DİZGE TABANLI BİLEŞEN DENEMELERİNİN TASARIMINDA BEKLENEN DİZGE YAŞAM SÜRESİNİN MODELLENMESİ 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "DİZGE TABANLI BİLEŞEN DENEMELERİNİN TASARIMINDA BEKLENEN DİZGE YAŞAM SÜRESİNİN MODELLENMESİ 1"

Transkript

1 DİZGE TABANLI BİLEŞEN DENEMELERİNİN TASARIMINDA BEKLENEN DİZGE YAŞAM SÜRESİNİN MODELLENMESİ 1 Emre YAMANGİL Orhan FEYZİOĞLU Süleyman ÖZEKİCİ Galatasaray Üniversitesi Galatasaray Üniversitesi Koç Üniversitesi Endüstri Mühendisliği Böl. Endüstri Mühendisliği Böl. Endüstri Mühendisliği Böl. Ortaköy, İSTANBUL Ortaköy, İSTANBUL Sarıyer, İSTANBUL Bora ÇEKYAY Koç Üniversitesi Endüstri Mühendisliği Böl. Sarıyer, İSTANBUL İ.Kuban ALTINEL Boğaziçi Üniversitesi Endüstri Mühendisliği Böl. Bebek, İSTANBUL ÖZET Dizgeyi bir bütün olarak denemenin giderleri çok yüksek olabilir, veya bunu gerçekleştirmek tamamen olanaksız olabilir. Bu durumda, sadece bileşenleri deneyip dizge güvenirliği hakkında çıkarımda bulunmak gerekli hale gelir. Yazındaki ilgili yaklaşımlardan biri de dizge tabanlı bileşen denemeleri tasarımıdır. İlk ortaya atıldığından beri bu yaklaşım dizge güvenirliği kavramı etrafında geliştirilmiştir. Ancak uygulamada dizgenin beklenen yaşam süresinin belli bir uzunlukta olması, belli bir güvenirlik seviyesini sağlamasına göre daha anlamlı bulunabilir. Bu çalışmada dizge tabanlı bileşen denemeleri tasarımında beklenen dizge yaşam süresi göz önüne alınmış, farklı dizge türleri için oluşturulan yarı sonsuz doğrusal programlama modelleri önerilen sütun üretme yordamı ile çözülmüştür. Anahtar Sözcükler: Bileşen deneme; Beklenen yaşam süresi; Yarı-sonsuz doğrusal programlama. 1. GİRİŞ: Çoğu zaman dizgeyi bir bütün olarak denemek ekonomik zorluklardan dolayı mümkün olmayabilir, hatta bazen fiziki nedenlerden dolayı imkansız bile olabilir. Bu yüzden güvenirlik uygulamalarında yaygın yaklaşım herbir bileşen için belirlenen güvenirlik seviyelerini belli bir olasılıkla sağlayan sınam sürelerinin bulunmasını öngörür. Bileşen tabanlı sınam yöntemi daha az maliyetle daha hızlı ve bileşenler bazında daha detaylı sonuç verir. Ancak dizge tabanlı sınam yaklaşımı da daha doğru sonuç veren bir yapıya sahiptir. Bu iki yapıyı birleştirme çabası yeni bir tür yaklaşımın ortaya atılmasına sağlamıştır: Dizge tabanlı bileşen sınamı. Bu çalışmada, dizgenin bütünü için belirlenen güvenirlik seviyesini belli bir olasılıkla sağlamayı hedefleyen ve bunun için en düşük maliyetli sınam sürelerini bulmaya çalışan bu yaklaşım uygulanmıştır. Yazında bu yöntemin farklı farklı dizge yapıları için kullanıldığı birçok çalışma bulunabilir (Altınel 1994, Altınel ve diğerleri 1997, Altınel ve diğerleri 2001a, Altınel ve diğerleri 2001b, Feyzioğlu ve diğerleri 2006, Feyzioğlu ve diğerleri 2008). Bu çalışmaların tamamında güvenirlik dizgenin görev süresi boyunca bozulmadan çalışma ihtimali olarak kabul edilmiştir. Ancak bazı durumlarda sistemin sağlanması istenen güvenirlik derecesini doğrudan 1 Bu çalışma 106M044 numaralı TÜBİTAK araştırma projesi tarafından desteklenmiştir.

2 belirlemek zor olabilir. Bunun yerine sistemin çalışması istenen en kısa süreyi belirlemek daha gerçekçi bulunabilir. Bu nedenle bu çalışmada farklı dizge yapılarının beklenen yaşam sürelerinin gösterimi belirlenmiş, ve buradan hareketle dizge tabanlı bileşen sınamı problemi bölüm 2'de yeniden düzenlenmiştir. Ortaya çıkan yarı sonsuz doğrusal programlama modelini çözebilmek için bir sütun üretme yordamı tasarlanmış ve bölüm 3'te sunulmuştur. Model içinde yer alan iki alt problemde ise dışbükey fonksiyonların farkı şeklinde ifade edilebilen fonksiyonlar bulunmaktadır ve bu türdeki modellerin çözümünde dıştan yaklaşıklama sıkça kullanılan bir yöntemtir. Bu alt problemler ve anılan çözüm yöntemi ile ilgili bilgiler bölüm 4'te sunulmuştur. Son olarak 5. bölüm çalışmanın sonuçlarını içermektedir. 2. PROBLEM FORMÜLASYONU: dizge bileşenleri kümesi, kabul edilemez dizge yaşam süresi ve kabul edilebilir dizge yaşam süresini göstersin ( ). Her bileşeninin yaşam süresinin parametreli üstel dağılıma uyduğu ve diğerlerinden bağımsız olarak hata yaptığı kabul edilsin. Benzer şekilde bileşeninin sınam süresi, birim sürede sınam maliyeti ve sınam süresi boyunca yaptığı hata sayısı olarak belirlensin. Son olarak, beklenen dizge yaşam süresini, birinci tip hata üst sınırını, ikinci tip hata üst sınırını ve ise toplam bozulma üst sınırını ifade etsin. (1) (2) (3) (2) ve (3) de yer alan dizge yaşam süresi kısıtları ile ilişkili olurlu bozulma hızları kümeleri ve olarak tanımlanabilir. Ayrıca çoğu zaman geçmiş tecrübelerden dolayı bileşenlerin bozulma hızları hakkında bir önbilgiye sahip olabiliriz ve bu şeklinde ifade edilebilir. Bu durumda ve olarak tanımlanabilir. Daha açık bir biçimde, Dizgenin kabul veya reddi için farklı kurallar bulunabilmekle beraber bu çalışmada sıkça kullanılmış toplam kuralı uygulanmıştır. (4) (5) (6) Her bileşenlerin yaşam süresinin üstel dağılıma uyması nedeni ile açıktır bileşeninin hata sayısı parametresi olan Poisson dağılımına uymaktadır. Dolayısıyla (6) daki toplam da parametresi olan Poisson dağılımına uymaktadır. ve kümeleri boş olmadıkları sürece (6) yı sağlayan bireden fazla çözüm bulunur. Sırasıyla (2) ve (3), aşağıda verilen (7) ve (8) ile değiştirildiklerinde kesin olarak sağlanırlar.

3 (7) (8) 'nin Poisson dağılıma uyan parametreli bir rassal değişken olduğunu varsayarsak, eşitliğini sağlayan değeri olsun. Böyle bir durumda olacaktır, ve (7) ile (8) şu şekilde tekrar düzenlenebilecektir, (9) (10) fonksiyonu 'nin eksi olmayan değerleri için sürekli ve azalan olduğundan tersi alınabilir. Bu durumda (1) - (3) de verilen problem aşağıdaki en iyileme problemine dönüştürülebilir. (11) (12) (13) (14) (12) ve (13) deki eşitsizliklerin sağ tarafı birer eniyileme problemini içerir ve sırasıyla tip 1 ve tip 2 eniyileme alt problemleri olarak adlandırılırlar. Bölüm 4'de bu problemlerin yapısı ve çözümü hakkında bilgi verilecektir. 3. GENEL ÇÖZÜM YORDAMI: ve kümelerinin kesikli hale getirilebildiğini ve buna ilişkin olarak ve dizin kümelerinin varolduğu kabul edilsin. Diğer bir değişle, her için ve her için olsun. Bu durumda aşağıdaki eniyileme problemine dönüşür. (15) (16) (17) (18)

4 probleminin çözümü için aşağıda verilen uygun olacaktır. çifteş problemini ele almak daha (19) (20) (21) Çifteş problemi çözmek için geliştirilmiş olan bir sütun üretme yordamı aşağıda verilmiştir. Çözüm Yordamı: Girdi: Çıktı: Başla Tip 1 problemin eniyi çözümünü bul:. Eniyi amaç değeri ve eniyi çözüm olsun. 3. Tip 2 problemin eniyi çözümünü bul:. Eniyi amaç değeri ve eniyi çözüm olsun. 4. Eğer ise DUR; değerleri nin eldeki değeri için en iyi bileşen sınam zamanlarıdır; 5. Değilse Başla Temel iki sütun ve ile güncelle; Çifteş çözüm güncelle; SINIRSIZ ise DUR, OLURSUZ m mesajı ver; Değilse ; ve Adım 2 ye git; Son; Son; probleminin amaç fonksiyonu ve değişkenleri cinsinden yaklaşık içbükey bir fonksiyondur. ve değerleri ise 'e göre yaklaşık doğrusaldır. Dolayısıyla amaç fonksiyonu 'nin yaklaşık olarak içbükey bir fonksiyonudur. Önerilen çözüm yordamı değerinden başlar ve amaç fonksiyonu değeri artana kadar devam eder. Artışın başladığı değerinin bir eksiği eniyi olarak ilan edilir ve buna ilişkin hesaplanmış eniyi sınam zamanları kullanıcıya çözüm olarak sunulur. 4. ALT PROBLEMLER: Dizgenin beklenen yaşam süresi, dizgenin çalışmaya başladığı an ile dizgenin bir veya daha fazla bileşenin arızası sonucu çalışmayı bıraktığı ana kadar geçen süredir. Eğer dizgenin güvenirlik fonksiyonu şeklinde ifade edilebilirse, dizgenin beklenen yaşam süresi (22) de olduğu gibi belirlenebilir.

5 (22) Daha somut biçimde bir örnek vermek gerekirse, bağdaşık dizgeler için beklenen yaşam süresi, (23) şeklinde ifade edilebilir. Dizgenin çalışır halde olduğu durumların bileşenlerin durumları cinsinden ifade edilebildiği varsayımı ile burada, dizgenin çalışır halde olduğu durumlar kümesini, ve ise sırasıyla durumunda dizgede çalışır durumda olmayan ve olan bileşenler kümelerini, ve son olarak ise 'de bulunan sayıda farklı bileşenin herhangi bir birleşimi ifade etmektedir. tane seri dizili alt dizge için, her alt dizgenin özdeş bileşeninden en az tanesinin çalışması gerektiği durumda dizgenin beklenen yaşam süresi, (24) şeklinde verilebilir. Burada, ve dizin toplamlarını ifade etmektedir. Bağdaşık olmayan dizgeler için örnek vermek gerekirse tane seri dizili alt dizge için, her alt dizgenin özdeş bileşeninden sadece bir tanesinin çalışır halde olduğu durumda dizgenin beklenen yaşam süresi, (25) şeklinde bulunabilir. (23), (24) ve (25)'de verilen fonksiyonların herbirinin uygun değişken dönüşümü ile iki dışbükey fonksiyonun farkı (d.c.) cinsinden yazılabildiği kanıtlanabilmektedir. Bir eniyileme probleminin amaç ve/veya kısıtlarında d.c. fonksiyonlar var ise, bu problem kanonik d.c. probleme dönüştürülebilir (Horst ve Tuy 1996). Bu sayede (12) ve (13) de verilen tip 1 ve tip 2 alt problemlerin çözümünde bir dıştan yaklaşıklama yöntemi kullanılabilir (Horst ve Tuy 1996, Tuy 1998). Temel olarak bir dıştan yaklaşıklama yöntemi, problemin olurlu çözümlerini içeren kümeyi gittikçe küçülen çokyüzlülerle kapsamayı ve bu sayede esas problemin eniyi çözümüne yaklaşana kadar her aşamada daha basit bir problemi çözmeyi içerir. Bu çalışmada böyle bir yöntem geliştirilerek farklı dizge yapıları için eniyi sınam sürelerinin hesaplanması mümkün olmuştur.

6 5. SONUÇLAR: Dizge tabanlı bileşen sınamı, hem dizge bütününün güvenirliği hakkında belli bir güvenle sonuç elde edilebilmesini sağlarken hem de bileşen bazında sınam yapılarak hızlı ve daha ucuz sonuçlar elde edilmesine olanak sağlar. Bu sebepten dolayı zaman içerisinde farklı araştırmacıların ilgisini çekmiş ve farklı dizge yapıları incelenmiştir. Bu çalışmada ise yazında daha önce irdelenmemiş dizgenin beklenen yaşam süresi dikkate alınmıştır. Ortaya çıkan farklı modellerin tasarlanan bir sütun üretme yordamı sayesinde çözülebildiği gösterilmiştir. Çalışmanın ilerleyen aşamalarında bir başka güvenilirlik ölçütü olan kullanırlık kavramının da ele alınması, ve bundan sonra dizge tabanlı bileşen sınam probleminin çok ölçütlü biçimde modellenmesi amaçlanmaktadır. KAYNAKÇA Altınel, İ.K., The design of optimum component test plans in the demonstration of system reliability, European Journal of Operational Research, 78, Altınel, İ.K., Özekici, S., A dynamic model for component testing, Naval Research Logistics, 44, Altınel, İ.K., Özekici, S., Feyzioğlu, O., 2001a. Dynamic component testing of a series system with redundant subsystems, IIE Transactions, 33, Altınel, İ.K., Özekici, S., Feyzioğlu, O., 2001b. Component testing of repairable systems in multistage missions, Journal of the Operational Research Society, 52, Feyzioğlu, O., Altınel, İ.K., Özekici, S., The design of optimum component test plans for system reliability, Computational Statistics & Data Analysis, 50/11, Feyzioğlu, O., Altınel, İ.K., Özekici, S., Optimum component test plans for phasedmission systems, European Journal of Operational Research, 185/1, Horst, R., Tuy, H., Global Optimization: deterministic approaches, 3. Baskı, Springer- Verlag, Berlin. Tuy, H., Convex Analysis and Global Optimization, 1. Baskı, Kluwer Academic Publishers, Dordrecht, Netherlands.

İleri Yöneylem Araştırması Uygulamaları Tam Sayılı Programlama

İleri Yöneylem Araştırması Uygulamaları Tam Sayılı Programlama İleri Yöneylem Araştırması Uygulamaları Tam Sayılı Programlama Dr. Özgür Kabak 2016-2017 Güz } Gerçek hayattaki bir çok problem } tam sayılı değişkenlerin ve } doğrusal kısıt ve amaç fonksiyonları ile

Detaylı

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY)

DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) DOĞRUSAL PROGRAMLAMADA DUALİTE (DUALITY) 1 DOĞRUSAL PROGRAMLAMADA İKİLİK (DUALİTE-DUALITY) Doğrusal programlama modelleri olarak adlandırılır. Aynı modelin değişik bir düzende oluşturulmasıyla Dual (İkilik)

Detaylı

Ders Kodu Dersin Adı Yarıyıl Teori Uygulama Lab Kredisi AKTS IND 621 Stokastik Süreçler

Ders Kodu Dersin Adı Yarıyıl Teori Uygulama Lab Kredisi AKTS IND 621 Stokastik Süreçler İçerik Ders Kodu Dersin Adı Yarıyıl Teori Uygulama Lab Kredisi AKTS IND 621 Stokastik Süreçler 1 3 0 0 3 8 Ön Koşul Derse Kabul Koşulları Dersin Dili Türü Dersin Düzeyi Dersin Amacı İngilizce Zorunlu Doktora

Detaylı

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ

Z = S n E(S n ) V ar(sn ) = S n nµ. S nn. n 1/2 n σ YTÜ-İktisat İstatistik II Merkezi Limit Teoremi 1 MERKEZİ LİMİT TEOREMİ CENTRAL LIMIT THEOREM X 1,X 2,...,X n herbirinin ortalaması µ ve varyansı σ 2 olan ve aynı dağılıma uyan n tane bağımsız r.d. olsun.

Detaylı

DOĞRUSAL OLMAYAN PROGRAMLAMA -I-

DOĞRUSAL OLMAYAN PROGRAMLAMA -I- DOĞRUSAL OLMAYAN PROGRAMLAMA -I- Dışbükeylik / İçbükeylik Hazırlayan Doç. Dr. Nil ARAS Anadolu Üniversitesi, Endüstri Mühendisliği Bölümü İST38 Yöneylem Araştırması Dersi 0-0 Öğretim Yılı Doğrusal olmayan

Detaylı

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi

1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN. Ders No:5 Rassal Değişken Üretimi 1203608-SIMÜLASYON DERS SORUMLUSU: DOÇ. DR. SAADETTIN ERHAN KESEN Ders No:5 RASSAL DEĞIŞKEN ÜRETIMI Bu bölümde oldukça yaygın bir biçimde kullanılan sürekli ve kesikli dağılımlardan örneklem alma prosedürleri

Detaylı

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım

SÜREKLİ ŞANS DEĞİŞKENLERİ. Üstel Dağılım Normal Dağılım SÜREKLİ ŞANS DEĞİŞKENLERİ Üstel Dağılım Normal Dağılım 1 Üstel Dağılım Meydana gelen iki olay arasındaki geçen süre veya bir başka ifadeyle ilgilenilen olayın ilk defa ortaya çıkması için geçen sürenin

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME

RİSK ANALİZİ VE AKTÜERYAL MODELLEME SORU 1: Bir hasar sıklığı dağılımının rassal değişken olan ortalaması (0,8) aralığında tekdüze dağılmaktadır. Hasar sıklığı dağılımının Poisson karma dağılıma uyduğu bilindiğine göre 1 ya da daha fazla

Detaylı

SÜREKLİ RASSAL DEĞİŞKENLER

SÜREKLİ RASSAL DEĞİŞKENLER SÜREKLİ RASSAL DEĞİŞKENLER Sürekli Rassal Değişkenler Sürekli Rassal Değişken: Değerleriölçümyadatartımla elde edilen, bir başka anlatımla sayımla elde edilemeyen, değişkene sürekli rassal değişken denir.

Detaylı

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01

Tablo (2): Atıştırma Sayısı ve Günlük Sınav Sayısı Atıştırma Sınav Sayısı (X) 0 0.07 0.09 0.06 0.01 Ortak Varyans ve İstatistiksel Bağımsızlık Bir rassal değişken çifti istatistiksel olarak bağımsız ise aralarındaki ortak varyansın değeri 0 dır. Ancak ortak varyans değerinin 0 olması, iki rassal değişkenin

Detaylı

BENZETİM. Prof.Dr.Berna Dengiz

BENZETİM. Prof.Dr.Berna Dengiz Prof.Dr.Berna Dengiz 2. Ders Sistemin Performans.. Ölçütleri Sistem Türleri Benzetim Modelleri Statik veya Dinamik Deterministik ( belirli ) & Stokastik ( olasılıklı) Kesikli & Sürekli Sistemin Performans

Detaylı

Tesadüfi Değişken. w ( )

Tesadüfi Değişken. w ( ) 1 Tesadüfi Değişken Tesadüfi değişkenler gibi büyük harflerle veya gibi yunan harfleri ile bunların aldığı değerler de gibi küçük harflerle gösterilir. Tesadüfi değişkenler kesikli veya sürekli olmak üzere

Detaylı

SİSTEM SİMÜLASYONU BENZETIM 1 SİMÜLASYON MODEL TÜRLERİ 1. STATİK VEYA DİNAMİK. Simülasyon Modelleri

SİSTEM SİMÜLASYONU BENZETIM 1 SİMÜLASYON MODEL TÜRLERİ 1. STATİK VEYA DİNAMİK. Simülasyon Modelleri SİSTEM SİMÜLASYONU SİMÜLASYON MODELİ TÜRLERİ BİR SİMÜLASYON ÇALIŞMASINDA İZLENECEK ADIMLAR ve SİMÜLASYON MODEL TÜRLERİ Simülasyon Modelleri Üç ana grupta toplanabilir; 1. Statik (Static) veya Dinamik (Dynamic),

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN

RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI. Yrd. Doç. Dr. Emre ATILGAN RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Yrd. Doç. Dr. Emre ATILGAN 1 RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI Olasılığa ilişkin olayların çoğunluğunda, deneme sonuçlarının bir veya birkaç yönden incelenmesi

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Bu bölümde eşitsizlik kısıtlarına bağlı bir doğrusal olmayan kısıta sahip problemin belirlenen stasyoner noktaları

Detaylı

Web Madenciliği (Web Mining)

Web Madenciliği (Web Mining) Web Madenciliği (Web Mining) Hazırlayan: M. Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü Konular Sınıflandırıcıların Değerlendirilmesi Skorlar Karışıklık matrisi Accuracy Precision Recall

Detaylı

IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R

IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R IE 303T Sistem Benzetimi DERS 4 : O L A S I L I K T E K R A R Geçen Ders Envanter yonetımı: Gazetecı problemı Rastsal Rakamlar Üret Talebi hesapla Geliri hesapla Toplam maliyeti hesapla Günlük ve aylık

Detaylı

Kaynak: A. İŞLİER, TESİS PLANLAMASI, 1997

Kaynak: A. İŞLİER, TESİS PLANLAMASI, 1997 Mühendislik Fakültesi Endüstri Mühendisliği Bölümü Doç. Dr. Nil ARAS ENM411 Tesis Planlaması 2016-2017 Güz Dönemi Kaynak: A. İŞLİER, TESİS PLANLAMASI, 1997 2 Tesis Yer Seçimi Problemi (TYSP) TEK AMAÇLI

Detaylı

İçindekiler. Ön Söz... xiii

İçindekiler. Ön Söz... xiii İçindekiler Ön Söz.................................................... xiii Bölüm 1 İstatistiğe Giriş....................................... 1 1.1 Giriş......................................................1

Detaylı

BULANIK AMAÇ KATSAYILI DOĞRUSAL PROGRAMLAMA. Ayşe KURUÜZÜM (*)

BULANIK AMAÇ KATSAYILI DOĞRUSAL PROGRAMLAMA. Ayşe KURUÜZÜM (*) D.E.Ü.İ.İ.B.F. Dergisi Cilt:14, Sayı:1, Yıl:1999, ss:27-36 BULANIK AMAÇ KATSAYILI DOĞRUSAL PROGRAMLAMA Ayşe KURUÜZÜM (*) ÖZET Çalışmada bulanık ( fuzzy ) katsayılı amaç fonksiyonuna sahip doğrusal programlama

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTıRMA MODELININ TANıMı Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon

1. Fonksiyonlar Artan, Azalan ve Sabit Fonksiyon Alıştırmalar Çift ve Tek Fonksiyon İçindekiler Cebir 1. Fonksiyonlar....... 1.1 Fonksiyonların Tanım, Değer ve Görüntü Kümesi...... 1.1.1 Fonksiyon.. 1.1. Görüntü Kümesi... 1.1.3 Eşit Fonksiyonlar. 1.1.4 Fonksiyonun Gösterimi. 1.1.4.1 Liste

Detaylı

Prof. Dr. Mahmut Koçak.

Prof. Dr. Mahmut Koçak. i Prof. Dr. Mahmut Koçak http://fef.ogu.edu.tr/mkocak/ ii Bu kitabın basım, yayım ve satış hakları Kitabın yazarına aittir. Bütün hakları saklıdır. Kitabın tümü ya da bölümü/bölümleri yazarın yazılı izni

Detaylı

Rassal Değişken Üretimi

Rassal Değişken Üretimi Rassal Değişken Üretimi Doç. Dr. Mehmet AKSARAYLI GİRİŞ Yaşadığımız ya da karşılaştığımız olayların sonuçları farlılık göstermektedir. Sonuçları farklılık gösteren bu olaylar, tesadüfü olaylar olarak adlandırılır.

Detaylı

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri

Girdi Analizi. 0 Veri toplama 0 Girdi sürecini temsil eden olasılık dağılımı belirleme. 0 Histogram 0 Q-Q grafikleri Girdi Analizi 0 Gerçek hayattaki benzetim modeli uygulamalarında, girdi verisinin hangi dağılımdan geldiğini belirlemek oldukça zor ve zaman harcayıcıdır. 0 Yanlış girdi analizi, elde edilen sonuçların

Detaylı

Esnek Hesaplamaya Giriş

Esnek Hesaplamaya Giriş Esnek Hesaplamaya Giriş J E O L O J İ M Ü H E N D İ S L İ Ğ İ A. B. D. E S N E K H E S A P L A M A Y Ö N T E M L E R İ - I DOÇ. DR. ERSAN KABALCI Esnek Hesaplama Nedir? Esnek hesaplamanın temelinde yatan

Detaylı

YAVUZ BOĞAÇ TÜRKOĞULLARI

YAVUZ BOĞAÇ TÜRKOĞULLARI ÖZGEÇMİŞ YAVUZ BOĞAÇ TÜRKOĞULLARI A. KİŞİSEL Doğum tarihi : 02 / 05 / 1977 Telefon : + 90 212 359 6407, + 90 212 359 7076 Fax : + 90 212 265 1800 Cep Telefonu : 05333574923 E - mail Posta Adresi : turkogullari@ttmail.com

Detaylı

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir,

Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, biçiminde gösterilir. Aynca; 0! = 1 ve 1!=1 1 dir. [Bunlar kabul değildir, 14. Binom ve Poisson olasılık dağılımları Faktöriyeller ve kombinasyonlar Faktöriyel: 1'den n'ye kadar olan tüm pozitif tamsayıların çarpımına, n! denir ve n! = 1.2.3...(n-2).(n-l).n biçiminde gösterilir.

Detaylı

Temelleri. Doç.Dr.Ali Argun Karacabey

Temelleri. Doç.Dr.Ali Argun Karacabey Doğrusal Programlamanın Temelleri Doç.Dr.Ali Argun Karacabey Doğrusal Programlama Nedir? Bir Doğrusal Programlama Modeli doğrusal kısıtlar altında bir doğrusal ğ fonksiyonun değerini ğ maksimize yada minimize

Detaylı

Bekleme Hattı Teorisi

Bekleme Hattı Teorisi Bekleme Hattı Teorisi Sürekli Parametreli Markov Zincirleri Tanım 1. * +, durum uzayı * +olan sürekli parametreli bir süreç olsun. Aşağıdaki özellik geçerli olduğunda bu sürece sürekli parametreli Markov

Detaylı

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI

3 KESİKLİ RASSAL DEĞİŞKENLER VE OLASILIK DAĞILIMLARI ÖNSÖZ İÇİNDEKİLER III Bölüm 1 İSTATİSTİK ve SAYISAL BİLGİ 11 1.1 İstatistik ve Önemi 12 1.2 İstatistikte Temel Kavramlar 14 1.3 İstatistiğin Amacı 15 1.4 Veri Türleri 15 1.5 Veri Ölçüm Düzeyleri 16 1.6

Detaylı

Evrimsel Çok amaçlı eniyileme. Tahir Emre Kalaycı Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 25 Mart 2010

Evrimsel Çok amaçlı eniyileme. Tahir Emre Kalaycı Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 25 Mart 2010 Evrimsel Çok amaçlı eniyileme Tahir Emre Kalaycı Ege Üniversitesi Bilgisayar Mühendisliği Bölümü 25 Mart 2010 Gündem Çok amaçlı eniyileme Giriş Evrimsel çok amaçlı eniyileme Sonuç Giriş Gerçek dünya problemleri

Detaylı

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ

SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Sıra İstatistikleri ve Uygulama Alanlarından Bir Örneğin Değerlendirmesi 89 SIRA İSTATİSTİKLERİ VE UYGULAMA ALANLARINDAN BİR ÖRNEĞİN DEĞERLENDİRMESİ Esin Cumhur PİRİNÇCİLER Araş. Gör. Dr., Çanakkale Onsekiz

Detaylı

Rassal Modeller (IE 324) Ders Detayları

Rassal Modeller (IE 324) Ders Detayları Rassal Modeller (IE 324) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Rassal Modeller IE 324 Güz 3 0 0 3 3 Ön Koşul Ders(ler)i IE 201 Olasılık ve İstatistik

Detaylı

ĐST 474 Bayesci Đstatistik

ĐST 474 Bayesci Đstatistik ĐST 474 Bayesci Đstatistik Ders Sorumlusu: Dr. Haydar Demirhan haydarde@hacettepe.edu.tr Đnternet Sitesi: http://yunus.hacettepe.edu.tr/~haydarde Đçerik: Olasılık kuramının temel kavramları Bazı özel olasılık

Detaylı

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir.

2.1 Gri Düzey Eş Oluşum Matrisi ( GLCM) Gri düzey eş oluşum matrisi Haralick tarafından öne sürülmüştür [1]. Đstatistiksel doku analizi yöntemidir. ÇELĐK YÜZEYLERĐN SINIFLANDIRILMASI * Cem ÜNSALAN ** Aytül ERÇĐL * Ayşın ERTÜZÜN *Boğaziçi Üniversitesi, Elektrik-Elektronik Mühendisliği Bölümü unsalan@boun.edu.tr **Boğaziçi Üniversitesi, Endüstri Mühendisliği

Detaylı

Olasılık ve İstatistik (IE 220) Ders Detayları

Olasılık ve İstatistik (IE 220) Ders Detayları Olasılık ve İstatistik (IE 220) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Olasılık ve İstatistik IE 220 Her İkisi 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin

Detaylı

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Doğrusal Olmayan Programlamaya Giriş Dr. Özgür Kabak Doğrusal Olmayan Programlama Eğer bir Matematiksel Programlama modelinin amaç fonksiyonu ve/veya kısıtları doğrusal değil

Detaylı

T.C. DOKUZ EYLÜL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI EKONOMETRİ DOKTORA PROGRAMI

T.C. DOKUZ EYLÜL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI EKONOMETRİ DOKTORA PROGRAMI T.C. DOKUZ EYLÜL ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ EKONOMETRİ ANABİLİM DALI EKONOMETRİ DOKTORA PROGRAMI Genişletilmiş Lagrange Yöntemi Hazırlayan: Nicat GASIM Öğretim Üyesi Prof. Dr. İpek Deveci KARAKOÇ

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

Okut. Yüksel YURTAY. İletişim : (264) Sayısal Analiz. Giriş.

Okut. Yüksel YURTAY. İletişim :  (264) Sayısal Analiz. Giriş. Okut. Yüksel YURTAY İletişim : Sayısal Analiz yyurtay@sakarya.edu.tr www.cs.sakarya.edu.tr/yyurtay (264) 295 58 99 Giriş 1 Amaç : Mühendislik problemlerinin bilgisayar ortamında çözümünü mümkün kılacak

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 4907

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: END 4907 Dersi Veren Birim: Endüstri Mühendisliği Dersin Türkçe Adı: KESİKLİ OLAY SİSTEMLERİNİN MODELLENMESİ VE ANALİZİ Dersin Orjinal Adı: KESİKLİ OLAY SİSTEMLERİNİN MODELLENMESİ VE ANALİZİ Dersin Düzeyi:(Ön lisans,

Detaylı

AKARSULARDA KİRLENME KONTROLÜ İÇİN BİR DİNAMİK BENZETİM YAZILIMI

AKARSULARDA KİRLENME KONTROLÜ İÇİN BİR DİNAMİK BENZETİM YAZILIMI AKARSULARDA KİRLENME KONTROLÜ İÇİN BİR DİNAMİK BENZETİM YAZILIMI *Mehmet YÜCEER, **Erdal KARADURMUŞ, *Rıdvan BERBER *Ankara Üniversitesi Mühendislik Fakültesi Kimya Mühendisliği Bölümü Tandoğan - 06100

Detaylı

Hatalar ve Bilgisayar Aritmetiği

Hatalar ve Bilgisayar Aritmetiği Hatalar ve Bilgisayar Aritmetiği Analitik yollardan çözemediğimiz birçok matematiksel problemi sayısal yöntemlerle bilgisayarlar aracılığı ile çözmeye çalışırız. Bu şekilde Sayısal yöntemler kullanarak

Detaylı

MATEMATiKSEL iktisat

MATEMATiKSEL iktisat DİKKAT!... BU ÖZET 8 ÜNİTEDİR BU- RADA İLK ÜNİTE GÖSTERİLMEKTEDİR. MATEMATiKSEL iktisat KISA ÖZET KOLAY AOF Kolayaöf.com 0362 233 8723 Sayfa 2 içindekiler 1.ünite-Türev ve Kuralları..3 2.üniteTek Değişkenli

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

YAVUZ BOĞAÇ TÜRKOĞULLARI

YAVUZ BOĞAÇ TÜRKOĞULLARI ÖZGEÇMİŞ YAVUZ BOĞAÇ TÜRKOĞULLARI A. KİŞİSEL Doğum tarihi : 02 / 05 / 1977 Telefon : + 90 216 6261050 Dahili: 2521 Fax : + 90 216 6261131 E - mail Posta Adresi B. ÖĞRENİM : turkogullari@ttmail.com : Marmara

Detaylı

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ

ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ ULAŞTIRMA MODELİ VE ÇEŞİTLİ ULAŞTIRMA MODELLERİ Özlem AYDIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü ULAŞTIRMA MODELİNİN TANIMI Ulaştırma modeli, doğrusal programlama probleminin özel bir şeklidir.

Detaylı

Tanım: (1. Tip Üretken Fonksiyonlar) (a r ) = (a 1, a 2, a 3,,a r, ) sayı dizisi olmak üzere, (a r ) dizisinin 1. Tip üretken fonksiyonu

Tanım: (1. Tip Üretken Fonksiyonlar) (a r ) = (a 1, a 2, a 3,,a r, ) sayı dizisi olmak üzere, (a r ) dizisinin 1. Tip üretken fonksiyonu Üretken Fonksiyonlar Ali İlker Bağrıaçık Üretken fonksiyonlar sayma problemlerinin çözümünde kullanılan önemli yöntemlerden biridir. Üretken fonksiyonların temeli Moivre nin 1720 yıllarındaki çalışmalarına

Detaylı

RISK ANALIZI SINAVI WEB EKİM Kasko sigortasından çekilen beş hasarlı bir rassal örneklem aşağıdaki gibi verilmektedir:

RISK ANALIZI SINAVI WEB EKİM Kasko sigortasından çekilen beş hasarlı bir rassal örneklem aşağıdaki gibi verilmektedir: RISK ANALIZI SINAVI WEB EKİM 2017 SORU 1: Kasko sigortasından çekilen beş hasarlı bir rassal örneklem aşağıdaki gibi verilmektedir: 115 240 325 570 750 Hasarların α = 1 ve λ parametreli Gamma(α, λ) dağılıma

Detaylı

ULUSLARARASI ANTALYA ÜNİVERSİTESİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ DERS KATALOĞU

ULUSLARARASI ANTALYA ÜNİVERSİTESİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ DERS KATALOĞU ULUSLARARASI ANTALYA ÜNİVERSİTESİ ENDÜSTRİ MÜHENDİSLİĞİ BÖLÜMÜ DERS KATALOĞU ZORUNLU DERSLER IE 201 - Operasyon Modelleme Karar vermedeki belirsizlik rolü de dahil olmak üzere işletme kararlarının matematiksel

Detaylı

Zeki Optimizasyon Teknikleri

Zeki Optimizasyon Teknikleri Zeki Optimizasyon Teknikleri Tabu Arama (Tabu Search) Doç.Dr. M. Ali Akcayol Tabu Arama 1986 yılında Glover tarafından geliştirilmiştir. Lokal minimum u elimine edebilir ve global minimum u bulur. Değerlendirme

Detaylı

YAZILIM KAVRAMINA BİR BAKIŞ. Gürcan Banger Elektrik Yük. Müh. ESOGÜ - 9 Nisan 2007

YAZILIM KAVRAMINA BİR BAKIŞ. Gürcan Banger Elektrik Yük. Müh. ESOGÜ - 9 Nisan 2007 YAZILIM KAVRAMINA BİR BAKIŞ Gürcan Banger Elektrik Yük. Müh. ESOGÜ - 9 Nisan 2007 YAZILIM ve DONANIM Bilgisayar kavramı, donanım ve yazılım olmak üzere iki ana bileşenden oluşuyor. Elektronik, mekanik

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

RASSAL SAYI ÜRETİLMESİ

RASSAL SAYI ÜRETİLMESİ Dr. Mehmet AKSARAYLI Ekonometri Böl. Simülasyon Ders Notları Rassal Sayı Üretilmesi RASSAL SAYI ÜRETİLMESİ Simülasyon analizinde kullanılacak az sayıda rassal sayı üretimi için ilkel yöntemler kullanılabilir.

Detaylı

Üç Boyutlu Serpilme (Saçılım) Grafikleri

Üç Boyutlu Serpilme (Saçılım) Grafikleri Üç Boyutlu Serpilme (Saçılım) Grafikleri 3D Scatterplot of boy vs kol vs bacak 90 boy 0 70 0 90 70 00 0 bacak 0 0 90 kol 3D Scatterplot of kol vs omuz vs kalca 90 kol 0 70 00 kalca 0 0 0 0 00 omuz Merkez

Detaylı

YÖNEYLEM ARAŞTIRMASI - III

YÖNEYLEM ARAŞTIRMASI - III YÖNEYLEM ARAŞTIRMASI - III Prof. Dr. Cemalettin KUBAT Yrd. Doç. Dr. Özer UYGUN İçerik Quadratic Programming Bir karesel programlama modeli aşağıdaki gibi tanımlanır. Amaç fonksiyonu: Maks.(veya Min.) z

Detaylı

Rastgele değişken nedir?

Rastgele değişken nedir? Rastgele değişken nedir? Şİmdiye kadar hep, kümelerden ve bu kümelerin alt kümelerinden (yani olaylar)dan bahsettik Bu kümelerin elemanları sayısal olmak zorunda değildi. Örneğin, yazı tura, kız erkek

Detaylı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı

KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI. Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı KESİKLİ ŞANS DEĞİŞKENLERİNİN OLASILIK DAĞILIMLARI Bernoulli Dağılımı Binom Dağılımı Poisson Dağılımı 1 Bernoulli Dağılımı Bir şans değişkeninin bernoulli dağılımı göstermesi için ilgilenilen süreçte bernoulli

Detaylı

GridAE: Yapay Evrim Uygulamaları için Grid Tabanlı bir Altyapı

GridAE: Yapay Evrim Uygulamaları için Grid Tabanlı bir Altyapı GridAE: Yapay Evrim Uygulamaları için Grid Tabanlı bir Altyapı Erol Şahin Bilgisayar Mühendisliği Bölümü, Orta Doğu Teknik Üniversitesi Ankara, Türkiye 2. ULUSAL GRİD ÇALIŞTAYI, 1-2 Mart 2007, TÜBİTAK,

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 KÜMELER Bölüm 2 SAYILAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 KÜMELER 11 1.1. Küme 12 1.2. Kümelerin Gösterimi 13 1.3. Boş Küme 13 1.4. Denk Küme 13 1.5. Eşit Kümeler 13 1.6. Alt Küme 13 1.7. Alt Küme Sayısı 14 1.8. Öz Alt Küme 16 1.9.

Detaylı

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre):

Simpleks Yönteminde Kullanılan İlave Değişkenler (Eşitliğin yönüne göre): DP SİMPLEKS ÇÖZÜM Simpleks Yöntemi, amaç fonksiyonunu en büyük (maksimum) veya en küçük (minimum) yapacak en iyi çözüme adım adım yaklaşan bir algoritma (hesaplama yöntemi) dir. Bu nedenle, probleme bir

Detaylı

Karar Verme. Karar Verme ve Oyun Teorisi. Kararların Özellikleri. Karar Analizi

Karar Verme. Karar Verme ve Oyun Teorisi. Kararların Özellikleri. Karar Analizi Karar Verme Karar Verme ve Oyun Teorisi Yrd.Doç.Dr. Gökçe BAYSAL TÜRKÖLMEZ Belirli bir amaca ulaşabilmek için, Değişik alternatiflerin belirlenmesi ve Bunlar içinden en etkilisinin seçilmesi işlemidir.

Detaylı

Kesikli Programlama (IE 506) Ders Detayları

Kesikli Programlama (IE 506) Ders Detayları Kesikli Programlama (IE 506) Ders Detayları Ders Adı Ders Dönemi Ders Uygulama Laboratuar Kredi AKTS Kodu Saati Saati Saati Kesikli Programlama IE 506 Güz 3 0 0 3 7.5 Ön Koşul Ders(ler)i Dersin Dili Dersin

Detaylı

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ

MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ SİMPLEKS TABLONUN YORUMU MATRİSEL ÇÖZÜM TABLOLARIYLA DUYARLILIK ANALİZİ Şu ana kadar verilen bir DP probleminin çözümünü ve çözüm şartlarını inceledik. Eğer orijinal modelin parametrelerinde bazı değişiklikler

Detaylı

Modelleme bir sanattan çok bir Bilim olarak tanımlanabilir. Bir model kurucu için en önemli karar model seçiminde ilişkileri belirlemektir.

Modelleme bir sanattan çok bir Bilim olarak tanımlanabilir. Bir model kurucu için en önemli karar model seçiminde ilişkileri belirlemektir. MODELLEME MODELLEME Matematik modelleme yaklaşımı sistemlerin daha iyi anlaşılması, analiz edilmesi ve tasarımının etkin ve ekonomik bir yoludur. Modelleme karmaşık parametrelerin belirlenmesi için iyi

Detaylı

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta:

Genetik Algoritmalar. Bölüm 1. Optimizasyon. Yrd. Doç. Dr. Adem Tuncer E-posta: Genetik Algoritmalar Bölüm 1 Optimizasyon Yrd. Doç. Dr. Adem Tuncer E-posta: adem.tuncer@yalova.edu.tr Optimizasyon? Optimizasyon Nedir? Eldeki kısıtlı kaynakları en iyi biçimde kullanmak olarak tanımlanabilir.

Detaylı

MIT Açık Ders Malzemeleri Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için

MIT Açık Ders Malzemeleri  Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için MIT Açık Ders Malzemeleri http://ocw.mit.edu Bu materyallerden alıntı yapmak veya Kullanım Koşulları hakkında bilgi almak için http://ocw.mit.edu/terms veya http://www.acikders.org.tr adresini ziyaret

Detaylı

Bilişim Sistemleri. Modelleme, Analiz ve Tasarım. Yrd. Doç. Dr. Alper GÖKSU

Bilişim Sistemleri. Modelleme, Analiz ve Tasarım. Yrd. Doç. Dr. Alper GÖKSU Bilişim Sistemleri Modelleme, Analiz ve Tasarım Yrd. Doç. Dr. Alper GÖKSU Ders Akışı Hafta 5. İhtiyaç Analizi ve Modelleme II Haftanın Amacı Bilişim sistemleri ihtiyaç analizinin modeli oluşturulmasında,

Detaylı

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ

BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ SAKARYA ÜNİVERSİTESİ BİLİŞİM TEKNOLOJİLERİ İÇİN İŞLETME İSTATİSTİĞİ Hafta 7 Yrd. Doç. Dr. Halil İbrahim CEBECİ Bu ders içeriğinin basım, yayım ve satış hakları Sakarya Üniversitesi ne aittir. "Uzaktan

Detaylı

MAT 208 İSTATİSTİK ve OLASILIK II ALIŞTIRMALAR-1

MAT 208 İSTATİSTİK ve OLASILIK II ALIŞTIRMALAR-1 MAT 208 İSTATİSTİK ve OLASILIK II ALIŞTIRMALAR-1 şeklinde tanımlanan dağılımın a) Ortalama ve varyans değerlerini bulunuz b) Moment yaratma fonksiyonunu bularak a-şıkkını tekrar çözünüz. Bir tezgahta üretilen

Detaylı

ENM 316 BENZETİM ÖDEV SETİ

ENM 316 BENZETİM ÖDEV SETİ ENM 16 BENZETİM ÖDEV SETİ Ödev 1. Bir depo ve N adet müşteriden oluşan bir taşımacılık sisteminde araç depodan başlayıp bütün müşterileri teker teker ziyaret ederek depoya geri dönmektedir. Sistemdeki

Detaylı

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak

EM302 Yöneylem Araştırması 2. Dr. Özgür Kabak EM302 Yöneylem Araştırması 2 Dr. Özgür Kabak TP Çözümü TP problemlerinin çözümü için başlıca iki yaklaşım vardır kesme düzlemleri (cutting planes) dal sınır (branch and bound) tüm yaklaşımlar tekrarlı

Detaylı

NX Motion Simulation:

NX Motion Simulation: NX Motion Simulation: Mekanizma Hareket Analizi UNIGRAPHICS NX yazılımının modüllerinden biri olan NX Motion Simulation, NX Dijital Ürün Tasarımı ailesinin mühendislik bileşenlerinden birisidir. Motion

Detaylı

SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II KUYRUK TEORİSİ - I DERS NOTLARI

SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II KUYRUK TEORİSİ - I DERS NOTLARI SAKARYA UNIVERSİTESİ ENDUSTRI MUHENDISLIĞI YÖNEYLEM ARAŞTIRMASI II KUYRUK TEORİSİ - I DERS NOTLARI KUYRUK TEORİSİ Her birimiz kuyruklarda bekleyerek vakit geçirmişizdir. Bu derste kuyruklarlarla ilgili

Detaylı

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI.

4. HAFTA BLM323 SAYISAL ANALİZ. Okt. Yasin ORTAKCI. 4. HAFTA BLM33 SAYISAL ANALİZ Okt. Yasin ORTAKCI yasinortakci@karabuk.edu.tr Karabük Üniversitesi Uzaktan Eğitim Uygulama ve Araştırma Merkezi BLM33 DOĞRUSAL OLMAYAN (NONLINEAR) DENKLEM SİSTEMLERİ Mühendisliğin

Detaylı

Math 322 Diferensiyel Denklemler Ders Notları 2012

Math 322 Diferensiyel Denklemler Ders Notları 2012 1 Genel Tanımlar Bir veya birden fazla fonksiyonun türevlerini içeren denklemlere diferensiyel denklem denmektedir. Diferensiyel denklemler Adi (Sıradan) diferensiyel denklemler ve Kısmi diferensiyel denklemler

Detaylı

Olasılık ve İstatistik (IE 220) Ders Detayları

Olasılık ve İstatistik (IE 220) Ders Detayları Olasılık ve İstatistik (IE 220) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Saati Kredi AKTS Olasılık ve İstatistik IE 220 Her İkisi 3 0 0 3 5 Ön Koşul Ders(ler)i Dersin

Detaylı

SOBA BORUSU AÇINIM LEVHALARININ KESİLMESİNDE MALİYETLERİN ENKÜÇÜKLENMESİ

SOBA BORUSU AÇINIM LEVHALARININ KESİLMESİNDE MALİYETLERİN ENKÜÇÜKLENMESİ SOBA BORUSU AÇINIM LEVHALARININ KESİLMESİNDE MALİYETLERİN ENKÜÇÜKLENMESİ Doğan EROL Anadolu Üniversitesi Endüstri Mühendisliği Bölümü 1. PROBLEMİN TANIMLANMASI Şekil - 1'de 5 değişik soba borusu için açınım

Detaylı

JEODEZİK AĞLARIN OPTİMİZASYONU

JEODEZİK AĞLARIN OPTİMİZASYONU JEODEZİK AĞLARIN OPTİMİZASYONU Jeodezik Ağların Tasarımı 10.HAFTA Dr.Emine Tanır Kayıkçı,2017 OPTİMİZASYON Herhangi bir yatırımın gerçekleştirilmesi sırasında elde bulunan, araç, hammadde, para, işgücü

Detaylı

KYM363 Mühendislik Ekonomisi. FABRİKA TASARIMI ve MÜHENDİSLİK EKONOMİSİ

KYM363 Mühendislik Ekonomisi. FABRİKA TASARIMI ve MÜHENDİSLİK EKONOMİSİ KYM363 Mühendislik Ekonomisi FABRİKA TASARIMI ve MÜHENDİSLİK EKONOMİSİ Prof.Dr.Hasip Yeniova E Blok 1.kat no.113 www.yeniova.info yeniova@ankara.edu.tr yeniova@gmail.com FABRİKA TASARIMI ve MÜHENDİSLİK

Detaylı

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN

SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ HAZIRLAYAN: ÖZLEM AYDIN SİMÜLASYON ÇEŞİTLERİ Günümüz simülasyonları gerçek sistem davranışlarını, zamanın bir fonksiyonu olduğu düşüncesine dayanan Monte Carlo yöntemine dayanır. 1.

Detaylı

YAŞAR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ENDÜSTRİ MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI

YAŞAR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ENDÜSTRİ MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI YAŞAR ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ENDÜSTRİ MÜHENDİSLİĞİ YÜKSEK LİSANS PROGRAMI Mevcut Program: TEZLİ YÜKSEK LİSANS PROGRAMI 1.Dönem 2.Dönem 521 Doğrusal Eniyileme ve Ağ Modelleri 2-2-3 10 524

Detaylı

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015

RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015 RİSK ANALİZİ VE AKTÜERYAL MODELLEME MAYIS 2015 SORU 2: Motosiklet sigortası pazarlamak isteyen bir şirket, motosiklet kaza istatistiklerine bakarak, poliçe başına yılda ortalama 0,095 kaza olacağını tahmin

Detaylı

Tedarik Zinciri Yönetimi

Tedarik Zinciri Yönetimi Tedarik Zinciri Yönetimi -Tedarikçi Seçme Kararları- Yrd. Doç. Dr. Mert TOPOYAN Satın Alma Bir ișletme, dıșarıdan alacağı malzeme ya da hizmetlerle ilgili olarak satın alma (tedarik) fonksiyonunda beș

Detaylı

OPTİMİZASYON TEKNİKLERİ-2. Hafta

OPTİMİZASYON TEKNİKLERİ-2. Hafta GİRİŞ OPTİMİZASYON TEKNİKLERİ-2. Hafta Mühendislik açısından bir işin tasarlanıp, gerçekleştirilmesi yeterli değildir. İşin en iyi çözüm yöntemiyle en verimli bir şekilde yapılması bir anlam ifade eder.

Detaylı

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez

Doğrusal Programlama. Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Prof. Dr. Ferit Kemal Sönmez Doğrusal Programlama Belirli bir amacın gerçekleşmesini etkileyen bazı kısıtlayıcı koşulların ve bu kısıtlayıcı koşulların doğrusal eşitlik ya da eşitsizlik

Detaylı

Veri Ağlarında Gecikme Modeli

Veri Ağlarında Gecikme Modeli Veri Ağlarında Gecikme Modeli Giriş Veri ağlarındaki en önemli performans ölçütlerinden biri paketlerin ortalama gecikmesidir. Ağdaki iletişim gecikmeleri 4 farklı gecikmeden kaynaklanır: 1. İşleme Gecikmesi:

Detaylı

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS

Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS DERS BİLGİLERİ Ders Adı Kodu Yarıyılı T+U Saati Ulusal Kredisi AKTS Algoritmalar ve Programlama Lab. I BİL 103 1 2+0 2 2 Ön Koşul Dersleri Dersin Dili Dersin Seviyesi Dersin Türü Türkçe Lisans Zorunlu

Detaylı

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 Bölüm 2 STATİK DENGE ANALİZİ 19 2.1 İktisatta Denge Kavramı 20 2.1.1.

Detaylı

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n,

Bu tanım aralığı pozitif tam sayılar olan f(n) fonksiyonunun değişim aralığı n= 1, 2, 3,, n, DİZİLER Tamamen belirli bir kurala göre sıralanmış sayılar topluluğuna veya kümeye Dizi denir. Belirli bir kurala göre birbiri ardınca gelen bu sayıların her birine dizinin terimi ve hepsine birden dizinin

Detaylı

İSTATİSTİK VE OLASILIK SORULARI

İSTATİSTİK VE OLASILIK SORULARI İSTATİSTİK VE OLASILIK SORULARI SORU 1 Meryem, 7 arkadaşı ile bir voleybol maçına katılmayı planlamaktadır. Davet ettiği arkadaşlarından herhangi bir tanesinin EVET deme olasılığı 0,8 ise, en az 3 arkadaşının

Detaylı

Bilgisayar Programlama (COMPE 102) Ders Detayları

Bilgisayar Programlama (COMPE 102) Ders Detayları Bilgisayar Programlama (COMPE 102) Ders Detayları Ders Adı Ders Kodu Dönemi Ders Saati Uygulama Saati Laboratuar Kredi AKTS Saati Bilgisayar Programlama COMPE 102 Bahar 2 2 0 3 4 Ön Koşul Ders(ler)i Dersin

Detaylı

YÖNEYLEM ARAŞTIRMASI - I

YÖNEYLEM ARAŞTIRMASI - I YÖNEYLEM ARAŞTIRMASI - I /0 İçerik Matematiksel Modelin Kurulması Grafik Çözüm DP Terminolojisi DP Modelinin Standart Formu DP Varsayımları 2/0 Grafik Çözüm İki değişkenli (X, X2) modellerde kullanılabilir,

Detaylı

Doğrusal Programlama (IE 502) Ders Detayları

Doğrusal Programlama (IE 502) Ders Detayları Doğrusal Programlama (IE 502) Ders Detayları Ders Adı Ders Dönemi Ders Uygulama Laboratuar Kredi AKTS Kodu Saati Saati Saati Doğrusal Programlama IE 502 Güz 3 0 0 3 7.5 Ön Koşul Ders(ler)i Dersin Dili

Detaylı

MONTE CARLO BENZETİMİ

MONTE CARLO BENZETİMİ MONTE CARLO BENZETİMİ U(0,1) rassal değişkenler kullanılarak (zamanın önemli bir rolü olmadığı) stokastik ya da deterministik problemlerin çözümünde kullanılan bir tekniktir. Monte Carlo simülasyonu, genellikle

Detaylı

KLASİK FRAKTALLAR FRAKTAL ÖZELLİKLERİ VE BOYUT

KLASİK FRAKTALLAR FRAKTAL ÖZELLİKLERİ VE BOYUT KLASİK FRAKTALLAR FRAKTAL ÖZELLİKLERİ VE BOYUT.. KENDİNE BENZERLİK VE AFİNİTE Fraktal özelliklerinden bir diğeri de kendine benzerlikdir. Geometrik açıdan, aynı şekle sahip olan geometrik şekiller birbirine

Detaylı

SAYISAL ÇÖZÜMLEME. Yrd.Doç.Dr.Esra Tunç Görmüş. 1.Hafta

SAYISAL ÇÖZÜMLEME. Yrd.Doç.Dr.Esra Tunç Görmüş. 1.Hafta SAYISAL ÇÖZÜMLEME Yrd.Doç.Dr.Esra Tunç Görmüş 1.Hafta Sayısal çözümleme nümerik analiz nümerik çözümleme, approximate computation mühendislikte sayısal yöntemler Computational mathematics Numerical analysis

Detaylı