T.C. BALIKESİR ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BOLOGNA SÜRECİ BÖLÜM TANITIMI

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "T.C. BALIKESİR ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BOLOGNA SÜRECİ BÖLÜM TANITIMI"

Transkript

1 T.C. BALIKESİR ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BOLOGNA SÜRECİ BÖLÜM TANITIMI 1

2 Bölüm Hakkında: Dört yıllık programın ilk iki yılında teorik geniş bir çerçevede matematiğin temelleri aktarılmaktadır. Programın üçüncü ve dördüncü yıllarında matematiğin farklı anabilim dallarına ait pek çok seçmeli ders yer almaktadır. Amaç: Programın amacı öğrencilerine temel Matematik bilgilerini üst seviyede vererek, soyut düşünme ve Matematiksel analiz yapabilme yeteneğine sahip mezunlar veren bir bölüm olmaktır. Hedef: Matematik bölümünün temel hedefleri, derslerini üst düzeyde veren ve diğer bölüm öğrencilerine gerekli Matematiksel bilgileri sağlayan bir bölüm olmaktır. Kazanılan Derece: Program başarılı bir şekilde tamamlanıp, program yeterlilikleri sağlandığında Matematik Bilim alanında Lisans derecesine sahip olunur. Kazanılan Derecenin Seviyesi : Bu bölüm, yüksek öğretimde Matematik Bilimi alanında 240 (ECTS) kredilik birinci düzey (kademe) sistemine tabidir. Kabul Koşulları: Bölüme kayıt yaptırmak isteyen öğrenci, üniversitenin akademik ve yasal mevzuatı çerçevesinde ÖSYM tarafından belirlenen süreçleri tamamlamak / sınavları başarmış olmak zorundadır. Yurtiçi veya dışında eşdeğer programda öğrenimine başlamış bir öğrenci yatay geçiş için başvuru yapabilir. Öğrencilerin kabulü dönem başlamadan, her bir öğrencinin şartları ve başvuru yaptığı derece dikkate alınarak incelenir ve özel değerlendirilir. Üniversiteye giriş hakkında daha etraflı bilgi Kurum Tanıtım Kataloğu`nda mevcuttur. Üniversite tarafından onaylanmış ve bir anlaşma ile sınırları belirlenmiş öğrenci değişim programları kapsamında yurtdışından gelen öğrenciler bölümde İngilizce verilen dersleri alabilirler. Öğrenci Türkçe dil bilgisi yeterliliğine sahipse Ders Planı`nda belirtilen herhangi bir Türkçe derse kayıt yaptırabilir. Önceki nin Tanınması: 2

3 Dikey veya yatay geçiş ile Matematik programına kayıt yaptıran öğrencilerin önceki eğitim programlarında alıp başarılı oldukları dersler, ders içerikleri ve kredi uyumlulukları bölüm kurulunca tartışıldıktan sonra, öğrenciler bu derslerden muaf tutulabilmektedir. Ayrıca programa yeni kayıt yaptıran öğrenciler, her yarıyıl başında yapılan İngilizce sınavda başarılı oldukları durumda bu dersten muaf tutulurlar. Programın Tanımı: Evrensel bir dil Matematik; Biyoloji, Fizik, Kimya, Mühendislik bilimleri ve sosyal bilimler gibi alanlarda kullanılan, bilim ve teknolojinin önemli bir aracıdır. Matematik bölümü, matematiğin temel ilke ve kuramlarına hakim, analitik düşünebilme yeteneğine sahip, yaratıcı yaklaşımlarla sorunlara çözümler üretebilen, çağdaş bilim ve teknolojinin bir çok alanlarında matematik uygulamalarını benimsemiş, disiplinler arası yaklaşımıyla teorinin gerçek yaşamda nasıl uygulanabileceğini bilen mezunlar veren ve mezunlarına bu ilkeler doğrultusunda üniversitelerde ve çeşitli kamu ve özel sektör alanlarında çalışmalarını sağlayacak bilgi ve beceriyi kazandıran bir bölümdür. Program i: 1. Temel Matematik materyallerini iyi bir şekilde kavramak ve yeni bilgileri anlayabilecek donanıma sahip olmak, 2. Matematik bilimindeki kavramları, teorileri ve verileri, bilimsel yöntemlerle değerlendirebilmek, karşılaşılan problemleri analiz edebilmek, tartışmalar yapabilmek, kanıta ve araştırmalara dayalı çözümler geliştirebilmek, 3. Güncel Matematik problemlerine, farklı açılardan bakıp, doğru çözümler üretebilmek, 4. Matematik lisans konuları ile ilgili çalışmaları bağımsız veya paydaşlarıyla yürütebilecek yeterliliğe sahip olmak, 5. Soyut düşünme yeteneğini kullanabilmek, 6. Matematiksel düşünceyi gerçek yaşamda kullanabilmek, 7. Matematik bilimindeki gelişmeleri takip edebilmek ve meslektaşları ile iletişim kurabilmek, 8. Mesleki ve bilimsel etik değerlerine saygılı bir kişiliğe sahip olmak, 9. ının gerektirdiği düzeyde bilgisayar ve bilişim teknolojisi araçlarını ve tekniklerini seçebilmek ve kullanabilmek, 10. Matematik bilgilerini farklı disiplinlerde uygulayabilmek, 11. Edindiği bilgi, beceri ve yetkinlikleri hayat boyu yenileyebilmek, yaşam boyu öğrenme bilincine sahip olmak. 3

4 BİLGİ: Kuramsal Olgusal: Temel Matematik materyallerini iyi bir şekilde kavramak ve yeni bilgileri anlayabilecek donanıma sahip olmak, BECERİLER: Bilişsel, Uygulamalı: Matematik bilimindeki kavramları, teorileri ve verileri, bilimsel yöntemlerle değerlendirebilmek, karşılaşılan problemleri analiz edebilmek, tartışmalar yapabilmek, kanıta ve araştırmalara dayalı çözümler geliştirebilmek, Güncel Matematik problemlerine, farklı açılardan bakıp, doğru çözümler üretebilmek, Matematik bilgilerini farklı disiplinlerde uygulayabilmek, Edindiği bilgi, beceri ve yetkinlikleri hayat boyu yenileyebilmek, yaşam boyu öğrenme bilincine sahip olmak. YETKİNLİKLER: Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği: Matematik lisans konuları ile ilgili çalışmaları bağımsız veya paydaşlarıyla yürütebilecek yeterliliğe sahip olmak, Soyut düşünme yeteneğini kullanabilmek, Yetkinliği: Soyut düşünme yeteneğini kullanabilmek, Matematiksel düşünceyi gerçek yaşamda kullanabilmek, Matematik bilimindeki gelişmeleri takip edebilmek ve meslektaşları ile iletişim kurabilmek, Matematik bilgilerini farklı disiplinlerde uygulayabilmek, Edindiği bilgi, beceri ve yetkinlikleri hayat boyu yenileyebilmek, yaşam boyu öğrenme bilincine sahip olmak. İletişim ve Yetkinlik: 4

5 Matematik bilimindeki gelişmeleri takip edebilmek ve meslektaşları ile iletişim kurabilmek, Mesleki ve bilimsel etik değerlerine saygılı bir kişiliğe sahip olmak, Edindiği bilgi, beceri ve yetkinlikleri hayat boyu yenileyebilmek, yaşam boyu öğrenme bilincine sahip olmak. a Özgü Yetkinlik: ının gerektirdiği düzeyde bilgisayar ve bilişim teknolojisi araçlarını ve tekniklerini seçebilmek ve kullanabilmek, Matematik bilimindeki kavramları, teorileri ve verileri, bilimsel yöntemlerle değerlendirebilmek, karşılaşılan problemleri analiz edebilmek, tartışmalar yapabilmek, kanıta ve araştırmalara dayalı çözümler geliştirebilmek, Matematik bilgilerini farklı disiplinlerde uygulayabilmek, Soyut düşünme yeteneğini kullanabilmek. Mezunların Mesleki Profili: Mezunlarımız; Milli Eğitim Bakanlığına bağlı kurumlarda ve özel dershanelerde öğretmenlik yapabilirler; kamu kurumlarında, bankacılık, sigortacılık ve finans sektörlerinde, şirketlerin araştırma geliştirme ve bilgi teknolojileri bölümlerinde etkin pozisyonlarda çalışabilirler. Ayrıca yurtiçi ve yurtdışındaki üniversitelerin matematik bölümlerinde akademisyen kariyerlerine devam etmeyi tercih edebilirler. Üst Kademeye Geçiş: Programı başarılı bir şekilde tamamlayan öğrenci Matematik alanında veya bu alandan öğrenci kabul eden diğer bilim dallarında yüksek lisans ve doktora programlarına başvuruda bulunabilir. Sınav Değerlendirme Kuralları: Sınav değerlendirme kuralları, ilgili dersin ders tanıtım ve uygulama formunda açıklanmıştır. Lütfen geniş bilgi için Ders Planı bölümündeki ilgili derse bakınız. Mezuniyet Koşulları: Programda mevcut olan 240 karşılığı elde etmek ve derslerin tümünü başarıyla tamamlamak için 4.00 üzerinden en az 2.0 ağırlıklı not ortalamasına sahip olmak gerekir. Eğitim Türü: Program tam zamanlı olup eğitim dili Türkçedir. 5

6 Bölüm Başkanı: Prof. Dr. Nihal YILMAZ ÖZGÜR Bölüm Koordinatörü: Doç. Dr. Ali GÜVEN Bölüm Erasmus Koordinatörü: Doç. Dr. Sebahattin İKİKARDEŞ 6

7 BALIKESİR ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ EĞİTİM-ÖĞRETİM YILI DERS PLANI 1. SINIF 1. YARIYIL 1. SINIF 2. YARIYIL DERS KODU DERSİN ADI DERS Kategori T U L K ECTS KODU DERSİN ADI Kategori T U L K ECTS MAT1101 Analiz I Z MAT1201 Analiz II Z MAT1102 Soyut Matematik I Z MAT1202 Soyut Matematik II Z MAT1103 Analitik Geometri I Z MAT1203 Analitik Geometri II Z FİZ1105 Genel Fizik I Z FİZ1205 Genel Fizik II Z TOPLAM TOPLAM Atatürk İlkeleri ve İnkılap Atatürk İlkeleri ve İnkılap AIT1101 Tarihi-I Z AIT1201 Tarihi-II Z TDI1101 Türk Dili-I Z TDI1201 Türk Dili-II Z * Yabancı Dil-I Z ** Yabancı Dil-II Z GENEL TOPLAM GENEL TOPLAM SINIF 1. YARIYIL 2. SINIF 2. YARIYIL DERS KODU DERSİN ADI DERS Kategori T U L K ECTS KODU DERSİN ADI Kategori T U L K ECTS MAT2101 Analiz III Z MAT2201 Analiz IV Z MAT2102 Diferensiyel Denklemler I Z MAT2202 Diferensiyel Denklemler II Z MAT2103 Doğrusal Cebir I Z MAT2203 Doğrusal Cebir II Z MAT2107 Metrik Uzaylar I Z MAT2206 Metrik Uzaylar II Z MAT2109 İnternet Programlama I Z MAT2209 İnternet Programlama II Z TOPLAM TOPLAM SINIF 1. YARIYIL 3. SINIF 2. YARIYIL DERS KODU DERSİN ADI DERS Kategori T U L K ECTS KODU DERSİN ADI Kategori T U L K ECTS MAT3111 Kompleks Analiz I Z MAT3211 Kompleks Analiz II Z MAT3102 Genel Topolojiye Giriş I Z MAT3202 Genel Topolojiye Giriş II Z MAT3103 Soyut Cebir I Z MAT3203 Soyut Cebir II Z MAT3109 Diferensiyel Geometri I Z MAT3209 Diferensiyel Geometri II Z MAT3106 Matematiksel Modelleme I S MAT3206 Matematiksel Modelleme II S MAT3107 Pascal Programlama Dili I S MAT3207 Pascal Programlama Dili II S MAT3110 Nümerik Analiz I S MAT3210 Nümerik Analiz II S MAT3112 Sayılar Teorisi I S MAT3212 Doğrusal Programlama S MAT3113 Vektör Analizi S MAT3213 Sayılar Teorisi II S TOPLAM TOPLAM

8 4. SINIF 1. YARIYIL 4. SINIF 2. YARIYIL DERS KODU DERSİN ADI Kategori T U L K ECTS DERS KODU DERSİN ADI Kategori T U L K ECTS MAT4101 Fonksiyonel Analize Giriş I Z MAT4201 Fonksiyonel Analize Giriş II Z MAT4103 Ölçü ve İntegral S MAT4204 Fourier Analizi S MAT4104 Geometri S MAT4205 Soyut Cebir III S MAT4106 Analitik Fonksiyonlar S MAT4206 Diferensiyel Denklemlerin Nümerik Çözümleri S Kompleks Analizden Kontrol Teori ve MAT4107 S MAT4207 Konular Uygulamaları II S Kontrol Teori ve Diferensiyellenebilir MAT4109 S MAT4208 Uygulamaları I Manifoldlara Giriş S MAT4111 Olasılık S MAT4209 Riemann Yüzeylerine Giriş S MAT4113 Matematik Tarihi I S MAT4211 Reel Analize Giriş S MAT4114 Kısmi Türevli Diferensiyel Denklemler I S MAT4212 İstatistik S MAT4115 Galois Teori S MAT4213 Matematik Tarihi II S Uygulamalı Matematik İçin Kısmi Türevli Diferensiyel S MAT4214 MAT4116 Yöntemler I Denklemler II S Fuzzy Topolojik Uzaylara Uygulamalı Matematik İçin S MAT4215 MAT4117 Giriş Yöntemler II S MAT4216 Yaklaşım Teorisine Giriş S MAT4217 İdeal Topolojik Uzaylara Giriş S TOPLAM TOPLAM *YDI1101 Yabancı Dil (İngilizce)-I *YDA1101 Yabancı Dil (Almanca)-I *YDF1101 Yabancı Dil (Fransızca)-I **YDI1201 Yabancı Dil (İngilizce)-II **YDA120 1 Yabancı Dil (Almanca)-II **YDF1201 Yabancı Dil (Fransızca)-II KATEGORİ : Z Zorunlu S NOT: 1) Daha önceki senelerde açılan ve ders planından kaldırılan MAT 2106 Lineer Programlama I, MAT 2208 Lineer Programlama II, MAT 2105 Algoritmalar ve Programlama, MAT 2205 C Programlama Dili, MAT4102 Diferansiyel Geometri I, MAT 4203 Diferansiyel Geometri II, MAT 4110 İdealler, Varyeteler ve Algoritmalar, MAT 4210 Hesapsal Cebirsel Geometriye Giriş, MAT4105 Elemanter Sayı Kuramı, MAT4202 Kısmi Türevli Diferensiyel Denklemler derslerini alıp kalanlar ve devam şartını yerine getirenler bu derslerin sadece sınavlarına gireceklerdir 2) dersin açılabilmesi için en az 10 öğrencinin belli bir dersi seçmesi gerekir. 3) MAT3112 Sayılar Teorisi I, MAT3213 Sayılar Teorisi II, MAT3113 Vektör Analizi, MAT3212 Doğrusal Programlama, MAT4115 Galois Teori, MAT4116 Uygulamalı Matematik için Yöntemler I, MAT4215 Uygulamalı Matematik için Yöntemler II, MAT4216 Yaklaşım Teorisine Giriş, MAT4117 Fuzzy Topolojik Uzaylara Giriş, MAT4217 İdeal Topolojik Uzaylara Giriş seçmeli dersleri Eğitim-Öğretim yılından itibaren ders planına eklenmiştir. 4) MAT4105 Elemanter Sayı Kuramı dersi Eğitim-Öğretim yılından itibaren ders planından çıkarılmıştır. Bu dersi alıp kalanlar ve devam şartını yerine getirenler sadece sınavlarına gireceklerdir. 8

9 LİSANS PROGRAMI Program Çıktılarını Çıktıları İlişkilendirme Tablosu Ders PÇ1 PÇ2 PÇ3 PÇ4 PÇ5 PÇ6 PÇ7 PÇ8 PÇ9 PÇ10 PÇ11 Analiz I Soyut Matematik I Analitik Geometri I Genel Fizik I Analiz II Soyut Matematik II Analitik Geometri II Genel Fizik II Analiz III Diferansiyel Denklemler I Doğrusal Cebir I Metrik Uzaylar I İnternet Programlama I Analiz IV Diferansiyel Denklemler II Doğrusal Cebir II Metrik Uzaylar II İnternet Programlama II Kompleks Analiz I Genel Topolojiye Giriş I Soyut Cebir I Diferensiyel Geometri I Matematiksel Modelleme I Pascal Programlama Dili I Nümerik Analiz I Sayılar Teorisi I

10 Vektör Analizi Kompleks Analiz II Genel Topolojiye Giriş II Soyut Cebir II Diferensiyel Geometri II Matematiksel Modelleme II Pascal Programlama Dili II Nümerik Analiz II Doğrusal Programlama Sayılar Teorisi II Fonksiyonel Analize Giriş I Ölçü ve İntegral Geometri Analitik Fonksiyonlar Kompleks Analizden Konular Kontrol Teori ve Uygulamaları I Olasılık Matematik Tarihi I Kısmi Diferansiyel Denklemler I Galois Teori Uygulamalı Matematik İçin Yöntemler I Fuzzy Topolojik Uzaylara Giriş Fonksiyonel Analize Giriş II Fourier Analizi Soyut Cebir III Diferensiyel Denklemlerin Nümerik Çözümleri Kontrol Teori ve Uygulamaları II Diferensiyellenebilir Manifoldlara Giriş Riemann Yüzeylerine Giriş Reel Analize Giriş İstatistik Matematik Tarihi II Kısmi Diferansiyel Denlemler II

11 Uygulamalı Matematik İçin Yöntemler II Yaklaşım Teorisine Giriş İdeal Topolojik Uzaylara Giriş

12 n Adı : Analiz I LİSANS PROGRAMI DERS TANITIM FORMU Kodu : MAT1101 Teori Uygulama.. Proje/ Ödev Toplam T+U+L= Yarıyılı 1 Dili Türkçe n Türü Temel n Amacı Öğrenciye limit, süreklilik, türev kavramlarını ve uygulamalarını öğretmek. Reel sayı dizilerinin yakınsaklığı ile ilgili temel özellileri ve teoremleri ifade edebilme, Bir fonksiyonun limiti ve sürekliliği kavramlarını çeşitli problemlere uygulayabilme, Bir fonksiyonun türevi kavramını ve türev alma yöntemlerini ifade edebilme ve uygulayabilme, Rolle ve ortalama değer teoremlerini ve L Hospital kuralını ifade edebilme, Türev kavramından yararlanarak bir fonksiyonun grafiğini çizebilme, 1) D. Brannan, A First Course in Mathematical Analysis, Cambridge University Press, ) R. G. Bartle and D. R. Sherbert, Introduction to Real Analysis, John Wiley & Sons, ) M. Balcı, Analiz I, Balcı Yayınları, Ankara, Proje ve Bitirme X 60 Hafta Elektronik Posta Konular Reel Sayılar Eşitsizlikler Fonksiyon Kavramı, Bazı Özel Fonksiyonlar, Hiperbolik ve Ters Hiperbolik Fonksiyonlar Diziler ve Limitleri Fonksiyonların limiti, Limit teoremleri Sürekli fonksiyonlar Sürekli fonksiyonların özellikleri, düzgün süreklilik Türev Kavramı Logaritma ve Üstel Fonksiyonun Türevi, Hiperbolik Fonksiyonların Türevi Parametrik Olarak Verilen Fonksiyonların ve Kapalı Fonksiyonların Türevi, Yüksek Mertebeden Türevler Türevin geometrik yorumu, türevle ilgili teoremler Türevin Uygulamaları, Maksimum ve Minimum Lineer Yaklaşım ve Diferansiyel, Genelleştirilmiş Ortalama Değer Teoremi Asimptotlar, Bir Fonksiyonun Grafiğinin çizimi Yrd. Doç. Dr. Burçin Oktay 12

13 n Adı : Soyut Matematik I LİSANS PROGRAMI DERS TANITIM FORMU Kodu : MAT1102 Teori Uygulama.. Proje/ Ödev Toplam T+U+L= Yarıyılı 1 Dili Türkçe n Türü Temel n Amacı Aksiyomatik yaklaşım, ispat teknikleri ve matematiksel sistemleri öğretmek. Matematiksel ispat metotlarını uygulayabilme, Kümeler teorisinin temel özelliklerini ifade edebilme, Fonksiyonların temel özelliklerini ifade edebilme, Kısmen sıralı, iyi sıralı ve tam sıralı küme kavramlarını tanımlayabilme, Grup, halka, cisim gibi cebirsel yapıları tanımlayabilme, 1) Ş. Alpay, H.İ.Karakaş, Number Systems and Algebraic Structures, Matematik Vakfı Yayın No:7, (1996). 2) R. Grimaldi, Discrete and Combinatorial Mathematics-An Applied Introduction, Addison-Wesley, (2004). 3) K. Rosen, Discrete Mathematics and Its Applications, McGraw-Hill Higher Education, (2006). Proje ve Bitirme Yarıyıl İçi Sınavlar X 30 Yarıyıl İçi Sınavlar X 10 X 60 Hafta Elektronik Posta Konular Sembolik Mantık; Önermeler, Niceleyiciler Matematiksel İspat Metotları Kümeler Teorisi Bağıntılar ve Özellikleri Fonksiyonlar Denklik Bağıntıları, Denklik Sınıfları Kısmen Sıralı, Tam Sıralı, İyi-sıralı Kümeler İkili İşlemler Latisler, Boole Cebiri Cebirsel Yapılar: Gruplar Grup Homomorfizmaları ve İzomorfizmaları Halkalar Tamlık Bölgesi ve Cisim İdealler, Halka Homomorfizması Doç. Dr. Sebahattin İkikardeş 13

14 n Adı : Analitik Geometri I LİSANS PROGRAMI DERS TANITIM FORMU Kodu : MAT1103 Teori Uygulama.. Proje/ Ödev Toplam T+U+L= Yarıyılı 1 Dili Türkçe n Türü Temel n Amacı Düzlemde doğru ve konik ile düzlemde ve uzayda vektör kavramlarını ve uygulamalarını öğretmektir. Düzlemde doğru kavramını tanımlayabilme, Bir noktanın bir doğruya uzaklığı, iki doğru arasındaki açı, doğru demeti ve bir doğrunun bir doğruya göre simetriğini tanımlayabilme, Koniklerin genel özelliklerini ifade edebilme ve uygulayabilme, Düzlemde ve uzayda vektörlerin genel özelliklerini ifade edebilme, Eksenlerin döndürülmesi kavramını ifade edebilme. 1) M. Balcı, Analitik Geometri, Balcı Yayınları, Ankara, ) A.Sabuncuoğlu, Analitik Geometri, Nobel yayın dağıtım, ) H.H. Hacısalihoğlu, 2 ve 3 boyutlu uzaylarda Analitik Geometri, Hacısalihoğlu yayıncılık, Ankara ) R. Kaya, Analitik Geometri, Seçkin Yayıncılık, ) I.Vaisman, Analytical Geometry, World Scientific, Proje ve Bitirme X 60 Hafta Konular 1 Düzlemde vektörler, iç çarpım, lineer bağımsızlık ve baz kavramları 2 Düzlemde doğrular, doğru denklemleri, paralel ve dik doğrular, bir noktanın bir doğru üzerine dik izdüşümü 3 Bir noktanın bir doğruya uzaklığı, iki doğru arasındaki açı, doğru demeti, bir doğrunun bir doğruya göre simetriği 4 Düzlemde eğriler, kutupsal koordinatlar, eğrilerin parametrik denklemleri 5 Koniklerin genel tanımı, çemberin analitik incelenmesi 6 Elipsin analitik incelenmesi 7 Hiperbolün analitik incelenmesi 8 Parabolün analitik incelenmesi 9 Düzlemde koordinat dönüşümleri, noktaların ötelenmesi, eksenlerin ötelenmesi, 10 Dönme fonksiyonu, Eksenlerin döndürülmesi 11 Genel ikinci derece denklemleri 12 Uzayda kartezyen koordinatlar, uzayda vektörler, dik ve paralel vektörler 13 Vektörlerin vektörel çarpımı, karma çarpım, matrisler 14 Determinantlar ve lineer denklem sistemleri Doç. Dr. Bengü BAYRAM Elektronik Posta 14

15 n Adı : Genel Fizik I LİSANS PROGRAMI DERS TANITIM FORMU Kodu : FİZ1105 Teori Uygulama Proje/ Ödev Toplam n Türü n Amacı Yarıyılı 1 Dili Türkçe Temel Mekanik ve dinamik ile ilgili temel kavramları ve bu kavramların mühendislikteki uygulamalarını öğretmek. Tek ve çok boyutlu hareketin temel prensiplerini ifade edebilme, Parçacık dinamiğinin temel kavramlarını tanımlayabilme ve uygulayabilme, İş ve Enerji kavramlarını tanımlayabilme, Çizgisel ve Açısal momentumun temel kavramlarını tanımlayabilme, Dönme kinematiğinin temel kavramlarını tanımlayabilme, Titreşim hareketinin temel prensiplerini ifade edebilme. 1) R.A. Serway, R.C. Beichner, J.W. Jevett, Fen ve Mühendislik için Fizik 1, Palme Yayıncılık, ) C. Yalçın, Temel Fizik, Arkadaş Yayınları, ) C. Yalçın, E. Apaydın, Fiziğin Temelleri I, Arkadaş Yayınları. Yarıyıl İçi Sınavlar X 30 Yarıyıl İçi Sınavlar X 10 Dönem Ödevi (proje, rapor, vb) Yarıyıl Sonu Sınavı X 60 Proje ve Bitirme Hafta Sorumlu Öğretim Elektronik Posta Konular Ölçümler, Vektörler Bir boyutta hareket, düzlemde hareket Bir boyutta hareket, düzlemde hareket Katı cisimlerin dengesi Katı cisimlerin dengesi Parçacık Dinamiği İş ve Enerji, Yerçekimi, Enerjinin Korunumu İş ve Enerji, Yerçekimi, Enerjinin Korunumu Çizgisel Momentumun Korunumu, Çarpışmalar Dönme Kinematiği, Dönme Dinamiği ve Açısal Momentumun Korunumu Dönme Kinematiği, Dönme Dinamiği ve Açısal Momentumun Korunumu Titreşimler Titreşimler Akışkanlar Mekaniği Yrd. Doç. Dr. Gülay İnlek 15

16 n Adı : Analiz II LİSANS PROGRAMI DERS TANITIM FORMU Kodu : MAT1201 Teori Uygulama.. Proje/ Ödev Toplam T+U+L= Yarıyılı 2 Dili Türkçe n Türü n Amacı Temel İntegral kavramını, integrasyon tekniklerini, integralin uygulamalarını, seri ve kuvvet serisi kavramlarını öğretmek. İntegral hesabının temel teoremini ifade edebilme ve uygulayabilme, Temel integrasyon tekniklerini uygulayabilme, İki eğri arasındaki alan, yüzey alanı, yay uzunluğu ve dönel yüzeylerin hacimlerini integral yardımı ile hesaplayabilme, Reel sayı serilerinin yakınsaklık kriterlerini uygulayabilme, Fonksiyonları Taylor ve McLaurin serisine açabilme. 1) D. Brannan, A First Course in Mathematical Analysis, Cambridge University Press, ) R. G. Bartle and D. R. Sherbert, Introduction to Real Analysis, John Wiley & Sons, ) M. Balcı, Analiz I, Balcı Yayınları, Ankara, ) M. Balcı, Analiz II, Balcı Yayınları, Ankara, Proje ve Bitirme X 60 Hafta Elektronik Posta Konular Belirsiz İntegral, İntegral Alma Yöntemleri Değişken Değiştirme ve Kısmi İntegrasyon Yöntemleri Rasyonel Fonksiyonların İntegrasyonu İrrasyonel Fonksiyonların İntegrasyonu Bir eğri altındaki ve Belirli İntegral Belirli İntegralin Özellikleri İntegral hesabin temel teoremleri Belirli İntegralin Uygulamaları, Hesabı Yay Uzunluğu Hesabı Dönel Yüzeylerin ı, Dönel Yüzeylerin Hacmi Kutupsal Koordinatlar Seriler, pozitif Terimli Seriler Kuvvet Serileri Fonksiyonların Kuvvet Serileri ile Temsili, Taylor ve Maclaurin Serileri Yrd. Doç. Dr. Burçin Oktay 16

17 n Adı : Soyut Matematik II LİSANS PROGRAMI DERS TANITIM FORMU Kodu : MAT1202 Teori Uygulama.. Proje/ Ödev Toplam T+U+L= Yarıyılı 2 Dili Türkçe n Türü Temel n Amacı Doğal sayılar, tam sayılar, rasyonel sayılar ve reel sayıların inşasını öğretmek. Peano aksiyomlarını ifade edebilme, Doğal sayıların temel özelliklerini ifade edebilme, Sonlu, sonsuz ve sayılabilir küme kavramlarını tanımlayabilme, Tamsayıların temel özelliklerini ifade edebilme, Rasyonel sayıların temel özelliklerini ifade edebilme, Reel sayıların temel özelliklerini ifade edebilme, 1) Ş. Alpay, H.İ.Karakaş, Number Systems and Algebraic Structures, Matematik Vakfı Yayın No:7, (1996). 2) R. Grimaldi, Discrete and Combinatorial Mathematics, Addison-Wesley, (2004). 3) K. Rosen, Discrete Mathematics and Its Applications, McGraw-Hill Higher Education, (2006). Proje ve Bitirme Yarıyıl İçi Sınavlar X 30 Yarıyıl İçi Sınavlar X 10 X 60 Hafta Elektronik Posta Konular Doğal Sayılar, Peano Aksiyomları Doğal Sayıların Özellikleri Sonlu ve Sonsuz Kümeler, Sayılabilir Kümeler Tamsayılar ın Kuruluşu ve Özellikleri Bölünebilirlik, Bölme Algoritması, EBOB Öklid Algoritması Asal Sayılar ve Asal Çarpanlara Ayrılma Aritmetiğin Temel Teoremi Kongrüans Bağıntısı Kongrüans Denklemleri Rasyonel Sayılar ve Özellikleri Reel Sayılar ve Özellikleri Çizit Kavramı Ağaç Yapıları Doç. Dr. Sebahattin İkikardeş 17

18 n Adı : Analitik Geometri II LİSANS PROGRAMI DERS TANITIM FORMU Kodu : MAT1203 Teori Uygulama.. Proje/ Ödev Toplam T+U+L= Yarıyılı 2 Dili Türkçe n Türü Temel n Amacı Uzayda doğru, düzlem, yüzey ve hiperyüzey kavramlarını ve uygulamalarını öğretmektir. Uzayda doğru ve düzlem kavramlarını tanımlayabilme, Küre, silindir, koni, dönel yüzey ve kuadrik yüzeylerin temel özelliklerini ifade edebilme, Silindirik koordinat, küresel koordinat ve kutupsal koordinat kavramlarını tanımlayabilme, R n uzayında nokta ve vektör kavramlarını tanımlayabilme, R n uzayında eğri, hiperdüzlem ve hiperyüzey kavramlarını tanımlayabilme. 1) Balcı, M., Analitik Geometri, Balcı Yayınları, Ankara, ) Sabuncuoğlu, A., Analitik Geometri, Nobel yayın dağıtım, ) Hacısalihoğlu, H. H., 2 ve 3 boyutlu uzaylarda Analitik Geometri, Hacısalihoğlu yayıncılık, Ankara ) Kaya R., Analitik Geometri, Seçkin Yayıncılık, ) Vaisman, I., Analytical Geometry, World Scientific, Proje ve Bitirme X 60 Hafta Konular 1 Uzayda doğru denklemi, paralel ve dik doğrular, iki doğru arasındaki açı, bir noktanın bir doğruya olan uzaklığı. 2 İki doğrunun kesim noktası, aykırı iki doğru arasındaki uzaklık. 3 Düzlem denklemi, verilen bir noktadan geçen ve verilen bir doğruya dik olan düzlemin denklemi,verilen bir noktadan geçen ve verilen iki doğruya paralel olan düzlemin denklemi, üç noktası verilen düzlemin denklemi. 4 Düzlemlerin birbirlerine göre durumları, kesişen iki düzlemin arakesit doğrusunun denklemi, bir doğru ile bir düzlemin birbirlerine göre durumları. 5 Yüzey tanımı, küre yüzeyi. 6 Silindir yüzeyi. 7 Koni yüzeyi. 8 Dönel yüzeyler. 9 Kuadrik yüzeyler. 10 Uzayda öteleme ve dönmeler. 11 Uzayda eğriler, helisler, yüzeylerin arakesit eğrileri. 12 Silindirik koordinatlar, küresel koordinatlar, kutupsal koordinatlar. 13 n-boyutlu uzayda analitik geometri, R n de nokta, vektör kavramları. 14 R n de hiperdüzlem ve R n de hiperyüzeyler. Doç. Dr. Bengü BAYRAM Elektronik Posta 18

19 LİSANS PROGRAMI DERS TANITIM FORMU n Adı : Genel Fizik II Kodu : FİZ 1205 Teori Uygulama Proje/ Ödev Toplam n Türü n Amacı Yarıyılı 2 Dili Türkçe Temel Elektromanyetizma ile ilgili temel kavramları ve bu kavramların mühendislikteki uygulamalarını öğretmek. Elektrik yükü, elektrik alan kavramlarını tanımlayabilme ve uygulayabilme, Sığaç ve Dielektrikler temel kavramlarını tanımlayabilme ve uygulayabilme, Elektrik akımı kavramını tanımlayabilme ve elektrik devrelerine uygulayabilme, Maddenin manyetik özelliklerini ifade edebilme, Elektrik ve manyetizma kavramlarını ifade edebilme. 1) R.A. Serway, R.C. Beichner, J.W. Jevett, Fen ve Mühendislik için Fizik II, Palme Yayıncılık, ) C. Yalçın, Temel Fizik, Arkadaş Yayınları, ) C. Yalçın, E. Apaydın, Fiziğin Temelleri II, Arkadaş Yayınları. Yarıyıl İçi Sınavlar X 30 Yarıyıl İçi Sınavlar X 10 Dönem Ödevi (proje, rapor, vb) Yarıyıl Sonu Sınavı X 60 Proje ve Bitirme Hafta Sorumlu Öğretim Elektronik Posta Konular Elektrik Yükü ve Madde Elektrik Yükü ve Madde Elektrik, Gauss Yasası Elektrik Potansiyel Elektrik Potansiyel Sığaçlar ve Dielektrikler Elektrik Akımı ve Direnç Elektromotor Kuvvet ve Devreler Manyetik Amper Yasası, Faraday Yasası, İndüksiyon Amper Yasası, Faraday Yasası, İndüksiyon Maddenin Manyetik Özellikleri Elektromanyetik Titreşimler Elektromanyetik Dalgalar Yrd. Doç. Dr. Gülay İnlek 19

20 n Adı : Analiz III LİSANS PROGRAMI DERS TANITIM FORMU Kodu : MAT2101 Teori Uygulama.. Proje/ Ödev Toplam Yarıyılı Güz Dili Türkçe n Türü Temel n Amacı Euclid uzayında matematiksel analizin temel kavram ve teoremlerini öğretmek. N-boyutlu Euclid uzayını bir metrik uzay ve normlu uzay ifade edebilme, Bir kümenin içi, sınırı, kapanışı ve yığılma noktalarını bulabilme, Kompakt küme ve bağlantılı küme kavramlarını ifade edebilme, Bolzano-Weiertrass, Heine-Borel, maximum-minimum ve ara değer teoremlerini ifade edebilme, Fonksiyon dizi ve serilerinin noktasal ve düzgün yakınsaklığını ifade edebilme. 1) J.E. Marsden, M.J. Hoffman, Elementary Classical Analysis, 2nd ed.,w. H. Freeman and Company ) W. R. Wade, An Introduction to Analysis, 3rd ed., Pearson Education Inc., ) M. O. Searcoid, Metric Spaces, Springer-Verlag, Proje ve Bitirme X 60 Hafta Elektronik Posta Konular N-boyutlu Euclid uzayı, Metrik uzaylar, normlu uzaylar ve iç çarpım uzayları, Açık kümeler, kapalı kümeler, bir kümenin içi, yığılma noktaları, kapanışı ve sınırı, Diziler, Tamlık, Seriler, Fonksiyonların limiti ve sürekliliği, Düzgün süreklilik Kompakt kümeler, Kompakt kümeler üzerinde sürekli fonksiyonlar Bağlantılı kümeler, bağlantılı kümeler üzerinde sürekli fonksiyonlar, Fonksiyon dizilerinin noktasal ve düzgün yakınsaklığı, Fonksiyon serilerinin noktasal ve düzgün yakınsaklığı, Weierstrass M testi, Fonksiyon serilerinin integrallenmesi ve türevlenmesi, Sürekli fonksiyonların uzayı. Doç. Dr. Ali GÜVEN 20

T.C. BALIKESİR ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BOLOGNA SÜRECİ BÖLÜM TANITIMI

T.C. BALIKESİR ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BOLOGNA SÜRECİ BÖLÜM TANITIMI T.C. BALIKESİR ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BOLOGNA SÜRECİ BÖLÜM TANITIMI 1 Bölüm Hakkında: Dört yıllık programın ilk iki yılında teorik geniş bir çerçevede matematiğin temelleri

Detaylı

T.C. BALIKESİR ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BOLOGNA SÜRECİ BÖLÜM TANITIMI

T.C. BALIKESİR ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BOLOGNA SÜRECİ BÖLÜM TANITIMI T.C. BALIKESİR ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BOLOGNA SÜRECİ BÖLÜM TANITIMI 1 Bölüm Hakkında: Dört yıllık programın ilk iki yılında teorik geniş bir çerçevede matematiğin temelleri

Detaylı

T.C. SİNOP ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ LİSANS PROGRAMI

T.C. SİNOP ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ LİSANS PROGRAMI T.C. SİNOP ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ LİSANS PROGRAMI I.YARIYIL ( Güz) II.YARIYIL (Bahar) DERSİN DERSİN ADI T P K AKTS DERSİN DERSİN ADI T P K AKTS MAT101 ANALİZ I 4 2 5 7 MAT102

Detaylı

HİTİT ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ DERS TANIMLARI

HİTİT ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ DERS TANIMLARI HİTİT ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ DERS TANIMLARI ZORUNLU DERSLER Matematiğin Temelleri (3-0) 3: Sembolik Mantık; Kümeler Kuramı; Kartezyen Çarpım; Bağıntılar; Fonksiyonlar; Birebir ve Örten Fonksiyonlar;

Detaylı

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2015-2016 YAZ OKULU DERS İÇERİĞİ. (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri)

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2015-2016 YAZ OKULU DERS İÇERİĞİ. (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri) Bölümü Dersin Kodu ve Adı K MAT101 Genel I (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri) 1- Kümeler, reel sayılar, bir denklem veya eşitsizliğin grafiği 2- Fonksiyonlar,

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Kompleks Matematik EEE203 3 3+0 3 4

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Kompleks Matematik EEE203 3 3+0 3 4 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Kompleks Matematik EEE203 3 3+0 3 4 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Zorunlu / Yüz Yüze Dersin

Detaylı

İÇİNDEKİLER. Bölüm 2 CEBİR 43

İÇİNDEKİLER. Bölüm 2 CEBİR 43 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 13 1.1 Doğal Sayılar 15 1.1.1. Tek ve Çift Sayılar 15 1.1.2. Asal Sayılar 15 1.1.3 Doğal Sayıların Özellikleri 15 1.1.4 Doğal Sayılarda Özel Toplamlar 16 1.1.5. Faktöriyel

Detaylı

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ MATEMATİK PROGRAMI YETERLİLİKLERE DAYALI ÖĞRENİM ÇIKTILARI

ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ MATEMATİK PROGRAMI YETERLİLİKLERE DAYALI ÖĞRENİM ÇIKTILARI ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ MATEMATİK PROGRAMI YETERLİLİKLERE DAYALI ÖĞRENİM ÇIKTILARI PROGRAMIN GENEL TANIMI MATEMATİK TEMEL ALANI MATEMATİK ALANI GENEL TANIMI MİSYON VE VİZYON Matematik, bireyin

Detaylı

SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ

SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ SÜLEYMAN DEMİREL ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ 1. YARIYIL DERSLERİ MAT101 Analiz I Kredi(Teorik-Pratik-Lab.): 5 (4-0-2) AKTS: 6 Matematik Analizin temel kavramları,

Detaylı

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr

Prof.Dr. ÜNAL ERKAN MUMCUOĞLU. merkan@metu.edu.tr Ders Bilgisi Ders Kodu 9060528 Ders Bölüm 1 Ders Başlığı BİLİŞİM SİSTEMLERİ İÇİN MATEMATİĞİN TEMELLERİ Ders Kredisi 3 ECTS 8.0 Katalog Tanımı Ön koşullar Ders saati Bu dersin amacı altyapısı teknik olmayan

Detaylı

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI BÜTÜNLEME PROGRAMI

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI BÜTÜNLEME PROGRAMI II. YARIYIL Soyut Matematik II Mat. 1. Grup Prof.Dr.A.FIRAT 22.06.2015 15:00-16:30 C 012, C 013 Mathematics II Mat. 1. Grup Prof.Dr.İ.ÇANAK 23.06.2015 15:00-16:30 C 012, C 013 Bilgisayar (A Grubu) Mat.

Detaylı

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI FİNAL PROGRAMI

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI FİNAL PROGRAMI II. YARIYIL Soyut Matematik II Mat. 1. Grup Prof.Dr.A.FIRAT 01.06.2015 08:30-10:00 C 012, C 013, C 118, C 119 Mathematics II Mat. 1. Grup Prof.Dr.İ.ÇANAK 10.06.2015 15:00-16:30 C 117, C 118, C 119, C 013

Detaylı

İNÖNÜ ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ GÜZ DÖNEMİ DERSLERİ VE İÇERİKLERİ

İNÖNÜ ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ GÜZ DÖNEMİ DERSLERİ VE İÇERİKLERİ GÜZ DÖNEMİ DERSLERİ VE İÇERİKLERİ 1. SINIF GÜZ DÖNEMİ Dersin Kodu ve Adı: 00101 Fizik I Vektörler, tek boyutta hareket, iki boyutta hareket, hareket kanunları, dairesel hareket ve Newton kanunlarının uygulamaları,

Detaylı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı

www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı www.usmatik.com MATEMATİK PROGRAMI YGS-LYS Matematik Çalışma Programı Ertuğrul US 01.09.2014 MATEMATİK PROGRAMIM Program 6 aylık (24 haftalık) bir programdır. Konuların veriliş sırasına uyularak çalışılması

Detaylı

BĐTLĐS EREN ÜNĐVERSĐTESĐ FEN EDEBĐYAT FAKÜLTESĐ MATEMATĐK BÖLÜMÜ 4 YILLIK LĐSANS PROGRAMI

BĐTLĐS EREN ÜNĐVERSĐTESĐ FEN EDEBĐYAT FAKÜLTESĐ MATEMATĐK BÖLÜMÜ 4 YILLIK LĐSANS PROGRAMI BĐTLĐS EREN ÜNĐVERSĐTESĐ FEN EDEBĐYAT FAKÜLTESĐ MATEMATĐK BÖLÜMÜ 4 YILLIK LĐSANS PROGRAMI BĐRĐNCĐ YIL KODU DERSĐN ADI T U K A KODU DERSĐN ADI T U K A MAT101 ANALĐZ I 4 1 5 7 MAT102 ANALĐZ II 4 1 5 7 MAT103

Detaylı

MATEMATİK BÖLÜMÜ LİSANS DERS İÇERİKLERİ

MATEMATİK BÖLÜMÜ LİSANS DERS İÇERİKLERİ MATEMATİK BÖLÜMÜ LİSANS DERS İÇERİKLERİ I. YARIYIL MF 103 Fizik-I (4-0) 4: Vektörler; parçacık kinematiği ve dinamiği; eylemli ve eylemsiz çerçeveler; Doğrusal Hareket; Düzlemde Hareket ; Newton Kanunları

Detaylı

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER

AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 2015-2016 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI TEKNİKLER AKSARAY KANUNİ ANADOLU İMAM HATİP LİSESİ 015-01 EĞİTİM ÖĞRETİM YILI MATEMATİK DERSİ 11.SINIFLAR ÜNİTELENDİRİLMİŞ YILLIK PLANI SÜRE: MANTIK(30) ÖNERMELER VE BİLEŞİK ÖNERMELER(18) 1. Önermeyi, önermenin

Detaylı

Kimya Mühendisliğinde Uygulamalı Matematik

Kimya Mühendisliğinde Uygulamalı Matematik Fen Bilimleri Enstitüsü Kimya Mühendisliği Anabilim Dalı Kimya Mühendisliğinde Uygulamalı Matematik DERS BİLGİ FORMU DERS BİLGİLERİ Dersin Adı Kodu Yarıyıl Kimya Mühendisliğinde Uygulamalı Matematik T

Detaylı

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 Bölüm 2 STATİK DENGE ANALİZİ 19 2.1 İktisatta Denge Kavramı 20 2.1.1.

Detaylı

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ. 2014-2015 Öğretim Yılı Bahar Dönemi Haftalık Ders Programı

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ. 2014-2015 Öğretim Yılı Bahar Dönemi Haftalık Ders Programı T. C. E. Ü. FEN FAKÜLTESİ A. Fakülte İçinde "BÖLÜMÜMÜZ" Öğrencilerine Verdiğimiz Dersler II. YARIYIL Ders Kodu Ders Adı Saat Öğrenci Grubu Dersi Veren Öğr. Üyesi Dersin Yeri 405001072003 Soyut Matematik

Detaylı

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06

YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 1 YGS MATEMATİK - CEBİR 01 TEMEL SAYI KAVRAMLARI VE UYGULAMALARI 02 TAMSAYILARDA BÖLME 03 BÖLÜNEBİLME KURALLARI 04 ASAL SAYILAR 05 OBEB VE OKEK 06 RASYONEL SAYILAR KÜMESİ VE ÖZELLİKLERİ 07 BASİT EŞİTSİZLİKLER

Detaylı

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ. 2015-2016 Öğretim Yılı Güz Dönemi Haftalık Ders Programı

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ. 2015-2016 Öğretim Yılı Güz Dönemi Haftalık Ders Programı T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2015-2016 Öğretim Yılı Güz Dönemi Haftalık Ders Programı A. Fakülte İçinde "BÖLÜMÜMÜZ" Öğrencilerine Verdiğimiz Dersler I. YARIYIL 405001072003 Soyut Matematik

Detaylı

T.C. MALTEPE ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK LİSANS PROGRAMI. 2013-14 Güz Yarıyılı. 1 yıl 1. yarıyıl Lisans Zorunlu

T.C. MALTEPE ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK LİSANS PROGRAMI. 2013-14 Güz Yarıyılı. 1 yıl 1. yarıyıl Lisans Zorunlu AKTS Kredisi 5 T.C. MALTEPE ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ MATEMATİK LİSANS PROGRAMI Dersin adı: 2013-14 Güz Yarıyılı Genel Matematik I Dersin Kodu emat 151 1 yıl 1. yarıyıl Lisans Zorunlu 3 s/hafta

Detaylı

Yüksek Lisans Cebir (in Turkish) Başlık: Grup Teorisi I Seviye: - İçerik: Gruplar, bölüm grupları, temel izomorfizma teoremleri, alterne, simetrik ve dihedral gruplar, direkt çarpımlar, otomorfizma grupları

Detaylı

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ İ.Ö. 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI BÜTÜNLEME PROGRAMI

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ İ.Ö. 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI BÜTÜNLEME PROGRAMI II. YARIYIL Soyut Matematik II Mat. 1. Grup Prof.Dr.A.FIRAT 22.06.2015 17:00-18:30 C 012, C 013 Scientific English II Mat. 1. Grup Yrd.Doç.Dr.N.BAŞ 23.06.2015 17:00-18:30 C 012, C 013 Analytic Geometry

Detaylı

Dersi Alan Dersi Veren Dersin Optik Kod Dersin Adı Saat Öğr. Grubu Öğretim Üyesi Yeri

Dersi Alan Dersi Veren Dersin Optik Kod Dersin Adı Saat Öğr. Grubu Öğretim Üyesi Yeri T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2015-2016 Öğretim Yılı Güz Dönemi Haftalık Ders Programı İkinci Öğretim A. Fakülte İçinde "BÖLÜMÜMÜZ" Öğrencilerine Verdiğimiz Dersler I. YARIYIL 1104001062003

Detaylı

Öğr. Gör. Barış Alpaslan

Öğr. Gör. Barış Alpaslan Dersin Adı DERS ÖĞRETİM PLANI Matematik I Dersin Kodu ECO 05/04 Dersin Türü (Zorunlu, Seçmeli) Dersin Seviyesi (Ön Lisans, Lisans, Yüksek Lisans, Doktora) Dersin AKTS Kredisi 5 Haftalık Ders Saati 3 Haftalık

Detaylı

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ. 2014-2015 Öğretim Yılı Bahar Dönemi Haftalık Ders Programı İkinci Öğretim

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ. 2014-2015 Öğretim Yılı Bahar Dönemi Haftalık Ders Programı İkinci Öğretim E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2014-2015 Öğretim Yılı Bahar Dönemi Haftalık Ders Programı İkinci Öğretim A. Fakülte İçinde "BÖLÜMÜMÜZ" Öğrencilerine Verdiğimiz Dersler 1104001062003 Soyut Matematik

Detaylı

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN

Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ. Prof. Dr. İbrahim UZUN Mühendislikte Sayısal Çözüm Yöntemleri NÜMERİK ANALİZ Prof. Dr. İbrahim UZUN Yayın No : 2415 İşletme-Ekonomi Dizisi : 147 5. Baskı Eylül 2012 - İSTANBUL ISBN 978-605 - 377-438 - 9 Copyright Bu kitabın

Detaylı

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ

2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ 2014 - LYS TESTLERİNE YÖNELİK ALAN STRATEJİLERİ YGS sonrası adayları puan getirisinin daha çok olan LYS ler bekliyor. Kalan süre içinde adayların girecekleri testlere kaynaklık eden derslere sabırla çalışmaları

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Lineer Cebir ve Vektörler EEE118 2 3+0 3 4

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Lineer Cebir ve Vektörler EEE118 2 3+0 3 4 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Lineer Cebir ve Vektörler EEE118 2 3+0 3 4 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Zorunlu / Yüz Yüze

Detaylı

SAYFA:1/8 I. YARIYIL DERSLERİ

SAYFA:1/8 I. YARIYIL DERSLERİ SAYFA:1/8 I. YARIYIL DERSLERİ MAT1001 ANALİZ I (4 2 5) AKTS:7 Reel sayılar, Eşitsizlikler, Dizi kavramı, Dizilerde yakınsaklık ve sınırlılık, Fonksiyon kavramı, Bazı özel fonksiyonlar, Fonksiyonların limiti,

Detaylı

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ İ.Ö. 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI ARASINAV PROGRAMI

EGE ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ İ.Ö. 2014-2015 ÖĞRETİM YILI BAHAR YARIYILI ARASINAV PROGRAMI II. YARIYIL Soyut Matematik II Mat. 1. Grup Prof.Dr.A.FIRAT 06.04.2015 17:00-18:30 A 003, A 009, A 004 Scientific English II Mat. 1. Grup Yrd.Doç.Dr.N.BAŞ 10.04.2015 20:10-21:40 C 013, C 015, C 012 Analytic

Detaylı

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ. 2013-2014 Öğretim Yılı Güz Dönemi Haftalık Ders Programı

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ. 2013-2014 Öğretim Yılı Güz Dönemi Haftalık Ders Programı A. Fakülte İçinde "BÖLÜMÜMÜZ" Öğrencilerine Verdiğimiz Dersler I. YARIYIL 405001072003 Soyut Matematik I 08.00-12.00 Mat. 1.gr. Prof.Dr.A.FIRAT A 003 405001072003 Soyut Matematik I 08.00-12.00 Mat. 2.gr.

Detaylı

DERS BİLGİLERİ. D+U+L Saat. Kodu Yarıyıl ELEKTROMAGNETİK TEORİNİN ANALİTİK ESASLARI. EE529 Güz 3+0+0 3 7. Ön Koşul Dersleri. Dersin Koordinatörü

DERS BİLGİLERİ. D+U+L Saat. Kodu Yarıyıl ELEKTROMAGNETİK TEORİNİN ANALİTİK ESASLARI. EE529 Güz 3+0+0 3 7. Ön Koşul Dersleri. Dersin Koordinatörü DERS BİLGİLERİ Ders ELEKTROMAGNETİK TEORİNİN ANALİTİK ESASLARI Kodu Yarıyıl D+U+L Saat Kredi AKTS EE529 Güz 3+0+0 3 7 Ön Koşul Dersleri EE323 Dersin Dili Dersin Seviyesi Dersin Türü Dersin Koordinatörü

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI MATEMATİK YARIŞMASI 1.AŞAMA KONU KAPSAMI 6. SINIF 5. SINIF TÜM KONULARI 1.ÜNİTE: Geometrik Şekiller 1) Verileri Düzenleme, Çokgenler ve Süsleme 2) Dörtgenler 3)

Detaylı

BİRİNCİ YIL 1. YARIYIL KODU DERSİN ADI T U K AKTS. TAR - 153 Ata Meken Tarihi I 2 0 0 1 İNG-101/ RUS-101. İngilizce I/ Rusça I 2 4 4 6

BİRİNCİ YIL 1. YARIYIL KODU DERSİN ADI T U K AKTS. TAR - 153 Ata Meken Tarihi I 2 0 0 1 İNG-101/ RUS-101. İngilizce I/ Rusça I 2 4 4 6 KIRGIZİSTAN TÜRKİYE MANAS ÜNİVERSİTESİ FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ UYGULAMALI MATEMATİK VE ENFORMATİK LİSANS PROGRAMI DERSLERİN YARIYILLARA GÖRE DAĞILIMI BİRİNCİ YIL 1. YARIYIL TAR - 153 Ata Meken Tarihi

Detaylı

TÜRKİYE CUMHURİYETİ GİRESUN ÜNİVERSİTESİ ŞEBİNKARAHİSAR MYO RADYO TELEVİZYON TEKNOLOJİSİ BÖLÜMÜ BİLGİ FORMU

TÜRKİYE CUMHURİYETİ GİRESUN ÜNİVERSİTESİ ŞEBİNKARAHİSAR MYO RADYO TELEVİZYON TEKNOLOJİSİ BÖLÜMÜ BİLGİ FORMU TÜRKİYE CUMHURİYETİ GİRESUN ÜNİVERSİTESİ ŞEBİNKARAHİSAR MYO RADYO TELEVİZYON TEKNOLOJİSİ BÖLÜMÜ BİLGİ FORMU Bölüm Bölüm Başkanı Bölümün amacı Bölümün Hedefi Öğrenme Çıktıları RADYO TV TEKNOLOJİSİ Öğr.

Detaylı

Vektörler, vektörler üzerinde işlemler. Vektör uzayları ve uygulamaları, alt vektör uzayları

Vektörler, vektörler üzerinde işlemler. Vektör uzayları ve uygulamaları, alt vektör uzayları .Yarıyıl Dersin Adı : Analitik Geometri-I Dersin İçeriği : Vektörler, vektörler üzerinde işlemler, vektör uzayları ve uygulamaları, alt vektör uzayları, vektörlerin lineer bağımlılığı, bağımsızlığı ve

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ BUCA EĞİTİM FAKÜLTESİ-MATEMATİK ÖĞRETMENLİĞİ ÖĞRETİM PROGRAMI DERS İÇERİKLERİ

DOKUZ EYLÜL ÜNİVERSİTESİ BUCA EĞİTİM FAKÜLTESİ-MATEMATİK ÖĞRETMENLİĞİ ÖĞRETİM PROGRAMI DERS İÇERİKLERİ DOKUZ EYLÜL ÜNİVERSİTESİ BUCA EĞİTİM FAKÜLTESİ-MATEMATİK ÖĞRETMENLİĞİ ÖĞRETİM PROGRAMI DERS İÇERİKLERİ I. YARIYIL EGİ 1023 EĞİTİM BİLİMİNE GİRİŞ (3-0-3) Eğitimin temel kavramları, eğitimin diğer bilimlerle

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ

ÇUKUROVA ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ ÇUKUROVA ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ (2014-2015) Bu bilgilere (güncel olarak) http://eobs.cu.edu.tr/progdersplan_tr.aspx?progid=13 den erişilebilir. NOT: Bir seçmeli

Detaylı

TÜRKİYE CUMHURİYETİ GİRESUN ÜNİVERSİTESİ ŞEBİNKARAHİSAR MYO MESLEK YÜKSEKOKULU MUHASEBE VE VERGİ UYGULAMALARI BÖLÜMÜ BİLGİ FORMU

TÜRKİYE CUMHURİYETİ GİRESUN ÜNİVERSİTESİ ŞEBİNKARAHİSAR MYO MESLEK YÜKSEKOKULU MUHASEBE VE VERGİ UYGULAMALARI BÖLÜMÜ BİLGİ FORMU TÜRKİYE CUMHURİYETİ GİRESUN ÜNİVERSİTESİ ŞEBİNKARAHİSAR MYO MESLEK YÜKSEKOKULU MUHASEBE VE VERGİ UYGULAMALARI BÖLÜMÜ BİLGİ FORMU Bölüm Bölüm Başkanı Bölümün amacı Bölümün Hedefi Muhasebe ve Vergi Uygulamaları

Detaylı

3. Yarıyıl Ders Planı Kodu Ders Z/S Dil T+U Saat Kredi AKTS BBP 209

3. Yarıyıl Ders Planı Kodu Ders Z/S Dil T+U Saat Kredi AKTS BBP 209 SAKARYA ÜNİVERSİTESİ KAYNARCA SEYFETTİN SELİM MESLEK YÜKSEKOKULU BİLGİSAYAR PROGRAMCILIĞI PROGRAMI 2012-2013 EĞİTİM-ÖĞRETİM YILI DERS PLANI AKTS KREDİLERİ 1. Yarıyıl Ders Planı MYO 101 İLETİŞİM VE ETİK

Detaylı

MAT 5101 Reel Analiz I Matematik Anabilim Dalı

MAT 5101 Reel Analiz I Matematik Anabilim Dalı MAT 5101 Reel Analiz I Dersin Dönemi / Düzeyi Güz / Yüksek Lisans Dersin Kodu ve Adı MAT 5101 Reel Analiz I Kredisi / ECTS Kredisi 3.0 / 5.0 Dersin Amacı ve Hedefi Dersin amacı, öğrencinin lisans eğitimi

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

TÜRKİYE CUMHURİYETİ GİRESUN ÜNİVERSİTESİ ŞEBİNKARAHİSAR MYO OTEL, LOKANTA VE İKRAM HİZMETLERİ BÖLÜMÜ TURİZM VE OTEL İŞLETMECİLİĞİ PROGRAMI FORMU

TÜRKİYE CUMHURİYETİ GİRESUN ÜNİVERSİTESİ ŞEBİNKARAHİSAR MYO OTEL, LOKANTA VE İKRAM HİZMETLERİ BÖLÜMÜ TURİZM VE OTEL İŞLETMECİLİĞİ PROGRAMI FORMU TÜRKİYE CUMHURİYETİ GİRESUN ÜNİVERSİTESİ ŞEBİNKARAHİSAR MYO OTEL LOKANTA VE İKRAM HİZMETLERİ BÖLÜMÜ TURİZM VE OTEL İŞLETMECİLİĞİ PROGRAMI BİLGİ FORMU Bölüm Bölüm Başkanı Bölümün amacı Bölümün Hedefi Öğrenme

Detaylı

2) Lineer olmayan denklem çözümlerini bilir 1,2,4 1

2) Lineer olmayan denklem çözümlerini bilir 1,2,4 1 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Numerik Analiz BIL222 4 3+0 3 5 Ön Koşul Dersleri Yok Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Zorunlu / Yüz Yüze Dersin

Detaylı

Dersin Adı Dersin Kodu Yarıyıl Haftalık Saat Kredisi AKTS. Dersin Adı Dersin Kodu Yarıyıl Haftalık Saat Kredisi AKTS

Dersin Adı Dersin Kodu Yarıyıl Haftalık Saat Kredisi AKTS. Dersin Adı Dersin Kodu Yarıyıl Haftalık Saat Kredisi AKTS Analiz I MT101 1. Sınıf 1. Dönem 4 Teo.+2 Uyg. 5 7 Reel sayılar, Eşitsizlikler, Dizi kavramı, Dizilerde yakınsaklık ve sınırlılık, Fonksiyon kavramı, Bazı özel fonksiyonlar, Fonksiyonların limiti, Limit

Detaylı

Teori (saat/hafta) BES117 1.Güz 3 0 0 3

Teori (saat/hafta) BES117 1.Güz 3 0 0 3 TEMEL MATEMATİK Dersin Adı Kodu Yarıyıl TEMEL MATEMATİK Önkoşullar Dersin dili Dersin Türü Teori Laboratuar BES117 1.Güz 3 0 0 3 Yok Türkçe Zorunlu Dersin öğrenme ve Anlatım, Soru-Yanıt, Gösterme öğretme

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Matlab Programlama BIL449 7 3+0 3 5 Ön Koşul Dersleri Yok Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Seçmeli / Yüz Yüze Dersin

Detaylı

(EK-C) TİCARİ BİLİMLER FAKÜLTESİ YÖNETİM BİLİŞİM SİSTEMLERİ PROGRAMI TYYÇ BİLGİ PAKETİ ÖRNEĞİ

(EK-C) TİCARİ BİLİMLER FAKÜLTESİ YÖNETİM BİLİŞİM SİSTEMLERİ PROGRAMI TYYÇ BİLGİ PAKETİ ÖRNEĞİ (EK-C) TİCARİ BİLİMLER FAKÜLTESİ YÖNETİM BİLİŞİM SİSTEMLERİ PROGRAMI TYYÇ BİLGİ PAKETİ ÖRNEĞİ Genel Bilgi BAŞKENT Üniversitesi Yönetim Bilişim Sistemleri Bölümü (Türkçe) Başkent Üniversitesi Yönetim Bilişim

Detaylı

MAKİNE MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ. Akışkanlar Mekaniği MK-312 3/Güz (3+1+0) 3.5 7

MAKİNE MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ. Akışkanlar Mekaniği MK-312 3/Güz (3+1+0) 3.5 7 MAKİNE MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS Akışkanlar Mekaniği MK-312 3/Güz (3+1+0) 3.5 7 Dersin Dili : İngilizce Dersin Seviyesi

Detaylı

ÇUKUROVA ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ

ÇUKUROVA ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ ÇUKUROVA ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ DERS İÇERİKLERİ (2013-2014) Bu bilgilere (güncel olarak) http://eobs.cu.edu.tr/progamac.aspx?progid=13 den erişilebilir. NOT: Bir seçmeli dersin

Detaylı

TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ I. SINIF EĞİTİM - ÖĞRETİM PROGRAMI

TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ I. SINIF EĞİTİM - ÖĞRETİM PROGRAMI TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ I. SINIF EĞİTİM - ÖĞRETİM PROGRAMI 1. YIL 1. DÖNEM BİL 103 Bilgisayar Bilimlerine Giriş 2 0 2 3 Z BİL 113 Bilgisayar

Detaylı

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14

BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi

Detaylı

T.C. SİNOP ÜNİVERSİTESİ REKTÖRLÜĞÜ FEN EDEBİYAT FAKÜLTESİ DEKANLIĞI SİNOP

T.C. SİNOP ÜNİVERSİTESİ REKTÖRLÜĞÜ FEN EDEBİYAT FAKÜLTESİ DEKANLIĞI SİNOP T.C. SİNOP ÜNİVERSİTESİ REKTÖRLÜĞÜ FEN EDEBİYAT FAKÜLTESİ DEKANLIĞI SİNOP KURULLAR ÜNİVERSİTE SENATOSU REKTÖR Prof.Dr. Recep BİRCAN DEKAN V. Prof. Dr. Ekrem MEMİŞ ÜNİVERSİTE YÖNETİM KURULU FAKÜLTE KURULU

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS PROGRAMLAMA BG-213 2/1 2+0+2 2+1 5 Dersin Dili : TÜRKÇE Dersin Seviyesi : LİSANS

Detaylı

Salim. Yüce LİNEER CEBİR

Salim. Yüce LİNEER CEBİR Prof. Dr. Salim Yüce LİNEER CEBİR Prof. Dr. Salim Yüce LİNEER CEBİR ISBN 978-605-318-030-2 Kitapta yer alan bölümlerin tüm sorumluluğu yazarına aittir. 2015, Pegem Akademi Bu kitabın basım, yayın ve satış

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS İNTERNET TEKNOLOJİLERİ BG-412 4/1 2+2+0 2+2 6 Dersin Dili : TÜRKÇE Dersin Seviyesi

Detaylı

T.C. SİNOP ÜNİVERSİTESİ REKTÖRLÜĞÜ FEN EDEBİYAT FAKÜLTESİ DEKANLIĞI SİNOP

T.C. SİNOP ÜNİVERSİTESİ REKTÖRLÜĞÜ FEN EDEBİYAT FAKÜLTESİ DEKANLIĞI SİNOP T.C. SİNOP ÜNİVERSİTESİ REKTÖRLÜĞÜ FEN EDEBİYAT FAKÜLTESİ DEKANLIĞI SİNOP KURULLAR ÜNİVERSİTE SENATOSU REKTÖR Prof.Dr. Nihat DALGIN DEKAN V. Prof. Dr. Kamil DEMİRCİ ÜNİVERSİTE YÖNETİM KURULU FAKÜLTE KURULU

Detaylı

Toplam: 14+10 19 30 Toplam: 14+10 19 30 YIL: III; DÖNEM: 1

Toplam: 14+10 19 30 Toplam: 14+10 19 30 YIL: III; DÖNEM: 1 MATEMATİK BÖLÜMÜ LİSANS PROGRAMI T: Teorik (saat/hafta) U: Uygulama (saat/hafta) AKTS: Avrupa Kredi Transfer Sistemi YIL: I; DÖNEM: 1 YIL: I; DÖNEM: DERSLER T+U K AKTS DERSLER T+U K AKTS Analiz-I + 5 7

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Devre Teorisi EEE221 3 6+0 5 6

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Devre Teorisi EEE221 3 6+0 5 6 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Devre Teorisi EEE221 3 6+0 5 6 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Zorunlu / Yüz Yüze Dersin Koordinatörü

Detaylı

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.

1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır. 1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Güç Elektroniği I EEE441 7 3+0 3 5

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Güç Elektroniği I EEE441 7 3+0 3 5 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Güç Elektroniği I EEE441 7 3+0 3 5 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Seçmeli / Yüz Yüze Dersin

Detaylı

AVRASYA UNIVERSITY. Dersin Verildiği Düzey Ön Lisans (X ) Lisans ( ) Yüksek Lisans( ) Doktora( )

AVRASYA UNIVERSITY. Dersin Verildiği Düzey Ön Lisans (X ) Lisans ( ) Yüksek Lisans( ) Doktora( ) Ders Tanıtım Formu Dersin Adı Öğretim Dili ALGORİTMA VE PROGRAMLAMAYA GİRİŞ Türkçe Dersin Verildiği Düzey Ön Lisans (X ) Lisans ( ) Yüksek Lisans( ) Doktora( ) Eğitim Öğretim Sistemi Örgün Öğretim (X )

Detaylı

SELÇUK ÜNİVERSİTESİ SEYDİŞEHİR MESLEK YÜKSEKOKULU BİLGİSAYAR TEKNOLOJİLERİ BÖLÜMÜ BİLGİSAYAR PROGRAMCILIĞI PROGRAMI DERS DAĞILIM ÇİZELGESİ (2010)

SELÇUK ÜNİVERSİTESİ SEYDİŞEHİR MESLEK YÜKSEKOKULU BİLGİSAYAR TEKNOLOJİLERİ BÖLÜMÜ BİLGİSAYAR PROGRAMCILIĞI PROGRAMI DERS DAĞILIM ÇİZELGESİ (2010) SELÇUK ÜNİVERSİTESİ SEYDİŞEHİR MESLEK YÜKSEKOKULU BİLGİSAYAR TEKNOLOJİLERİ BÖLÜMÜ BİLGİSAYAR PROGRAMCILIĞI PROGRAMI DERS DAĞILIM ÇİZELGESİ (2010) 1. SINIF GÜZ YARIYILI 6913130 Atatürk İlkeleri ve İnkılap

Detaylı

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler

2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ ALT ÖĞRENME. Örüntü ve Süslemeler 2013 2014 EĞİTİM ÖĞRETİM YILI 8. SINIF MATEMATİK DERSİ KONULARININ ÇALIŞMA TAKVİMİNE GÖRE DAĞILIM ÇİZELGESİ SÜRE ÖĞRENME Ay Hafta D.Saati ALANI EYLÜL 2 Geometri 2 3 Geometri 2 Geometri 2 Olasılıkve ALT

Detaylı

TÜRKİYE CUMHURİYETİ GİRESUN ÜNİVERSİTESİ ESPİYE MESLEK YÜKSEKOKULU BİTKİSEL VE HAYVANSAL ÜRETİM BÖLÜMÜ TIBBİ VE AROMATİK BİTKİLER PROGRAMI BİLGİ FORMU

TÜRKİYE CUMHURİYETİ GİRESUN ÜNİVERSİTESİ ESPİYE MESLEK YÜKSEKOKULU BİTKİSEL VE HAYVANSAL ÜRETİM BÖLÜMÜ TIBBİ VE AROMATİK BİTKİLER PROGRAMI BİLGİ FORMU TÜRKİYE CUMHURİYETİ GİRESUN ÜNİVERSİTESİ ESPİYE MESLEK YÜKSEKOKULU BİTKİSEL VE HAYVANSAL ÜRETİM BÖLÜMÜ TIBBİ VE AROMATİK BİTKİLER PROGRAMI BİLGİ FORMU Bölüm Bölüm Başkanı Bitkisel ve Hayvansal Üretim Bölümü

Detaylı

Dersin Kodu Dersin Adı Dersin Türü Yıl Yarıyıl AKTS. 507001112001 MATEMATİK II Zorunlu 1 2 5

Dersin Kodu Dersin Adı Dersin Türü Yıl Yarıyıl AKTS. 507001112001 MATEMATİK II Zorunlu 1 2 5 Ders Öğretim Planı Dersin Kodu Dersin Adı Dersin Türü Yıl Yarıyıl AKTS 507001112001 MATEMATİK II Zorunlu 1 2 5 Dersin Seviyesi Lisans Dersin Amacı Matematik bilgisini mühendislik problemlerini çözmede

Detaylı

HASAN KALYONCU ÜNĠVERSĠTESĠ EĞĠTĠM FAKÜLTESĠ SINIF ÖĞRETMENLĠĞĠ ANABĠLĠM DALI DERSĠN TANIMI VE UYGULAMASI

HASAN KALYONCU ÜNĠVERSĠTESĠ EĞĠTĠM FAKÜLTESĠ SINIF ÖĞRETMENLĠĞĠ ANABĠLĠM DALI DERSĠN TANIMI VE UYGULAMASI HASAN KALYONCU ÜNĠVERSĠTESĠ EĞĠTĠM FAKÜLTESĠ SINIF ÖĞRETMENLĠĞĠ ANABĠLĠM DALI DERSĠN TANIMI VE UYGULAMASI Döne Teori+Prati Ders ismi Ders kodu Kredi AKTS m k TEMEL MATEMATİK I SNF101 1 2+0 2 4 Ön Şartlı

Detaylı

BİLGİSAYAR TEKNOLOJİSİ VE PROGRAMLAMA DERS İÇERİKLERİ I. YARIYIL

BİLGİSAYAR TEKNOLOJİSİ VE PROGRAMLAMA DERS İÇERİKLERİ I. YARIYIL BİLGİSAYAR TEKNOLOJİSİ VE PROGRAMLAMA DERS İÇERİKLERİ I. YARIYIL Matematik I Sayılar. Cebir. Denklemler ve Eşitsizlikler. Fonksiyonlar. Logaritma. Trigonometri. Geometri. Teknolojinin Bilimsel İlk. Malzeme

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Bilgisayar Grafiklerine Giriş BIL443 7 3+0 3 5 Ön Koşul Dersleri Yok Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Seçmeli /

Detaylı

AFYON KOCATEPE ÜNİVERSİTESİ

AFYON KOCATEPE ÜNİVERSİTESİ AFYON KOCATEPE ÜNİVERSİTESİ TEKNİK EĞİTİM FAKÜLTESİ DERS TANITIM FORMU Dersin Kodu / Adı : 088 ATATÜRK İLKELERİ VE İNKILAP TARİHİ I Bölüm / Anabilim Dalı : ELEKTRİK ÖĞRETMENLİĞİ Öğretim Dili : Türkçe Yarıyılı

Detaylı

BOZOK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BİTİRME TEZİ E 3-BOYUTLU ÖKLİD UZAYINDA HELİSLER VE UYGULAMALARI.

BOZOK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BİTİRME TEZİ E 3-BOYUTLU ÖKLİD UZAYINDA HELİSLER VE UYGULAMALARI. BOZOK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BİTİRME TEZİ E -BOYUTLU ÖKLİD UZAYINDA HELİSLER VE UYGULAMALARI Hasibe ŞENOL 16104210046 Danışman: Yrd. Doç. Dr. Murat BABAARSLAN YOZGAT 201 ÖZET

Detaylı

DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DERS TANIM VE UYGULAMA BİLGİLERİ

DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DERS TANIM VE UYGULAMA BİLGİLERİ DUMLUPINAR ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DERS TANIM VE UYGULAMA BİLGİLERİ Dersin Adı Kodu Yarıyılı T+U Saat Kredisi AKTS SAYISAL HABERLEŞME (T.SEÇ.V) 131517600

Detaylı

KIRIKKALE ÜNİVERSİTESİ FEN-EDEBIYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI

KIRIKKALE ÜNİVERSİTESİ FEN-EDEBIYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI KIRIKKALE ÜNİVERSİTESİ FEN-EDEBIYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ LİSANS PROGRAMI Kırıkkale Üniversitesi Fen-Edebiyat Fakültesi İstatistik Bölümü Lisans Programı, Kırıkkale Üniversitesi Önlisans ve Lisans

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS İnternet Uygulamaları için Veritabanı Programlama EEE474 8 3+2 4 5 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce

Detaylı

DUMLUPINAR ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ BELGESİ

DUMLUPINAR ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ BELGESİ DUMLUPINAR ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ BELGESİ KİMLİK VE İLETİŞİM BİLGİLERİ Unvanı Adı Soyadı E posta Prof. Dr. Erhan ATA erhan.ata@dpu.edu.tr Telefon 507 7631676 Dumlupınar Ün. Evliya Çelebi Yerleşkesi

Detaylı

MATEMATİK-BİLGİSAYAR BİLİMLERİ BÖLÜMÜ LİSANS PROGRAMI DERS TANIMLARI I. YARIYIL

MATEMATİK-BİLGİSAYAR BİLİMLERİ BÖLÜMÜ LİSANS PROGRAMI DERS TANIMLARI I. YARIYIL I. YARIYIL MATEMATİK-BİLGİSAYAR BİLİMLERİ BÖLÜMÜ LİSANS PROGRAMI DERS TANIMLARI Analiz I (3-2-4) Doğal Sayılar / Rasyonel Sayılar / İrrasyonel Sayılar / Reel Sayı Cümleleri / Lineer Nokta Cümlelerinin

Detaylı

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci;

Öğrenim Kazanımları Bu programı başarı ile tamamlayan öğrenci; Image not found http://bologna.konya.edu.tr/panel/images/pdflogo.png Ders Adı : Mesleki Matematik-I Ders No : 090040019 Teorik : 4 Pratik : 0 Kredi : 4 ECTS : 4 Ders Bilgileri Ders Türü Öğretim Dili Öğretim

Detaylı

T.C KIRKLARELİ ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ(I.Ö-II.Ö) DERS İÇERİKLERİ

T.C KIRKLARELİ ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ(I.Ö-II.Ö) DERS İÇERİKLERİ T.C KIRKLARELİ ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ(I.Ö-II.Ö) DERS İÇERİKLERİ 1. SINIF, 1. YARI YIL(GÜZ DÖNEMİ) UNV13101 TÜRK DİLİ I 2 0 2 2 2 ZORUNLU Türkçenin yapı ve anlam bakımından

Detaylı

ERZİNCAN ÜNİVERSİTESİ

ERZİNCAN ÜNİVERSİTESİ ERZİNCAN ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ I.SINIF II.YARIYIL DOKTORA İŞLETME ANABİLİM DALI DERS TANITIM FORMU Dersin Kodu ve Adı: Uygulamalı Finansal Araştırmalar Bölüm / Anabilim Dalı: İşletme Yarıyıl

Detaylı

KIRKLARELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİMSEL HAZIRLIK PROGRAMLARI YILLIK EĞİTİM PLANI

KIRKLARELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİMSEL HAZIRLIK PROGRAMLARI YILLIK EĞİTİM PLANI KIRKLARELİ ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLİMSEL HAZIRLIK PROGRAMLARI LIK EĞİTİM PLANI (2015-2016 eğitim-öğretim yılından itibaren geçerlidir.) I. ve II. YARI ADI Z/S T U L KREDİ AKTS TEK15001 MATEMATİK

Detaylı

AKTS / İŞ YÜKÜ TABLOSU ETKİNLİK SAYISI SÜRESİ HESAPLAMA AÇIKLAMA. Ders İçi Süre (C) Ders Dişi Ön Çalışma (B)

AKTS / İŞ YÜKÜ TABLOSU ETKİNLİK SAYISI SÜRESİ HESAPLAMA AÇIKLAMA. Ders İçi Süre (C) Ders Dişi Ön Çalışma (B) MEF ÜNİVERSİTESİ TYYÇ ÇALIŞMALARI 1. KREDILENDIRME MEF Üniversitesi, Avrupa Kredi Transfer ve Biriktirme Sistemi (AKTS) yi içsel ve tek kredi sistemi olarak kullanmaktadır. AKTS öğrenci merkezli bir sistem

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Mantık Devreleri EEE307 5 3+0 3 3

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Mantık Devreleri EEE307 5 3+0 3 3 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Mantık Devreleri EEE307 5 3+0 3 3 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Zorunlu / Yüz Yüze Dersin

Detaylı

MATEMATĐK BÖLÜMÜ ÖĞRETĐM PROGRAMI

MATEMATĐK BÖLÜMÜ ÖĞRETĐM PROGRAMI MATEMATĐK BÖLÜMÜ ÖĞRETĐM PROGRAMI I.Sınıf I.YARIYIL (Güz) D.Kodu Dersin Adı T U K AKTS MAT 1101 Analiz I 4 0 4 7 MAT 1103 Lineer Cebir I 4 0 4 6 MAT 1105 Soyut Matematik I 4 0 4 6 MAT 1107 Temel Bilgi

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS VERİ TABANI BG-313 3/1 3+1+0 3+0,5 5 Dersin Dili : TÜRKÇE Dersin Seviyesi : LİSANS

Detaylı

İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ LİSANS PROGRAMI

İLKÖĞRETİM MATEMATİK ÖĞRETMENLİĞİ LİSANS PROGRAMI I. YARIYIL II. YARIYIL DERSİN ADI T U K DERSİN ADI T U K A Genel Matematik 4 2 5 A Soyut Matematik 3 0 3 GK Türkçe I: Yazılı Anlatım 2 0 2 A Geometri 3 0 3 GK Atatürk İlkeleri ve İnkılap Tarihi I 2 0 2

Detaylı

Matematik Eğitimi Anabilim Dalı Lisans Programı Ders Tanımları I.YARIYIL

Matematik Eğitimi Anabilim Dalı Lisans Programı Ders Tanımları I.YARIYIL Cumhuriyet Üniversitesi Eğitim Fakültesi Ortaöğretim Fen ve Matematik Alanları Eğitimi Bölümü Matematik Eğitimi Anabilim Dalı Lisans Programı Ders Tanımları I.YARIYIL OMÖ1001 Analiz-I 4 2 5 10 OMÖ1003

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Kesikli Matematiksel Yapılar BIL152 2. 3+0 3 7

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Kesikli Matematiksel Yapılar BIL152 2. 3+0 3 7 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Kesikli Matematiksel Yapılar BIL152 2. 3+0 3 7 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Zorunlu / Yüz

Detaylı

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım;

7. BÖLÜM İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI İÇ ÇARPIM UZAYLARI .= 1 1 + + Genel: Vektörler bölümünde vektörel iç çarpım; İÇ ÇARPIM UZAYLARI 7. BÖLÜM İÇ ÇARPIM UZAYLARI Genel: Vektörler bölümünde vektörel iç çarpım;.= 1 1 + + Açıklanmış ve bu konu uzunluk ve uzaklık kavramlarını açıklamak için kullanılmıştır. Bu bölümde öklit

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Bilgisayar Mühendisliğine Giriş BIL151 1. 3+0 3 3 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Zorunlu / Yüz

Detaylı

18.034 İleri Diferansiyel Denklemler

18.034 İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

VEKTÖR UZAYLARI 1.GİRİŞ

VEKTÖR UZAYLARI 1.GİRİŞ 1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.

Detaylı

AKSARAY ÜNİVERSİTESİ EĞİTİM FAKÜLTESİ İLKÖĞRETİM BÖLÜMÜ MATEMATİK EĞİTİMİ ANABİLİM DALI LİSANS EĞİTİM-ÖĞRETİM PLANI

AKSARAY ÜNİVERSİTESİ EĞİTİM FAKÜLTESİ İLKÖĞRETİM BÖLÜMÜ MATEMATİK EĞİTİMİ ANABİLİM DALI LİSANS EĞİTİM-ÖĞRETİM PLANI AKSARAY ÜNİVERSİTESİ EĞİTİM FAKÜLTESİ İLKÖĞRETİM BÖLÜMÜ MATEMATİK EĞİTİMİ ANABİLİM DALI LİSANS EĞİTİM-ÖĞRETİM PLANI I. YARIYIL II. YARIYIL DERSİN ADI T U K DERSİN ADI T U K A Genel Matematik 4 2 5 A Soyut

Detaylı

OMÖ1003 SOYUT MATEMATĐK-I

OMÖ1003 SOYUT MATEMATĐK-I Cumhuriyet Üniversitesi Eğitim Fakültesi Ortaöğretim Fen ve Matematik Alanları Eğitimi Bölümü Matematik Eğitimi Anabilim Dalı Lisans Programı Ders Tanımları I.YARIYIL OMÖ1001 Analiz-I 4 2 5 10 OMÖ1003

Detaylı

İleri Bilgisayar Mimarileri (COMPE 532) Ders Detayları

İleri Bilgisayar Mimarileri (COMPE 532) Ders Detayları İleri Bilgisayar Mimarileri (COMPE 532) Ders Detayları Ders Adı İleri Bilgisayar Mimarileri Ders Kodu COMPE 532 Dönemi Ders Uygulama Saati Saati Laboratuar Saati Kredi AKTS Güz 3 0 0 3 7.5 Ön Koşul Ders(ler)i

Detaylı

T.C. MALTEPE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ LİSANS PROGRAMI. 2011-12 Bahar Yarıyılı

T.C. MALTEPE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ LİSANS PROGRAMI. 2011-12 Bahar Yarıyılı T.C. MALTEPE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ YAZILIM MÜHENDİSLİĞİ LİSANS PROGRAMI 2011-12 Bahar Yarıyılı ALGORİTMA VE PROGRAMLAMA BİL 133 5 AKTS Kredisi 1. yıl 1. yarıyıl Lisans Zorunlu 4 saat/hafta

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Process Control EEE423 7 3+2 4 5

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS. Process Control EEE423 7 3+2 4 5 DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Process Control EEE423 7 3+2 4 5 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü İngilizce Lisans Seçmeli / Yüz Yüze Dersin

Detaylı