ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ALTERNATİF SİSTEMLERİN KARŞILAŞTIRILMASI"

Transkript

1 µ µ içi Güve Aralığı ALTERNATİF İTEMLERİN KARŞILAŞTIRILMAI Bezetimi e öemli faydalarıda birisi, uygulamaya koymada öce alteratifleri karşılaştırmaı mümkü olmasıdır. Alteratifler; Fabrika yerleşim tasarımları Alteratif üretim plaları Malzeme taşıma kofigürasyoları tok politikaları vb. Olabilir Karşılaştırma içi uygu istatistiksel metotları kullaımı gerekir. Çükü, her alteratif tasarımı bir kere çalıştırarak elde edile çıktılarla bir karara varmak hatalı bir yaklaşımdır. Aşağıdaki örek tek bir deeme ile souca varmaı hatalı olduğuu göstermektedir. (a (= = ise; (deey sayısı her iki sistemde eşit ( ler ler ile bağımlı olabilir =,,, içi; Z = - yi taımlamak üzere ve eşleştirilir. Z = - Z = - Z = - Z = - ve ler bağımsız rassal değişke olduğuda Z ler de bağımsız özdeş dağılmış rassal değişkelerdir. ( ( ( ( E Z = E = E E =δ=µ µ içi güve aralığı oluşturalım Z = Z ( µ µ Z( = t 30 ( Z > 30 ( Z Z( = ( = İki istemi Performas Ölçüleri Arasıdaki Farklılık içi Güve Aralığı i=, içi; i, i,, i : i. sistemde elde edile adet bağımsız özdeş dağılmış örekler olsu µ i = E( i : i. sistem içi performas ölçüsüü beklee değeridir. Amaç; δ = µ µ içi bir güve aralığıı oluşturmaktır. Amaç ilgileile performas ölçüsüü miimizasyou ise (maliyet, kuyrukta ortalama bekleme zamaı gibi; Güve Aralığı 0 ı kapsıyorsa GA=[-,+] ; İlgileile her iki sistemi birbiride farklı olmadığıı gösterir. ( µ =µ Güve aralığı pozitif bir aralık ise GA=[+,+] ; İki sistem birbiride farklıdır.. sistem,. sisteme göre daha büyük bir ortalamaya sahiptir. Bu edele. sistem tercih edilir. ( µ > µ Güve aralığı egatif bir aralık ise GA=[-,-] ; İki sistem birbiride farklıdır.. sistem,. sisteme göre daha küçük bir ortalamaya sahiptir. Bu edele. sistem tercih edilir. ( µ < µ

2 ÖRNEK: (s, stok sistemide iki politika karşılaştırılmak isteiyor. Amaç, ilk 0 aylık çalışma periyoduda beklee ortalama maliyeti miimize ede politikayı seçmektir.. politika (s, = (0,40,. politika (s, = (0,80. Her politika içi bağımsız 5 er deeme yapılarak aşağıdaki souçlar elde edilmiştir. Z i : i. politikaı. tekrarlamadaki aylık ortalama toplam maliyeti Z % 90 güvelik düzeyide = Z( = = 4.98 ( Z Z( m t4,0.95 = [.65, 8.3] 5 = ( = =.0 b Bu yaklaşımda; µ µ içi güve aralığıı oluşturmada her iki sistemde elde edile gözlemleri eleştirilmesi gerekmez. Acak leri lerde bağımsız olmalıdır.. Durum: Her zama geçerli değildir. Var olarak kabul edilir. Var ( ( i xi = xi( = i i i = i( = i i ( xi xi( i ( x x µ µ tf Güve aralığı pozitiftir. Amacımız maliyeti miimize ede politikayı seçmek olduğuda II. Politika seçilir. µ >µ erbestlik derecesii tahmii; Not: Z ler bağımsız olmak zorudadır. Acak leri lerde bağımsız olması gerekmez. Z = - =,,, içi leri lerde bağımlı olduğu düşüülürse; ( + ( ˆf = ( + ( Var (Z = Var ( + Var ( - Cov (, Cov (, > 0 olduğuda dolayı Var (Z azalır. α güvelik düzeyide güve aralığı; Bu durumda ise elde edile güve aralığı küçülür. Güve aralığıı küçük olması verilecek kararı daha hassas olmasıı sağlar. Z( m t, α ( ( ( ( x x tf, ˆ m α + (Welch Yaklaşımı

3 ÖRNEK: ÖRNEK: tok sistemi içi verile örekte deemeler bağımsız olarak yapıldığı içi Welch yaklaşımı kullaılarak politikaı farklı olup olmadığı belirleebilir. x(5 = 5.57, x(5 = 0.59, (5 = 4, (5 = ˆf = 7.99 t7.99,0.95 =.860 %90 güvelik düzeyide GA=[.66, 7.30].politika seçilir. Ru σ Alteratif I Alteratif II a istem içi düşüüle iki alteratif var. Her alteratif içi düzelee bezetim programı 0 kez çalıştırılarak yukarıda verile ortalama beklemeler elde edilmiştir. Alteratif sistemleri bezetim programları bağımsız olarak çalıştırılmıştır. - İki sistemi ortalama beklemelerii karşılaştırmak üzere 0.90 güvelik düzeyide güve aralığıı oluşturuuz. -Yaklaşık 0.5 göreli hassalık içi yapılması gereke gözlem sayısıı buluuz. b Alteratif I i ayı kaldığı Alteratif II içi yei souçları elde edildiği düşüülerek (Burada Alteratif I ve Alteratif II i çalıştırılması bezer deey şartları altıda gerçekleştiriliyor Alteratif II i yei souçları aşağıda verilmektedir.. Durum: ve Var ( = Var ( = σ kabul edilirse; Ayı zamada ler lerde bağımsızdır. µ µ içi α güvelik düzeyide güve aralığı; ( x( x( m +, α ( x x t Var =σ +σ =σ + σ ˆ =? ( x( ( x ( Ru Var ( Alteratif II i iki sistemi ortalama beklemelerii karşılaştırmak içi 0.90 güvelik düzeyi içi güvelik aralığıı oluşturuuz. ii a i 0.5 göreli hassasiyeti elde etmek içi gerekli deeme sayısıı belirleyiiz. Ru Z Var(I-II Z = (I-II

4 Z Z = = ( = = 7 (0( = = = ( Z Z( ( ( ( % 90 güvelik düzeyide GA; GA t 0.9 = Z( m 9,0.95 = =.7.93 = 3.63;0.3 0 m m ( ( [ ] [ ] GA=[-,+] olduğuda dolayı (yai 0 ı kapsadığıda her iki sistem birbiride farklı değildir i b Ru Z ( Z Z ( ( ( Z ( Z ( = 59 (0(.7 ( = = = ( Z t ( m, α.7 (.833 [.7.059] = m = m 0 [.759; 0.64] GA=[-,-] olduğuda dolayı µ < µ dır.. Alteratif seçilir. ii ( t, α t, α ( =γ = γ ( ( = = 564 ( 0.5 ( > 0 olduğuda 564-0=554 adet ek deeme yapılması gerekir. ( * = 457 ( 0.5 (.7 * > 0 olduğuda 457-0=447 ii ( t, α ( ( = 0.5 = ( 0.5 (.7 > 0 olduğuda 73-0=63 adet ek deeme yapılması gerekir. C a ve b souçlarıa göre farklı souçlar elde etmei sebepleri edir? Verile datayı kullaarak açıklayıız. a Var(Alt+ Var(Alt Var(Alt-Alt bağımsız. b Var(Alt + Var(Alt Var(Alt-Alt =Var(Alt-Alt - Cov(Alt,Alt 3.34=0.9 - Cov(Alt,Alt Cov(Alt,Alt= = 3.78 Ayı deey şartları ile pozitif korelasyo elde edildiğide daha küçük varyas elde edilmiştir.

5 VARYAN AZALTMA TEKNİKLERİ tokastik istemleri Bezetimide, Rassal Girdiler Rassal Çıktılar üretir ouçları aalizi içi uygu istatistiksel metod kullaımı gerektirir. Güçlü bir istatistiksel aaliz içi çıktıları tahmiide yüksek hassasiyete ihtiyaç duyulur. Bu hassasiyeti artırmaı bir yolu örek büyüklüğüü (deeme sayısıı artırmaktır. Acak bu da zama ve para demektir. Alteratif Yaklaşım: VAT dir. VAT: İlgileile performas ölçüsüü tahmii değerii bozmaksızı varyasıı daha az bezetim koşumuyla azaltmaktır. ÖRNEK: İki sistem karşılaştırılacak. i : i. sistemi. deemesideki performas ölçüsüü tahmii Amacımız; δ = µ µ = E( E( Her sistem içi deeme yapılırsa; Z = =,,..., Var( Z = Var( + Var( Cov(, Z içi yasız tahmici = Z( = δ Z ( i varyası; Var( Var( Cov(, Var( Z = + ve pozitif ilişkili ise; Cov(, >0 olacağıda Z ( varyası azalır. VARYAN AZALTMA TEKNİKLERİ Varyas azaltma tekikleri; i Ortak (Geel Rassal ayılar (Commo Radom Numbers ii Karşıt Değişkeler (Atithetic Variates GENEL RAAL AYILAR Alteratif sistemleri karşılaştırılmasıda kullaılır. Temel fikir; bezer deey koşulları altıda alteratif sistemleri karşılaştırmaktır. Bezetimde deeysel koşullar, bezetim süresice kullaıla rassal değişkeler ile elde edilir. Bu tekikte, bezer deey koşulları ; her bir alteratif sistemi bezetimide ayı U(0, rassal sayıları kullaılarak elde edilir. (Pozitif ilişki oluşturulur. ÖRNEK: İki sistemi karşılaştırılması. Varışlar arası zama üretimi içi her deemede ayı başlagıç geel rassal sayıları kullaılır. Bezer deey şartları demek; bu olayı düzelemesi alamıa gelir.

6 KARŞIT DEĞİŞKENLER: Bu metot, bir sistemi bezetimi içi kullaılır. Deemeler arasıda korelasyo oluşturulmaya çalışılır. Acak, bu egatif korelasyodur. Negatif korelasyou elde edilmesi içi, her bir deeme iki kere yapılır. Her bir deemei biriciside herhagi bir rassal değişkei üretmek içi Uk rassal sayısı kullaılıyor ise, ikici deemei de ayı rassal değişkei üretmek içi -Uk rassal sayısı kullaılır.

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER

BÖLÜM 3 YER ÖLÇÜLERİ. Doç.Dr. Suat ŞAHİNLER BÖLÜM 3 YER ÖLÇÜLERİ İkici bölümde verileri frekas tablolarıı hazırlaması ve grafikleri çizilmesideki esas amaç; gözlemleri doğal olarak ait oldukları populasyo dağılışıı belirlemek ve dağılışı geel özelliklerii

Detaylı

Ki- kare Bağımsızlık Testi

Ki- kare Bağımsızlık Testi PARAMETRİK OLMAYAN İSTATİSTİKSEL TEKNİKLER Prof. Dr. Ali ŞEN Ki- kare Bağımsızlık Testi Daha öceki bölümlerde ölçümler arasıdaki ilişkileri asıl iceleeceğii gördük. Acak sıklıkla ilgileile veriler ölçüm

Detaylı

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr

İSTATİSTİK 2. Tahmin Teorisi 07/03/2012 AYŞE S. ÇAĞLI. aysecagli@beykent.edu.tr İSTATİSTİK 2 Tahmi Teorisi 07/03/2012 AYŞE S. ÇAĞLI aysecagli@beyket.edu.tr İstatistik yötemler İstatistik yötemler Betimsel istatistik Çıkarımsal istatistik Tahmi Hipotez testleri Nokta tahmii Aralık

Detaylı

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ

ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ 8. HAFTA ISF404 SERMAYE PİYASALARI VE MENKUL KIYMETYÖNETİMİ PORTFÖY YÖNETİMİ II Doç.Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr Geleeksel Portföy Yaklaşımı, Bu yaklaşıma göre portföy bir bilim değil,

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık Ders 3: MERKEZİ EĞİLİM VE DAĞILMA ÖLÇÜLERİ Prof. Dr. İrfa KAYMAZ Taım Araştırma souçlarıı açıklamasıda frekas tablosu ve poligou isteile bilgiyi her zama sağlamayabilir. Verileri

Detaylı

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ

ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ İSTATİSTİKSEL TAHMİNLEME VE İSTATİSTİKSEL YORUMLAMA TAHMİNLEME SÜRECİ VE YORUMLAMA SÜRECİ ÖRNEKLEME TEORİSİ VE TAHMİN TEORİSİ ÖRNEKLEME VE ÖRNEKLEME ÖRNEKLEME DAĞILIMLARI VE ÖRNEKLEME DAĞILIMLARI Yorumlama

Detaylı

7. Ders. Bazı Kesikli Olasılık Dağılımları

7. Ders. Bazı Kesikli Olasılık Dağılımları Hatırlatma: ( Ω, U, P) bir olasılık uzayı ve 7. Ders Bazı Kesikli Olasılık Dağılımları : Ω ω R ( ω) foksiyou Borel ölçülebilir, yai B B içi { ω Ω : ( ω) B } U oluyorsa foksiyoua bir Rasgele Değişke deir.

Detaylı

İstatistiksel Tahminleme. Güven Seviyesi. Verilerin yayılımı ( Örnek hacmi X = X / n Güven seviyesi (1 - )

İstatistiksel Tahminleme. Güven Seviyesi. Verilerin yayılımı ( Örnek hacmi X = X / n Güven seviyesi (1 - ) 04.05.0 İtatitikel Tahmileme İTATİTİKEL TAHMİNLEME VE YORUMLAMA ÜRECİ GÜVEN ARALIĞI Nokta Tahmii Populayo parametreii tek bir tahmi değerii verir μˆ σˆ p Pˆ Aralık Tahmii Populayo parametreii tahmi aralığıı

Detaylı

İstanbul Göztepe Bölgesinin Makine Öğrenmesi Yöntemi ile Rüzgâr Hızının Tahmin Edilmesi

İstanbul Göztepe Bölgesinin Makine Öğrenmesi Yöntemi ile Rüzgâr Hızının Tahmin Edilmesi Makie Tekolojileri Elektroik Dergisi Cilt: 8, No: 4, 011 (75-80) Electroic Joural of Machie Techologies Vol: 8, No: 4, 011 (75-80) TEKNOLOJİK ARAŞTIRMALAR www.tekolojikarastirmalar.com e-issn:1304-4141

Detaylı

Hipotez Testleri. Parametrik Testler

Hipotez Testleri. Parametrik Testler Hipotez Testleri Parametrik Testler Hipotez Testide Adımlar Bir araştırma sorusuu belirlemesi Araştırma sorusua dayaa istatistiki hipotezleri oluşturulması (H 0 ve H A ) Hedef populasyoda öreklemi elde

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferasiyel Deklemler 2009 Bahar Bu bilgilere atıfta bulumak veya kullaım koşulları hakkıda bilgi içi http://ocw.mit.edu/terms web sitesii ziyaret ediiz.

Detaylı

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ

DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkanı : Yrd.Doç.Dr. İsmail YILDIZ DÖNEM I BİYOİSTATİSTİK, HALK SAĞLIĞI VE RUH SAĞLIĞI DERS KURULU Ders Kurulu Başkaı : Yrd.Doç.Dr. İsmail YILDIZ ARAŞTIRMADA PLANLAMA VE ÇÖZÜMLEME (03-09 Ocak 014 Y.ÇELİK) Araştırma Süreci (The research

Detaylı

TÜME VARIM Bu bölümde öce,kısaca tümevarım yötemii, sorada ÖYS de karşılamakta olduğumuz sembolüü ve sembolüü ele alacağız. A. TÜME VARIM YÖNTEMİ Tümevarım yötemii ifade etmede öce, öerme ve doğruluk kümesi

Detaylı

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ 4. HAFTA ISF44 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ PARANIN ZAMAN DEĞERİ VE GETİRİ ÇEŞİTLERİ Doç. Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr 2 Paraı Zama Değeri Paraı Zama Değeri Yatırım

Detaylı

KİMYASAL DENGE (GİBBS SERBEST ENERJİSİ MİNİMİZASYONU) MODELLEMESİ

KİMYASAL DENGE (GİBBS SERBEST ENERJİSİ MİNİMİZASYONU) MODELLEMESİ KİMYASAL DENGE (GİBBS SERBEST ENERJİSİ MİNİMİZASYONU) MODELLEMESİ M. Turha ÇOBAN Ege Üiversitesi, Mühedislik Fakultesi, Makie Mühedisliği Bölümü, Borova, İZMİR Turha.coba@ege.edu.tr Özet: Kimyasal degei

Detaylı

TOPOLOJİK TEMEL KAVRAMLAR

TOPOLOJİK TEMEL KAVRAMLAR TOPOLOJİK TEMEL KAVRAMLAR 1.1. Kümeler ve Foksiyolar A ı bir elemaıa B i yalız bir elemaıı eşleye bağıtıya bir foksiyo deir. f : A B, Domf = U A ve ragef B dir. Taım 1.1.1. f : A B foksiyou içi V A olsu.

Detaylı

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV

Diziler ve Seriler ÜNİTE. Amaçlar. İçindekiler. Yazar Prof.Dr. Vakıf CAFEROV Diziler ve Seriler Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 7 Amaçlar Bu üiteyi çalıştıkta sora; dizi kavramıı taıyacak, dizileri yakısaklığıı araştırabilecek, sosuz toplamı alamıı bilecek, serileri yakısaklığıı

Detaylı

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz

TĐCARĐ MATEMATĐK - 5.2 Bileşik Faiz TĐCARĐ MATEMATĐK - 5 Bileşik 57ÇÖZÜMLÜ ÖRNEKLER: Örek 57: 0000 YTL yıllık %40 faiz oraıyla yıl bileşik faiz ile bakaya yatırılmıştır Bu paraı yılı souda ulaşacağı değer edir? IYol: PV = 0000 YTL = PV (

Detaylı

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+...

Tümevarım_toplam_Çarpım_Dizi_Seri. n c = nc i= 1 n ca i. k 1. i= r n. Σ sembolü ile bilinmesi gerekli bazı formüller : 1) k =1+ 2 + 3+... MC formülüü doğruluğuu tümevarım ilkesi ile gösterelim. www.matematikclub.com, 00 Cebir Notları Gökha DEMĐR, gdemir@yahoo.com.tr Tümevarım_toplam_Çarpım_Dizi_Seri Tümevarım Metodu : Matematikte kulladığımız

Detaylı

MEKANİK TESİSATTA EKONOMİK ANALİZ

MEKANİK TESİSATTA EKONOMİK ANALİZ MEKANİK TESİSATTA EKONOMİK ANALİZ Mustafa ÖZDEMİR İ. Cem PARMAKSIZOĞLU ÖZET Düya çapıda rekabeti ö plaa çıktığı bu gükü şartlarda, e gelişmiş ürüü, e kısa sürede, e ucuza üretmek veya ilk yatırım ve işletme

Detaylı

Tahmin Edici Elde Etme Yöntemleri

Tahmin Edici Elde Etme Yöntemleri 6. Ders Tahmi Edici Elde Etme Yötemleri Öceki derslerde ve ödevlerde U(0; ) ; = (0; ) da¼g l m da, da¼g l m üst s r ola parametresi içi tahmi edici olarak : s ra istatisti¼gi ve öreklem ortalamas heme

Detaylı

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ

Doç. Dr. M. Mete DOĞANAY Prof. Dr. Ramazan AKTAŞ TAHVİL DEĞERLEMESİ Doç. Dr. M. Mee DOĞANAY Prof. Dr. Ramaza AKTAŞ 1 İçerik Tahvil ve Özellikleri Faiz Oraı ve Tahvil Değeri Arasıdaki İlişki Tahvili Geiri Oraı ve Vadeye Kadar Geirisi Faiz Oraı Riski Verim

Detaylı

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ

İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ İSTATİSTİKSEL TAHMİNLEME VE HİPOTEZ TESTİ Bu bölümdeki yötemler, bilimeye POPULASYON PARAMETRE değeri hakkıda; TAHMİN yapmaya yöelik ve, KARAR vermekle ilgili, olmak üzere iki grupta icelemektedir. Parametre

Detaylı

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER

Bölüm 5 Olasılık ve Olasılık Dağılışları. Doç.Dr. Suat ŞAHİNLER Bölüm 5 Olasılık ve Olasılık Dağılışlaı Doç.D. Suat ŞAHİNLE Olasılık ve Olasılık Dağılışlaı Olasılık: Eşit saşla meydaa gele tae olayda A taesi A olayı olsu. Bu duumda A olayıı meydaa gelme olasılığı;

Detaylı

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI:

SAYILAR DERS NOTLARI Bölüm 1 / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: www.testhae.com SAYILAR DERS NOTLARI Bölüm / 3 SAYILAR DERS NOTLARI KONU BASLIKLARI: -RAKAM -SAYI -DOGAL SAYILAR -SAYMA SAYILARI -ÇFT DOGAL SAYILAR -TEK DOGAL SAYILAR -ARDISIK DOGAL SAYILAR -ARDISIK ILK

Detaylı

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R

M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R İ H S A N T İ M U Ç İ N D O L A P C İ, Y İ Ğ İ T A K S O Y M Ü H E N D İ S L E R İ Ç İ N S AY I S A L YÖ N T E M L E R P U B L I S H E R O F T H I S B O O K Copyright 13 İHSAN TİMUÇİN DOLAPCİ, YİĞİT AKSOY

Detaylı

YAPIM YÖNETİMİ - EKONOMİSİ 04

YAPIM YÖNETİMİ - EKONOMİSİ 04 İşaat projelerii içi fiasal ve ekoomik aaliz yötemleri İşaat projeleri içi temel maliyet kavramları Yaşam boyu maliyet: Projei kafamızda şekillemeye başladığı ada itibare başlayıp kullaım ömrüü tamamlayaa

Detaylı

Sistemin derecesi, sistemin karakteristik denkleminin en sade halinde (çarpansız) paydadaki s nin en yüksek derecesidir.

Sistemin derecesi, sistemin karakteristik denkleminin en sade halinde (çarpansız) paydadaki s nin en yüksek derecesidir. 43 BÖLÜM 3 ZAMAN CEVABI Sitemi derecei, itemi karakteritik deklemii e ade halide (çarpaız) paydadaki i e yükek dereceidir. Bir Trafer Fokiyouu Kutupları Trafer fokiyou G() N()/N() şeklide ifade edilire,

Detaylı

DİKDÖRTGEN SPİRAL ANTENLER ÜZERİNE BİR İNCELEME

DİKDÖRTGEN SPİRAL ANTENLER ÜZERİNE BİR İNCELEME DİKDÖRTGEN SPİRAL ANTENLER ÜZERİNE BİR İNCELEME Uğur SAYNAK ve Alp KUŞTEPELİ Elektrik-Elektroik Mühedisliği Bölümü İzmir Yüksek Tekoloji Estitüsü, 35430, Urla, İZMİR e-posta: ugursayak@iyte.edu.tr e-posta:

Detaylı

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI

BASAMAK ATLAYARAK VEYA FARKLI ZIPLAYARAK İLERLEME DURUMLARININ SAYISI Projesii Kousu: Bir çekirgei metre, metre veya 3 metre zıplayarak uzuluğu verile bir yolu kaç farklı şekilde gidebileceği ya da bir kişii veya (veya 3) basamak atlayarak basamak sayısı verile bir merdivei

Detaylı

Bölüm 5: Hareket Kanunları

Bölüm 5: Hareket Kanunları Bölüm 5: Hareket Kauları Kavrama Soruları 1- Bir cismi kütlesi ile ağırlığı ayımıdır? 2- Ne zama bir cismi kütlesi sayısal değerce ağırlığıa eşit olur? 3- Eşit kollu terazi kütleyi mi yoksa ağırlığı mı

Detaylı

n, 1 den büyük bir sayma sayısı olmak üzere,

n, 1 den büyük bir sayma sayısı olmak üzere, KÖKLÜ SAYILAR, de üyük ir sayma sayısı olmak üzere, x = α deklemii sağlaya x sayısıa α ı yici derecede kökü deir. x m = x m O halde tersi düşüülürse, ir üslü sayıı üssü kesirli ise, o sayı köklü sayı içimide

Detaylı

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir.

YER ÖLÇÜLERİ. Yer ölçüleri, verilerin merkezini veya yığılma noktasını belirleyen istatistiklerdir. YER ÖLÇÜLERİ Yer ölçüler, verler merkez veya yığılma oktasıı belrleye statstklerdr. Grafkler bze verler yığılma oktaları hakkıda ö blg vermede yardımcı olurlar. Acak bu değerler gerçek değerler değldr,

Detaylı

DOĞRUSAL PROGRAMLAMA İLE PORTFÖY OPTİMİZASYONU VE İMKB VERİLERİNE UYGULANMASI ÜZERİNE BİR ÇALIŞMA

DOĞRUSAL PROGRAMLAMA İLE PORTFÖY OPTİMİZASYONU VE İMKB VERİLERİNE UYGULANMASI ÜZERİNE BİR ÇALIŞMA DOĞRUSAL PROGRAMLAMA İLE PORTFÖY OPTİMİZASYONU VE İMKB VERİLERİNE UYGULANMASI ÜZERİNE BİR ÇALIŞMA Filiz KARDİYEN (*) Özet: Portföy seçim problemi içi klasik bir yaklaşım ola karesel programlama yötemi,

Detaylı

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6.

(3) Eğer f karmaşık değerli bir fonksiyon ise gerçel kısmı Ref Lebesgue. Ref f. (4) Genel karmaşık değerli bir fonksiyon için. (6. Problemler 3 i Çözümleri Problemler 3 i Çözümleri Aşağıdaki özellikleri kaıtlamaızı ve buu yaıda daha fazla soyut kaıt vermeizi isteyeceğiz. h.h. eşitliğii ölçümü sıfır ola bir kümei tümleyei üzeride eşit

Detaylı

KALİTE VE SÜREÇ İYİLEŞTİRME İÇİN MÜŞTERİ GERİ BİLDİRİMLERİNİN DEĞERLENDİRİLMESİ

KALİTE VE SÜREÇ İYİLEŞTİRME İÇİN MÜŞTERİ GERİ BİLDİRİMLERİNİN DEĞERLENDİRİLMESİ Altı Sigma Yalı Koferasları (9- Mayıs 8) KALİTE VE SÜREÇ İYİLEŞTİRME İÇİN MÜŞTERİ GERİ BİLDİRİMLERİNİN DEĞERLENDİRİLMESİ Serka ATAK Evre DİREN Çiğdem CİHANGİR Murat Caer TESTİK ÖZET Ürü ve hizmet kalitesii

Detaylı

Venn Şeması ile Alt Kümeleri Saymak

Venn Şeması ile Alt Kümeleri Saymak Ve Şeması ile lt Kümeleri Saymak Osma Ekiz Bu çalışmada verile bir kümei çeşitli özellikleri sağlaya alt küme veya alt kümlerii ve şeması yardımıyla saymaya çalışacağız. Temel presibimiz aradığımız alt

Detaylı

BORAKSTAN SODYUM BİKARBONAT ÜRETİMİ

BORAKSTAN SODYUM BİKARBONAT ÜRETİMİ Oucu Ulusal Kimya Mühedisliği Kogresi, 3-6 Eylül 01, Koç Üiversitesi, İstabul BORAKSTAN SODYUM BİKARBONAT ÜRETİMİ Mehmet ÇOPUR a, Ayşe Merve ASLANDAŞ b,*, İ.Hakkı KARAKAŞ c, M.Muhtar KOCAKERİM d a Kimya

Detaylı

SIRA-BAĞIMLI HAZIRLIK ZAMANLI İKİ ÖLÇÜTLÜ ÇİZELGELEME PROBLEMİ: TOPLAM TAMAMLANMA ZAMANI VE MAKSİMUM ERKEN BİTİRME. Tamer EREN a,*, Ertan GÜNER b ÖZET

SIRA-BAĞIMLI HAZIRLIK ZAMANLI İKİ ÖLÇÜTLÜ ÇİZELGELEME PROBLEMİ: TOPLAM TAMAMLANMA ZAMANI VE MAKSİMUM ERKEN BİTİRME. Tamer EREN a,*, Ertan GÜNER b ÖZET Erciyes Üiversitesi Fe Bilimleri Estitüsü Dergisi 23 (1-2) 95-105 (2007) http://fbe.erciyes.edu.tr/ ISSN 1012-2354 SIRA-BAĞIMLI HAZIRLIK ZAMANLI İKİ ÖLÇÜTLÜ ÇİZELGELEME PROBLEMİ: TOPLAM TAMAMLANMA ZAMANI

Detaylı

BİLGİNİN EĞİTİM TEKNOLOJİLERİNDEN YARARLANARAK EĞİTİMDE PAYLAŞIMI

BİLGİNİN EĞİTİM TEKNOLOJİLERİNDEN YARARLANARAK EĞİTİMDE PAYLAŞIMI The Turkish Olie Joural of Educatioal Techology TOJET July 2005 ISSN: 106521 volume Issue Article 16 BİLGİNİN EĞİTİM TEKNOLOJİLERİNDEN YARARLANARAK EĞİTİMDE PAYLAŞIMI Yard. Doç. Dr. Bahadti RÜZGAR Marmara

Detaylı

İKİ ÖLÇÜTLÜ PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ: MAKSİMUM TAMAMLANMA ZAMANI VE MAKSİMUM ERKEN BİTİRME

İKİ ÖLÇÜTLÜ PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ: MAKSİMUM TAMAMLANMA ZAMANI VE MAKSİMUM ERKEN BİTİRME V. Ulusal Üretim Araştırmaları Sempozyumu, İstabul Ticaret Üversitesi, 25-27 Kasım 2005 İKİ ÖLÇÜTLÜ PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ: MAKSİMUM TAMAMLANMA ZAMANI VE MAKSİMUM ERKEN BİTİRME Tamer EREN

Detaylı

İki veri setinin yapısının karşılaştırılması

İki veri setinin yapısının karşılaştırılması İk ver set yapısıı karşılaştırılması Dağılım: 6,6,6 Ortalama: 6 Medya: 6 Mod: 6 td. apma: 0 Dağılım: 0,6,1 Ortalama: 6 Medya: 6 Mod: çoklu mod td: apma: 6 Amaç: Görüe Ötese Bakablmek Verler değşkelk durumuu

Detaylı

TEMEL KAVRAMLAR GİRİŞ

TEMEL KAVRAMLAR GİRİŞ TEMEL KAVRAMLAR GİRİŞ İstatistik kelimesii kökei Almaca olup devlet alamıa gelmektedir. İstatistik kelimesi gülük hayatta farklı alamlarda kullaılmaktadır. Televizyoda bir futbol müsabakasıı izleye bir

Detaylı

TOPLAM KOLESTEROL, LDL, HDL VE TRİGLİSERİT SEVİYELERİNİN YAŞA GÖRE DEĞİŞİMİNİN DEĞİŞİK REGRESYON MODELLERİYLE İNCELENMESİ

TOPLAM KOLESTEROL, LDL, HDL VE TRİGLİSERİT SEVİYELERİNİN YAŞA GÖRE DEĞİŞİMİNİN DEĞİŞİK REGRESYON MODELLERİYLE İNCELENMESİ T.C. İNÖNÜ ÜNİVERSİTESİ SAĞLIK BİLİMLERİ ENSTİTÜSÜ TOPLAM KOLESTEROL, LDL, HDL VE TRİGLİSERİT SEVİYELERİNİN YAŞA GÖRE DEĞİŞİMİNİN DEĞİŞİK REGRESYON MODELLERİYLE İNCELENMESİ YÜKSEK LİSANS TEZİ EMRE DİRİCAN

Detaylı

Makine Elemanları II Prof. Dr. Akgün ALSARAN. Temel bilgiler ve örnekler Güç ve hareket iletimi

Makine Elemanları II Prof. Dr. Akgün ALSARAN. Temel bilgiler ve örnekler Güç ve hareket iletimi Makie Elemaları II Prof. Dr. Akgü ALSARAN Temel bilgiler ve örekler Güç ve hareket iletimi İçerik Güç ve Hareket İletimi Redüktör Vites kutusu Örek 2 Giriş 3 Bir eerjiyi, mekaik eerjiye döüştürmek içi

Detaylı

AÇIK ĐŞLETME BASAMAKLARI TENÖR KONTROLÜNDE JEOĐSTATĐSTĐKSEL TAHMĐN MODELĐ SEÇĐMĐ

AÇIK ĐŞLETME BASAMAKLARI TENÖR KONTROLÜNDE JEOĐSTATĐSTĐKSEL TAHMĐN MODELĐ SEÇĐMĐ Eskişehir Osmagazi Üiversitesi Müh.Mim.Fak.Dergisi C.XXI, S., 2008 Eg&Arch.Fac. Eskişehir Osmagazi Uiversity, Vol..XXI, No:, 2008 Makalei Geliş Tarihi : 2.02.2007 Makalei Kabul Tarihi : 23.03.2007 AÇIK

Detaylı

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ

ISF404 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ .4.26 5. HAFTA ISF44 SERMAYE PİYASALAR VE MENKUL KIYMETLER YÖNETİMİ Mekul Kıymet Yatırımlarıı Değerlemesi Doç. Dr. Murat YILDIRIM muratyildirim@karabuk.edu.tr 2 Temel Değerleme Modeli Mekul Kıymet Değerlemesi

Detaylı

ÖzelKredi. İsteklerinize daha kolay ulaşmanız için

ÖzelKredi. İsteklerinize daha kolay ulaşmanız için ÖzelKredi İstekleriize daha kolay ulaşmaız içi Yei özgürlükler keşfedi. Sizi içi öemli olaları gerçekleştiri. Hayalleriizi süsleye yei bir arabaya yei mobilyalara kavuşmak mı istiyorsuuz? Veya özel güler

Detaylı

ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ

ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL MAKİNELİ ÇİZELGELEME PROBLEMİ Öğreme Etkili Hazırlık ve Taşıma Zamalı Paralel Makieli Çizelgeleme Problemi HAVACILIK VE UZAY TEKNOLOJİLERİ DERGİSİ TEMMUZ 2006 CİLT 2 SAYI 4 (67-72) ÖĞRENME ETKİLİ HAZIRLIK VE TAŞIMA ZAMANLI PARALEL

Detaylı

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız.

(Sopphie Germain Denklemi) çarpanlarına ayırınız. r s + t r s + t olduğunu ispatlayınız. + + + + olduğunu. + + = + + eşitliğini ispatlayınız. Sayılar Teorisi Kouları Geel Sıavları www.sbelia.wordpress.com SINAV I(IDENTITIES WITH SQUARES) 4 4. a 4b (Sopphie Germai Deklemi) çarpalarıa ayırıız.. 4 4 = A ise A ı sadece = durumuda asal olduğuu ispatlayıız..

Detaylı

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ

ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 03.05.013 ÖRNEKLEME YÖNTEMLERİ ve ÖRNEKLEM GENİŞLİĞİ 1 Nede Örekleme? Öreklemde çalışmak ktlede çalışmakta daha kolaydır. Ktle üzerde çalışmak çok daha masraflı olablr. Çoğu durumda tüm ktleye ulaşmak

Detaylı

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması

Tahmin Edicilerin ve Test Đstatistiklerinin Simülasyon ile Karşılaştırılması . Ders ĐSTATĐSTĐKTE SĐMÜLASYON Tahm Edcler ve Test Đstatstkler Smülasyo le Karşılaştırılması Đstatstk rasgelelk olgusu çere olay süreç ve sstemler modellemesde özellkle bu modellerde souç çıkarmada ve

Detaylı

Depolamanın imalatçı tarafından yapıldığı doğrudan sevkiyat. Depolama imalatçı, sevkiyat sırasında birleştirme

Depolamanın imalatçı tarafından yapıldığı doğrudan sevkiyat. Depolama imalatçı, sevkiyat sırasında birleştirme Dağıtım Ağı Tasarımı Seçimi Uygu ağ seçimide ürü karakteristiklerii yaısıra dağıtım ağıı güçllü ve zayıf yöleri de göz öüüe alımalıdır. Geçe hafta ele aldığımız tasarımları hem güçlü hem de zayıf yöleride

Detaylı

A dan Z ye FOREX. Invest-AZ 2014

A dan Z ye FOREX. Invest-AZ 2014 A da Z ye FOREX Ivest-AZ 2014 Adres Telefo E-mail Url : Büyükdere Caddesi, Özseze ş Merkezi, C Blok No:126 Esetepe, Şişli, stabul : 0212 238 88 88 (Pbx) : bilgi@ivestaz.com.tr : www.ivestaz.com.tr Yap

Detaylı

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu

Bir KANUN ve Bir TEOREM. Büyük Sayılar Kanunu Br KANUN ve Br TEOREM Büyük Türkçe Sözlük kau Đg. law Doğa olaylarıı oluş edeler ortaya koya ve gelecektek olayları öcede kestrme olaağı vere bağıtı; Newto kauu, Kepler kauları. (BSTS / Gökblm Termler

Detaylı

Tahmin teorisinde amaç örneklem (sample) bilgisine dayanarak anakütleye. (population) ilişkin çıkarsamalar yapmaktır. Bu çıkarsamalar örneklem

Tahmin teorisinde amaç örneklem (sample) bilgisine dayanarak anakütleye. (population) ilişkin çıkarsamalar yapmaktır. Bu çıkarsamalar örneklem YTÜ-İktisat İstatistik II Nokta Tahmii 1 Tahmi teoriside amaç öreklem (sample) bilgisie dayaarak aakütleye (populatio) ilişki çıkarsamalar yapmaktır. Bu çıkarsamalar aakütlei dağılımıı belirleye bilimeye

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LISANS TEZİ MARKOV ZİNCİRLERİNDE BOOTSTRAP. Serhat DUMAN İSTATİSTİK ANABİLİM DALI ANKARA 2006

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LISANS TEZİ MARKOV ZİNCİRLERİNDE BOOTSTRAP. Serhat DUMAN İSTATİSTİK ANABİLİM DALI ANKARA 2006 ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LISANS TEZİ MARKOV ZİNCİRLERİNDE BOOTSTRAP Serhat DUMAN İSTATİSTİK ANABİLİM DALI ANKARA 26 Her hakkı saklıdır Yrd. Doç. Dr. İhsa KARABULUT u daışmalığıda,

Detaylı

BÖLÜM 12 STUDENT T DAĞILIMI

BÖLÜM 12 STUDENT T DAĞILIMI 1 BÖLÜM 12 STUDENT T DAĞILIMI 'Student t dağılımı' ya da kısaca 't dağılımı'; normal dağılım ve Z dağılımının da içerisinde bulunduğu 'sürekli olasılık dağılımları' ailesinde yer alan dağılımlardan bir

Detaylı

SHARPE TEK indeks MODELi ile PORTFÖY SEciMi

SHARPE TEK indeks MODELi ile PORTFÖY SEciMi Yöetim, Yil: 6 Sayi: 21 Hazira 1995, s. 55-60 SHARPE TEK indeks MODELi ile PORTFÖY SEciMi, Dr. Erha Özdemir I.Ü. Tekik Bilimler MY.O. Dr. I.Müfit GIRESUNLU i'ü. Tekik Bilimler M.Y.O. Bu çalismada her bir

Detaylı

3. Bölüm Paranın Zaman Değeri. Prof. Dr. Ramazan AktaĢ

3. Bölüm Paranın Zaman Değeri. Prof. Dr. Ramazan AktaĢ 3. Bölüm Paraı Zama Değeri Prof. Dr. Ramaza AktaĢ Amaçlarımız Bu bölümü tamamladıkta sora aşağıdaki bilgi ve becerilere sahip olabileceksiiz: Paraı zama değeri kavramıı alaşılması Faiz türlerii öğremek

Detaylı

SEROLOJİK ÖRNEKLEME EL KİTABI. AVIAGEN ANADOLU AŞ KANATLI TEŞHİS ve ANALİZ LABORATUVARI SEROLOJİ ÖRNEKLEME EL KİTABI

SEROLOJİK ÖRNEKLEME EL KİTABI. AVIAGEN ANADOLU AŞ KANATLI TEŞHİS ve ANALİZ LABORATUVARI SEROLOJİ ÖRNEKLEME EL KİTABI AVIAGEN ANADOLU AŞ KANATLI TEŞHİS ve ANALİZ LABORATUVARI SEROLOJİ ÖRNEKLEME EL KİTABI 1/9 Hazırlaya Oaylaya Yürürlük Tarihi Revizyo Tarihi Mehmet ÜVEY Mehmet ÜVEY 06.04.2011 05.06.2014 Gözde Geçire Gözde

Detaylı

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve

BÖLÜM III. Kongrüanslar. ise a ile b, n modülüne göre kongrüdür denir ve BÖLÜM III Kogrüaslar Taım 3. N sabit bir sayı, a, b Z olma üzere, eğer ( a b) ise a ile b, modülüe göre ogrüdür deir ve a b(mod ) şelide gösterilir. Asi halde, yai F ( a b) ise a ile b ye modülüe göre

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 5 Sayı: 1 sh. 55-71 Ocak 2003

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 5 Sayı: 1 sh. 55-71 Ocak 2003 DEÜ MÜHENDİSLİK FAKÜLTESİ FEN ve MÜHENDİSLİK DERGİSİ Cilt: 5 Sayı: sh. 55-7 Ocak 2003 PROJELERİN SEÇİMİNDE METODOLOJİK BİR YAKLAŞIMIN DPT PROJELERİNE UYGULANMASI (AN APPLICATION OF METHODOLOGICAL APPROACH

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ZAMAN SERİLERİNDE BİRİM KÖKLERİN İNCELENMESİ. Yeliz YALÇIN İSTATİSTİK ANABİLİM DALI

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ YÜKSEK LİSANS TEZİ ZAMAN SERİLERİNDE BİRİM KÖKLERİN İNCELENMESİ. Yeliz YALÇIN İSTATİSTİK ANABİLİM DALI ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÜKSEK LİSANS TEZİ ZAMAN SERİLERİNDE BİRİM KÖKLERİN İNCELENMESİ eliz ALÇIN İSTATİSTİK ANABİLİM DALI ANKARA Her akkı saklıdır rd. Doç. Dr. ılmaz AKDİ daışmalığıda,

Detaylı

H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Kısım Bir Reel Değişkeli Foksiyolar Teorisi Prof.Dr.Hüseyi Çakallı 3 H.L.Royde Real Aalysis çeviri ve düzeleme Prof.Dr.Hüseyi Çakallı Reel

Detaylı

DENEYĐN AMACI: Bu deneyin amacı MOS elemanların temel özelliklerini, n ve p kanallı elemanların temel uygulamalarını öğretmektir.

DENEYĐN AMACI: Bu deneyin amacı MOS elemanların temel özelliklerini, n ve p kanallı elemanların temel uygulamalarını öğretmektir. DENEY NO: 7 MOSFET ÖLÇÜMÜ ve UYGULAMALARI DENEYĐN AMACI: Bu deeyi amacı MOS elemaları temel özelliklerii, ve p kaallı elemaları temel uygulamalarıı öğretmektir. DENEY MALZEMELERĐ Bu deeyde 4007 MOS paketi

Detaylı

Değişkenler: Bir problemin modeli kurulduktan sonra değeri hesaplanacak olan bilinmeyen simgelerdir.

Değişkenler: Bir problemin modeli kurulduktan sonra değeri hesaplanacak olan bilinmeyen simgelerdir. 2. DOĞRUSAL PROGRAMLAMA (DP) 2.1. DP i Taımı ve Bazı Temel Kavramlar Model: Bir sistemi değişe koşullar altıdaki davraışlarıı icelemek, kotrol etmek ve geleceği hakkıda varsayımlarda bulumak amacı ile

Detaylı

BAŞKENT ÜNİVERSİTESİ Makine Mühendisliği Bölümü

BAŞKENT ÜNİVERSİTESİ Makine Mühendisliği Bölümü BAŞKENT ÜNİVERSİTESİ Makie Mühedisliği Bölümü 1 STAJLAR: Makie Mühedisliği Bölümü öğrecileri, öğreim süreleri boyuca 3 ayrı staj yapmakla yükümlüdürler. Bularda ilki üiversite içide e fazla 10 iş güü süreli

Detaylı

Robot Navigasyonunda Potansiyel Alan Metodlarının Karşılaştırılması ve Đç Ortamlarda Uygulanması

Robot Navigasyonunda Potansiyel Alan Metodlarının Karşılaştırılması ve Đç Ortamlarda Uygulanması Robot Navigasyouda Potasiyel Ala Metodlarıı Karşılaştırılması ve Đç Ortamlarda Uygulaması Eyüp Çıar 1 Osma Parlaktua Ahmet Yazıcı 3 1, Elektrik-Elektroik Mühedisliği Bölümü, Eskişehir Osmagazi Üiversesi,

Detaylı

YENĐ BĐR ADAPTĐF FĐLTRELEME YÖNTEMĐ: HĐBRĐD GS-NLMS ALGORĐTMASI

YENĐ BĐR ADAPTĐF FĐLTRELEME YÖNTEMĐ: HĐBRĐD GS-NLMS ALGORĐTMASI Uludağ Üiversitesi ühedislik-imarlık Fakültesi Dergisi, Cilt 3, Sayı, 008 YENĐ BĐR ADAPĐF FĐLRELEE YÖNEĐ: HĐBRĐD GS-NLS ALGORĐASI Sedat ĐRYAKĐ * eti HAUN ** Osma Hilmi KOÇAL ** Özet: Bu makalede, adaptif

Detaylı

TÜRKİYE DE KAYITDIŞI EKONOMİ VE BÜYÜME İLİŞKİSİ

TÜRKİYE DE KAYITDIŞI EKONOMİ VE BÜYÜME İLİŞKİSİ ZKÜ Sosyal Bilimler Dergisi, Cilt 3, Sayı 5, 2007, ss. 7-87. TÜRKİYE DE KAYITDIŞI EKONOMİ VE BÜYÜME İLİŞKİSİ Doç.Dr. Gülsüm AKALIN Marmara Üiversitesi İİBF İktisat Bölümü gulsum@marmara.edu.tr Öğr.Gör.

Detaylı

Nümerik Analiz. Bilgisayar Destekli. Ders notları 2014. PROGRAMLAR: Doğrusal denklem sistemi Çözücüler

Nümerik Analiz. Bilgisayar Destekli. Ders notları 2014. PROGRAMLAR: Doğrusal denklem sistemi Çözücüler ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ Mühedilik Mimarlık Fakültei İşaat Mühediliği Bölümü E-Pota: ogu.ahmet.topcu@gmail.com We: http://mmf.ogu.edu.tr/atopcu Bilgiayar Detekli Nümerik Aaliz Der otları 014 Ahmet

Detaylı

4.Bölüm Tahvil Değerlemesi. Doç. Dr. Mete Doğanay Prof. Dr. Ramazan Aktaş

4.Bölüm Tahvil Değerlemesi. Doç. Dr. Mete Doğanay Prof. Dr. Ramazan Aktaş 4.Bölüm Tahvil Değerlemesi Doç. Dr. Mee Doğaay Prof. Dr. Ramaza Akaş Amaçlarımız Bu bölümü amamladıka sora aşağıdaki bilgi ve becerilere sahip olabileceksiiz: Tahvillerle ilgili emel kavramları bilmek

Detaylı

OLASILIK VE TÜMEVARIM*

OLASILIK VE TÜMEVARIM* OLASILIK VE TÜMEVARIM* Yaza: Has Reichebach** Çevire: Hasa Aydı*** Tümevarım Soruu: Sık sık yieleme şeklideki olasılık yorumu, olasılık kuramı içeriside iki işleve sahiptir. İlki, sık sık yieleme bir olasılık

Detaylı

MAK312 ÖLÇME ve DEĞERLENDİRME OTOMATİK KONTROL LABORATUARI 1. Elektriksel Ölçümler ve İşlemsel Kuvvetlendiriciler

MAK312 ÖLÇME ve DEĞERLENDİRME OTOMATİK KONTROL LABORATUARI 1. Elektriksel Ölçümler ve İşlemsel Kuvvetlendiriciler MAK32 ÖLÇME ve DEĞELENDİME OTOMATİK KONTOL LABOATUAI Elektriksel Ölçümler ve İşlemsel Kuvvetlediriciler AMAÇLA:. Multimetre ile direç, gerilim ve akım ölçümleri, 2. Direç ölçümüde belirsizlik aalizii yapılması

Detaylı

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi,

12. Ders Büyük Sayılar Kanunları. Konuya geçmeden önce DeMoivre-Stirling formülünü ve DeMoivre-Laplace teoremini hatırlayalım. DeMoivre, genel terimi, . Ders Büyü Sayılar Kauları Kouya geçmede öce DeMoivre-Stirlig formülüü ve DeMoivre-Laplace teoremii hatırlayalım. DeMoivre, geel terimi, a!,,, 3,... e ola dizii yaısa olduğuu göstermiş, aca limitii bulamamış.

Detaylı

MADENCİLİK YATIRIM PROJELERİNİN SOSYAL KARLILIK ANALİZİYLE DEĞERLENDİRİLMESİ

MADENCİLİK YATIRIM PROJELERİNİN SOSYAL KARLILIK ANALİZİYLE DEĞERLENDİRİLMESİ MADENCİLİK, Cilt 42, Sayı 3, Sayfa 25-30, Eylül 2003 Vol. 42, No. 3, pp 25-30, September 2003 MADENCİLİK YATIRIM PROJELERİNİN SOSYAL KARLILIK ANALİZİYLE DEĞERLENDİRİLMESİ Appraisal of Miig Ivestmet Projects

Detaylı

LEFKE AVRUPA ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ PSK 106 İSTATİSTİK YÖNTEMLER I BAHAR DÖNEMİ ARASINAV SORULARI

LEFKE AVRUPA ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ PSK 106 İSTATİSTİK YÖNTEMLER I BAHAR DÖNEMİ ARASINAV SORULARI LEFKE AVRUPA ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ PSİKOLOJİ BÖLÜMÜ PSK 106 İSTATİSTİK YÖNTEMLER I 2015-2016 BAHAR DÖNEMİ ARASINAV SORULARI Tarih: 22/04/2016 Istructor: Prof. Dr. Hüseyi Oğuz Saat: 11:00-12:30

Detaylı

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci

DOĞRUSAL ZAMAN SERİSİ MODELLERİ. Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci DOĞRUSAL ZAMAN SERİSİ MODELLERİ Durağan ARIMA Modelleri: Otoregresiv Modeller AR(p) Süreci Tek Değişkenli Zaman Serisi Modelleri Ekonomik verilerin analizi ile ekonomik değişkenlerin gelecekte alabilecekleri

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

Yatırım Projelerinde Kaynak Dağıtımı Analizi. Analysis of Resource Distribution in Investment Projects

Yatırım Projelerinde Kaynak Dağıtımı Analizi. Analysis of Resource Distribution in Investment Projects Uşak Üiversitesi Sosyal Bilimler Dergisi (2012) 5/2, 89-101 Yatırım Projeleride Kayak Dağıtımı Aalizi Bahma Alp RENÇBER * Özet Bu çalışmaı amacı, yatırım projeleride kayak dağıtımıı icelemesidir. Yatırım

Detaylı

HĠPOTEZ TESTLERĠ VE ARALIK TAHMĠNĠ (GÜVEN ARALIĞI) (konuların özeti) 1.1 Büyük örneklerde n>30 ya da populasyon varyansı biliniyorsa

HĠPOTEZ TESTLERĠ VE ARALIK TAHMĠNĠ (GÜVEN ARALIĞI) (konuların özeti) 1.1 Büyük örneklerde n>30 ya da populasyon varyansı biliniyorsa ĠPOTEZ TETLERĠ VE ARALIK TAMĠNĠ (GÜVEN ARALIĞI) (kouları özei). Populasyo oralaması( ) ve oraı (p)içi. Büyük öreklerde >3 ya da populasyo varyası biliiyorsa.. içi.. - içi ( bağımsız örekler )..3 p içi..4

Detaylı

1. Aşağıdaki hangi Java deyimi m değişkenine, k çift olduğunda true, tek olduğunda false değeri atar (n >= 0 ve tamsayıdır)?

1. Aşağıdaki hangi Java deyimi m değişkenine, k çift olduğunda true, tek olduğunda false değeri atar (n >= 0 ve tamsayıdır)? 1. Aşağıdaki hagi Java deyimi m değişkeie, k çift olduğuda true, tek olduğuda false değeri atar ( >= 0 ve tamsayıdır)? [5 pua] a) boolea m = (k /.0 > (it) (k / )); b) boolea m = (k % == 3); c) boolea m

Detaylı

Hava. çıkışı. Fan. Şekil 1 6/7 Motor şasi ve fan gurubunun yalıtımı

Hava. çıkışı. Fan. Şekil 1 6/7 Motor şasi ve fan gurubunun yalıtımı Uygulama /0 Fa ve motor gurubu şasi üzerie cıvatalamış olup şasi de fabrika zemiie dübellerle bağlamak istemektedir. Şasi ve üzerideki toplam kütle 00 kg dır. Motor döme devri =000 dev/dak. Sistemi yere

Detaylı

BENZETİM. Prof.Dr.Berna Dengiz

BENZETİM. Prof.Dr.Berna Dengiz Prof.Dr.Berna Dengiz 2. Ders Sistemin Performans.. Ölçütleri Sistem Türleri Benzetim Modelleri Statik veya Dinamik Deterministik ( belirli ) & Stokastik ( olasılıklı) Kesikli & Sürekli Sistemin Performans

Detaylı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı

TOBB Ekonomi ve Teknoloji Üniversitesi İKT351 Ekonometri I, Ara Sınavı TOBB Ekoom ve Tekoloj Üverstes İKT351 Ekoometr I, Ara Sıavı Öğr.Gör.: Yrd. Doç. Dr. A. Talha YALTA Ad, Soyad: Açıklamalar: Bu sıav toplam 100 pua değerde 4 soruda oluşmaktadır. Sıav süres 90 dakkadır ve

Detaylı

YAPAY SİNİR AĞLARI İLE KARAKTER TABANLI PLAKA TANIMA

YAPAY SİNİR AĞLARI İLE KARAKTER TABANLI PLAKA TANIMA YAPAY SİNİR AĞLARI İLE KARAKTER TABANLI PLAKA TANIMA Cemil ÖZ 1, Raşi KÖKER 2, Serap ÇAKAR 1 1 Sakara Üiversiesi Mühedislik Fakülesi Bilgisaar Mühedisliği Bölümü, Eseepe, Sakara 2 Sakara Üiversiesi Tekik

Detaylı

LABORATUVARIN İŞ HİJYENİ ÖLÇÜM, TEST VE ANALİZ HİZMETLERİ KAPSAMINDA AKREDİTASYON BELGESİ ALMASI ZORUNLULUĞU OLAN PARAMETRE LİSTESİ

LABORATUVARIN İŞ HİJYENİ ÖLÇÜM, TEST VE ANALİZ HİZMETLERİ KAPSAMINDA AKREDİTASYON BELGESİ ALMASI ZORUNLULUĞU OLAN PARAMETRE LİSTESİ LABORATUVARIN İŞ HİJYENİ ÖLÇÜM, TEST VE ANALİZ HİZMETLERİ KAPSAMINDA AKREDİTASYON BELGESİ ALMASI ZORUNLULUĞU OLAN PARAMETRE LİSTESİ Sıra No Parametre 1 Kişisel Soluabilir Tozları Kosatrasyou 2 İşyeri Ortamı

Detaylı

Bölüm 4. Görüntü Bölütleme. 4.1. Giriş

Bölüm 4. Görüntü Bölütleme. 4.1. Giriş Bölüm 4 Görüü Bölüleme 4.. Giriş Görüü iyileşirme ve görüü oarmada arklı olarak görüü bölüleme görüü aalizi ile ilgili bir problem olup görüü işlemei göserim ve aılama aşamalarıa görüüyü hazırlama işlemidir.

Detaylı

Đki Oyun Yaz Dnemi 22 Haziran 2011, Çarşamba Đst201 Đstatistik Teorisi Dersin konusu: Olasılık Hesabı

Đki Oyun Yaz Dnemi 22 Haziran 2011, Çarşamba Đst201 Đstatistik Teorisi Dersin konusu: Olasılık Hesabı Đki Oyu Yaz Demi 22 Hazira 20, Çarşamba Đst20 Đstatistik Teorisi Dersi kousu: Olasılık Hesabı - Çocuklar, Đstatistik Teorisi bir tarafa, istatistikçileri işi rasgelelik ortamıda hesap yapmaktır. Şöyle

Detaylı

ATATÜRK ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL YÖNTEMLER DERS NOTLARI

ATATÜRK ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL YÖNTEMLER DERS NOTLARI ATATÜRK ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL YÖNTEMLER DERS NOTLARI Doç. Dr. Cihat ARSLANTÜRK Doç. Dr. Yusuf Ali KARA ERZURUM BÖLÜM MATEMATİKSEL TEMELLER ve HATA ANALİZİ..

Detaylı

AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI. için. 01 olaslk younluk fonksiyonu aa daki seçeneklerden hangisinde yer.

AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI. için. 01 olaslk younluk fonksiyonu aa daki seçeneklerden hangisinde yer. SORU : AKTÜERLK SINAVLARI OLASILIK VE STATSTK SINAVI ÖRNEK SORULARI X raslat deikeii olas l k youluk foksiyou 8x, x f(x) = 0, ö.d olarak verilmitir. Bua göre 0< y içi Y = raslat deikeii X olaslk youluk

Detaylı

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN VE MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 3 s. 1-21 Ekim 2005

DEÜ MÜHENDİSLİK FAKÜLTESİ FEN VE MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 3 s. 1-21 Ekim 2005 DEÜ MÜHENDİSLİK FAKÜLTESİ FEN VE MÜHENDİSLİK DERGİSİ Cilt: 7 Sayı: 3 s. -2 Ekim 2005 FRAKTAL GÖRÜNTÜ SIKIŞTIRMADA HASH FONKSİYONLARINA DAYANAN YENİ BİR SINIFLANDIRMA YÖNTEMİ (A NEW CLASSIFICATION METHOD

Detaylı

Hipotez Testi ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 4 Minitab da İstatiksel Çıkarım-I. Hipotez Testi. Hipotez Testi

Hipotez Testi ENM 5210 İSTATİSTİK VE YAZILIMLA UYGULAMALARI. Ders 4 Minitab da İstatiksel Çıkarım-I. Hipotez Testi. Hipotez Testi ENM 52 İSTATİSTİK VE YAZILIMLA UYGULAMALARI Ders 4 Minitab da İstatiksel Çıkarım-I (Ortalamalar ve Oranlar İçin ) İstatistiksel Hipotezler İstatistiksel hipotez testi ve parametrelerin güven aralığı tahmini,

Detaylı

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0

H 0 : θ = θ 0 Bu sıfır hipotezi şunu ifade eder: Anakütle parametresi θ belirli bir θ 0 YTÜ-İktisat İstatistik II Hipotez Testi 1 HİPOTEZ TESTİ: AMAÇ: Örneklem bilgisinden hareketle anakütleye ilişkin olarak kurulan bir hipotezin (önsavın) geçerliliğinin test edilmesi Genel notasyon: anakütleye

Detaylı

JEOLOJİDE MATEMATİK VE İSTATİSTİKSEL YÖNTEMLER

JEOLOJİDE MATEMATİK VE İSTATİSTİKSEL YÖNTEMLER JEOLOJİDE MATEMATİK VE İSTATİSTİKSEL YÖNTEMLER Prof. Dr. Hüseyi Çelebi Ders Notları İstabul 014 Jeolojide matematik ve statistiksel yötemler 1 Ösöz Jeolojide matematik ve istatistiksel yötemler ders otları

Detaylı

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler...

VERİ. gelir (bin) y l ÜNİTE 66 VERİ 2,5 1,5 1,2 KAVRAMSAL ADIM. Sayfa No VERİ... 478 496. σ = 1. İstatistik, Veri ve Grafikler... ÜİTE KAVRAMSAL ADIM Sayfa o.... 8 9 İstatistik, Veri ve Grafikler.... 8 Merkezi, Eğilim ve Yayılım Ölçüleri... 8 Açıklık, Çeyrekler Açıklığı........................................................ 8 Varyas

Detaylı

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri

Sistem Modellerinin Zaman Cevabı ve Performans Kriterleri Korol Siemleri Taarımı Siem Modellerii Zama Cevabı ve Performa Krierleri Prof.Dr. Galip Caever Korol Siemleri Taarımı Prof.Dr.Galip Caever Kapalı dögü iemi oluşurulmaıda öce iem modelide geçici rejim cevabıı

Detaylı