VERİ AMBARI VE OLAP TEKNOLOJİSİ

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "VERİ AMBARI VE OLAP TEKNOLOJİSİ"

Transkript

1 VERİ AMBARI VE OLAP TEKNOLOJİSİ

2 İÇERİK Veri Ambarı Nedir? Çok boyutlu veri modeli Veri ambarı mimarisi Veri ambarı uygulaması Veri ambarından veri madenciliğine 2

3 VERİ AMBARI NEDİR? Organizasyonun işlemsel veri tabanından ayrı olarak düşünülen bir karar destek veri tabanıdır. Veri ambarı özneye dayalı, bütünleşmiş, zaman dilimli ve yöneticinin karar verme işleminde yardımcı olacak biçimde toplanmış olan değişmeyen veriler topluluğudur. W. H. Inmon 3

4 DATA WAREHOUSE ÖZNEYE DAYALI Bir veri ambarı, tüketici, tedarikçi firma, ürün ve satış gibi önemli özneler etrafında kurulur. Veri ambarı bir organizasyonun her güne ait işleri ve hareket işleme faaliyetleri üzerinde yoğunlaşmak yerine karar verecek kimseler için veriye ait modelleme ve analiz üzerinde yoğunlaşır. Veri ambarları karar destek sürecinde faydalı olmayan veriyi dışarıda tutarak basit ve öz bir bakış sağlar. 4

5 DATA WAREHOUSE TÜMLEŞİK Bir veri ambarı genellikle ilişkisel veri tabanları, dosyalar ve çevrim içi işlem kayıtları gibi çeşitli farklı türde (heterojen) dosyaları bütünleştirerek oluşturulur. Veri temizleme ve veri tümleme teknikleri, isimlendirmede, şifreleme yapılarında, nitelik ölçütlerinde ve benzeri konularda tutarlılığı garantilemek için uygulanır. 5

6 DATA WAREHOUSE ZAMAN DİLİMLİ Veriler tarihi bir bakış açısından bilgi sağlamak için depolanır(örn: 5-10 yıllık geçmiş içerisinden). Veri ambarı içerisinde her anahtar yapı zamanın bir elemanı olarak ya kesinlik ya da açıklık içerir. 6

7 DATA WAREHOUSE DEĞİŞMEYEN Veri ambarı hareket işlemeyi, geri almayı, ve rastlantısal kontrol mekanizmalarını gerektirmez. Veriye erişim için çoğunlukla sadece iki işlem gerektirir: verinin ilk yüklemesi verinin erişimi 7

8 ÖZETLE Veri ambarı stratejik kararları verme konusunda bir kurumun ihtiyacı olan bilgiyi depolayan karar destek veri modelinin fiziksel bir sunumu gibi çalışan, anlamsal olarak tutarlı bir veri deposudur. Veri ambarı aynı zamanda sıklıkla, yapısal ve/veya planlanmamış sorgular, analitik raporlar ve karar vermeyi desteklemek için çeşitli farklı türde kaynaklardan veriyi bütünleştirerek oluşturulan bir mimari olarak da görülür. 8

9 VERI AMBARLARI VE İŞLEMSEL VERİTABANI SİSTEMLERİ ARASINDAKI FARKLAR Çevrim içi işlemsel veri tabanları sistemlerinin önemli bir görevi, çevrim içi işlemeyi ve sorgulamayı gerçekleştirmektir. Bu sistemlere çevrim içi hareket işleme sistemleri (online transaction processing OLTP) denir. Bu sistemler bir organizasyona ait alım, envanter, imalyapım, bankacılık, ücret bordrosu, kayıt ve hesaplama gibi bir organizasyona ait günlük işlemlerin çoğunu karşılamaktadır. Diğer bir yandan veri ambarı sistemleri kullanıcılara veya bilgi çalışanlarına, veri analizi ve karar verme rolü içerisinde hizmet eder. Böyle sistemler, farklı kullanıcıların çeşitli ihtiyaçlarına yer vermek amacıyla veriyi değişik formatlarda gösterebilir ve organize edebilir. Bu sistemler, çevrim içi analitik işleme sistemleri (online analytical processing OLAP) olarak bilinirler. 9

10 OLTP VE OLAP Kullanıcılar ve sistem yönelimi: OLTP sistemi müşteri merkezlidir: Bilgi teknolojisi uzmanları, satıcılar ve müşteriler tarafından işlemsel bilgi ve sorgulama için kullanılır. OLAP sistemi pazar merkezlidir: Analistleri, uzmanları ve yöneticileri içine alan bilgi çalışanları tarafından veri analizi için kullanılır. Veri İçerikleri: OLTP sistemi, tipik olarak karar vermede kolayca kullanılmak için fazla detaylı olan güncel veriyi yönetir. Bir OLAP sistemi, büyük miktarlarda tarihi veriyi yönetir, özetleme ve toplamada kolaylıklar sağlar ve öğe boyutunda farklı seviyelerindeki bilgiyi saklar ve yönetir. Bu özellikler veriyi karar vermede kullanabilmek için daha kolay bir hale getirir. Veritabanı Tasarımı: OLTP sistemi genelde varlık-bağıntı (entity-relationship ER) veri modelini ve uygulama merkezli veritabanı tasarımını seçer. OLAP sistemi,tipik olarak ya yıldız yada kar tanesi modelini ve özne merkezli bir veri tabanı tasarımını tercih eder. 10

11 OLTP VE OLAP İnceleme: OLTP sistemi bir kurum veya bölüm içerisindeki bir güncel veriye, tarihi veriyi veya farklı organizasyonlardaki veriyi kapsamadan, temel olarak odaklanır. OLAP sistemi genellikle bir veritabanı şemasının çoklu versiyonlarını tararken, bir organizasyonun evrimsel sürecine bağlı olarak, aynı zamanda pek çok veri deposundan bilgi tümleme sonucunda kaynağı farklı organizasyonlardan başlayan bilgiyle ilgilenir. Büyük hacimlerinden dolayı, OLAP verileri çoklu saklama ortamlarında depolanır. Erişim Desenleri: OLTP sisteminin erişim desenleri temel olarak kısa, basit(atomik) işlem bilgilerden oluşur. Böyle bir sistem uyumluluk kontrolü ve kurtarma mekanizmaları gerektirir. Bununla birlikte, OLAP sistemlere erişim, pek çoğunun karmaşık sorgu olabilecek olmasına karşın çoğunlukla salt okunur işlemler (çoğu veri ambarının güncel bilgi yerine tarihi bilgiyi depolaması nedeniyle) şeklindedir. 11

12 OLTP VS. OLAP OLTP OLAP Kullanıcı Uzman,IT elemanı Bilgi Analizcisi, Veri madencisi Fonksiyon Günden güne işlem Karar destek Veri Anlık, tarih aralıklı, detaylı, ilişkisel Tarihsel, özet şeklinde İş Birimleri küçük, basit transactionlar Kompleks Sorgular Kayıt Erişimi Sayısı 10'lar Milyonlar Kullanıcı Sayısı 1000'ler 10'lar Veritabanı Büyüklüğü 100MB-GM 100GB-TB 12

13 NEDEN AYRI BİR VERİ AMBARI GEREKLİ OLSUN? DBMS: erişim yöntemleri, birinci anahtarı kullanarak indeksleme, özel kayıtları araştırma ve sorguları optimize etme gibi bilinen görev ve iş yüklerinden hareketle tasarlanır ve ayarlanır. Diğer tarafta, veri ambarı sorguları sıklıkla karmaşıktır. Özetlenmiş seviyelerdeki verilerin büyük gruplarının hesaplanması ile ilgilenir, ve özel veri organizasyonu, erişim ve çok boyutlu incelemeye dayanan sunum yöntemleri gerektirebilir. OLAP sorgusu sıklıkla, kümeleme ve özetleme için veri kayıtlarına salt okunur erişime ihtiyaç duyar. İşlemsel veritabanlarının veri ambarlarından ayrılması işlemi, bu iki sistem içerisindeki farklı yapılar, içerikler ve veri kullanımları üzerine kurulmuştur. Karar destek için tarihi bilgi gerekli iken, işlemsel veritabanları tipik olarak tarihi veriye bakmaz. Bu bağlamda, işlemsel veritabanlarındaki veri çok olmasına rağmen, karar verme için gereken tamlıktan uzaktır. Karar destek, heterojen kaynaklardan gelen verinin birleştirilmesine(kümeleme ve özetleme gibi) ve sonuç olarak yüksek kalitede, temiz ve tümleşik veriye ihtiyaç duyar. Karşıt olarak, işlemsel veritabanları sadece hareketler gibi analizden önce birleştirilmeye ihtiyacı olan,detaylı ham veri içerirler. 13

14 İÇERİK Veri Ambarı Nedir? Çok boyutlu veri modeli Veri ambarı mimarisi Veri ambarı uygulaması Veri ambarından veri madenciliğine 14

15 TABLODAN VERİ KÜPLERİNE DOĞRU Veri küpü nedir? Veri küpü verinin çoklu boyutta modellenmesini ve incelenmesini sağlar. Boyutlar ve bilgiler ile tanımlanır. boyutlar, organizasyonun kayıtlarını tutmak istediği perspektifler veya varlıklar ile ilgilidir. Örnek olarak mağazanın zaman, adet, şube ve yer ile ilgili satış kayıtlarını tutmak için bir satış veri ambarı kurabilir. Bu boyutlar mağazaya, aylık satışların adedi, şubeleri ve parçaların satıldığı yerler gibi kayıtların izinin tutulmasına imkan verir. Her boyut, boyut tablosu denen, boyutu daha detaylı anlatan bir ilgili tabloya sahip olabilir. Örnek olarak, bir parça için boyut tablosu parça adı, marka ve tip niteliklerini içerebilir. Boyut tabloları kullanıcılar veya uzmanlar tarafından belirtilebilir veya veri dağıtımları temel alınarak otomatik olarak yaratılabilir ve uyarlanabilir. 15

16 CUBE all time item location supplier 0-D(apex) cuboid 1-D cuboids time,item time,location item,location location,supplier time,supplier item,supplier 2-D cuboids time,location,supplier time,item,location time,item,supplier item,location,supplier time, item, location, supplier 3-D cuboids 4-D(base) cuboid 16

17 17

18 VERI KÜPÜ TV PC VCR sum Date 1Qtr 2Qtr 3Qtr 4Qtr sum Total annual sales of TV in U.S.A. U.S.A Canada Mexico Country sum 18

19 19

20 VERİ AMBARLARINI MODELLEMEK Veri ambarı için en popüler veri modeli, çok boyutlu modeldir. Çok boyutlu veri modeli yıldız şema, kar tanesi şema olgu takımyıldızı 20

21 YıLDıZ ŞEMA En çok bilinen modelleme örneği İçerisinde veri ambarının içerdiği en önemli veri kısmını gereksiz fazlalık olmadan içinde bulunduran büyük bir merkezi tablo (olgu tablosu) her biri bir boyut için olmak üzere küçük yardımcı tablolar kümesi (boyut tabloları) bulunduran yıldız şemadır. Şema çizgesi, merkezi olgu tablosunun etrafında merkezden çıkan bir desen içerisinde gösterilen boyut tabloları ile, starburst yapısına benzer. 21

22 KAR TANESİ ŞEMA Kar tanesi şema, bazı boyut tablolarının normalize edildiği, bundan dolayı verinin ek tablolara doğru ileri bölündüğü, yıldız şema modelinin değişik bir biçimidir. Sonuç şema çizgesi kar tanesine yakın bir şekil oluşturur. Kar tanesi ve yıldız şema modelleri arasındaki önemli fark kar tanesi modelinde boyut tablolarının gereksiz fazlalıkları azaltmak için normalize edilmiş formda saklanabilir olmasıdır. Böyle bir tabloyu yönetmek kolay ve kayıt yerinden tasarruf etmeyi sağlar çünkü büyük bir boyut tablosu, boyutsal yapı olarak sütunlar içerdiğinde devasa hale gelebilir. Bunun yanında yerden kazanç sağlama, olgu tablosunun tipik büyüklüğü ile karşılaştırıldığında önemsizdir. Dahası kar tanesi yapısı, bir sorguyu işletmek için daha çok katılım gerekli olacağından, tarama-gözden geçirme performansının etkinliğini de düşürebilir. Sonuç olarak, sistem performansı ters biçimde etkilenebilir. Bundan dolayı, veri ambarı tasarımında kar tanesi şema, yıldız şema kadar popüler değildir. 22

23 OLGU TAKIMYILDIZI ŞEMA Karmaşık uygulamalar boyut tablolarını paylaşmak için çoklu olgu tabloları gerektirebilir. Bu çeşit bir şema yıldızların toplamı olarak görülebilir ve bundan dolayı adına galaksi şema veya olgu takımyıldızı denir. 23

24 CUBE DEFINITION SYNTAX (BNF(BACKUS NAUR FORM NOTASYONU) ) IN DMQL (DATA MINING QUERY LANGUAGE) Cube Definition (Fact Table) define cube <cube_name> [<dimension_list>]: <measure_list> Dimension Definition (Dimension Table) define dimension <dimension_name> as (<attribute_or_subdimension_list>) Special Case (Shared Dimension Tables) First time as cube definition define dimension <dimension_name> as <dimension_name_first_time> in cube <cube_name_first_time> 24

25 DEFINING STAR SCHEMA IN DMQL define cube sales_star [time, item, branch, location]: dollars_sold = sum(sales_in_dollars), units_sold=count(*) define dimension time as (time_key, day, day_of_week, month, quarter, year) define dimension item as (item_key, item_name, brand, type, supplier_type) define dimension branch as (branch_key, branch_name, branch_type) define dimension location as (location_key, street, city, province_or_state, country) 25

26 DEFINING SNOWFLAKE SCHEMA IN DMQL define cube sales_snowflake [time, item, branch, location]: dollars_sold = sum(sales_in_dollars), avg_sales = avg(sales_in_dollars), units_sold = count(*) define dimension time as (time_key, day, day_of_week, month, quarter, year) define dimension item as (item_key, item_name, brand, type, supplier(supplier_key, supplier_type)) define dimension branch as (branch_key, branch_name, branch_type) define dimension location as (location_key, street, city(city_key, province_or_state, country)) 26

27 DEFINING FACT CONSTELLATION IN DMQL define cube sales [time, item, branch, location]: dollars_sold = sum(sales_in_dollars), avg_sales = avg(sales_in_dollars), units_sold = count(*) define dimension time as (time_key, day, day_of_week, month, quarter, year) define dimension item as (item_key, item_name, brand, type, supplier_type) define dimension branch as (branch_key, branch_name, branch_type) define dimension location as (location_key, street, city, province_or_state, country) define cube shipping [time, item, shipper, from_location, to_location]: dollar_cost = sum(cost_in_dollars), unit_shipped = count(*) define dimension time as time in cube sales define dimension item as item in cube sales define dimension shipper as (shipper_key, shipper_name, location as location in cube sales, shipper_type) 27 define dimension from_location as location in cube sales define dimension to_location as location in cube sales

28 A CONCEPT HIERARCHY: DIMENSION (LOCATION) all all region Europe... North_America country Germany... Spain Canada... Mexico city Frankfurt... Vancouver... Toronto office L. Chan... M. Wind 28

29 ÇOK BOYUTLU VERİ MODELİNDE OLAP OPERASYONLARI Kavram hiyerarşileri OLAP içerisinde nasıl yardımcı olur? Çok boyutlu modelde veriler çoklu boyutlara organize edilmiştir ve her boyut, kavram hiyerarşisi tarafından tanımlanan çok boyutlu soyutlamalar içermektedir. Bu organizasyon kullanıcılara, veriyi farklı perspektiflerden inceleme esnekliği sağlar. Belirli sayıda OLAP veri küpü işlemleri, bu farklı incelemeleri gerçekleştirmek için, eldeki verinin etkileşimli sorgusu ve analizine imkan veren biçimde mevcuttur. Bundan dolayı OLAP, etkileşimli veri analizi için kullanıcı dostu bir ortam sunmaktadır. 29

30 TİPİK OLAP OPERASYONLARI Roll-up: Bu operasyon (bazı satıcılar tarafından drill-up operasyonu olarak da adlandırılır.) ya bir boyut için kavram hiyerarşisinin tepesine tırmanarak, yada boyut azaltımı ile bir veri küpünde kümeleme işlemi gerçekleştirir. Roll up işlemi boyut azaltımı ile birlikte yapıldığında verilen küpten bir veya daha çok boyut silinir. Örnek olarak sadece yer ve zaman boyutları bulunan bir satışlar veri küpü düşünelim. Roll up işleminin zaman boyutunu sildiğini farz edelim, bu durumda toplam satışlar yer ve zamana göre kümelenmek yerine, sadece yere göre kümelenecektir. 30

31 TİPİK OLAP OPERASYONLARI Drill-down (): Roll-up işleminin tersidir. Az detaylı veriden daha detaylı veriye doğru yönlendirme sağlar. Drill down işlemi, ya bir boyut için kavram hiyerarşisinde aşağı doğru inerek ya da ek boyutlar tanıtarak gerçekleştirilebilir. Örn. Sonuç veri küpü, toplam satışları çeyreklere ait özetler halinde vermek yerine, aylık detaylar ile birlikte vermektedir. Drill down işlemi eldeki veriye daha fazla detay eklediği için, bir küp yapısına yeni boyutlar da ekleyerek oluşturulabilir. 31

32 TİPİK OLAP OPERASYONLARI Slice işlemi verilmiş olan küpte, bir alt küp ile sonuçlanan, bir boyut üzerinde seçme gerçekleştirmesidir. Şekilde zaman boyutu için time= Q1 kriterini kullanarak merkezi küpten satış verilerinin seçildiği bir slice işlemi görünmekedir. Dice işlemi ise iki veya daha fazla boyut üzerinde seçim işlemi gerçekleştirerek bir alt küp tanımlar. Şekil şu üç boyutu ilgilendiren seçim kriterine: (location= Toronto or Vancouver ) and(time= Q1 or Q2 ) and( item= home entertainment or computer ) dayanarak merkezi küpte yapılan dice işlemini göstermektedir. 32

33 TİPİK OLAP OPERASYONLARI Pivot(rotate-döndürme): Pivot işlemi, veriye ait alternatif bir görünüm sağlamak amacıyla veri eksenlerini döndüren görsellikle ilgili bir işlemdir. Şekil parça ve yer eksenlerinin 2 boyutlu olarak yer değiştirdiği bir döndürme işlemini göstermektedir. 33

34 Toronto 395 Vancouver time (quarters) location (citi Typical OLAP Operations location (cities) item (types) Chicago Q1 Q2 New York Toronto 605 computer home entertainment item (types) Vancouver home phone entertainment home entertainment computer phone security computer security item (types) pivot dice for (location = Toronto or Vancouver ) and (time = Q1 or Q2 ) and (item = home entertainment or computer ) Chicago440 New York Toronto Vancouver time (quarters) location (cities) Q1 Q2 Q3 Q slice computer security for time = Q1 home phone entertainment New York Vancouver Chicago Toronto location (cities) item (types) time (months) USA 2000 Canada time (quarters) location (countr Q Q2 Q3 Q4 roll-up on location (from cities to countries) Chicago New York Toronto Vancouver January location (cities) February March April May June July August September October November December computer security home phone entertainment drill-down on time (from quarters to months) home phone entertainment item (types) computer security item (types) 34

35 KÜP (CUBE) Verinin hızlı bir şekilde analizine izin veren veri yapısıdır. Yıldız modeli için verilen örnek bir küp üzerinde aşağıdaki gibi saklanabilir: Gerçek tablosu : prodid storeid date amt p1 c p2 c p1 c p2 c2 1 8 p1 c p1 c2 2 4 Çok boyutlu (3D) küp : day 2 day 1 c1 c2 c3 p p2 c1 c2 c3 p p

36 KÜP İŞLEMLERİ day 2 day 1 c1 c2 c3 p p2 c1 c2 c3 p p Örnek: Toplam Hesaplama... sale(c1,*,*) c1 c2 c3 p p sale(c2,p2,*) rollup drill-down c1 c2 c3 sum sum p1 110 p sale(*,*,*) 36

37 İÇERİK Veri Ambarı Nedir? Çok boyutlu veri modeli Veri ambarı mimarisi Veri ambarı uygulaması Veri ambarından veri madenciliğine 37

38 VERI AMBARLARıNıN TASARıMı Veri Ambarının Tasarımı: İş Analizi Framework: İş analistleri için veri ambarı ne sağlamaktadır? Öncelikle bir veri ambarına sahip olmak, rakipler arasından sıyrılmak için performansı ölçmeyi ve kritik düzenlemeleri yapmayı sağlayan, konu ile ilgili bilgiyi vererek bir rekabete dayalı avantaj sağlayabilir. İkincisi bir veri ambarı, organizasyonu doğru biçimde anlatan bilgiyi etkili ve çabuk bir biçimde elde etmeyi sağladığından iş verimliliğini geliştirebilir. Üçüncüsü bir veri ambarı, müşteri ilişkileri yönetimini (customer relationship management- CRM), tüm iş sırası, tüm departmanlar ve tüm pazarlar içerisinden müşteriler ve parçaların tutarlı bir incelemesini sağladığı için kolaylaştırır. Son olarak bir veri ambarı, tutarlı ve güvenilir bir biçimde uzun bir zaman periyodu üzerinden istisnaların, modellerin ve eğilimlerin izini sürerek maliyet indirimi meydana getirebilir. Etkili bir veri ambarı tasarımı yapmak için kişinin, iş gereksinimlerini anlamaya, analiz etmeye ve bir iş analizi iskeleti oluşturmaya ihtiyacı vardır. Büyük ve karmaşık bir bilgi sisteminin tasarlanması, sahibinin, mimarın ve inşa edenin farklı kanıları olduğu için, büyük ve karmaşık bir yapının inşa edilmesi olarak düşünülebilir. Bu bakış açıları, yukarıdan aşağıya, iş tabanlı veya sahibinin perspektifinden aşağıdan yukarıya, inşa eden tabanlı veya uygulayıcının görüşünü simgeleyen karmaşık bir iskeleti oluşturmak için birleştirilebilir. 38

39 Veri ambarının tasarımına ilişkin dört farklı görüş mutlaka dikkate alınmalıdır: yukarıdan aşağıya inceleme, veri kaynağı incelemesi, veri ambarı incelemesi iş sorgusu incelemesi. Yukarıdan aşağıya inceleme veri ambarı için gerekli olan, konu ile ilişkili bilginin seçimine imkan verir. Bu bilgi güncel ve gelecekteki iş ihtiyaçlarını eşleştirir. Veri kaynağı incelemesi operasyonel sistemlerce elde edilen, kayıt edilen ve yönetilen bilgiyi ortaya çıkarır. Bu bilgi, ayrı veri kaynağı tablolarından tümleşik veri tablolarına farklı seviyelerde detay ve doğrulukta belgelenmiş olabilir. Veri ambarı incelemesi olgu ve boyut tablolarını içerir. Tarihi bir bağlam sağlamak için eklenmiş, kaynağı, tarihi, başlangıç zamanını ilgilendiren bilgi gibi önceden hesaplanmış toplamları ve sayımları içeren, veri ambarı içerisinde tutulan bilgiyi temsil etmektedir. Son olarak, iş sorgusu incelemesi son kullanıcının bakış açısından veri ambarı içerisindeki verinin perspektifidir. 39

40 VERİ AMBARI TASARIMI SÜREÇLERİ Bir veri ambarını nasıl tasarlayabilirim? Bir veri ambarı yukarıdan aşağıya (tepeden tabana) yaklaşımı, tabandan tepeye tasarım yaklaşımı veya ikisinin bir kombinasyonu kullanılarak inşa edilebilir. Yukarıdan aşağıya yaklaşımı ayrıntılı bir tasarım ve planlama ile başlar. Teknolojinin gelişmiş olduğu ve iyi bilindiği durumlarda ve mutlaka çözülmesi gereken iş problemlerinin açık ve iyi anlaşıldığı durumlarda kullanışlıdır. Tabandan tepeye yaklaşımı, deneyler ve prototipler ile başlar. Bu durum iş modellemenin ve teknoloji gelişiminin erken aşamalarında kullanışlıdır. Bir organizasyona önemli taahhütlerde bulunması öncesinde teknolojinin yararlarını değerlendirmeyi sağlar ve çok az bir masrafla organizasyonun ileri gitmesine imkan verir. Birleşik yaklaşımda organizasyon, tabandan tepeye yaklaşımının hızlı uygulaması ve fırsatlar sunan kullanımına sahipken, yukarıdan aşağıya yaklaşımının planlı ve stratejik özelliğini de kendi yararına kullanabilir. 40

41 Yazılım mühendisliği bakış açısından, bir veri ambarının tasarımı ve yapılandırılması, sözü edilen şu adımlardan oluşabilir: planlama, gereksinimlerin incelenmesi, problem analizi, veri ambarı tasarımı, veri tümleme ile test etme ve son olarak veri ambarının plana göre yerleştirilmesi. 41

42 Genelde, veri ambarı tasarımı süreçleri aşağıdaki adımlardan oluşur: Modellemek için bir iş süreci seçin, örneğin siparişler, faturalar, nakliyeler, envanter, hesap yönetimi, satışlar ve genel bir hesap defteri. İş sürecine ilişkin taneyi(grain) seçin. Tane, bu süreç için olgu tablosunda sunulacak olan tek parçalı veri seviyesidir, örneğin, bireysel hareket işlemleri ve benzerleri. Her bir olgu tablosu kaydında kullanılacak olan boyutları seçin. Tipik boyutlar zaman, müşteri, sağlayıcı, depo, hareket işleme tipi ve durumdur. Her bir olgu tablosu kaydına yerleşecek olan ölçüleri seçin. Tipik ölçüler, dollars_sold ve units_sold gibi sayısal toplanabilir niceliklerdir. 42

43 Data Warehouse: A Multi-Tiered Architecture Other sources Operational DBs Metadata Extract Transform Load Refresh Monitor & Integrator Data Warehouse OLAP Server Serve Analysis Query Reports Data mining Data Marts Data Sources Data Storage OLAP Engine 43 Front-End Tools

44 THREE DATA WAREHOUSE MODELS Mimarın bakış açısına göre, üç veri ambarı modeli vardır. Kurumsal veri ambarı, veri pazarı (data mart) ve sanal veri ambarı. Kurumsal veri ambarı: Bir kurumsal veri ambarı, özneler hakkındaki tüm bilgiyi, organizasyonun tamamını tarayarak toplar. Şirketselgenişlikte genelde bir veya daha fazla operasyonel sistemden veya dış bilgi sağlayıcılardan ve alanı içerisinde çapraz fonksiyonel olan, veri tümlemeyi sağlar. Tipik olarak özetlenmiş veriyi içerdiği gibi detaylı veriyi de içerir. Data mart: Data mart, kullanıcıların özel bir grubuna ait değerli, kurumsal genişlikteki verinin bir alt kümesini içerir. Alan özel seçilmiş olan öznelerle sınırlandırılmıştır. Örneğin bir pazarlama data mart ı öznelerini müşteri, parça ve satışlar olarak sınırlandırabilir. Data mart lar içerisinde yer alan veriler özetlenmiş olma eğilimindedir. Sanal veri ambarı: Sanal veri ambarı, operasyonel veri tabanları üzerinden incelemelerin bir kümesidir. Etkili bir sorgu işleme için sadece bazı muhtemel özet incelemeleri gerçekleştirilebilir. Sanal veri ambarını oluşturmak kolaydır ama operasyonel veritabanı sunucularında çok fazla kapasite gerektirir. 44

45 İÇERİK Veri Ambarı Nedir? Çok boyutlu veri modeli Veri ambarı mimarisi Veri ambarı uygulaması Veri ambarından veri madenciliğine 45

46 EFFICIENT COMPUTATION OF DATA CUBES Çok yönlü veri analizinin temeli, çok kümeli yönlerin birleştirilmesinin verimli hesaplanmasıdır. SQL terimlerinde,bu birleştirmeler group-by s olarak geçer. Küp hesaplanmasında bir yaklaşım,compute cube operatörü içerdiği için SQL e kadar erişmektedir. compute cube operatörü işlemlerde açıkça belirtilmiş olan yönlerin bütün alt kümelerini birleştirerek hesaplar. 46

47 CUBE OPERATION Cube definition and computation in DMQL define cube sales[item, city, year]: sum(sales_in_dollars) compute cube sales Transform it into a SQL-like language (with a new operator cube by, introduced by Gray et al. 96) SELECT item, city, year, SUM (amount) FROM SALES CUBE BY item, city, year (city) Need compute the following Group-Bys (date, product, customer), (date,product),(date, customer),(product, customer), (date),(product),(customer) () (city, item, year) 47 () (item) (year) (city, item) (city, year) (item, year)

48 ÖRNEK AllElectronics için item, city, year ve sales_in_dollars ı içeren bir veri küpü oluşturacağınızı düşünün. Verileri sorgulama ile aşağıdaki gibi analiz edebilirsiniz. satışın toplamını item ve city ile grupla satışın toplamını item ile grupla satışın toplamını city ile grupla Bu veri küpü için hesaplanabilenecek group-by ların ve cuboidlerin toplam sayısı kaçtır? city,item ve year niteliklerini üç yön olarak sales_in_dollar ı ölçü birimi olarak alalım; bu veri kübü için toplam cuboid ya da group-by ın sayısı 2³=8 olarak hesaplanır. Olası group-by s şöyledir: [(city,item,year),(city,item),(city,year),(item,year),(city),(item),(y ear),()]; burada () ifadesi, boş yani gruplanmamış yönler için kullanılır. 48

49 ÖRNEK Bir SQL sorgusu bütün satışların toplamını hesapla gibi 0 yönlü işlem(zero-dimensional operation) olan group-by içermez. SQL sorgusu bir group-by içerir; oda tek boyutlu işlem olan compute the sum of sales, group-by city dır. Bir küp operatöründeki n boyut group-by cümleciklerinin yığınına denktir; n boyutun her alt kümesi için bir tane olmak üzere. Bu yüzden, küp operatörü group-by operatörünün n boyutlu genelleştirilmiş halidir. N boyutlu bir küp için, esas cuboidide içeren toplam 2ª tane cuboid vardır. Kod açıkca sisteme,boş altkümeyi de içeren {item,city,year} kümesinin sekiz alt kümesi için satışların bütün cuboidlerini hesaplamasını emretmektedir. Büyük olasılıkla,bir veri kübü için(ya da asıl cuboidler için) oluşturulabilecek olası cuboidlerin hepsini gerçekleştirmenin ve önhesaplamasını yapmanın gerçekdışı olduğunu fark etmişsinizdir. Eğer birçok cuboid var ise ve bu cuboidler büyük boyuttaysa,en makul tercih kısmı gerçekleştirim yani sadece oluşturulabilecek olası cuboidlerin bazılarını gerçekleştirmek olacaktır. 49

SMY 535, Veri Madenciliği 2

SMY 535, Veri Madenciliği 2 Veri ambarı, bir işletmenin ya da kuruluşun değişik birimleri tarafından toplanan bilgilerden değerli olanlarının, gelecekte analiz işlemlerinde kullanılması amacıyla işletimsel sistem veritabanından farklı

Detaylı

Konular. Veri ambarı nedir? Çok boyutlu veri modeli. Veri ambarı mimarisi. Veri ambarcılığı. Bölüm 3. Veri Ambarları 2/35. Doç. Dr.

Konular. Veri ambarı nedir? Çok boyutlu veri modeli. Veri ambarı mimarisi. Veri ambarcılığı. Bölüm 3. Veri Ambarları 2/35. Doç. Dr. Bölüm 3. Veri Ambarları http://ceng.gazi.edu.tr/~ozdemir Konular Veri ambarı nedir? Çok boyutlu veri modeli Veri ambarı mimarisi Veri ambarcılığı 2/35 1 Veri Ambarları ve OLAP Teknolojisi Veri ambarları

Detaylı

bilişim ltd İş Zekâsı Sistemi

bilişim ltd İş Zekâsı Sistemi BI İş Zekâsı Sistemi Bilişim Ltd. 1985 te kurulan Bilişim Ltd, Türkiye nin üstün başarıyla sonuçlanmış önemli projelerine imza atan öncü bir yazılımevi ve danışmanlık kurumu dur. Önemli kuruluşların bilgi

Detaylı

Veritabanı, Veri Madenciliği, Veri Ambarı, Veri Pazarı

Veritabanı, Veri Madenciliği, Veri Ambarı, Veri Pazarı Veritabanı, Veri Madenciliği, Veri Ambarı, Veri Pazarı Başkent Üniversitesi Bilgisayar Mühendisliği Yönetim Bilişim Sistemleri (Bil 483) 20394676 - Ümit Burak USGURLU Veritabanı Veri tabanı düzenli bilgiler

Detaylı

LOGO İş Zekası çözümü ile kurumsal raporlama ve analizler. Cem Yılmaz Genel Müdür LOGOBI Yazılım

LOGO İş Zekası çözümü ile kurumsal raporlama ve analizler. Cem Yılmaz Genel Müdür LOGOBI Yazılım LOGO İş Zekası çözümü ile kurumsal raporlama ve analizler Cem Yılmaz Genel Müdür LOGOBI Yazılım Hakkımızda LOGOBI Yazılım A.Ş. iş zekası alanında faaliyet gösteren, Türkiye de sahip olduğu yüzlerce müşterinin

Detaylı

SQL veri tabalarına erişmek ve onları kullanmak için geliştirilmiş bir lisandır.

SQL veri tabalarına erişmek ve onları kullanmak için geliştirilmiş bir lisandır. SQL veri tabalarına erişmek ve onları kullanmak için geliştirilmiş bir lisandır. Bu dersimizde biz Microsoft SQL Server veritabanı sistemini kullanmayı öğreneceğiz. SQL Nedir? SQL Structured Query Language

Detaylı

VERİ TABANI SİSTEMLERİ

VERİ TABANI SİSTEMLERİ VERİ TABANI SİSTEMLERİ 1- Günümüzde bilgi sistemleri Teknoloji ve bilgi. 2- Bilgi sistemlerinin Geliştirilmesi İşlevsel Gereksinimleri 1.AŞAMA Gereksinim Belirleme ve Analiz Veri Gereksinimleri Gereksinimler

Detaylı

Maltepe Üniversitesi Endüstri Mühendisliği Bölümü Veri Tabanı Yönetimi (END 210)

Maltepe Üniversitesi Endüstri Mühendisliği Bölümü Veri Tabanı Yönetimi (END 210) Maltepe Üniversitesi Endüstri Mühendisliği Bölümü Veri Tabanı Yönetimi (END 210) GENEL DERS BİLGİLERİ Öğretim Elemanı : Öğr.Gör. Erdal GÜVENOĞLU Ofis : MUH 312 Ofis Saatleri : Pazartesi: 14:00 14:50, Salı:

Detaylı

Veritabanı Yönetim Sistemleri (Veritabanı Kavramı) Veri Modelleri

Veritabanı Yönetim Sistemleri (Veritabanı Kavramı) Veri Modelleri Veritabanı Yönetim Sistemleri (Veritabanı Kavramı) Veri Modelleri Konular Veritabanı Tasarım Aşamaları Veri Modeli Nedir? Veri Modeli Temel Bileşenleri İş Kuralları (Business Rules) İş Kurallarını Veri

Detaylı

İş Zekâsı Sistemi Projesi

İş Zekâsı Sistemi Projesi BI İş Zekâsı Sistemi Projesi Ulaş Kula, Bilişim Ltd. Esinkap 5. Ar-Ge Proje Pazarı 31 Mayıs 2012 Bilişim Ltd. 1985 te kurulan Bilişim Ltd, Türkiye nin üstün başarıyla sonuçlanmış önemli projelerine imza

Detaylı

İş Zekası Sistemi Veriyi Stratejik Bilgiye Dönüştürür

İş Zekası Sistemi Veriyi Stratejik Bilgiye Dönüştürür İş Zekası Sistemi İş Zekası Sistemi İş Zekâsı Sistemi kolay kullanılır, zengin raporlama ve çözümleme yeteneklerine sahip, farklı veri kaynaklarını birleştirir, yöneticilere çok boyutlu, kurumsal bir görüş

Detaylı

Nebim Winner - İş Zekası Halojen Kurumsal Sürüm

Nebim Winner - İş Zekası Halojen Kurumsal Sürüm Nebim Winner - İş Zekası Halojen Kurumsal Sürüm Halojen, Winner ile toplanan verileri depolayan, istenilen formatlarda raporlanmalarını ve analizlerini sağlayan, kullanıcıların doğru bilgi ile karar vermelerini

Detaylı

UZAKTAN EĞİTİM MERKEZİ

UZAKTAN EĞİTİM MERKEZİ ÜNİTE 2 VERİ TABANI İÇİNDEKİLER Veri Tabanı Veri Tabanı İle İlgili Temel Kavramlar Tablo Alan Sorgu Veri Tabanı Yapısı BAYBURT ÜNİVERSİTESİ UZAKTAN EĞİTİM MERKEZİ BİLGİSAYAR II HEDEFLER Veri tabanı kavramını

Detaylı

Nebim Winner - İş Zekası Halojen Kurumsal Sürüm

Nebim Winner - İş Zekası Halojen Kurumsal Sürüm Nebim Winner - İş Zekası Halojen Kurumsal Sürüm Halojen; Winner ile toplanan verileri depolayan, istenilen formatlarda raporlanmalarını ve analizlerini sağlayan, kullanıcıların doğru bilgi ile karar vermelerini

Detaylı

İşletmenize sınırsız fırsatlar sunar

İşletmenize sınırsız fırsatlar sunar İşletmenize sınırsız fırsatlar sunar İşletmenize Modern iş çözümleri, kurum içerisindeki insanların verimliliğini arttıracak yeni perspektifler sağlayarak onların tüm potansiyellerini kullanmalarına imkan

Detaylı

1 Temel Kavramlar. Veritabanı 1

1 Temel Kavramlar. Veritabanı 1 1 Temel Kavramlar Veritabanı 1 Veri Saklama Gerekliliği Bilgisayarların ilk bulunduğu yıllardan itibaren veri saklama tüm kurum ve kuruluşlarda kullanılmaktadır. Veri saklamada kullanılan yöntemler; Geleneksel

Detaylı

Mühendislikte Veri Tabanları Dersi Uygulamaları (MS-Access)

Mühendislikte Veri Tabanları Dersi Uygulamaları (MS-Access) Mühendislikte Veri Tabanları Dersi Uygulamaları (MS-Access) İstanbul Teknik Üniversitesi, İnşaat Fakültesi, Geomatik Mühendisliği Bölümü Prof. Dr. Nebiye MUSAOĞLU Doç. Dr. Elif SERTEL Y. Doç. Dr. Şinasi

Detaylı

Öğr.Gör.İnan ÜNAL Tunceli Üniversitesi Bilgisayar Mühendisliği Bölümü

Öğr.Gör.İnan ÜNAL Tunceli Üniversitesi Bilgisayar Mühendisliği Bölümü Öğr.Gör.İnan ÜNAL Tunceli Üniversitesi Bilgisayar Mühendisliği Bölümü Büyük miktardaki veriler içerisinden önemli olanlarını bulup çıkarmaya veri Madenciliği denir. Veri madenciliği bir sorgulama işlemi

Detaylı

BTP 209 SİSTEM ANALİZİ VE TASARIMI

BTP 209 SİSTEM ANALİZİ VE TASARIMI BTP 209 SİSTEM ANALİZİ VE TASARIMI BİLGİSAYARA DAYALI BİLGİ SİSTEMLERİ Dr. Önder EYECİOĞLU 2012 BİLGİSAYARA DAYALI BİLGİ SİSTEMLERİ(BDBS-CBIS) Bir BSBS şu bileşenlerden oluşur; Donanım Yazılım Veri tabanı

Detaylı

MÜŞTERİ İLİŞKİLERİ YÖNETİMİ (PZL208U)

MÜŞTERİ İLİŞKİLERİ YÖNETİMİ (PZL208U) DİKKATİNİZE: BURADA SADECE ÖZETİN İLK ÜNİTESİ SİZE ÖRNEK OLARAK GÖSTERİLMİŞTİR. ÖZETİN TAMAMININ KAÇ SAYFA OLDUĞUNU ÜNİTELERİ İÇİNDEKİLER BÖLÜMÜNDEN GÖREBİLİRSİNİZ. MÜŞTERİ İLİŞKİLERİ YÖNETİMİ (PZL208U)

Detaylı

2-Veritabanı Yönetim Sistemleri/ Temel Kavramlar

2-Veritabanı Yönetim Sistemleri/ Temel Kavramlar 2-Veritabanı Yönetim Sistemleri/ Temel Kavramlar Öğr. Gör. Saliha Kevser KAVUNCU Veritabanı neden kullanılır? Veritabanının amacı; insanların ve organizasyonların birşeyleri takip edebilmesine yardımcı

Detaylı

Bilgi Servisleri (IS)

Bilgi Servisleri (IS) Bilgi Servisleri (IS) GRID Kullanıcı Eğitimi Boğaziçi Üniversitesi 2007, İstanbul Emrah AKKOYUN Konu Başlığı Neden ihtiyaç duyulur? Kullanıcılar kimlerdir? Bilgi Servisi türleri MDS ve BDII LDAP Bilgi

Detaylı

VERİ TABANI UYGULAMALARI

VERİ TABANI UYGULAMALARI VERİ TABANI UYGULAMALARI VERİ TABANI NEDİR? Bir konuyla ilgili çok sayıda verinin tutulmasına, depolanmasına ve belli bir mantık içerisinde gruplara ayrılmasına veri tabanı denir. Veri tabanı programları;

Detaylı

VERİ KAYNAKLARI. Bilgi sisteminin öğelerinden biride veri

VERİ KAYNAKLARI. Bilgi sisteminin öğelerinden biride veri VERİ KAYNAKLARI YÖNETİMİ İ İ 5. ÜNİTE GİRİŞ Bilgi sisteminin öğelerinden biride veri yönetimidir. Geleneksel yada çağdaş, birinci yada ikinci elden derlenen veriler amaca uygun veri formlarında tutulur.

Detaylı

İş Zekası çözümleri doğru zamanda, doğru kişiye doğru bilginin ulaşmasına olanak tanır.

İş Zekası çözümleri doğru zamanda, doğru kişiye doğru bilginin ulaşmasına olanak tanır. İş Zekası çözümleri doğru zamanda, doğru kişiye doğru bilginin ulaşmasına olanak tanır. İş zekası karar verme, rapor alma ve analiz çözümlerinde firmalara destek olur. İş zekası çözümleri gerçeğe dayalı

Detaylı

BIM 312 Database Management Systems. Veritabanı Kavramına Giriş

BIM 312 Database Management Systems. Veritabanı Kavramına Giriş BIM 312 Database Management Systems Veritabanı Kavramına Giriş Veritabanı Nedir? Veritabanı, birbirleriyle ilişkili verilerin hızlı ve verimli bir şekilde ulaşılmasına olanak verecek biçimde saklanmasıyla

Detaylı

SİSTEM ANALİZİ VE TASARIMI. Sistem Analizi -Bilgi Sistemleri-

SİSTEM ANALİZİ VE TASARIMI. Sistem Analizi -Bilgi Sistemleri- SİSTEM ANALİZİ VE TASARIMI Sistem Analizi -Bilgi Sistemleri- Bilgi Sistemi Bilgi sistemi, karar vericiler için verileri işleyerek bilgi sağlayan çoğunlukla bilgisayara dayalı sistemlerdir. Bilgi sistemi

Detaylı

Bu işleçlerin dışında, aşağıda belirtilen karşılaştırma işleçlerinden de yararlanılır.

Bu işleçlerin dışında, aşağıda belirtilen karşılaştırma işleçlerinden de yararlanılır. 18 SQL SORGU DİLİ SQL (Structured Query Language) yapısal sorgu dili, veritabanı yönetim sistemlerinin standart programlama dili olarak bilinmektedir. SQL dilinin Access içinde sorgu pencerelerinde veya

Detaylı

Bilgisayar Mühendisliğine Giriş. Yrd.Doç.Dr.Hacer KARACAN

Bilgisayar Mühendisliğine Giriş. Yrd.Doç.Dr.Hacer KARACAN Bilgisayar Mühendisliğine Giriş Yrd.Doç.Dr.Hacer KARACAN İçerik Dosya Organizasyonu (File Organization) Veritabanı Sistemleri (Database Systems) BM307 Dosya Organizasyonu (File Organization) İçerik Dosya

Detaylı

SİSTEM VE YAZILIM. o Bilgisayar sistemleri donanım, yazılım ve bunları işletmek üzere gerekli işlemlerden oluşur.

SİSTEM VE YAZILIM. o Bilgisayar sistemleri donanım, yazılım ve bunları işletmek üzere gerekli işlemlerden oluşur. SİSTEM VE YAZILIM o Bilgisayar sistemleri donanım, yazılım ve bunları işletmek üzere gerekli işlemlerden oluşur. o Yazılım, bilgisayar sistemlerinin bir bileşeni olarak ele alınmalıdır. o Yazılım yalnızca

Detaylı

Grid Bilgi Sistemleri (Grid Information Systems)

Grid Bilgi Sistemleri (Grid Information Systems) Grid Bilgi Sistemleri (Grid Information Systems) TR-Grid Kullanıcı Eğitimi (9-10 Temmuz 2007) Hakan Bayındır Bu Sunumda Grid Bilgi Sistemleri glite Bilgi Sistemi GLUE Şeması Grid Elemanları LCG Bilgi Sistemi

Detaylı

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜM BAŞKANLIĞI DERS TANITIM BİLGİLERİ Dersin Adı Kodu Sınıf / Y.Y. Ders Saati (T+U+L) Kredi AKTS VERİ TABANI BG-313 3/1 3+1+0 3+0,5 5 Dersin Dili : TÜRKÇE Dersin Seviyesi : LİSANS

Detaylı

Maltepe Üniversitesi Bilgisayar Mühendisliği Bölümü Veri Tabanı ve Yönetimi (BİL 301)

Maltepe Üniversitesi Bilgisayar Mühendisliği Bölümü Veri Tabanı ve Yönetimi (BİL 301) Maltepe Üniversitesi Bilgisayar Mühendisliği Bölümü Veri Tabanı ve Yönetimi (BİL 301) GENEL DERS BİLGİLERİ Öğretim Elemanı : Öğr. Gör. Erdal GÜVENOĞLU Ofis : MUH 313 Ofis Saatleri : Pazartesi: 10.00-12.00,

Detaylı

FONKSIYONLARA GÖRE IŞLETME

FONKSIYONLARA GÖRE IŞLETME FONKSIYONLARA GÖRE IŞLETME BILGI SISTEMLERI ÜNİTE 7 GİRİŞ İşletmelerin işlerini yürütebilmeleri için tedarikçileri, müşterileri, çalışanları, faturaları, ödemeleri, mal ve hizmetleri ile ilgili birçok

Detaylı

Veritabanı. SQL (Structured Query Language)

Veritabanı. SQL (Structured Query Language) Veritabanı SQL (Structured Query Language) SQL (Structured Query Language) SQL, ilişkisel veritabanlarındaki bilgileri sorgulamak için kullanılan dildir. SQL, bütün kullanıcıların ve uygulamaların veritabanına

Detaylı

İnternet Programcılığı

İnternet Programcılığı 1 PHP le Ver tabanı İşlemler Yaptığımız web sitelerinin daha kullanışlı olması için veritabanı sistemleri ile bağlantı kurup ihtiyaca göre verileri okuyup yazmasını isteriz. 1.1 Veritabanı Nedir? Veritabanı

Detaylı

VERİTABANI. SQL (Structured Query Language)

VERİTABANI. SQL (Structured Query Language) VERİTABANI SQL (Structured Query Language) SQL'de Gruplama Bir tablonun satırları gruplara ayrılarak fonksiyonların bunlara uygulanması mümkündür. Gruplara ayırmak için SELECT deyimi içerisinde GROUP BY

Detaylı

Her bölüm için kısa bazı girişler yapılacak ve bölüm içerisinde anlatılacak olan konuların genel başlıkları belirtilecektir.

Her bölüm için kısa bazı girişler yapılacak ve bölüm içerisinde anlatılacak olan konuların genel başlıkları belirtilecektir. Eğitim Adı Seviye Toplam Süre : SQL 2008 Sorgular Eğitim Serisi : Başlangıç/Orta/Yüksek : 56 Saat 05 Dakika 05 Saniye Video Adedi : 209 Merhaba arkadaşlar ben İLKER IŞIK yine www.yazilimhocasi.com katkılarıyla

Detaylı

Excel de Pivot Tablolar Tasarım ve Kullanımı

Excel de Pivot Tablolar Tasarım ve Kullanımı FARUK ÇUBUKÇU EXCEL AKADEMİ Excel de Pivot Tablolar Tasarım ve Kullanımı Pivot tablolar; satışlar, siparişler gibi verileri gruplamayı, alt toplamlarını almayı ve filtreleme işlemleri yapmayı sağlayan

Detaylı

Bir Taşla Çok Kuş SAP İş Analitikleri Baştan Sona Paket Çözüm. Muzaffer YÖNTEM / Ülke Yöneticisi 9 Aralık 2014, Salı

Bir Taşla Çok Kuş SAP İş Analitikleri Baştan Sona Paket Çözüm. Muzaffer YÖNTEM / Ülke Yöneticisi 9 Aralık 2014, Salı Bir Taşla Çok Kuş SAP İş Analitikleri Baştan Sona Paket Çözüm Muzaffer YÖNTEM / Ülke Yöneticisi 9 Aralık 2014, Salı Midis Group 45+ 100+ 100+ 3500+ 3+ Yıl Bilişim Dünyası Tecrübesi Grup Şirketi Global

Detaylı

Veri Tabanı Yönetim Sistemleri Bölüm - 3

Veri Tabanı Yönetim Sistemleri Bölüm - 3 Veri Tabanı Yönetim Sistemleri Bölüm - 3 İçerik Web Tabanlı Veri Tabanı Sistemleri.! MySQL.! PhpMyAdmin.! Web tabanlı bir veritabanı tasarımı. R. Orçun Madran!2 Web Tabanlı Veritabanı Yönetim Sistemleri

Detaylı

Kısaca. Müşteri İlişkileri Yönetimi. Nedir? İçerik. Elde tutma. Doğru müşteri 01.06.2011. Genel Tanıtım

Kısaca. Müşteri İlişkileri Yönetimi. Nedir? İçerik. Elde tutma. Doğru müşteri 01.06.2011. Genel Tanıtım Kısaca Müşteri İlişkileri Yönetimi Genel Tanıtım Başar Öztayşi Öğr. Gör. Dr. oztaysib@itu.edu.tr 1 MİY Genel Tanıtım 2 MİY Genel Tanıtım İçerik Müşteri İlişkileri Yönetimi Nedir? Neden? Tipleri Nelerdir?

Detaylı

Sistem Geliştirme Yaşam Döngüsü (The Systems Development Life Cycle) (SDLC)

Sistem Geliştirme Yaşam Döngüsü (The Systems Development Life Cycle) (SDLC) Sistem Geliştirme Yaşam Döngüsü (The Systems Development Life Cycle) (SDLC) Sistem analistlerinin ve kullanıcı faaliyetlerinin spesifik döngüsünün kullanılmasıyla En iyi geliştirilmiş sistemin oluşmasını

Detaylı

İŞ ZEKASI (BI * ) Veriniz geleceğe ışık tutsun İşinizi geleceğe göre planlayın

İŞ ZEKASI (BI * ) Veriniz geleceğe ışık tutsun İşinizi geleceğe göre planlayın (BI * ) Veriniz geleceğe ışık tutsun İşinizi geleceğe göre planlayın Kurumunuzun yarınını belirleyecek kararları verirken en iyi iş zekası araçlarını kullanın. *BUSINESS INTELLIGENCE İş Zekası Çözümleri

Detaylı

VERİ MADENCİLİĞİNE BAKIŞ

VERİ MADENCİLİĞİNE BAKIŞ VERİ MADENCİLİĞİNE BAKIŞ İçerik Veri Madenciliği Neden Veri Madenciliği? Veri ve Veri Madenciliğinin Önemi Günümüzde Kullanılan Veri Madenciliğinin Çeşitli İsimleri Veri Madenciliği Nedir? Neden Veri Madenciliği?

Detaylı

RotamNet Ticari Programı Kısa Tanıtım Dökümanı

RotamNet Ticari Programı Kısa Tanıtım Dökümanı RotamNet Ticari Programı Kısa Tanıtım Dökümanı RotamNet ; Kolay kurulumu ve kullanımıyla ön plana çıkan, teknolojik alt yapısıyla işletmelere pratik çözümler sunan ve büyük avantajlar sağlayan tam bir

Detaylı

VT Sistem Gerçeklemesi Ders Notları- #12

VT Sistem Gerçeklemesi Ders Notları- #12 VT Sistem Gerçeklemesi Ders Notları- #12 Somut görüntünün amacı ve kullanımı Kontrollü Bilgi tekrarı Bakım Denormalizasyon yerine kullanımı Görüntü seçimindeki kriterler Sorgu işlemede somutlaştırma Somutlaştırma

Detaylı

İç Mimari için BIM 1. bölüm

İç Mimari için BIM 1. bölüm İç Mimari için BIM 1. bölüm BIM (Yapı Bilgi Sistemi) hakkındaki görüşler genellikle binanın dış tasarımı ve BIM in mimari tasarımın bu alanına getirdiği faydalar üzerine odaklanır. Binaların katı modelleri,

Detaylı

Dava Yönetİm Paketİ. İnnova Hukuk Yönetim Sistemi. Uçtan uca dava yönetimi. İnnova teknolojisiyle hukuki süreçlerinizi hızla sonuca ulaştırın.

Dava Yönetİm Paketİ. İnnova Hukuk Yönetim Sistemi. Uçtan uca dava yönetimi. İnnova teknolojisiyle hukuki süreçlerinizi hızla sonuca ulaştırın. İnnova teknolojisiyle hukuki süreçlerinizi hızla sonuca ulaştırın. İnnova Hukuk Yönetim Sistemi Dava Yönetİm Paketİ Büyümesini sürdüren kurumların artan hukuki takiplerinde yeni yardımcısı olacak Dava

Detaylı

Compiere Açık kodlu ERP + CRM yazılımı. Hüseyin Ergün Önsel Armağan Serkan Demir

Compiere Açık kodlu ERP + CRM yazılımı. Hüseyin Ergün Önsel Armağan Serkan Demir Compiere Açık kodlu ERP + CRM yazılımı Hüseyin Ergün Önsel Armağan Serkan Demir ERP Nedir? ERP = Kurumsal Kaynak Planlama Organizasyonların farklı fonksiyonlarının ve departmanlarının kullandığı enformasyonu

Detaylı

DAO İLE SQL KOMUTLARI. Sql komutlarını artık veri tabanında kullanmaktan başka çaremiz yok arkadaşlar. Şimdi bu sql derslerimize başlayalım.

DAO İLE SQL KOMUTLARI. Sql komutlarını artık veri tabanında kullanmaktan başka çaremiz yok arkadaşlar. Şimdi bu sql derslerimize başlayalım. DAO İLE SQL KOMUTLARI Sql komutlarını artık veri tabanında kullanmaktan başka çaremiz yok arkadaşlar. Şimdi bu sql derslerimize başlayalım. SQL-1 SELECT En basit SQL cümleciği oluşturmak için SELECT sözcüğü

Detaylı

GENEL BAKIŞ MOBILTECH

GENEL BAKIŞ MOBILTECH GENEL BAKIŞ MOBİL ÇÖZÜMÜMÜZ ile sağlanacak kazanımları sıralarsak; İşletme maliyetlerinizi azaltır, Daha verimli ve güncel bilgilerle çalışmasını sağlar, Anlık olarak merkezden hatasız bilgi alımını sağlar,

Detaylı

Coğrafi Bilgi Sistemlerine Giriş. Ünite 5 - Veri Tabanı Yönetim Sistemleri

Coğrafi Bilgi Sistemlerine Giriş. Ünite 5 - Veri Tabanı Yönetim Sistemleri Coğrafi Bilgi Sistemlerine Giriş Ünite 5 - Veri Tabanı Yönetim Sistemleri İçerik Temel kavramlar Veri tabanı modelleri Normalizasyon Coğrafi Bilgi Sistemlerinde veri tabanı yönetimi Temel kavramlar Veri

Detaylı

İş Zekası ve Veri Ambarı Sistemleri. Nergiz Ercil Çağıltay

İş Zekası ve Veri Ambarı Sistemleri. Nergiz Ercil Çağıltay İş Zekası ve Veri Ambarı Sistemleri Nergiz Ercil Çağıltay BÖLÜM 3 Bilgi kartopu gibi yuvarlandıkça büyür. L. Sidney İş Zekası Gereksinimleri Organizasyonun gelişimi nasıl olmuştur? Şu an organizasyonun

Detaylı

cofaso ile farkı yaşayın Şubat 2009 www.mertbilgi.com.tr

cofaso ile farkı yaşayın Şubat 2009 www.mertbilgi.com.tr cofaso ile farkı yaşayın Şubat 2009 www.mertbilgi.com.tr cofaso ile farkı yaşayın Otomasyon ve pano projelerinizi profesyonel bilgisayar destekli mühendislik yazılımı (CAE) cofaso ile yönetin Giriş cofaso

Detaylı

Konular. VERİ MADENCİLİĞİ Giriş. Problem Tanımı. Veri Madenciliği: Tarihçe. Veri Madenciliği Nedir? Bilgi Keşfi

Konular. VERİ MADENCİLİĞİ Giriş. Problem Tanımı. Veri Madenciliği: Tarihçe. Veri Madenciliği Nedir? Bilgi Keşfi VERİ MADENCİLİĞİ Giriş Yrd. Doç. Dr. Şule Gündüz Öğüdücü 1 2 Problem Tanımı Veri Madenciliği: Tarihçe teknolojinin gelişimiyle bilgisayar ortamında ve veritabanlarında tutulan veri miktarının da artması

Detaylı

TESİ. indeks. söylenebilir?? bir ilişkidir d) Hiçbiri. veya somutlaştırılmış. düzeyidir? sağlayabilir? sına. d) Hepsi. olabilir? c) Verilerin d) Hepsi

TESİ. indeks. söylenebilir?? bir ilişkidir d) Hiçbiri. veya somutlaştırılmış. düzeyidir? sağlayabilir? sına. d) Hepsi. olabilir? c) Verilerin d) Hepsi 1. 2. 3. 4. 5. 6. Görünüm (view) için özellikle aşağıdakilerden hangisi söylenebilir?? a) Veritabanındaki kayıtlı verileri düzenlemek, yönetmek ve elde etmek için kullanılan bir dildir b) Bir ilişkinin

Detaylı

Turkuaz Grup Otomasyon. Bilist:Ev Tekstil İşletme Yönetimi. Aleksey BRYANTSEV (Bilist Yazılım) 1TÇ:Ticari KOBİ Yönetimi

Turkuaz Grup Otomasyon. Bilist:Ev Tekstil İşletme Yönetimi. Aleksey BRYANTSEV (Bilist Yazılım) 1TÇ:Ticari KOBİ Yönetimi Turkuaz Grup Otomasyon 1TÇ:Ticari KOBİ Yönetimi Bilist:Ev Tekstil İşletme Yönetimi Aleksey BRYANTSEV (Bilist Yazılım) Proje Kapsamı Proje Kapsamı Birden fazla şirketin verileri tek programda konsolide

Detaylı

CRM Müşteri İlişkileri Yönetimi

CRM Müşteri İlişkileri Yönetimi CRM Müşteri İlişkileri Yönetimi Yrd. Doç. Dr. Fazlı YILDIRIM fazli.yildirim@okan.edu.tr Oda: C522 www. fazliyildirim.com BIS364 Rekabet Avantajı İçin ç Müşteri ş İlişkileri Yönetimi Abdullah BOZGEYİK CRM

Detaylı

Veri Tabanı Yönetim Sistemleri Bölüm - 7

Veri Tabanı Yönetim Sistemleri Bölüm - 7 Veri Tabanı Yönetim Sistemleri Bölüm - 7 İçerik Alt Sorgular Çoklu Tablolar (Tabloların Birleştirilmesi) Görünümler R. Orçun Madran 2 Alt Sorgular Uygulamada, bir sorgudan elde edilen sonuç, bir diğer

Detaylı

Uygulamaları ulut bilişime geçirmeden önce, firmanızın/şirketinizin ya da. işinizin gereksinimlerini göz önüne almanız gerekir. Aşağıda bulut bilişime

Uygulamaları ulut bilişime geçirmeden önce, firmanızın/şirketinizin ya da. işinizin gereksinimlerini göz önüne almanız gerekir. Aşağıda bulut bilişime Bulut Bilişim-Planlama Uygulamaları ulut bilişime geçirmeden önce, firmanızın/şirketinizin ya da işinizin gereksinimlerini göz önüne almanız gerekir. Aşağıda bulut bilişime geçemden önce dikkat edilmesi

Detaylı

Veri Madenciliği Yöntemleriyle İGDAŞ Çağrı Merkezi Veri Analizi VE Kalite Fonksiyon Yayılımı Yöntemiyle Süreç İyileştirme Çalışması

Veri Madenciliği Yöntemleriyle İGDAŞ Çağrı Merkezi Veri Analizi VE Kalite Fonksiyon Yayılımı Yöntemiyle Süreç İyileştirme Çalışması Veri Madenciliği Yöntemleriyle İGDAŞ Çağrı Merkezi Veri Analizi VE Kalite Fonksiyon Yayılımı Yöntemiyle Süreç İyileştirme Çalışması Nilay Kurşunoğlu, PwC Yönetim Danışmanlığı Biz Kimiz? Orhan Cem Sorumlu

Detaylı

Nebim Winner Kurumsal Fiyat Listesi

Nebim Winner Kurumsal Fiyat Listesi Nebim Winner Kurumsal Fiyat Listesi Son güncelleme: 19 Ocak 12 Winner Merkez ve Zincir Mağaza......2 Winner Ticari ı......4 Opsiyon Fiyatlar...... Winner Üretm Yönetmi......6 Winner Tedarik Yönetmi......7

Detaylı

Lojistik ve Taşımacılık Sektöründe Yeni Hizmet Modeli. Lojistik ve Taşımacılık Sektöründe Yeni Hizmet Modeli

Lojistik ve Taşımacılık Sektöründe Yeni Hizmet Modeli. Lojistik ve Taşımacılık Sektöründe Yeni Hizmet Modeli Lojistik ve Taşımacılık Sektöründe Yeni Hizmet Modeli Lojistik ve Taşımacılık Sektöründe Yeni Hizmet Modeli HOŞGELDİNİZ Erdal Kılıç SOFT Gökhan Akça KoçSistem Lojistik ve Taşımacılık Sektöründe Yeni Hizmet

Detaylı

İÇERİK OTO-MOBILE. Standart Süreç OTO-MOBILE. Avantajlar. Sistem Görünümü. Sistem Bilgisi. Yazılım / Donanım Gereksinimi

İÇERİK OTO-MOBILE. Standart Süreç OTO-MOBILE. Avantajlar. Sistem Görünümü. Sistem Bilgisi. Yazılım / Donanım Gereksinimi 03.05.2011 1 İÇERİK OTO-MOBILE Standart Süreç OTO-MOBILE Avantajlar Sistem Görünümü Sistem Bilgisi Yazılım / Donanım Gereksinimi 2 3 Tamir/Bakım Talebi Müşteri Araç Kontrolü Servis İş Emri Servis Parça

Detaylı

Enterprise Resource Planning - ERP - Kurumsal kaynak planlaması ya da iş letme kaynak planlaması,

Enterprise Resource Planning - ERP - Kurumsal kaynak planlaması ya da iş letme kaynak planlaması, Enterprise Resource Planning - ERP - Kurumsal kaynak planlaması ya da iş letme kaynak planlaması, işletmelerde mal ve hizmet üretimi için gereken işgücü, makine, malzeme gibi kaynakların verimli bir şekilde

Detaylı

Street Smart Marketing

Street Smart Marketing Tek bir hedef için tasarlanmış kamu hizmeti şirket programları. Başarı. Street Smart Marketing Müşterilerinizi cezbeden pazarlama kampanyaları 30 yıllık deneyim Tasarlarız. Yakalarız. İlerleriz. 1.4 milyon

Detaylı

Veri Tabanı-I 1.Hafta

Veri Tabanı-I 1.Hafta Veri Tabanı-I 1.Hafta 2010-2011 Bahar Dönemi Mehmet Akif Ersoy Üniversitesi Meslek Yüksekokulu Burdur 2011 Muhammer İLKUÇAR 1 Veri ve Veri Tabanı Nedir? Veri Bir anlamı olan ve kaydedilebilen

Detaylı

iş zekası business intelligence- harita- performans göstergeleri - balanced scorecard 7 boyut da görsel tasarım LOGOBI İş Zekası Platformu

iş zekası business intelligence- harita- performans göstergeleri - balanced scorecard 7 boyut da görsel tasarım LOGOBI İş Zekası Platformu iş zekası business intelligence- harita- performans göstergeleri - balanced scorecard 7 boyut da görsel tasarım LOGOBI İş Zekası Platformu LOGOBI LOGOBI İş Zekası Platformu İnternet veya intranet ortamlarda

Detaylı

Veritabanı Yönetim Sistemleri (Veritabanı Tasarımı) SQL (Structured Query Language)

Veritabanı Yönetim Sistemleri (Veritabanı Tasarımı) SQL (Structured Query Language) Veritabanı Yönetim Sistemleri (Veritabanı Tasarımı) SQL (Structured Query Language) Konular Yapısal SQL Komutları Gruplama İşlemi SQL Fonksiyonları Kaynaklar 2 SQL (Structured Query Language) SQL Carlos

Detaylı

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi

Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması. Mustafa Kemal Üniversitesi Algoritma Geliştirme ve Veri Yapıları 9 Ağaç Veri Modeli ve Uygulaması Ağaç, verilerin birbirine sanki bir ağaç yapısı oluşturuyormuş gibi sanal olarak bağlanmasıyla elde edilen hiyararşik yapıya sahip

Detaylı

Öğretim Teknolojilerinde Yeni Eğilimler. Yrd.Doç.Dr. Nuray Gedik Güz 2012

Öğretim Teknolojilerinde Yeni Eğilimler. Yrd.Doç.Dr. Nuray Gedik Güz 2012 Öğretim Teknolojilerinde Yeni Eğilimler Yrd.Doç. Güz 2012 Teknoloji ve Medya 1950 ler 1980 lerde bilgisayar Teknoloji ve Medya: Eğilimler Toplum ve Medya 1 yılda basılan kitap 967,474 1 günde dağıtılan

Detaylı

Genel Kavramlar. Bilgisayar ortamında işlenebilecek durumda bulunan kayıtlar. Birbiri ile ilişkili veriler topluluğu ve veriler arası ilişkiler

Genel Kavramlar. Bilgisayar ortamında işlenebilecek durumda bulunan kayıtlar. Birbiri ile ilişkili veriler topluluğu ve veriler arası ilişkiler Genel Kavramlar Veri Nedir? Bilgisayar ortamında işlenebilecek durumda bulunan kayıtlar Veri Tabanı Nedir? Birbiri ile ilişkili veriler topluluğu ve veriler arası ilişkiler Veritabanı Yönetim Sistemi (DBMS)Nedir?

Detaylı

1. Oracle Data Miner 11g Release 2 Kurulumu Aşamaları

1. Oracle Data Miner 11g Release 2 Kurulumu Aşamaları 1. Oracle Data Miner 11g Release 2 Kurulumu Aşamaları Uyarı 1: Kuruluma başlamadan önce Oracle 11g Release 2 veritabanı kurulumunu eksiksiz bir şekilde gerçekleştirmiş olmanız beklenmektedir. İlgili kurulum

Detaylı

Kutalmış Damar Emre Uzuncakara. 07 Haziran 2012 - İstanbul

Kutalmış Damar Emre Uzuncakara. 07 Haziran 2012 - İstanbul Kutalmış Damar Emre Uzuncakara 07 Haziran 2012 - İstanbul Unica ve Netezza Hızlı analitik, etkili pazarlama Unica ve Netezza İşbirliği 2010 yılında Unica ve Netezza IBM e katıldı İlk Unica Netezza işbirliği

Detaylı

Veri Ambarı (Data Warehouse)

Veri Ambarı (Data Warehouse) YBS Ansiklopedi www.ybsansiklopedi.com Cilt 2, Sayı 4, Aralık 2015 Veri Ambarı (Data Warehouse) Sadi Evren SEKER a Istanbul Medeniyet University, Department of Business Özet Bu çalışmada genel olarak veri

Detaylı

Stoklarınız ile ilgili tüm hareket ve detaylara menüler arasında gezmeden ulaşabilirsiniz.

Stoklarınız ile ilgili tüm hareket ve detaylara menüler arasında gezmeden ulaşabilirsiniz. OFİS Mikro Perakende Çözümleri 1 MİKRO OFİS SERİSİ Küçük ve orta ölçekteki perakende firmaları için hazırlanan programları, perakende satış noktalarının belkemiği olan satış noktası terminalleri (POSlarla),

Detaylı

SQL e Giriş. Uzm. Murat YAZICI

SQL e Giriş. Uzm. Murat YAZICI SQL e Giriş Uzm. Murat YAZICI SQL (Structured Query Language) - SQL Türkçe de Yapısal Sorgulama Dili anlamına gelmektedir ve ilişkisel veritabanlarında çok geniş bir kullanım alanına sahiptir. - SQL ile

Detaylı

BI İŞ ZEKASI. İlk Türk iş zekası aracı...

BI İŞ ZEKASI. İlk Türk iş zekası aracı... BI İŞ ZEKASI İlk Türk iş zekası aracı... BI İŞ ZEKASI BİLGİ GÜÇTÜR. VERİLERİ BİLGİYE DÖNÜŞTÜRÜN VE KULLANIN. Internet Çağı nda gündemdeki en önemli maddeler; farklı iş senaryolarına göre benzetimler (simulation),

Detaylı

FABREKA YAZILIM ELEKTRONİK DANIŞMANLIK TİC. LTD. ŞTİ.

FABREKA YAZILIM ELEKTRONİK DANIŞMANLIK TİC. LTD. ŞTİ. FABREKA YAZILIM ELEKTRONİK DANIŞMANLIK TİC. LTD. ŞTİ. VEBIAN V1.5 PERFORMANS ÖNERİLERİ DOKÜMANI 08.02.2015 İçindekiler Amaç ve Kapsam... 2 Performansı Belirleyen Etkenler... 3 Rapor Nasıl Görüntülenir...

Detaylı

İŞ ZEKÂSI & ÇEVİK RAPORLAMA ARACI. REPX ile verinize değer katın.

İŞ ZEKÂSI & ÇEVİK RAPORLAMA ARACI. REPX ile verinize değer katın. İŞ ZEKÂSI & ÇEVİK RAPORLAMA ARACI REPX ile verinize değer katın. Anahtar Kelimeler WEB Tabanlı İş Zekâsı Çevik Raporlama Liste Rapor Pivot Tablo Dashboard Tepe/Detay Rapor Pasta Grafik Çubuk Grafik Çizgi

Detaylı

Gündem. Demo 3D ile Geleceği Görmek. Dijitalis Yazılım ve Danışmanlık Ltd.Şti. www.dijitalis.com

Gündem. Demo 3D ile Geleceği Görmek. Dijitalis Yazılım ve Danışmanlık Ltd.Şti. www.dijitalis.com Gündem Demo 3D ile Geleceği Görmek 1 Dijitalis Dijitalis, stratejik taktiksel ve operasyonel doğru kararlar verebilmek ve dinamik değişiklere çok hızlı adapte olabilmek için entegre çözümler sunar. Tedarik

Detaylı

Değerlendirme Soruları 140. Şerit Kullanımı 124 Şerit Sekmeleri 124 Şeridi Gizleme 125 Eklentiler 125

Değerlendirme Soruları 140. Şerit Kullanımı 124 Şerit Sekmeleri 124 Şeridi Gizleme 125 Eklentiler 125 ! 1 Excel Nedir? 2 Excel in Gelişimi 2 Yeni Özellikler 11 Görünüm 11 Bulut Desteği 11 Şablonlar 14 Anlık Veri Çözümleme 16 Hızlı Veri Doldurma 17 Grafik Önerileri (Recomended Charts) 17 Dilimleyiciler

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: CME 3001

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: CME 3001 Dersi Veren Birim: Bilgisayar Mühendisliği Dersin Türkçe Adı: VERİTABANI YÖNETİM SİSTEMLERİ Dersin Orjinal Adı: DATABASE MANAGEMENT SYSTEMS Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans

Detaylı

Bölüm 1: Veritabanı Yönetim Sistemlerine Giriş

Bölüm 1: Veritabanı Yönetim Sistemlerine Giriş Bölüm 1: Veritabanı Yönetim Sistemlerine Giriş -1- Dr. Serkan DİŞLİTAŞ 1.1. Veri ve Bilgi (Data & Information) Hesaplama, saklama gibi çeşitli işlemler amacıyla bilgisayara verilen sayı, yazı, resim, ses,

Detaylı

Bilgisayar Teknolojileri Bölümü Bilgisayar Programcılığı Programı. Öğr. Gör. Cansu AYVAZ GÜVEN

Bilgisayar Teknolojileri Bölümü Bilgisayar Programcılığı Programı. Öğr. Gör. Cansu AYVAZ GÜVEN Bilgisayar Teknolojileri Bölümü Bilgisayar Programcılığı Programı Öğr. Gör. Cansu AYVAZ GÜVEN VERİTABANI-I Veri Nedir? Bilgisayarların yaygınlaşması ile birlikte bir çok verinin saklanması gerekli hale

Detaylı

BÜTÜNLEŞİK VERİ KÜPÜ SİSTEMİ (BVKS): SATIŞ KÜPÜ UYGULAMASI

BÜTÜNLEŞİK VERİ KÜPÜ SİSTEMİ (BVKS): SATIŞ KÜPÜ UYGULAMASI Gazi Üniv. Müh. Mim. Fak. Der. J. Fac. Eng. Arch. Gazi Univ. Cilt 23, No 2, 477-484, 2008 Vol 23, No 2, 477-484, 2008 BÜTÜNLEŞİK VERİ KÜPÜ SİSTEMİ (BVKS): SATIŞ KÜPÜ UYGULAMASI Tahsin ÇETİNYOKUŞ ve Hadi

Detaylı

İstanbul Ticaret Odası Websphere Portal Çözümü ile İstanbul Trafiğini Nasıl Hafifletti?

İstanbul Ticaret Odası Websphere Portal Çözümü ile İstanbul Trafiğini Nasıl Hafifletti? Ali Beklen Yazılım Mimarı 15/10/2009 İstanbul Ticaret Odası Websphere Portal Çözümü ile İstanbul Trafiğini Nasıl Hafifletti? Gündem İstanbul Ticaret Odası e-ito Proje Kapsamı ve Ekibi Çözüm Gündem İstanbul

Detaylı

Büyük Veri İş Yapış Şekillerini Nasıl Etkiliyor?

Büyük Veri İş Yapış Şekillerini Nasıl Etkiliyor? www.pwc.com Büyük Veri İş Yapış Şekillerini Nasıl Etkiliyor? Mustafa Fuat Vardar Dijital dönüşümü anlamak Büyük veri- Neden Şimdi? KENTLİEŞME Yeni Müşteriler Yeni Davranışlar Yeni Talepler Yeni Formatlar

Detaylı

PERFORMANS YÖNETĐMĐ. Hedefe Odaklı Çalışma ve Yetkinlik Yönetimi.

PERFORMANS YÖNETĐMĐ. Hedefe Odaklı Çalışma ve Yetkinlik Yönetimi. PERFORMANS YÖNETĐMĐ Kurumların yapısına uygun performans yönetimi sistemini esnek yapı sayesinde Đnsan Kaynakları uygulaması içinde tanımlayarak takip edebilme Performans kayıtlarını yöneticilere e-posta

Detaylı

Mağazanızın içinde olduğu AVM ve AVM deki konumu ne kadar doğru?

Mağazanızın içinde olduğu AVM ve AVM deki konumu ne kadar doğru? Mağazanızın içinde olduğu AVM ve AVM deki konumu ne kadar doğru? Paranın icadından AVM lere Ticaret, insanlık tarihi kadar eskidir, yalnızca araçlar değişmiştir. Kullanılan araçlarla beraber, ticaretin

Detaylı

CRM in Telekom Platformunda Uygulanması. Hazırlayanlar: Zuhal Vargün Danışman: Prof.Dr. Levent Toker

CRM in Telekom Platformunda Uygulanması. Hazırlayanlar: Zuhal Vargün Danışman: Prof.Dr. Levent Toker CRM in Telekom Platformunda Uygulanması Hazırlayanlar: Zuhal Vargün Danışman: Prof.Dr. Levent Toker 1 İçindekiler 1.Giriş 2.CRM ve Faydaları 2.1.CRM Çeşitleri ve Süreci 3.Telekom Mimarisi ve Bileşenleri

Detaylı

Kural Motoru. www.paperwork.com.tr

Kural Motoru. www.paperwork.com.tr Kural Motoru www.paperwork.com.tr İş Kuralı Örnekleri Aşağıda iş kurallarına çeşitli örnekler verilmiştir; : İş Kuralı Nedir? T üm işletmeler kural merkezli çalışırlar. Kurallar hangi fırsatların takip

Detaylı

Bilgisayar Mühendisliği. Bilgisayar Mühendisliğine Giriş 1

Bilgisayar Mühendisliği. Bilgisayar Mühendisliğine Giriş 1 Bilgisayar Mühendisliği Bilgisayar Mühendisliğine Giriş 1 Mühendislik Nedir? Mühendislik, bilim ve matematiğin yararlı cihaz ve sistemlerin üretimine uygulanmasıdır. Örn: Elektrik mühendisleri, elektronik

Detaylı

04.10.2010. Agency-1 Golf Otomasyonu

04.10.2010. Agency-1 Golf Otomasyonu Agency-1 Golf Otomasyonu 5N 1K Ne? Neden? Ne zaman? Nerede? Kim? Ne? Agency-1 Golf Otomasyonu Golf Organizasyonu yapan işletmelerin sektörel ihtiyaçlarını karşılamak için üretilmiş bir yazılımdır. Bilinen

Detaylı

BT Maliyetlerinde Etkin Yönetim Stratejileri *

BT Maliyetlerinde Etkin Yönetim Stratejileri * PwC Türkiye V. Çözüm Ortaklığı Platformu BT Maliyetlerinde Etkin Yönetim Stratejileri * Anıl l Erkan, Kıdemli K Müdür, M Danış ışmanlık Hizmletleri Seda Babür, Danış ışman, Danış ışmanlık Hizmletleri PwC

Detaylı

VERİ TABANI ve YÖNETİMİ

VERİ TABANI ve YÖNETİMİ VERİ TABANI ve YÖNETİMİ Maltepe Üniversitesi Bilgisayar Mühendisliği Bölümü 2 BÖLÜM -12- TETİKLEYİCİ (TRIGGER) 3 Giriş Trigger lar Trigger lar Ne Zaman Kullanılmalıdır? Klasik Trigger ların Özellikleri

Detaylı

Semantik Ağ ve Üst Veri Sistemleri İçin Yeni Nesil Veri Tabanı Yönetim Modeli: NoSQL. R. Orçun Madran Atılım Üniversitesi. www.madran.

Semantik Ağ ve Üst Veri Sistemleri İçin Yeni Nesil Veri Tabanı Yönetim Modeli: NoSQL. R. Orçun Madran Atılım Üniversitesi. www.madran. Semantik Ağ ve Üst Veri Sistemleri İçin Yeni Nesil Veri Tabanı Yönetim Modeli: NoSQL R. Orçun Madran Atılım Üniversitesi www.madran.net İçerik NoSQL Ne Değildir? Neden NoSQL? Ne Zaman NoSQL? NoSQL'in Tarihçesi.

Detaylı

İngilizce'de Relational Database Management System (RDBMS) olarak ifade edilir.

İngilizce'de Relational Database Management System (RDBMS) olarak ifade edilir. İlişkisel Veritabanı Yaklaşımı: İngilizce'de Relational Database Management System (RDBMS) olarak ifade edilir. İlişkisel veri tabanı yönetim sistemi verilerin tablolarda satır ve sutunlar halinde tutulduğu

Detaylı

3. sınıf. Bilgisayarla kataloglamanın doğuşu gelişimi ve bugünkü durum ele alınmaktadır. Bu derste

3. sınıf. Bilgisayarla kataloglamanın doğuşu gelişimi ve bugünkü durum ele alınmaktadır. Bu derste 3. sınıf 5. Yarıyıl (Güz Dönemi) Bilgi Kaynaklarının Tanımlanması ve Erişimi I (AKTS 5) 3 saat Bilgisayarla kataloglamanın doğuşu gelişimi ve bugünkü durum ele alınmaktadır. Bu derste Kütüphane Otomasyon

Detaylı