T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A
|
|
- Direnç Ergen
- 7 yıl önce
- İzleme sayısı:
Transkript
1 T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A
2
3 Contents 1 Denklik Bağıntıları 5 Bibliography 13
4
5 1 Denklik Bağıntıları 1 1denklik 1.1 Eşitlik Günlük yaşamda "eşit" terimini çok kullanırız. Kullanıldığı yere bağlı olarak anlam farklılıkları oluşur. Örneğin, 1$ = 2, 21 TL ifadesindeki = simgesiyle "Her üçgen kendisine eşittir" ifadesindeki eşit olma kavramları birbirlerinden farklıdır. Günlük yaşamda bu tür anlam farklılıkları sorun yaratmıyor. Ama matematikte, her tanıma yüklenen anlam kesinkes belirli olmalı, ondan farklı anlamlar çıkarılamamalıdır. Eşitlik Belitleri: 2 Eşit olma bağıntısı için üç belit koyacağız: x, y, z öğeler (değişken), µ ile ν iki formül olsun. 2eşitlik Her öğe kendisine eşittir: x = x Her formülde x yerine y konulabilir: [(x = y) µ(x, z)] µ(y, z) Her formülde y yerine x konulabilir: (y = x) [ν(y, z) = ν(x, z) 1.2 Denklik Bağıntıları 3 Birbirlerine eşit olmayan, ama eşitliğe benzer niteliklere sahip nesnelerle sık karşılaşırız. Örneğin, X marka ürün Y marka ürüne denktir derken, tümceye yüklenen anlam eşit olma değildir. Denklik bağıntısı, eşitlik kavramını genelleştirir. Bu genelleştirmeyi yapan tanımın matematikte kesinkes belirli olması, farklı anlamlara çekilememesi gerekir. Denkliği, aynı küme üzerinde tanımlı bir ikili bağıntı olarak ele alınca, (??) bağıntı türlerinden yararlanacağız. 3 eşdeğerlik
6 6 calculus Ortaya koyacağımız tanıma farklı anlamlar yüklenemez. Denklik bağıntısı yerine bazı kaynaklarda eşdeğerlik bağıntısı denilir. Tanım 1.1. Yansımalı, simetrik ve geçişimli bağıntıya, denklik bağıntısı, denilir. (??) uyarınca, bu tanımı simgesel olarak ifade edebiliriz: A kümesi üzerinde aşağıdaki özeliklere sahip δ bağıntısı bir denklik bağıntısıdır: x A xδx yansımalı (1.1) (x, y A) xδy yδx simetrik (1.2) (x, y, z A) xδy yδz xδz geçişimli (1.3) Denk Öğeler 4 4denk Tanım 1.2. Denklik bağıntısı ile birbirlerine bağlanan öğelere denk öğeler denilir. δ, boş olmayan A kümesi üzerinde tanımlı bir denklik bağıntısı olsun. δ bağıntısına göre birbirlerine denk olan öğeler aşağıdaki simgelerden birisiyle gösterilir. x y x y (mod δ) ya da x y (1.4) 1.3 Denklik Sınıfları 5 Tanım 1.3. A kümesi üzerinde tanımlı δ denklik bağıntısına göre, x öğesine denk olan bütün öğelerden oluşan altkümeye, x öğesinin denklik sınıfı, denir. 5denk sınıflar x öğesinin denklik sınıfını aşağıdaki simgelerden birisiyle göstereceğiz. x, [x], [x] δ Denklik sınıfını simgesel olarak da tanımlayabiliriz: x = [x] = [x] δ = {y (x, y) δ} (1.5) = {y xδy} (1.6) Aşağıdaki teorem, uygulamalarda önemli rol oynar. Theorem 1.4. (a) Boş olmayan A kümesi üzerinde tanımlı δ denklik bağıntısının denklik sınıfları A kümesinin bir ayrışımını oluşturur.
7 denklik bağintilari 7 (b) Tersine olarak, A kümesinin bir ayrışımını kendi denklik sınıfları olarak kabul eden bir δ denklik bağıntısı vardır. Kanit: (a): δ nın denklik sınıfları ailesinin (??) tanımındaki (i), (ii), (iii) ve (iv) ayrışım koşullarını sağlandığını göstermeliyiz. δ nın herhangi bir [x] denklik sınıfı için, hiç değilse, x [x] olduğundan [x] = sonucu çıkar. Ayrıca A = x A [x] eşitliği apaçıktır. Böylece (ii) ve (iv) koşulları sağlanır. (iii) özeliğini göstermek için herhangi iki [x] ve [y] denklik sınıflarını alalalım. [x] = [y] ya da [x] [y] = olduğunu göstermeliyiz. Olmayana ergi yöntemini kullanacağız. olacaktır. Şimdi olacağını gösterelim. u [x] [y] uδx uδy xδu uδy xδy w(w [x]) w [y] [x] [y] w [x] wδx dir. Ayrıca xδy olduğunu biliyoruz. Buradan şu sonuç görülür: b(b [x]) (bδx xδy) bδy b [y] [x] [y] Benzer yolla [x] [y] olduğu da gösterilebilir. Dolayısıyla, arakesitleri boş olmayan [x], [y] denklik sınıflarının eşit olduğu ortaya çıkar. Bu sonuç, teoremin (a) kısmını kanıtlar. (b): P kümesinin herhangi bir P = {P i i I} ayrışımı verilmiş olsun, Ayrışım tanımına göre [(i, j I) (i = j)] [P i P j = ] olur. x P x P i olacak şekilde bir tek i I vardır. Buna göre, P üzerinde xηy = [ i(i I) x, y P i ] (1.7) bağıntısını tanımlayalım, η nın bir denklik bağıntısı olduğu ve η nın denklik sınıflarının {P i i I} ailesinden ibaret olduğu kolayca görülebilir. Teorem 1.4 den şu sonuçları çıkarabiliriz: 1. A kümesinin her öğesi, bir ve yalnızca bir denklik sınıfına aittir. Denklik sınıflarının birleşimi A kümesine eşittir: A = {a a A}
8 8 calculus 2. İki denklik sınıfı ya birbirlerine eşittir ya da ayrıktırlar: x, y A [(x = y) (x y = )]. 1.4 Bölüm Kümesi 6 Tanım 1.5. A kümesi üzerindeki δ denklik bağıntısının bütün denklik sınıflarından oluşan aileye, A kümesinin δ ya göre bölüm kümesi denir. 6bölüm Bölüm kümesi A/δ simgesiyle gösterilir: Örnekler A/δ = {[x], [y], [z],...} = {[x] : x A} (1.8) 1. Boş olmayan bir küme üzerindeki eşitlik bağıntısının bir denklik bağıntısı olduğunu gösteriniz. X boş olmayan bir küme olsun. Bunun üzerinde, (=) = {(x, y) x = y } bağıntısının bir denklik bağıntısı olduğunu kanıtlamak için, eşitliğin Tanım 1.1 koşullarını sağladığını göstermeliyiz. yansıma: Her öğe kendisine eşittir, belitinden x X x = x çıkar. O halde = bağıntısı yansımalıdır. simetri: Eşitliğin ikinci ve üçüncü belitlerinden x yerine y ve y yerine x koyabiliriz. Öyleyse, (x, y X) ve x = y ise y = x yazılabilir. Buradan = bağıntısının simetrik olduğu sonucuna varılır. geçişim: Gene, eşitliğin ikinci ve üçüncü belitlerinden (x, y, z X) için x = y ve y = z ise x = z yazılabilir. Buradan = bağıntısının geçişimli olduğu sonucuna varılır. O halde, eşitlik bağıntısı bir denklik bağıntısıdır. x öğesinin = bağıntısına göre denklik sınıfı, yalnızca kendisinden oluşur: x = {x} dir. 2. Düzlemdeki doğrular kümesi üzerinde, "diklik" ( ) bağıntısının bir denklik bağıntısı olmadığını gösteriniz. Çözüm: Denklik bağıntısı yansıma ve geçişim özeliklerini sağlamaz. Gerçekten, hiç bir doğru kendisine dik değildir. O halde diklik bağıntısının yansıma özeliği yoktur.(problemin çözümü için bu kadarı yeter. Ama istersek, geçişim özeliğinin de sağlanmadığını kolayca görebiliriz.) Düzlem geometriden iyi bilindiği
9 denklik bağintilari 9 gibi, d doğrusu e doğrusuna dik ve e doğrusu f doğrusuna dik ise d doğrusu ile f doğrusu birbirlerine paralel olur. (d e) (e f ) (d f ) Dolayısıyla, diklik bağıntısı geçişimli değildir. 3. Düzlemdeki doğrular üzerinde tanımlanan paralellik bağıntısının denklik bağıntısı olduğunu gösteriniz. Çözüm: Düzlemdeki bütün doğruların kümesini D ile gösterelim. D üzerinde paralellik bağıntısını δ ile, düzlemde d ile e doğrularının birbirlerine paralel oluşunu d e simgesiyle gösterelim. δ = {(d, e) (d, e D) (d e)} yazabiliriz. δ nın bir denklik bağıntısı olduğunu görmek için, yansıma, simetri ve geçişim özeliklerine sahip olduğunu göstermeliyiz. yansıma: Her doğru kendisine paralel olduğundan, d D d d olur. O halde paralellik bağıntısı yansıma özeliğine sahiptir. simetri: Sentetik geometriden bilindiği üzere (d e) (e d) olduğundan, paralellik bağıntısı simetriktir. geçişim: Gene, sentetik geometriden bilindiği üzere, [(d e) (e f )] (d f ) olduğundan, paralellik bağıntısı geçişimlidir. Düzlemde birbirlerine paralel olan doğrular, aynı denklik sınıfı içindedirler. Paralel doğruların doğrultuları aynıdır. Düzlemde, sonsuz doğrultu olduğu için, paralellik bağıntısının denklik sınıfları sonsuz çokluktadır. 4. Denklik bağıntısının tersi de denklik bağıntısıdır. Kanıtlayınız. Çözüm: Boş olmayan bir X kümesi üzerinde, δ bir denklik bağıntısı ise, δ yansımalı, simetrik ve geçişimlidir. Şimdi, bunun tersi olan δ 1 = {(x, y) (y, x) δ}
10 10 calculus bağıntısının da aynı özelikleri sağladığını göstermeliyiz. a A (a, a) δ (a, a) δ 1 (δ 1 yansımalıdır) (a, b) δ 1 (b, a) δ (δ 1 in tanımından) (a, b) δ (δ simetrik olduğundan) (b, a) δ 1 (δ 1 in tanımından) (δ 1 simetriktir) ( (a, b) δ 1) ( (b, c) δ 1) ((b, a) δ) ((c, b) δ) ((c, b) δ) ((b, a) δ) (c, a) δ (a, c) δ 1 (δ 1 geçişimlidir) 5. İki kesrin eşitliği bağıntısı denklik bağıntısıdır. Kanıtlayınız. Çözüm: İki kesrin eşitliği ( m n s t ) = (mt = ns) bağıntısı ile tanımlanır. Buradaki bağıntısının yansımalı, simetrik ve geçişimli olduğunu göstermeliyiz. yansıma: ( m n m n ) = (mn = mn) olduğundan bağıntısı yansımalıdır. simetri: ( m n s ) ( s = (mt = ns) = (ns = mt) = t t m ) n olduğundan, bağıntısı simetriktir. geçişim: ( m n s ) ( s t ) t p ) q olduğundan, bağıntısı geçişimlidir. = (mt = ns) (sq = tp) = (mq = np) ( m = n p ) q
11 denklik bağintilari Tamsayılar kümesi üzerinde, denklik sınıfları 0 = {..., 8, 6, 4, 2, 0,, 2, 4, 6, 8,...} 1 = {..., 9, 7, 5, 3, 1, 1, 3, 5, 7, 9...} olan denklik bağıntısını bulunuz. Çözüm: Birinci sınıf çift sayılardan, ikinci sınıf tek sayılardan oluşuyor. Bu iki kümenin ortak özeliği, her birinde iki sayının farkının çift olmasıdır. Gerçekten, tamsayılar kümesi üzerinde "farkları çift olanlar eşleşir" bağıntısını kurarsak, bunun bir denklik bağıntısı olduğunu gösterebiliriz. Tamsayılar kümesini Z ile gösterelim ve Z üzerinde, δ = {(p, q) (p q) çifttir} bağıntısını tanımlayalım. δ nın yansımalı, simetrik ve geçişimli olduğunu gösterelim. yansıma: q Z q q = 0 çifttir. O halde, δ yansımalıdır. simetri: (p, q Z) (p q) çift ise (q p) de çift olacağından, δ simetriktir. geçişim: (p, q, r Z) için(p q) çift ve (q r) çift ise (p r) = (p q) + (q r) de çift olacağından, δ geçişimlidir. {(p, q) δ = p q = çift} olabilmesi için, p, q tamsayılarının her ikisi de aynı zamanda ya çift ya da tek olmalıdır. Öyleyse, δ bağıntısına göre tek sayılar birbirlerine denk; çift sayılar birbirlerine denktir. Bir tek sayı ile bir çift sayı aynı denklik sınıfında olamazlar. Öyleyse, δ ya göre, yalnızca iki denklik sınıfı vardır: 0 ve Alıştırmalar 7 1. A = {1, 2, 3, 4, 5} kümesi üzerinde (a, b) = (c, d) = (a + b = c + d) bağıntısı bir denklik bağıntısı mıdır? 7 alıştırmalar 2. Kardeşlik bağıntısı bir denklik bağıntısı mıdır? Neden? 3. A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} kümesinde tanımlı, δ = {(x, y) : 4 (x y)} bağıntısının bir denklik bağıntısı olduğunu gösteriniz ve denklik sınıflarını bulunuz.
12 12 calculus 4. Tamsayılar kümesi üzerinde (m, n) δ = 3 (m n) bağıntısının bir denklik bağıntısı olduğunu gösteriniz. Denklik sınıflarını yazınız. 5. Düzlemdeki üçgenler kümesi üzerinde benzerlik bağıntısının bir denklik bağıntısı olduğunu gösteriniz. 6. Sınıftaki öğrenciler arasında "arkadaşlık" bağıntısı bir denklik bağıntısı mıdır? Neden? 7. Aynı bir küme üzerinde tanımlı iki denklik bağıntısının arakesiti de bir denklik bağıtısı mıdır? Neden?
13 Bibliography
14
15 0130 bibliography 15
T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A
T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 İyi Sıralama 5 Bibliography 13 1 İyi Sıralama Well Ordering İyi sıralama kavramı, doğal sayıların
DetaylıT I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A
T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 Operatörler 5 Bibliography 19 Index 23 1 Operatörler İşlemler 1.1 Operatör Nedir? İlkokulden
DetaylıT I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A
T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents Bibliography 11 CONTENTS 5 0.1 Kartezyen Çarpım 0.2 Sıralı İkililer Şimdiye kadar sıra ya da
Detaylıx = [x] = [x] β = {y (x,y) β} (8.5) X = {x x X}. x,y X [(x = y) (x y = )]. b(b [x]) b [y] [x] [y] (8.8)
Bölüm 8 DENKL K BA INTILARI 8.1 DENKL K BA INTISI 8.1.1 E³itlik Kavramnn Genelle³mesi Matematikte ve ba³ka bilim dallarnda, birbirlerine e³it olmayan, ama e³itli e benzer niteliklere sahip nesnelerle sk
DetaylıT I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A
T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 Kümeler Cebiri 5 1 Kümeler Cebiri 1 Doğa olaylarının ya da sosyal olayların açıklanması için,
Detaylı1 BAĞINTILAR VE FONKSİYONLAR
1 BAĞINTILAR VE FONKSİYONLAR Bu bölümde ilk olarak Matematikte çok önemli bir yere sahip olan Bağıntı kavramnı verip daha sonra ise Fonksiyon tanımı verip genel özelliklerini inceleyeceğiz. Tanım 1 A B
DetaylıMATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev
MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 3.KONU Kümeler Teorisi; Küme işlemleri, İkili işlemler 1. Altküme 2. Evrensel Küme 3. Kümelerin Birleşimi 4. Kümelerin Kesişimi 5. Bir Kümenin Tümleyeni
DetaylıTanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir.
2. SİMETRİK GRUPLAR Tanım 2.1. X boş olmayan bir küme olmak üzere X den X üzerine bire-bir fonksiyona permütasyon denir. Tanım 2.2. boş olmayan bir küme olsun. ile den üzerine bire-bir fonksiyonlar kümesini
Detaylısayıların kümesi N 1 = { 2i-1: i N } ve tüm çift doğal sayıların kümesi N 2 = { 2i: i N } şeklinde gösterilebilecektir. Hiç elemanı olmayan kümeye
KÜME AİLELERİ GİRİŞ Bu bölümde, bir çoğu daha önceden bilinen incelememiz için gerekli olan bilgileri vereceğiz. İlerde konular işlenirken karşımıza çıkacak kavram ve bilgileri bize yetecek kadarı ile
DetaylıT I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A
T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents Rasyonel Fonksiyonlar 5 Bibliography 35 Inde 39 Rasyonel Fonksiyonlar Polinomlar Yetmez! Bölme
DetaylıTemel Kavramlar. (r) Sıfırdan farklı kompleks sayılar kümesi: C. (i) Rasyonel sayılar kümesi: Q = { a b
Bölüm 1 Temel Kavramlar Bu bölümde bağıntı ve fonksiyon gibi bazı temel kavramlar üzerinde durulacak, tamsayıların bazı özellikleri ele alınacaktır. Bu çalışma boyunca kullanılacak bazı kümelerin gösterimleri
DetaylıMAT223 AYRIK MATEMATİK
MAT223 AYRIK MATEMATİK Kombinatoryal Olasılık 5. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Olaylar ve Olasılıklar Kombinatoryal Olasılık Olaylar
Detaylı1.4. KISMİ SIRALAMA VE DENKLİK BAĞINTILARI
Reel sayılar kümesinin "küçük ya da eşit", bağıntısı ile sıralanmış olduğunu biliyoruz. Bu bağıntı herhangi bir X kümesine aşağıdaki şekilde genelleştirilebilir. Bir X kümesi üzerinde aşağıdaki yansıma,
Detaylı3. işleminin birim elemanı vardır, yani her x A için x e = e x = x olacak şekilde e A vardır.
0.1 GRUPLAR Tanım 1 A kümesi boştan farklıolmak üzere işlemine göre aşağıdaki koşulları gerçekliyorsa (A, ) ikilisine bir Grup denir. 1. kapalılık özelliğine sahiptir, yani her x, y A için x y A olur.
DetaylıDers 2: RP 1 ve RP 2 - Reel izdüşümsel doğru ve
Ders 2: RP 1 ve RP 2 - Reel izdüşümsel doğru ve düzlem Geçen ders doğrusal cebir aracılığıyla izdüşümsel geometri için bir model kurduk. Şimdi bu modeli daha somut bir şekle sokalım, F = R durumunda kurduğumuz
Detaylı13.Konu Reel sayılar
13.Konu Reel sayılar 1. Temel dizi 2. Temel dizilerde toplama ve çarpma 3. Reel sayılar kümesi 4. Reel sayılar kümesinde toplama ve çarpma 5. Reel sayılar kümesinde sıralama 6. Reel sayılar kümesinin tamlık
Detaylı10.Konu Tam sayıların inşası
10.Konu Tam sayıların inşası 1. Tam sayılar kümesi 2. Tam sayılar kümesinde toplama ve çarpma 3. Pozitif ve negatif tam sayılar 4. Tam sayılar kümesinde çıkarma 5. Tam sayılar kümesinde sıralama 6. Bir
DetaylıMODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13. TANIM Z tam sayılar kümesinde tanımlı
MODÜLER ARİTMETİK A)1 B)3 C)8 D)11 E)13 TANIM Z tam sayılar kümesinde tanımlı ={(x,y): x ile y nin farkı n ile tam bölünür} = {(x,y): n x-y, n N + } bağıntısı bir denklik bağıntısıdır. (x,y) ise x y (mod
DetaylıBu kısımda işlem adı verilen özel bir fonksiyon çeşidini ve işlemlerin önemli özelliklerini inceleyeceğiz.
Bölüm 3 Gruplar Bu bölümde ilk olarak bir küme üzerinde tanımlı işlem kavramını ele alıp işlemlerin bazı özelliklerini inceleyeceğiz. Daha sonra kümeler ve üzerinde tanımlı işlemlerden oluşan cebirsel
DetaylıÖnermeler mantığındaki biçimsel kanıtlar
Önermeler mantığındaki biçimsel kanıtlar David Pierce 26 Aralık 2011, saat 11:48 Bu yazının ana kaynakları, Burris in [1] ve Nesin in [4] kitapları ve Foundations of Mathematical Practice (Eylül 2010)
Detaylıiçin Örnek 7.1. simetri grubunu göz önüne alalım. Şu halde dür. Şimdi kalan sınıflarını göz önüne alalım. Eğer ve olarak alırsak işlemini kullanarak
7. Bölüm Grupları olmak üzere grubunu nasıl inşa ettiğimizi hatırlayalım. grubunun alt grubu grubu tüm olacak şekilde tüm sınıflardan oluşmuştur. Sınıfların toplamını ile, yani ile tanımlamıştık. Şimdi
DetaylıİÇİNDEKİLER. Önsöz...2. Önermeler ve İspat Yöntemleri...3. Küme Teorisi Bağıntı Fonksiyon İşlem...48
İÇİNDEKİLER Önsöz...2 Önermeler ve İspat Yöntemleri...3 Küme Teorisi...16 Bağıntı...26 Fonksiyon...38 İşlem...48 Sayılabilir - Sonlu ve Sonsuz Kümeler...56 Genel Tarama Sınavı...58 Önermeler ve İspat Yöntemleri
DetaylıKARAKTER DİZGİLERİ, BAĞINTILAR, FONKSİYONLAR KESİKLİ MATEMATİKSEL YAPILAR
KARAKTER DİZGİLERİ, BAĞINTILAR, FONKSİYONLAR KESİKLİ MATEMATİKSEL YAPILAR 2012-2013 Karakter Dizgisi Karakter Dizgisi Üzerine İşlemler Altdizgi Tanım 3.1.1: Bir X kümesi üzerinde bir karakter dizgisi (string)
Detaylı0.1 Küme Cebri. Teorem 1 A ve B iki küme olmak üzere i) (A B) c = A c B c ii) (A B) c = A c B c
0. Küme Cebri Bu bölümde verilen keyfikümeler üzerinde birleşim, kesişim, fark, tümleyen,...gibi özellikleri sağlayan eşitliklerle ilgilenceğiz. İlk olarak De Morgan kurallarıdiye bilinen bir Teoremi ifade
DetaylıBÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14
İÇİNDEKİLER Önsöz. V BÖLÜM I MATEMATİK NEDİR? 13 1.1. Matematik Nedir? 14 BÖLÜM II KÜMELER 17 2.1.Küme Tanımı ve Özellikleri 18 2.2 Kümelerin Gösterimi 19 2.2.1 Venn Şeması Yöntemi 19 2.2.2 Liste Yöntemi
Detaylı8. HOMOMORFİZMALAR VE İZOMORFİZMALAR
8. HOMOMORFİZMALAR VE İZOMORFİZMALAR Şimdiye kadar bir gruptan diğer bir gruba tanımlı olan fonksiyonlarla ilgilenmedik. Bu bölüme aşağıdaki tanımla başlayalım. Tanım 8.1: ve iki grup ve f : G H bir fonksiyon
DetaylıBu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz.
1 BİR İŞLEMLİ SİSTEMLER Bu bölümde cebirsel yapıların temelini oluşturan Grup ve özelliklerini inceleyeceğiz. 1.1 İŞLEMLER Bir kümeden kendisine tanımlı olan her fonksiyona birli işlem denir. Örneğin Z
Detaylı2. SİMETRİK GRUPLAR. Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir.
2. SİMETRİK GRUPLAR Tanım 2.1. X boş olmayan bir küme olmak üzere X den X e birebir örten fonksiyona permütasyon denir. Tanım 2.2. X boş olmayan bir küme olsun. S X ile X den X e tüm birebir örten fonksiyonlar
DetaylıT.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ
T.C. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ DERS: CEBİRDEN SEÇME KONULAR KONU: KARDİNAL SAYILAR ÖĞRETİM GÖREVLİLERİ: PROF.DR. NEŞET AYDIN AR.GÖR. DİDEM YEŞİL HAZIRLAYANLAR: DİRENCAN DAĞDEVİREN ELFİYE ESEN
Detaylı1.GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G. vardır. 3) a G için denir) vardır.
1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1) a, b, c G için a ( b c) ( a b) c (Birleşme özelliği)
Detaylı12.Konu Rasyonel sayılar
12.Konu Rasyonel sayılar 1. Rasyonel sayılar 2. Rasyonel sayılar kümesinde toplama ve çarpma 3. Rasyonel sayılar kümesinde çıkarma ve bölme 4. Tam rayonel sayılar 5. Rasyonel sayılar kümesinde sıralama
DetaylıLeyla Bugay Doktora Nisan, 2011
ltanguler@cu.edu.tr Çukurova Üniversitesi, Matematik Bölümü Doktora 2010913070 Nisan, 2011 Yarıgrup Teorisi Nedir? Yarıgrup teorisi cebirin en temel dallarından biridir. Yarıgrup terimi ilk olarak 1904
DetaylıTanım Bir X kümesi üzerinde bir karakter dizgisi (string) X kümesindeki. boş karakter dizgisi (null string) denir ve l ile gösterilir.
BÖLÜM 3 Karakter Dizgileriil i Tanım 3.1.1 Bir X kümesi üzerinde bir karakter dizgisi (string) X kümesindeki öğelerden oluşan bir sonlu dizidir. Hiç bir öğesi olmayan bir karakter dizgisine boş karakter
DetaylıÖrnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir?
DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler, değer kümelerine göre adlandırı - lırlar. Dizinin değer
DetaylıLineer Dönüşümler ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv.Dr. Nevin ORHUN
Lineer Dönüşümler Yazar Öğr. Grv.Dr. Nevin ORHUN ÜNİTE 7 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayları arasında tanımlanan belli fonksiyonları tanıyacak, özelliklerini öğrenecek, Bir dönüşümün,
DetaylıDers 8: Konikler - Doğrularla kesişim
Ders 8: Konikler - Doğrularla kesişim Geçen ders RP 2 de tekil olmayan her koniğin bir dönüşümün ardından tek bir koniğe dönüştüğü sonucuna vardık; o da {[x : y : z x 2 + y 2 z 2 = 0]} idi. Bu derste bu
Detaylıİç-Çarpım Uzayları ÜNİTE. Amaçlar. İçindekiler. Yazar Öğr. Grv. Dr. Nevin ORHUN
İç-Çarpım Uzayları Yazar Öğr. Grv. Dr. Nevin ORHUN ÜNİTE Amaçlar Bu üniteyi çalıştıktan sonra; R n, P n (R), M nxn vektör uzaylarında iç çarpım kavramını tanıyacak ve özelliklerini görmüş olacaksınız.
DetaylıT I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A
T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents Bibliography 9 Index 13 CONTENTS 5 0.1 Doğru, Düzlem, Uzay Bu derste sık sık doğru, düzlem ve
DetaylıKuantum Grupları. Orta Doğu Teknik Üniversitesi, Ankara. Münevver Çelik. Feza Gürsey Enstitüsü, İstanbul 10 Şubat, 2010
Orta Doğu Teknik Üniversitesi, Ankara Feza Gürsey Enstitüsü, İstanbul 10 Şubat, 2010 Kuantum grubu örgülü bir Hopf cebridir. Cebir Tanım Bir k-vektör uzayı A için, µ : A A A ve η : k A birer k-doğrusal
Detaylı9. İZOMORFİZMA TEOREMLERİ VE EŞLENİK ELEMANLAR. Aşağıdaki teorem Homomorfizma teoremi olarak da bilinir.
9. İZOMORFİZMA TEOREMLERİ VE EŞLENİK ELEMANLAR Aşağıdai teorem Homomorfizma teoremi olara da bilinir. Teoremi 9.. (.İzomorfizma Teoremi) f : G H bir grup homomorfizması olsun. Şu halde ( ) dir. Özel olara,
Detaylı1. GRUPLAR. c (Birleşme özelliği) sağlanır. 2) a G için a e e a a olacak şekilde e G (e ye birim eleman denir) vardır.
1. GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir., ) cebirsel 1) a b cg,, için a( bc) ( ab) c (Birleşme özelliği)
DetaylıMATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev
MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 5.KONU Cebiresel yapılar; Grup, Halka 1. Matematik yapı 2. Denk yapılar ve eş yapılar 3. Grup 4. Grubun basit özellikleri 5. Bir elemanın kuvvetleri
Detaylı10. DİREKT ÇARPIMLAR
10. DİREKT ÇARPIMLAR Teorem 10.1. H 1,H 2,, H n bir G grubunun alt gruplarının bir ailesi ve H = H 1 H 2 H n olsun. Aşağıdaki ifadeler denktir. a ) dönüşümü altında dır. b) ve olmak üzere her yi tek türlü
Detaylı1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon
İçindekiler Cebir 1. Fonksiyonlar....... 1.1 Fonksiyonların Tanım, Değer ve Görüntü Kümesi...... 1.1.1 Fonksiyon.. 1.1. Görüntü Kümesi... 1.1.3 Eşit Fonksiyonlar. 1.1.4 Fonksiyonun Gösterimi. 1.1.4.1 Liste
Detaylıkavramını tanımlayıp bazı özelliklerini inceleyeceğiz. Ayrıca bir grup üzerinde tanımlı
Bölüm 5 Permütasyon Grupları Bu bölümde sonlu bir kümenin permütasyonlarını araştıracağız. Öncelikle permütasyon kavramını tanımlayıp bazı özelliklerini inceleyeceğiz. Ayrıca bir rup üzerinde tanımlı eşlenik
Detaylı18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu
MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr
DetaylıBMT 206 Ayrık Matematik. Yük. Müh. Köksal GÜNDOĞDU 1
BMT 206 Ayrık Matematik Yük. Müh. Köksal GÜNDOĞDU 1 Kümeler Yük. Müh. Köksal GÜNDOĞDU 2 Kümeler Kümeler Ayrık Matematiğin en temel konularından biridir Sayma problemleri için önemli Programlama dillerinin
DetaylıSayılar Kuramına Giriş Özet
Eğer bir b noktası bir a noktasının sağındaysa, o zaman a, b den küçük ve b, a dan büyük olarak sayılır, ve Sayılar Kuramına Giriş Özet David Pierce a < b, b > a yazılır. Tanıma göre a a, a < b a b, a
DetaylıMATM 133 MATEMATİK LOJİK. Dr. Doç. Çarıyar Aşıralıyev
MATM 133 MATEMATİK LOJİK Dr. Doç. Çarıyar Aşıralıyev 4.KONU Latisler, Boole Cebri 1. Kısmi sıralı kümeler 2. Hasse Diyagramı 3. Infimum, Supremum 4. Latis (Kafes Lattice) 5. Latis (Kafes) Yapıları ve Özellikleri
DetaylıÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ MODÜLER ARİTMETİK
ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ MODÜLER ARİTMETİK ÇANAKKALE 2012 ÖNSÖZ Bu kitap Çanakkale Onsekiz Mart Üniversitesi Matematik Bölümünde lisans dersi olarak Cebirden
Detaylı15. Bağıntılara Devam:
15. Bağıntılara Devam: Yerel Bağıntılardan Örnekler: Doğal sayılar kümesi üzerinde bir küçüğüdür (< 1 ) bağıntısı: < 1 {(x, x+1) x N} {(0,1), (1, 2), } a< 1 b yazıldığında, a doğal sayılarda bir küçüktür
DetaylıKÜMELER VE MANTIK KESİLİ MATEMATİKSEL YAPILAR
KÜMELER VE MANTIK KESİLİ MATEMATİKSEL YAPILAR Kümeler Koşullu ve Mantıksal Denklik Kümeler Kümeler Ayrık Kümeler De-Morgan Kuralı Z (Zahlen; alm.) tamsayılar kümesi Z negatif tamsayılar kümesi, Z nonneg
Detaylı8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar
8.Konu Sonlu ve sonsuz kümeler, Doğal sayılar 1. Eşit güçlü kümeler 2. Sonlu ve sonsuz kümeler 3. Doğal sayılar kümesi 4. Sayılabilir kümeler 5. Doğal sayılar kümesinde toplama 6. Doğal sayılar kümesinde
Detaylı(a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.
BĞANTI - FONKSİYON 1. Sıralı İkili : (a,b) şeklindeki ifadelere sıralı ikili denir. Burada a'ya 1. bileşen b'ye 2. bileşen denir.! (x 1,x 2, x 3,x 4,...x n ) : sıralı n li denir. Örnek, (a,b,c) : sıralı
Detaylıolsun. Bu halde g g1 g1 g e ve g g2 g2 g e eşitlikleri olur. b G için a b b a değişme özelliği sağlanıyorsa
1.GRUPLAR Tanım 1.1. G boş olmayan bir küme ve, G de bir ikili işlem olsun. (G, ) cebirsel yapısına aşağıdaki aksiyomları sağlıyorsa bir grup denir. 1), G de bir ikili işlemdir. 2) a, b, c G için a( bc)
DetaylıMAT 302 SOYUT CEBİR II SORULAR. (b) = ise =
MAT 302 SOYUT CEBİR II SORULAR 1. : bir dönüşüm, olsunlar. a) ( ) = ( ) ( ) b) ( ) ( ) ( ) olduğunu c) ( ) nin eşitliğinin sağlanması için gerekli ve yeterli bir koşulun nin 1 1 olması ile mümkün olduğunu
DetaylıLimit. 1.1 Soldan ve Sağdan Yaklaşım. 1.2 Fonksiyonun Limiti
Bölüm Limit. Soldan ve Sağdan Yaklaşım değişkeni a ya, a dan küçük değerlerle yaklaşıyorsa, bu tür yaklaşıma soldan yaklaşım denir ve a biçiminde gösterilir. değişkeni a ya, a dan büyük değerlerle yaklaşıyorsa,
DetaylıB Ö L Ü M. ve kitaplar yayınlamış olan bir bilim adamıdır. 2 JULIUS WILHELM RICHARD DEDEKIND ( ), Gauss un öğrencilerinden biridir.
B Ö L Ü M 2 DOĞAL SAYILAR En basit ve temel sayılar doğal sayılardır, sayı kelimesine anlam veren saymak eylemi bu sayılarla başlamıştır. Fakat insanoğlunun var oluşundan beri kullanılan bu sayıların açık
DetaylıSORU 1: X bir sonsuz küme ve A da X kümesinin tüm sonlu alt kümelerinin. A := {B P (X) : B sonlu} SORU 2: X sayılamayan bir küme
2. ÖLÇÜLER 2.1 BazıKüme Sınıfları SORU 1: X bir sonsuz küme ve A da X kümesinin tüm sonlu alt kümelerinin bir sınıfıolsun. A sınıfıx üzerinde bir σ cebir midir? ÇÖZÜM 1: A := {B P (X) : B sonlu} X / A
DetaylıMIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için
MIT Açık Ders Malzemeleri http://ocm.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocm.mit.edu/terms veya http://tuba.açık ders.org.tr adresini ziyaret
Detaylı7. BAZI MATEMATİKSEL TEMELLER:
7. BAZI MATEMATİKSEL TEMELLER: Bilindiği üzere, matematikte ortaya konan her yeni kavram, kendinden önceki tanımlanmış kavramlar cinsinden, herhangi bir tereddüt veya muğlâklığa mahal bırakmayacak resmî
Detaylı9.Konu Lineer bağımsızlık, taban, boyut Germe. 9.1.Tanım: V vektör uzayının her bir elemanı
9.Konu Lineer bağımsızlık, taban, boyut 9.1. Germe 9.1.Tanım: V vektör uzayının her bir elemanı vektörlerin lineer birleşimi olarak ifade ediliyorsa vektörleri V yi geriyor ya da V yi gerer denir. Üstelik,
DetaylıMODÜLER ARİTMETİK. Örnek:
MODÜLER ARİTMETİK Bir doğal sayının ile bölünmesinden elde edilen kalanlar kümesi { 0,, } dir. ile bölünmesinden elde edilen kalanlar kümesi { 0,,, } tür. Tam sayılar kümesi üzerinde tanımlanan {( x, y)
Detaylı1.4 Tam Metrik Uzay ve Tamlaması
1.4. Tam Metrik Uzay ve Tamlaması 15 1.4 Tam Metrik Uzay ve Tamlaması Öncelikle şunu not edelim: (X, d) bir metrik uzay, (x n ), X de bir dizi ve x X ise lim n d(x n, x) = 0 = lim n,m d(x n, x m ) = 0
DetaylıÖrnek...3 : Aşağıdaki ifadelerden hangileri bir dizinin genel terim i olabilir? Örnek...4 : Genel terimi w n. Örnek...1 : Örnek...5 : Genel terimi r n
DİZİLER Tanım kümesi pozitif tam sayılar kümesi olan her fonksiyona dizi denir. Örneğin f : Z + R, f (n )=n 2 ifadesi bir dizi belirtir. Diziler değer kümelerine göre adlandırılırlar. Dizinin değer kümesi
DetaylıCebir Notları. Gökhan DEMĐR, ÖRNEK : A ve A x A nın bir alt kümesinden A ya her fonksiyona
, 2006 MC Cebir Notları Gökhan DEMĐR, gdemir23@yahoo.com.tr Đşlem ĐŞLEM A ve A x A nın bir alt kümesinden A ya her fonksiyona ikili işlem denir. Örneğin toplama, çıkarma, çarpma birer işlemdir. Đşlemler
DetaylıTaşkın, Çetin, Abdullayeva
BÖLÜM Taşkın, Çetin, Abdullaeva FONKSİYONLAR.. FONKSİYON KAVRAMI Tanım : A ve B boş olmaan iki küme a A ve b B olmak üzere ( ab, ) sıralı eleman çiftine sıralı ikili denir. ( ab, ) sıralı ikilisinde a
DetaylıSORU 1: En az iki elemana sahip bir X kümesi ile bunun P (X) kuvvet. kümesi veriliyor. P (X) üzerinde 0 ; A = 1 ; A
2.2 Ölçüler SORU 1: En az iki elemana sahip bir X kümesi ile bunun P (X kuvvet kümesi veriliyor. P (X üzerinde 0 ; A (A : 1 ; A şeklinde tanımlanan dönüşümü ölçü müdür? ÇÖZÜM 1: (i Tanımdan ( 0. (ii A
Detaylı1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol
ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.
DetaylıKümeler ve Küme İşlemleri
Kümeler ve Küme İşlemleri ÜNİTE 2 Amaçlar Bu üniteyi çalıştıktan sonra; küme kavramını, küme işlemlerini, küme işlemlerinin özelliklerini ve kullanılan simgeleri tanıyacaksınız. küme ailelerini, kümelerin
Detaylı1. Metrik Uzaylar ve Topolojisi
1. Metrik Uzaylar ve Topolojisi Euclidean R uzayının tabanının B = {(a, b) : a, b R} olduğunu biliyoruz. Demek ki bu uzayda belirleyiçi unsur açık aralıklar. Her açık aralık (a, b) için, olmak üzere, d
DetaylıÖrnek...2 : Örnek...3 : Örnek...1 : MANTIK 1. p: Bir yıl 265 gün 6 saattir. w w w. m a t b a z. c o m ÖNERMELER- BİLEŞİK ÖNERMELER
Terim: Bir bilim dalı içerisinde konuşma dilinden farklı anlamı olan sözcüklerden her birine o bilim dalının bir terimi denir. Önermeler belirtilirler. p,q,r,s gibi harflerle Örneğin açı bir geometri terimi,
Detaylı18.701 Cebir 1. MIT Açık Ders Malzemeleri http://ocw.mit.edu
MIT Açık Ders Malzemeleri http://ocw.mit.edu 18.701 Cebir 1 2007 Güz Bu malzemeden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms ve http://tuba.acikders.org.tr
DetaylıMAT355 Kompleks Fonksiyonlar Teorisi I Hafta Kompleks Sayıların Cebirsel ve Geometrik Özellikleri
1. KOMPLEKS SAYILAR 1.1. Kompleks Sayıların Cebirsel ve Geometrik Özellikleri Tanım 1. x, y R olmak üzere (x, y) sıralı ikililerine kompleks sayı denir. Burada x, z nin reel kısmı, ve y, z nin imajiner
DetaylıÖrnek...1 : Örnek...2 : A = { a, {a}, b, c, {b, d}, d }, B = { {a}, {c, d}, c, d, x, Δ } k ümeleri için s( AUB) kaçtır?
KÜMELER 2 İKİ KÜMENİN BİRLEŞİMİ A ve B gibi iki kümeden, A' ya veya B' ye ait olan elemanlardan oluşan yeni kümeye A ile B' nin birleşimi denir ve AUB ile gösterilir. Bu gösterim A birleşim B di ye okunur.
DetaylıMAT223 AYRIK MATEMATİK
MAT223 AYRIK MATEMATİK Çizgeler 7. Bölüm Emrah Akyar Anadolu Üniversitesi Fen Fakültesi Matematik Bölümü, ESKİŞEHİR 2014 2015 Öğretim Yılı Çift ve Tek Dereceler Çizgeler Çift ve Tek Dereceler Soru 51 kişinin
DetaylıASYMMETRIC TOPOLOGICAL SPACES ESRA KARATAŞ
ASİMETRİK TOPOLOJİK UZAYLAR ASYMMETRIC TOPOLOGICAL SPACES ESRA KARATAŞ HACETTEPE ÜNİVERSİTESİ Lisansüstü Eğitim-Öğretim ve Sınav Yönetmeliğinin Matematik Anabilim Dalı için YÜKSEK LİSANS TEZİ olarak hazırlanmıştır.
DetaylıSORU 1: Herbir A R kümesi için A G ve λ (A) = λ (G) olacak şekilde. ÇÖZÜM 1: B sayılabilir bir küme olsun. Bu durumda λ (B) = 0 gerçeklenir.
2.4 Lebesgue Dış Ölçüsü ve Lebesgue Ölçüsü SORU : Herbir A R kümesi için A G ve λ (A) = λ (G) olacak şekilde G R kümesinin varlığınıgösteriniz? ÇÖZÜM : B sayılabilir bir küme olsun. Bu durumda λ (B) =
Detaylı6. Ders. Mahir Bilen Can. Mayıs 16, 2016
6. Ders Mahir Bilen Can Mayıs 16, 2016 Bu derste lineer cebirdeki bazı fikirleri gözden geçirip Lie teorisine uygulamalarını inceleyeceğiz. Bütün Lie cebirlerinin cebirsel olarak kapalı ve karakteristiği
DetaylıL İ S E S İ MATEMATİK. Kümeler. Üzerine Kısa Çalışmalar
MTEMTİK T T Ü R K N D O L U L İ S E S İ M T E M T İ K Üzerine Kısa Çalışmalar KONY \ SELÇUKLU 017 MTEMTİK KÜMELER (CÜMLELER).1 Küme (Cümle) Kavramı Matematiğin dili mantıktır., matematiğin kendisini anlatabilmesini
DetaylıVEKTÖR UZAYLARI 1.GİRİŞ
1.GİRİŞ Bu bölüm lineer cebirin temelindeki cebirsel yapıya, sonlu boyutlu vektör uzayına giriş yapmaktadır. Bir vektör uzayının tanımı, elemanları skalar olarak adlandırılan herhangi bir cisim içerir.
DetaylıDÜZGÜN ÖLÇÜM. Ali DÖNMEZ Doğuş Üniversitesi, Fen Bilimleri Bölümü. Halit ORHAN Atatürk Üniversitesi, Matematik Bölümü
DÜZGÜN ÖLÇÜM Ali DÖNMEZ Doğuş Ünirsitesi, Fen Bilimleri Bölümü Halit ORHAN Atatürk Ünirsitesi, Matematik Bölümü Özet: Düzgün ölçüm üzerine bazı teoremler ispatlandı. Anahtar sözcükler: Ölçüm, düzgün ölçüm,
DetaylıİÇİNDEKİLER. Mantık Kurallarının Elektrik Devrelerine Uygulanması... 14
İÇİNDEKİLER 1. BÖLÜM MANTIK Giriş... 1 Genel Olarak Mantık... 1 Mantığın Tarihçesi ve Modern Mantığın Doğuşu... 1 Mantık Öğretimin Önemi ve Amacı... 2 Önerme... 3 VE İşlemi (Birlikte Evetleme, Mantıksal
DetaylıFONKSİYONLAR. Örnek: (2x-2,y-3)=(10,-3) olduğuna göre x ve y sayılarını bulunuz.
1 FONKSİYONLAR Sıralı İkili: A ve B boş olmayan iki küme olmak üzere, aa ve bb iken (a, b) ifadesine bir sıralı ikili denir. Burada a ya, sıralı ikilinin birinci bileşeni, b ye de ikinci bileşeni denir.
DetaylıT I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A
T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 Sayılar 5 2 Sayılar 19 Bibliography 47 Index 51 1 Sayılar 1.1 Doğal Sayılar Doğal Sayıların
DetaylıLeyla Bugay Haziran, 2012
Sonlu Tekil Dönüşüm Yarıgruplarının Doğuray Kümeleri ltanguler@cu.edu.tr Çukurova Üniversitesi, Matematik Bölümü Haziran, 2012 Yarıgrup Teorisi Nedir? Yarıgrup terimi ilk olarak 1904 yılında Monsieur l
DetaylıDers 10: Düzlemde cebirsel eğriler
Ders 10: Düzlemde cebirsel eğriler İzdüşümsel geometride bir doğruyu derecesi 1 olan homojen bir polinomun sıfırları kümesi olarak tarif ettik. Bir kuadrik, derecesi 2 olan homojen bir polinomla anlatılıyordu
DetaylıContents. Bu notlar Feza Gürsey Enstitüsü nde düzenlenen Grup/Temsil kuramından kesitler başlıklı programda verdiğim dersin notlarıdır.
İKILI KÜME İZLEÇLERINE GIRIŞ OLCAY COŞKN Contents 1. Giriş 1 2. İkili Kümeler 1 3. İkili Küme İzleçleri: Tanım 4 4. Örnekler 5 5. Basit ikili küme izleçlerinin sınıflandırılması 6 References 7 1. Giriş
DetaylıT I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L
T I M U R K A R A Ç AY, H AY D A R E Ş, O R H A N Ö Z E R K A L K U L Ü S N O B E L 1 Denklemler 1.1 Doğru deklemleri İki noktası bilinen ya da bir noktası ile eğimi bilinen doğruların denklemlerini yazabiliriz.
Detaylıp sayısının pozitif bölenlerinin sayısı 14 olacak şekilde kaç p asal sayısı bulunur?
07.10.2006 1. Kaç p asal sayısı için, x 3 x + 2 (x r) 2 (x s) (mod p) denkliğinin tüm x tam sayıları tarafından gerçeklenmesini sağlayan r, s tamsayıları bulunabilir? 2. Aşağıdaki ifadelerin hangisinin
Detaylıharfi almanca kökenli (Zahlen) Z X bir sonlu küme ise, X = X deki öğelerin sayısını gösterir
BÖLÜM 1 Kümeler harfi almanca kökenli (Zahlen) Z X bir sonlu küme ise, X = X deki öğelerin sayısını gösterir Tanım 1.1.1: X ve Y herhangi iki küme olsunlar. Eğer X Y= ise, X ve Y kümelerine ayrıktırlar
Detaylıİleri Diferansiyel Denklemler
MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret
DetaylıDOĞRUNUN ANALİTİK İNCELEMESİ
Koordinatlar DOĞRUNUN ANALİTİK İNCELEMESİ Bilindiği gibi, düzlemdeki her bir noktaya bir (a,b) sıralı ikilisi, her bir (a,b) sıralı ikilisine bir nokta karşılık gelir. Eğer bir A noktasına karşılık gelen
DetaylıKafes Yapıları. Hatırlatma
Kafes Yapıları Ders 7 8-1 Hatırlatma Daha önce anlatılan sıra bağıntısını hatırlayalım. A kümesinde bir R bağıntsı verilmiş olsun. R bağıntısı; a. Yansıma (Tüm a A için, sadece ve sadece ara ise yansıyandır(reflexive)).
DetaylıDenklemler İkinci Dereceden Denklemler. İkinci dereceden Bir Bilinmeyenli Denklemler. a,b,c IR ve a 0 olmak üzere,
Bölüm 33 Denklemler 33.1 İkinci Dereceden Denklemler İkinci dereceden Bir Bilinmeyenli Denklemler a,b,c IR ve a 0 olmak üzere, ax 2 + bx + c = 0 biçimindeki her açık önermeye ikinci dereceden bir bilinmeyenli
DetaylıLineer Bağımlılık ve Lineer Bağımsızlık
Lineer Bağımlılık ve Lineer Bağımsızlık Yazar Öğr.Grv.Dr.Nevin ORHUN ÜNİTE 5 Amaçlar Bu üniteyi çalıştıktan sonra; Vektör uzayı ve alt uzay yapısını daha iyi tanıyacak, Bir vektör uzayındaki vektörlerin
DetaylıT I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A
T I M U R K A R A Ç AY - H AY D A R E Ş C A L C U L U S S E Ç K I N YAY I N C I L I K A N K A R A Contents 1 Nicelik Sayıları 13 2 Sayılar 35 3 Sayılar 49 4 Doğal Sayılar 77 5 Operatörler 91 6 Karmaşık
DetaylıKüme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur
Kümeler Kümeler ve küme işlemleri olasılığın temellerini oluşturmak için çok önemlidir Küme temel olarak belli nesnelerin ya da elamanların bir araya gelmesi ile oluşur Sonlu sayıda, sonsuz sayıda, kesikli
DetaylıSAYILAR DOĞAL VE TAM SAYILAR
1 SAYILAR DOĞAL VE TAM SAYILAR RAKAM: Sayıları ifade etmek için kullandığımız 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 sembollerinden her birine rakam denir. Soru: a ve b farklı rakamlar olmak üzere a + b nin alabileceği
DetaylıTEMEL KAVRAMLAR. SAYI KÜMELERİ 1. Doğal Sayılar
TEMEL KAVRAMLAR Rakam: Sayıları ifade etmeye yarayan sembollere rakam denir. Bu semboller {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} kümesinin elemanlarıdır., b ve c birer rakamdır. 15 b = c olduğuna göre, + b + c
Detaylı