirler. Şimdi bir örnek üzerinde

Detaylı

SİSTEM MÜHENDİSLİĞİ DOĞRUSAL PROGRAMLAMA MODEL KURMA ÖRNEKLERİ

SİSTEM MÜHENDİSLİĞİ DOĞRUSAL PROGRAMLAMA MODEL KURMA ÖRNEKLERİ SİSTEM MÜHENDİSLİĞİ DOĞRUSAL PROGRAMLAMA MODEL KURMA ÖRNEKLERİ Örnek (2-5) Güzel-Giyim konfeksiyon piyasaya ceket, etek ve elbise yapmaktadır. Konfeksiyoncu, ceketi, eteği ve elbiseyi kendisinin A1, A2

Detaylı

Çok değişkenli fonksiyonlar. Maksimum- Minimum

Çok değişkenli fonksiyonlar. Maksimum- Minimum 66 Bölüm 6 Ders 06 Çok değişkenli fonksiyonlar. Maksimum- Minimum 6.1 Çözümler:Alıştırmalar 06 Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay Ön Bilgi: z = f (x, y) fonksiyonu 3-boyutlu uzayda bir yüzeyin denklemidir.

Detaylı

YÖNEYLEM ARAŞTIRMALARI 1

YÖNEYLEM ARAŞTIRMALARI 1 YÖNEYLEM ARAŞTIRMALARI 1 1.HAFTA Amacı:Karar vericiler işletmelerde sahip oldukları kaynakları; insan gücü makine ve techizat sermaye kullanarak belirli kararlar almak ister. Örneğin; en iyi üretim miktarı

Detaylı

Matematiksel modellerin elemanları

Matematiksel modellerin elemanları Matematiksel modellerin elemanları Op#mizasyon ve Doğrusal Programlama Maksimizasyon ve Minimizasyon örnekleri, Doğrusal programlama modeli kurma uygulamaları 6. DERS 1. Karar değişkenleri: Bir karar verme

Detaylı

Doğrusal Denklem Sistemleri ve Matrisler

Doğrusal Denklem Sistemleri ve Matrisler Bölüm 1 Ders 01 Doğrusal Denklem Sistemleri ve Matrisler 1.1 Çözümler:Alıştırmalar 01 Prof.Dr.Haydar Eş Prof.Dr.Timur Karaçay 1. Aşağıdaki ilk iki denklem sistemini grafik yöntemi ile, sonraki ikisini

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Quadratic Programming Bir karesel programlama modeli aşağıdaki gibi tanımlanır. Amaç fonksiyonu: Maks.(veya Min.) z

Detaylı

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre):

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre): DP SİMPLEKS ÇÖZÜM Simpleks Yöntemi, amaç fonksiyonunu en büyük (maksimum) veya en küçük (minimum) yapacak en iyi çözüme adım adım yaklaşan bir algoritma (hesaplama yöntemi) dir. Bu nedenle, probleme bir

Detaylı

Bir Doğrusal Programlama Modelinin Genel Yapısı

Bir Doğrusal Programlama Modelinin Genel Yapısı Bir Doğrusal Programlama Modelinin Genel Yapısı Amaç Fonksiyonu Kısıtlar M i 1 N Z j 1 N j 1 a C j x j ij x j B i Karar Değişkenleri x j Pozitiflik Koşulu x j >= 0 Bu formülde kullanılan matematik notasyonların

Detaylı

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ SİMPLEKS TABLONUN YORUMU MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ Şu ana kadar verilen bir DP probleminin çözümünü ve çözüm şartlarını inceledik. Eğer orijinal modelin parametrelerinde bazı değişiklikler

Detaylı

Simpleks Yöntemde Duyarlılık Analizleri

Simpleks Yöntemde Duyarlılık Analizleri 3.2.4. Simpleks Yöntemde Duyarlılık Analizleri Duyarlılık analizinde doğrusal programlama modelinin parametrelerindeki değişikliklerinin optimal çözüm üzerindeki etkileri araştırılmaktadır. Herhangi bir

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTIRMA MODELİNİN TANIMI Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik

Detaylı

Maksimizasyon s.t. İşçilik, saat) (Kil, kg)

Maksimizasyon s.t. İşçilik, saat) (Kil, kg) Simplex ile Çözüm Yöntemi Doç. Dr. Fazıl GÖKGÖZ 1 Doğrusal Programlama Modeli Maksimizasyon s.t. İşçilik, saat) (Kil, kg) 2 Doç. Dr. Fazıl GÖKGÖZ Yrd.Doç. Dr. Fazıl GÖKGÖZ 1 Modelin Standard Hali Maksimizasyon

Detaylı

DP Model Kurma (Derste Çözülecek Örnekler)

DP Model Kurma (Derste Çözülecek Örnekler) 1*. Bir tekstil firması 3 ebatta (S-M-L) gömlek üretmektedir. Her bir gömleğin üretim maliyeti sırasıyla 3 pb., 4 pb. ve 6 pb. dir. Firmanın Türkiye çapındaki bayileri; haftada en az 2000 adet S, 3000

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTıRMA MODELININ TANıMı Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL)

doğrusal programlama DOĞRUSAL PROGRAMLAMA (GENEL) DOĞRUSAL PROGRAMLAMA (GENEL) Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik biçiminde verilmesi durumunda amaca

Detaylı

Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin

Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin DUYARLILIK ANALİZİ Duyarlılık analizi, bir doğrusal programlama probleminde belirlenen katsayı değerlerinin değişmesinin problemin optimal çözümü üzerine etkisini incelemektedir. Oluşturulan modeldeki

Detaylı

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler

11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 11.Konu Tam sayılarda bölünebilme, modüler aritmetik, Diofant denklemler 1. Asal sayılar 2. Bir tam sayının bölenleri 3. Modüler aritmetik 4. Bölünebilme kuralları 5. Lineer modüler aritmetik 6. Euler

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

Çözümlemeleri" adlı yüksek lisans tezini başarıyla tamamlayarak 2001'de mezun oldu.

Çözümlemeleri adlı yüksek lisans tezini başarıyla tamamlayarak 2001'de mezun oldu. Dersi Veren Öğretim Üyesi: Doç. Dr. Mehmet KORKMAZ Özgeçmişi Mehmet KORKMAZ, 1975 yılında Malatya da doğdu. İlkokul, ortaokul ve liseyi memleketi olan Isparta da tamamladı. 1996 yılında İ.Ü. Orman Fakültesi,

Detaylı

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY)

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) 1 DOĞRUSAL PROGRAMLAMADA İKİLİK (DUALİTE-DUALITY) Doğrusal programlama modelleri olarak adlandırılır. Aynı modelin değişik bir düzende oluşturulmasıyla Dual (İkilik)

Detaylı

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü

OYUN TEORİSİ. Özlem AYDIN. Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü OYUN TEORİSİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü TANIM ''Oyun Teorisi'', iki yada daha fazla rakibi belirli kurallar altında birleştirerek karşılıklı olarak çelişen olasılıklar

Detaylı

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem

3.2. DP Modellerinin Simpleks Yöntem ile Çözümü Primal Simpleks Yöntem 3.2. DP Modellerinin Simpleks Yöntem ile Çözümü 3.2.1. Primal Simpleks Yöntem Grafik çözüm yönteminde gördüğümüz gibi optimal çözüm noktası, her zaman uygun çözüm alanının bir köşe noktası ya da uç noktası

Detaylı

Duyarlılık Analizi, modelde veri olarak kabul edilmiş parametrelerde meydana gelen değişimlerin optimum çözüme etkisinin incelenmesidir.

Duyarlılık Analizi, modelde veri olarak kabul edilmiş parametrelerde meydana gelen değişimlerin optimum çözüme etkisinin incelenmesidir. ISLE 403 YÖNEYLEM ARAŞTIRMASI I DERS IV NOTLAR Bağlayıcı Kısıtlar ve Bağlayıcı Olmayan Kısıtlar: Bağlayıcı Kısıtlar, denklemleri optimum çözüm noktasında kesişen kısıtlardır. Bağlayıcı-Olmayan Kısıtlar,

Detaylı

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir.

Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. 1 DENKLEMLER: Değişken içeren ve değişkenlerin belli değerleri için doğru olan cebirsel eşitliklere denklem denir. Bir denklemde eşitliği sağlayan(doğrulayan) değerlere; verilen denklemin kökleri veya

Detaylı

Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira

Doğrusal Denklem Sistemlerini Cebirsel Yöntemlerle Çözme. 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 2 tişört + 1 çift çorap = 16 lira 1 tişört + 2 çift çorap = 14 lira 1 16 soruluk bir testte 5 ve 10 puanlık sorular bulunmaktadır. Soruların tamamı doğru cevaplandığında 100 puan alındığına göre testte

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

4. Gölge Fiyat Kavramı ve Duyarlılık Analizleri:

4. Gölge Fiyat Kavramı ve Duyarlılık Analizleri: 4. Gölge Fiyat Kavramı ve Duyarlılık Analizleri: 4.1. Gölge Fiyat Kavramı Gölge fiyatlar doğrusal programlama modellerinde kısıtlarla açıklanan kaynakların bizim için ne kadar değerli olduklarını gösterirler.

Detaylı

YÖNEYLEM ARAŞTIRMASI YÜKSEK LİSANS DERSİ

YÖNEYLEM ARAŞTIRMASI YÜKSEK LİSANS DERSİ LINDO (Linear Interactive and Discrete Optimizer) YÖNEYLEM ARAŞTIRMASI YÜKSEK LİSANS DERSİ 2010-2011 Güz-Bahar Yarıyılı YRD.DOÇ.DR.MEHMET TEKTAŞ ÖRNEK 6X 1 + 3X 2 96 X 1 + X 2 18 2X 1 + 6X 2 72 X 1, X

Detaylı

ĐST 349 Doğrusal Programlama ARA SINAV I 15 Kasım 2006

ĐST 349 Doğrusal Programlama ARA SINAV I 15 Kasım 2006 ĐST 49 Doğrusal Programlama ARA SINAV I 15 Kasım 006 Adı Soyadı:KEY No: 1. Aşağıdaki problemi grafik yöntemle çözünüz. Đkinci kısıt için marjinal değeri belirleyiniz. Maximize Z X 1 + 4 X subject to: X

Detaylı

7. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

7. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 7. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.7. MALİYET TEORİSİ: YENİDEN Sabit Maliyetler (FC): Üretim miktarından bağımsız olan maliyetleri

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA (NLP)

DOĞRUSAL OLMAYAN PROGRAMLAMA (NLP) DOĞRUSAL OLMAYAN PROGRAMLAMA (NLP) 1. Non-lineer kar analizi, 2. Kısıtlı optimizasyon, 3. Yerine koyma (substitution) yöntemi, 4. Lagranj Çarpanları Yöntemi 5. Başabaş Analizleri ve Duyarlılık Testleri

Detaylı

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi 1) Giriş Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Pendulum Deneyi.../../2015 Bu deneyde amaç Linear Quadratic Regulator (LQR) ile döner ters sarkaç (rotary inverted

Detaylı

II DP Model Kurma (Derste Çözülecek Örnekler)

II DP Model Kurma (Derste Çözülecek Örnekler) 1. Bir ayakkabı üretim firması 2 tür (kadın ve erkek) ayakkabı üretmektedir. Her bir ayakkabının üretim maliyeti sırasıyla 10 pb. ve 7 pb. dir. Firmanın Türkiye çapındaki bayileri; toplam olarak haftada

Detaylı

DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ

DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ DOĞRUSAL PROGRAMLAMANIN ÖZEL TÜRLERİ TRANSPORTASYON (TAŞIMA, ULAŞTIRMA) TRANSİT TAŞIMA (TRANSSHIPMENT) ATAMA (TAHSİS) TRANSPORTASYON (TAŞIMA) (ULAŞTIRMA) TRANSPORTASYON Malların birden fazla üretim (kaynak,

Detaylı

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 6. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.5. Doğrusal olmayan fonksiyonların eğimi Doğrusal fonksiyonlarda eğim her noktada sabittir

Detaylı

MATEMATİK-II dersi. Bankacılık ve Finans, İşletme, Uluslararası Ticaret. Bölümleri için FİNAL Çalışma Soruları

MATEMATİK-II dersi. Bankacılık ve Finans, İşletme, Uluslararası Ticaret. Bölümleri için FİNAL Çalışma Soruları MATEMATİK-II dersi Bankacılık ve Finans, İşletme, Uluslararası Ticaret Bölümleri için FİNAL Çalışma Soruları ] e d =? = u d= du du d= udu u u e d= e d= e = edu= e + c= e + c ] e d =? = + = e + c e d e

Detaylı

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2

OPTIMIZASYON Bir Değişkenli Fonksiyonların Maksimizasyonu...2 OPTIMIZASYON.... Bir Değişkenli Fonksiyonların Maksimizasyonu.... Türev...3.. Bir noktadaki türevin değeri...4.. Maksimum için Birinci Derece Koşulu...4.3. İkinci Derece Koşulu...5.4. Türev Kuralları...5

Detaylı

BÖLÜM I: Hedef Programlama. Prof.Dr. Bilal TOKLU. HEDEF PROGRAMLAMAYA GİRİŞ HEDEF PROGRAMLAMA MODELLERİNİN ÇÖZÜMÜ

BÖLÜM I: Hedef Programlama. Prof.Dr. Bilal TOKLU. HEDEF PROGRAMLAMAYA GİRİŞ HEDEF PROGRAMLAMA MODELLERİNİN ÇÖZÜMÜ Yöneylem Araştırması III Prof.Dr. Bilal TOKLU btoklu@gazi.edu.tr Yöneylem Araştırması III BÖLÜM I: Hedef Programlama HEDEF PROGRAMLAMAYA GİRİŞ ÖNCELİKSİZ HEDEF PROGRAMLAMA ÖNCELİKLİ HEDEF PROGRAMLAMA HEDEF

Detaylı

GAMS Kullanım Notları

GAMS Kullanım Notları GAMS Kullanım Notları Dilay Çelebi İstanbul Teknik Üniversitesi 1. Giriş Aşağıdaki DP problemini ele aldığımızı varsayalım. Z min = 4x 1 + 2x 2 + 33x 3 (1) x 1 4x 2 + x 3 12 (2) 9x 1 + 6x 2 = 15 (3) 5x

Detaylı

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Dr. Özgür Kabak TP Çözümü TP problemlerinin çözümü için başlıca iki yaklaşım vardır kesme düzlemleri (cutting planes) dal sınır (branch and bound) tüm yaklaşımlar tekrarlı

Detaylı

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Dr. Özgür Kabak GAMS Giriş GAMS (The General Algebraic Modeling System) matematiksel proglamlama ve optimizasyon için tasarlanan yüksek seviyeli bir dildir. Giriş dosyası:

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Bu bölümde eşitsizlik kısıtlarına bağlı bir doğrusal olmayan kısıta sahip problemin belirlenen stasyoner noktaları

Detaylı

yöneylem araştırması Nedensellik üzerine diyaloglar I

yöneylem araştırması Nedensellik üzerine diyaloglar I yöneylem araştırması Nedensellik üzerine diyaloglar I i Yayın No : 3197 Eğitim Dizisi : 149 1. Baskı Ocak 2015 İSTANBUL ISBN 978-605 - 333-225 1 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları

Detaylı

DENKLEM SİSTEMLERİ. ifadesinde a sayısı bilinmeyenin katsayısı ve b ise sabit sayıdır.

DENKLEM SİSTEMLERİ. ifadesinde a sayısı bilinmeyenin katsayısı ve b ise sabit sayıdır. DENKLEM SİSTEMLERİ 1) BİRİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER: a,bϵ R ve olmak üzere; şeklindeki denklemlere birinci dereceden bir bilinmeyenli denklem denir. Bu tür denklemlerde sadece bir bilinmeyen

Detaylı

http://www.cengizonder.com Temel Finans Matematiği Örnek Soru Çözümleri Sayfa. 1 Eylül 2009

http://www.cengizonder.com Temel Finans Matematiği Örnek Soru Çözümleri Sayfa. 1 Eylül 2009 http://www.cengizonder.com Temel Finans Matematiği Örnek Soru Çözümleri Sayfa. 1 SORU - 1 31.12.2009 itibariyle, AIC Şirketi'nin çıkarılmış sermayesi 750.000.000 TL olup şirket sermayesini temsil eden

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Şanlıurfa Kuru Tarım İşletmelerinde Farklı Makina Seti ve Arazi Büyüklüğüne Göre Optimum Ürün Deseninin Belirlenmesi

Şanlıurfa Kuru Tarım İşletmelerinde Farklı Makina Seti ve Arazi Büyüklüğüne Göre Optimum Ürün Deseninin Belirlenmesi Şanlıurfa Kuru Tarım lerinde Farklı Makina Seti ve Arazi Büyüklüğüne Göre Optimum Ürün Deseninin Belirlenmesi Cevdet SAĞLAM 1, Refik POLAT 2 1 Harran Üniversitesi, Ziraat Fakültesi, Tarım makineları Bölümü,

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER

YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER YÖNEYLEM ARAŞTIRMASI İLE İLGİLİ ÇÖZÜMLÜ ÖRNEKLER I. ATAMA PROBLEMLERİ PROBLEM 1. Bir isletmenin en kısa sürede tamamlamak istediği 5 işi ve bu işlerin yapımında kullandığı 5 makinesi vardır. Aşağıdaki

Detaylı

DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ

DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ Örnek : Taksi ile yapılan yolculukların ücreti taksimetre ile belirlenir Bir taksimetrenin açılış ücreti 2 TL, sonraki her kilometre başına 1 TL ücret ödendiğine

Detaylı

SORU SETİ 10 MALİYET TEORİSİ - UZUN DÖNEM MALİYETLER VE TAM REKABET PİYASASINDA ÇIKTI KARARLARI - TEKEL

SORU SETİ 10 MALİYET TEORİSİ - UZUN DÖNEM MALİYETLER VE TAM REKABET PİYASASINDA ÇIKTI KARARLARI - TEKEL SORU SETİ 10 MALİYET TEORİSİ - UZUN DÖNEM MALİYETLER VE TAM REKABET PİYASASINDA ÇIKTI KARARLARI - TEKEL Problem 1 (KMS-2001) Bir endüstride iktisadi kârın varlığı, aşağıdakilerden hangisini gösterir? A)

Detaylı

Teknolojik Gelişme ve Ekonomik Büyüme:

Teknolojik Gelişme ve Ekonomik Büyüme: B.E.A. Teknolojik Gelişme ve Ekonomik Büyüme: Daha önce üretim fonksiyonunda yalnızca fiziksel sermaye (K) ve insan (N) girdisi bulunmakta idi. Şimdi üretim fonksiyonuna teknolojiyi eklemekteyiz: Y=F(K,N,A)

Detaylı

S2. İnova kimya İşletmesi, aşağıdaki özellikleri taşıyan ürün üretmektedir:

S2. İnova kimya İşletmesi, aşağıdaki özellikleri taşıyan ürün üretmektedir: Ödev soruları S1. Kimsan kimya firması X ve Y gibi iki tip kimyasal madde üretmektedir. 1 litre X ürününün maliyeti 160 TL., 1 litre Y ürününün maliyeti ise 240 TL. dir. Müşteri talebine göre, firma, gelecek

Detaylı

İktisadi Analiz Ders Notu: Doğrusal Üretim Modelleri ve Sraffa Sistemi

İktisadi Analiz Ders Notu: Doğrusal Üretim Modelleri ve Sraffa Sistemi N. K. Ekinci Ekim 2015 İktisadi Analiz Ders Notu: Doğrusal Üretim Modelleri ve Sraffa Sistemi 1. Tek Sektörlü Ekonomide Gelir Dağılımı Tek mal (buğday) üreten bir ekonomi ele alalım. 1 birim buğday üretimi

Detaylı

EŞİTSİZLİKLER. 5. x 2 + 4x + 4 > x 2 0. eşitsizliğinin çözüm kümesi. eşitsizliğinin çözüm kümesi. aşağıdakilerden hangisidir?

EŞİTSİZLİKLER. 5. x 2 + 4x + 4 > x 2 0. eşitsizliğinin çözüm kümesi. eşitsizliğinin çözüm kümesi. aşağıdakilerden hangisidir? 1. 36 x A) [- 6, ] B) [- 6, 6 ] C) [, 36] D) [, 36 ] E) [- 36, ] 5. x + 4x + 4 > A) (, ) B) - } C) D) R E) R - {- } 6. x + 8x + 16. x x 8 < aşağıdalerden hangisidir? A) (- 4, ) B) (-, ) C) (- 4, ) A) {

Detaylı

9. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

9. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 9. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.8. TAM REKABET PİYASALARI A.8.1. Temel Varsayımları Atomisite Koşulu: Piyasada alıcı ve satıcılar,

Detaylı

Gazi Üniversitesi, Kimya Mühendisliği Bölümü KM 378 Mühendislik Ekonomisi

Gazi Üniversitesi, Kimya Mühendisliği Bölümü KM 378 Mühendislik Ekonomisi Problem Seti 1 (Arz-Talep) 1. Bir firma, satış fiyatı ile talep arasında D=780$-10p eşitliğini geliştirmiştir. Aylık sabit gider 800$ ve ürün başına değişken gider 30$ dır. Aylık karı maksimum yapmak için

Detaylı

B: Bu şekildeki her bir nokta dikdörtgenin noktalarını temsil eder.

B: Bu şekildeki her bir nokta dikdörtgenin noktalarını temsil eder. 2. ÇOK KATLI İNTEGRALLER, DİFERENSİYEL DENKLEMLERE GİRİŞ 2.1. Çok Katlı İntegraller 2.1.1. İki Katlı İntegraller Fonksiyonu bir B bölgesinde sınırlı yani için olsun. B bölgesi alt bölgelere ayrılırsa;

Detaylı

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01 Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin

Detaylı

Mikroiktisat Final Sorularý

Mikroiktisat Final Sorularý Mikroiktisat Final Sorularý MERSĐN ÜNĐVERSĐTESĐ ĐKTĐSADĐ VE ĐDARĐ BĐLĐMLER FAKÜLTESĐ MALĐYE VE ĐŞLETME BÖLÜMLERĐ MĐKROĐKTĐSAT FĐNAL SINAVI 10.01.2011 Saat: 13:00 Çoktan Seçmeli Sorular: Sorunun Yanıtı

Detaylı

10. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

10. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 10. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 A.9. TEKEL (MONOPOL) Piyasada bir satıcı ve çok sayıda alıcının bulunmasıdır. Piyasaya başka

Detaylı

Math 322 Diferensiyel Denklemler Ders Notları 2012

Math 322 Diferensiyel Denklemler Ders Notları 2012 1 Genel Tanımlar Bir veya birden fazla fonksiyonun türevlerini içeren denklemlere diferensiyel denklem denmektedir. Diferensiyel denklemler Adi (Sıradan) diferensiyel denklemler ve Kısmi diferensiyel denklemler

Detaylı

ÇOK KRİTERLİ KARAR VERME HEDEF PROGRAMLAMA

ÇOK KRİTERLİ KARAR VERME HEDEF PROGRAMLAMA ÇOK KRİTERLİ KARAR VERME HEDEF PROGRAMLAMA KONU 10 Doç. Dr. Fazıl GÖKGÖZ 1 Genel Bilgiler Lineer programlama kapsamına tek bir amaç fonksiyonu uruma göre maksimize veya minimize eilmekteir. Ancak, gerçek

Detaylı

ÜRETİM VE MALİYETLER

ÜRETİM VE MALİYETLER ÜRETİM VE MALİYETLER FİRMALARIN TEMEL AMACI Mal ve hizmet üretimi firmalar tarafından gerçekleştirilir. Ekonomi teorisine göre, firmaların mal ve hizmet üretimindeki temel amacı kar maksimizasyonu (en

Detaylı

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012)

H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) H.Ü. Bilgi ve Belge Yönetimi Bölümü BBY 208 Sosyal Bilimlerde Araştırma Yöntemleri II (Bahar 2012) SPSS Ders Notları II (19 Nisan 2012) Aşağıdaki analizlerde lise öğrencileri veri dosyası kullanılmıştır.

Detaylı

HEDEF ARA ve ÇÖZÜCÜ HEDEF ARA

HEDEF ARA ve ÇÖZÜCÜ HEDEF ARA HEDEF ARA ve ÇÖZÜCÜ HEDEF ARA Hedef ara komutu bir fonksiyonun tersinin bulunmasında kullanılır. Hedef ara işlemi, y=f(x) gibi bir fonksiyonda y değeri verildiğinde x değerinin bulunmasıdır. Bu işlem,

Detaylı

Yöneylem Araştırması

Yöneylem Araştırması Yöneylem Araştırması Çok sayıda teknik ve bilimsel yaklaşımı içeren Yöneylem Araştırması, genellikle kıt kaynakların paylaşımının söz konusu olduğu sistemlerin en iyi şekilde tasarlanması ve işletilmesine

Detaylı

Algoritmalara Giriş. Prof. Erik Demaine. November 16, 2005 Copyright by Erik D. Demaine and Charles E. Leiserson L18.1

Algoritmalara Giriş. Prof. Erik Demaine. November 16, 2005 Copyright by Erik D. Demaine and Charles E. Leiserson L18.1 Algoritmalara Giriş 6.06J/8.0J Ders 8 En Kısa Yollar II Bellman-Ford algoritması Doğrusal Programlama ve fark kısıtları VLSI yerleşimi küçültülmesi Prof. Erik Demaine November 6, 00 Copyright 00- by Erik

Detaylı

REGRESYON ANALİZİ VE UYGULAMA. Yrd. Doç. Dr. Hidayet Takcı

REGRESYON ANALİZİ VE UYGULAMA. Yrd. Doç. Dr. Hidayet Takcı REGRESYON ANALİZİ VE UYGULAMA Yrd. Doç. Dr. Hidayet Takcı htakci@cumhuriyet.edu.tr Sunum içeriği Bu sunumda; Lojistik regresyon konu anlatımı Basit doğrusal regresyon problem çözümleme Excel yardımıyla

Detaylı

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar

Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar Lineer Denklem Sistemleri Kısa Bilgiler ve Alıştırmalar Bir Matrisin Rankı A m n matrisinin determinantı sıfırdan farklı olan alt kare matrislerinin boyutlarının en büyüğüne A matrisinin rankı denir. rank(a)

Detaylı

Adı Soyadı: No: 05.04.2010 Saat: 08:30

Adı Soyadı: No: 05.04.2010 Saat: 08:30 Adı Soyadı: No: 05.04.2010 Saat: 08:30 ID: Z Mikro 2 Ara 2010 Çoktan Seçmeli Sorular Cümleyi en iyi biçimde tamamlayan veya sorunun yanıtı olan seçeneği yanıt anahtarına işaretleyiniz. 1. Çapraz satış

Detaylı

f (a+h) f (a) h + f(a)

f (a+h) f (a) h + f(a) DERS 7 Marjinal Analiz 7.. Marjinal Değerler. f fonksiyonunun (a, f(a noktasınaki teğetinin eğiminin f (a ve teğetin enkleminin e y f (a ( a + f(a oluğunu biliyoruz. a ya yakın bir a+h eğeri için f (a+h

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 Bölüm 2 STATİK DENGE ANALİZİ 19 2.1 İktisatta Denge Kavramı 20 2.1.1.

Detaylı

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI

DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI DARÜŞŞAFAKA LİSESİ SALİH ZEKİ LİSE ÖĞRENCİLERİ ARASI MATEMATİK PROJELERİ YARIŞMASI PROJE ADI: TÜRKİYE DEKİ GELECEKTEKİ DOKTOR İHTİYACINI YÖNEYLEM ARASTIRMASI İLE BELİRLEMEK MEV KOLEJİ BASINKÖY OKULLARI

Detaylı

Güçlü, Gelişen, Şeffaf Bir Piyasa İçin

Güçlü, Gelişen, Şeffaf Bir Piyasa İçin Güçlü, Gelişen, Şeffaf Bir Piyasa İçin Gün Öncesi Piyasası Abdülkadir ONGUN Gün Öncesi Piyasası Müdürlüğü 18 Kasım 2011 WOW - İstanbul Güçlü, Gelişen, Şeffaf Bir Piyasa İçin 2 Elektrik Piyasası Genel Bakış

Detaylı

TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ

TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MAKİNA MÜHENDİSLİĞİ ANABİLİM DALI DOKTORA PROGRAMI ŞEKİL TANIMA ÖDEV 2 KONU : DESTEK VEKTÖR MAKİNELERİ Kenan KILIÇASLAN Okul No:1098107203 1. DESTEK VEKTÖR MAKİNELER

Detaylı

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR

HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR HESSİEN MATRİS QUADRATİK FORM MUTLAK ve BÖLGESEL MAKS-MİN NOKTALAR Kısıtlı ve kısıtsız fonksiyonlar için maksimum veya minimum (ekstremum) noktalarının belirlenmesinde diferansiyel hesabı kullanarak çeşitli

Detaylı

İktisat bilimi açısından optimizasyon, amacımıza en uygun olan. seçeneğin belirlenmesidir. Örneğin bir firmanın kârını

İktisat bilimi açısından optimizasyon, amacımıza en uygun olan. seçeneğin belirlenmesidir. Örneğin bir firmanın kârını OPTİMİZASYON İktisat bilimi açısından optimizasyon, amacımıza en uygun olan seçeneğin belirlenmesidir. Örneğin bir firmanın kârını maksimize edecek olan üretim miktarının belirlenmesi; bir bireyin toplam

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN

2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM. Yazan SAYIN SAN 2. HAFTA DERS NOTLARI İKTİSADİ MATEMATİK MİKRO EKONOMİK YAKLAŞIM Yazan SAYIN SAN SAN / İKTİSADİ MATEMATİK / 2 C.1.2. Piyasa Talep Fonksiyonu Bireysel talep fonksiyonlarının toplanması ile bir mala ait

Detaylı

ENM 525 İleri Üretim Planlama ve Kontrolü PAÜ Fen Bilimleri Enstitüsü Endüstri Mühendisliği Ana Bilim Dalı

ENM 525 İleri Üretim Planlama ve Kontrolü PAÜ Fen Bilimleri Enstitüsü Endüstri Mühendisliği Ana Bilim Dalı ENM 525 İleri Üretim Planlama ve Kontrolü PAÜ Fen Bilimleri Enstitüsü Endüstri Mühendisliği Ana Bilim Dalı Bu ders notları, 2012-2013 ve 2013-2014 Bahar yarıyılında PAÜ Endüstri Mühendisliği bölümünde

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Hessien Matris-Quadratik Form Mutlak ve Bölgesel Maksimum-Minimum Noktalar Giriş Kısıtlı ve kısıtsız fonksiyonlar için

Detaylı

Standart modellerde öncelikle kısıt denklemleri eşitlik haline çevrilmelidir. Öncelikle ilk kısıta bakalım.

Standart modellerde öncelikle kısıt denklemleri eşitlik haline çevrilmelidir. Öncelikle ilk kısıta bakalım. 3. Simpleks Yöntem Doğrusal programlama modelleri grafik yöntem dışında simpleks yöntem adı altında özel bir yöntemle çözülebilir. Bu yöntem Simple Matrix kelimlerinin kısaltmasıdır ve bir çeşit matris

Detaylı

Yöneylem Araştırması. Uygulama Soruları. Yrd. Doç. Dr. H. İbrahim CEBECİ

Yöneylem Araştırması. Uygulama Soruları. Yrd. Doç. Dr. H. İbrahim CEBECİ Yöneylem Araştırması Uygulama Soruları Soru 1: Çamaşır Makinesi Bir beyaz eşya şirketi birim karı 6 lira olan çamaşır makinası ve birim karı 7 lira olan kurutma makinası üretmektedir. İşletmede üretim,

Detaylı

EKON 305 Yöneylem Araştırması I. Doğrusal Programlama. Doç. Dr. Murat ATAN 1

EKON 305 Yöneylem Araştırması I. Doğrusal Programlama. Doç. Dr. Murat ATAN 1 EKON 305 Yöneylem Araştırması I Doğrusal Programlama Doç. Dr. Murat ATAN 1 Doğrusal Programlama Karar Verme ve Modeller Algılanan ihtiyaçlara özgü kasıtlı ve düşünceli seçim (Kleindorfer ve diğ., 1993)

Detaylı

SİMPLEKS ALGORİTMASI Yapay değişken kullanımı

SİMPLEKS ALGORİTMASI Yapay değişken kullanımı Fen Bilimleri Enstitüsü Endüstri Mühendisliği Anabilim Dalı ENM53 Doğrusal Programlamada İleri Teknikler SİMPLEKS ALGORİTMASI Yapay değişken kullanımı Hazırlayan: Doç. Dr. Nil ARAS, 6 AÇIKLAMA Bu sununun

Detaylı

1. Hem % 15 i, hem de % 33 ü tam sayı olan en küçük pozitif sayı nedir? c)

1. Hem % 15 i, hem de % 33 ü tam sayı olan en küçük pozitif sayı nedir? c) TÜBİTAK TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI 10. ULUSAL İLKÖĞRETİM MATEMATİK OLİMPİYATI SINAVI - 2005 Soru kitapçığı türü A 1. Hem % 15 i, hem de % 33

Detaylı

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 22. LİSELERARASI MATEMATİK YARIŞMASI

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 22. LİSELERARASI MATEMATİK YARIŞMASI DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 22. LİSELERARASI MATEMATİK YARIŞMASI BİREYSEL YARIŞMA SORULARI CEVAPLARI CEVAP KAĞIDI ÜZERİNE YAZINIZ. SORU KİTAPÇIĞINI KARALAMA MAKSATLI KULLANABİLİRSİNİZ SORU-1.

Detaylı