GÖRÜNTÜ SİSTEMLERİ (Ders Notları)

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "GÖRÜNTÜ SİSTEMLERİ (Ders Notları)"

Transkript

1 T.C. FIRAT ÜNİVERSİTESİ TEKNİK EĞİTİM FAKÜLTESİ ELEKTRONİK VE BİLGİSAYAR EĞİTİMİ BÖLÜMÜ GÖRÜNTÜ SİSTEMLERİ (Ders Notları) Dr. İbrahim TÜRKOĞLU ELAZIĞ Fırat Üniversitesi, Elektronik ve Bilgisayar Eğitimi Bölümü 1

2

3 İÇİNDEKİLER 1. Görüntü Sistemi 2. Kamera Sistemleri 3. Tarama ve Senkronizasyon 4. Televizyon Alıcıları 5. Siyah Beyaz Televizyon Sistemleri 6. Renkli Televizyon Sistemleri 7. PAL TV Alıcısı 8. Renkli TV Uzaktan Kumanda Ünitesi 9. TV Vericileri ve Linkler 10. Televizyon Tamiri Ve Sistemli Arıza Arama 11. Televizyon Antenleri ve Ortak Anten Sistemleri Fırat Üniversitesi, Elektronik ve Bilgisayar Eğitimi Bölümü 1

4 1. GÖRÜNTÜ SİSTEMİ 1.1. Işık Işık hakkında çeşitli teoriler vardır. Işığın hem madde (kütle), hem de enerji (dalga) olduğu ispatlanmıştır. Işık, ışık tarafından yayılan küçük dalgacıklardır. Bu dalgacıklar radyasyon enerjisi şeklindedir. Elektromagnetik dalga gibi saniyede 3 x 10 8 metre hızla hareket eder. Etrafa düz çizgiler halinde yayılır. Bir cisme çarptığı zaman büyük bir kısmı, o cismin siyah, az ise cisim beyaz görünür Işık ışınların yüzeylerden yansıyan dalga uzaklıkları onların karakterlerini (yani renklerini) belirtir. Her rengin bir dalga boyu (uzunluğu) vardır. Genel olarak gözlerimizle gördüğümüz beyaz ışığın dalga boyu 400 ile 76O milimikron; mikronun binde biri kadardır. Örneğin; 0,4 mikron = 400 nanometre (nm) = 400 mili mikron (mµ) = 4 *10-7 metre dir. Şekil-1.1.'de görüldüğü gibi güneşten gelen beyaz ışık, kendi renklerine ayrıştırılırsa, bir renk bandından (spekturumundan) meydana geldiği görülür. Cam prizmadan ekran üzerine düşen renk spektrumu görünen renkleri oluşturur. Bu renkler dalga boylarının küçük değerinden büyük değerine göre sıra ile yedi rengi meydana getirir. Şekil Renk Spektrumu. Renklerin dalga boyları gibi parlaklıkları da değişiktir. Renk spekterumunda yeşil renk en fazla parlaklığı olan renktir. Yeşil rengin parlaklığı 1 olarak kabul edilirse beyaz ışığın parlaklığı 2 dir. İnsan gözünün frekans eğrisi verilmiştir. Renkleri televizyonda, esas renkleri oluşturan mavi, yeşil ve kırmızı renklerin en parlak göründüğü dalga boylarının yerleri (mili mikron) olarak apsis üzerinde oklarla gösterilmiştir. Grafikte ordinat her rengin parlaklık derecesini gösterir. Parlaklık, gözün, retine tabakasına gelen ışığın dalga boyuna bağlıdır. Cisimden yansıyarak gelen ışığın rengine göre gözden parlaklık derecesi ortaya çıkar. Dr. İbrahim Türkoğlu 2

5 1.2. İnsan Gözü İnsan gözü bir fotoğraf makinesine benzer. Herhangi bir cisimden yansıyarak gelen ışık, gözün saydam tabakasından geçerek göz merceğinde odaklanır. Gözün iç arka tarafında yer alan ağ tabakası üzerine gelen ışık şekillenir. Işığın parlaklık derecesine ve dalga boyuna göre, sinirler yardımıyla beyni uyarır. Bununun sonucu ışığın rengi ve parlaklığı sezilir. Şekil Şekil Gözün yapısı ve ölçü alanı. İnsan gözünün ağ tabakasında baston ve kama şeklinde görme odacıkları vardır. Bir gözde 100 milyona yakın bastoncuk, 10 milyona yakın kama odacıkları vardır. Bastoncuklar insan gözünde aydınlık ve karanlık olarak görme olanağı sağlar. İnsan gözü bir resmi, L / H = 4/3 ölçü aralarında rahatlıkla görür. Televizyon alıcısı tüplerinin yüzleri bu ölçüde üretilir. Bu ölçülerde bir resim gözden 4 H veya 8 H uzaklıkta rahatlıkla seyredilir. Bu bakımdan televizyon alıcı tüpünün ekranı üzerinde bulunan bir resmi iyi görebilmek için (Yani satırları gözükmeyen, bir resmi görebilmek, için) televizyon alıcısının ekranından, ekranın köşegen uzunluğunun 7 katı kadar uzaklıktan televizyon alıcısına bakmak gerekir Resim Gönderme Televizyonda bir resmin bir yerden başka bir tarafa gönderilmesi ve resmin elemanlarına ayrılması genellikle bir birine paralel satırlar halinde olur. Televizyonun esası fotoelektrik olayına dayanır. Bir resim (veya manzara) bir yerden başka bir yere gönderilirken önce resim mekanik veya elektronik tarayıcılar yardımıyla resim elamanlarına ayrılır. Sonra ayrılan elemanlar açıklık ve koyuluk derececesine göre akım darbelerine çevrilir. Mum ışığının arka tarafında bulunan fotosel levhasında meydana gelen resim çıkış geriliminin değeri şekil 1.3.'de gösterilmiştir. 1. satırda yalnız, 3 numaradan resim akımı elde edilir. 2. satırda yalnız 8numaradan resim elde edilir: Mum ışığı en. fazla 3. satırı etkiler. 3. satırda ve 14 Fırat Üniversitesi, Elektronik ve Bilgisayar Eğitimi Bölümü 3

6 numaradan. üçüncü derecede 12 numaradan resim çıkış gerilimi elde edilir. Satırlarda elde edilen, çıkış geriliminin şekli ve derecesi Şekil -2.3.'de gösterilmiştir. Yukarda açıklandığı gibi, resim beyazlık ve siyahlık derecelerine göre akım darbelerine çevrilir. Taşıyıcı dalgalarla uzaklara gönderilir. Televizyon alıcısında akım darbeleri çeşitli koyulukta ışık değişimlerine çevrilir. Sonra alıcının resim tüpünde bulunan florans yüzeyde mozayik şeklinde aynı resim oluşturulur. Resmin elemanlarına ayrılması. Genellikle birbirine paralel satırlar halinde olur. Bunu daha detaylı olarak tarama konusunda inceleyeceğiz. Şekil Fotosel hücrelerde resim çıkış geriliminin elde edilişi. Televizyon, vericilerinde resmin elemanlarına ayrılıp taranması ve yayın yapması mekanik veya elektronik sistemlerle yapılır. Mekanik sistem, en basit ve en eski bir sistemdir yılında P. Nipkow ismine bir fizik bilgini tarafından keşfedilmiş ve televizyon yayınları yapılmıştır. Bilginin ismine izafeten kullanılan yuvarlak dıştan içe doğru spiral şeklinde delikleri bulunan, dönen bir disk yardımıyla, uzaklara gönderilecek resim, resim elemanlarına ayrılır. Ayrılan resim elemanları fotosel lambalar yardımıyla elektrik akımına çevrilir. Bunun yerine elektronik sistem kullanılır. Elektronik sistemde, resimlerin taranması satır satır yapılır. Kamera lambalarına gelen ışık, lambanın spotu tarafından taranarak elektrik akımına çevrilir. Sonra telsiz televizyonları veya kapalı devre televizyonları yardımlarıyla uzaklara gönderilir. Alıcıları yardımıyla tekrar resme çevrilir. Dr. İbrahim Türkoğlu 4

7 1.4. Telsiz Televizyon Televizyon sisteminin en çok kullanılan şekli telsiz olup, bunun verici ve alıcı katlarının blok diyagramları, Şekil de gösterilmiştir. Şekil Telsiz televizyon verici ve alıcı sistemlerin blok diyagramı. Kamera önünde bulunan bir resim koyuluk ve açıklık derecesine göre akım darbelerine çevrilir. Alıcıda bu olay ters olarak meydana gelir. Vericide ayrıca sesleri uzaklara gönderen frekans modülasyonlu (FM) bir verici vardır. Resim verici genlik modülasyonlu (AM) dır. Gönderme ve alma sırasında tam bir uygunluk aranır. Bu uygunluğun özellikle resim verici ve alıcısında olması gereklidir. Resmin gönderilmesi ve alınması sırasında tam bir uygunluk sağlamak amacıyla satır sonlarına ve her resmin değişmesi sırasında uyuşma sinyali (Senkron İmpuls diye adlandırılan sinyaller) eklenir Vericide bu sinyali senkronize generatörü üretir. Alıcıda ise uygunluğu tarama devresi ile gösterilen blok sağlar. 1.5.Televizyonun Tarihçesi Televizyon, hareketli resimlerin görüntülerini uzak mesafelere ileten bir araçtır. TELE uzak, VİZYON görüntü anlamındadır. Televizyon uzaktan görme ve ya görüntüsünün taşınması anlamına gelir. Televizyon tek bir kişinin buluşu değildir. Radyonun bulunuşu ile, sesin uzak yerlere taşınabilmesi, görüntünün de taşınabileceği fikrini vermiştir. Bu alandaki ilk çalışmalar 1870 yıllarına kadar uzanır yılında Paul NİPKOW kendi adıyla anılan NİPKOW çarkını gerçekleştirdi. Bu üzerinde, düzgün delikler bulunan dönen bir çark idi. Resim üzerindeki noktaların elde edilmesini sağlayan mekanik bir tarama sistemi idi yıllarına kadar üzerinde çalışılmışsa da yinede kaliteli bir resim elde edilememiştir. Fırat Üniversitesi, Elektronik ve Bilgisayar Eğitimi Bölümü 5

8 Renkli televizyon ilk kez 1953 yılında Amerika da ortaya çıkmış ve bazı değişikliklerle ilk sistemini günümüze kadar taşımıştır. Bu sistem, Milli Televizyon Sistemi Komitesi (National Television System Commitee) tarafından onaylanmış ve bu yüzden de komitenin baş harflerinden oluşan NTSC ismini almıştır. Günümüzde Amerika, Japonya, Kanada ve Mexico bu sistemi kabul eden belli başlı ülkelerdir. Elektron lambalarının bulunuşunu takip eden yıllarda foto elektrik düzenler ve katot ışınlı lambalar yapılmıştır. Böylece elektronik tarama sistemlerine geçilerek, görüntünün elektrik işaretine çevrilmesi, şiddetlendirilmesi, tekrar görüntüye çevrilebilmesi sağlanabilmiştir. Bir resmin taşınması; resim üzerinde bulunan her noktanın, sıra ile tek tek, ışık şiddetine göre elektriğe çevrilmesiyle mümkün olur. Bu maksatla televizyonda iki tip taramaya gerek duyulur. Bunlardan biri satır (hat, yatay), diğeri resim (düşey) taramalardır. Görüntünün elektriğe çevrilmesi, kamera lambaları ile sağlanır. Bir resim elektriğe çevrilirken, satır satır taranır. Satır üzerinde sıra ile noktalar ışık şiddeti ile orantılı olarak elektrik işaretine çevrilir. Tarama sırasında en önemli problem verici ve alıcıda bu işlemin birlikte yapılmasıdır. Taramada birlik sağlayan sisteme, Senkronizasyon sistemi denir. Senkronizasyon devrelerinin gelişmesi uzun yıllarda olmuştur. Televizyon ancak bu sistemin düzenlenebilmesi için gerçekleştirilmiştir. Bu gün televizyon alıcı ve vericilerinin çok karışık devrelerden oluşmasının bir nedeni de, senkronizasyonla ilgili devrelerin çokluğundan kaynaklanmasıdır. Televizyonda kaliteli bir esim, resmin en ufak detaylarına kadar tespit edilip iletilmesi ile mümkün olur. Bu çok geniş frekans bandına gerek duyulur. CCIR (Avrupa) televizyon sisteminde; her kanal için 7 MHz lik bir frekans bandı ayrılmıştır. Bu kadar geniş bir band ancak VHF ve UHF bantlarında ayrılabildiğinden, yayın için bu bantlar seçilmiştir. Televizyonda görüntü; katot ışınlı bir lamba olan resim tüplerinde elde edilir. Siyah-beyaz tüplerde resim, siyah-beyaz ve grinin değişik tonları olarak elde edilir. Renkli televizyonda ise tabii renklere en yakın durum kırmızı yeşil ve mavi üç ana renk kullanılarak elde edilir. Siyahbeyaz televizyonda bir tane elektron hüzmesi yeterli olduğu halde, renkli televizyon tüplerinde üç renk için üç elektron hüzmesi gerekmektedir. Renkli tüplerde üç hüzme üç ayrı elektron tabancası ile elde edilir. 1.6.Televizyon Sistemleri Televizyon sistemlerini başlıca iki grupta toplayabiliriz. Bunlar; 1. Kapalı devre televizyon sistemi 2. Televizyon yayın sistemleri Kapalı devre televizyon sistemi Kapalı devre televizyonda; alıcı ile kamera arasındaki bağlantı kablolarla yapılır. Bunlar sabit tesisler olup alıcı ile verici arasındaki uzaklık genellikle 400 m yi geçmez. Bunlar özel televizyon sistemleridir. Kapalı devre televizyon yayıncılığı problemlerine yerel girişimciler tarafından getirilen bir başka çözümdür. Bazen röle tv olarak adlandırılmakla yayıcılık şirketlerine ait kuvvetlendirici ya da röle vericileri ile karıştırılmamalıdır. Topluma ait anten tv Dr. İbrahim Türkoğlu 6

9 yayın sinyallerinin yeterince kuvvetli olduğu bir tepe ya da yüksek bina gibi yüksek bir noktaya kurulur. Daha sonra, programlar, para karşılığı abonelere kablolar aracılığıyla bir dağıtım merkezinden verilir. Başlangıçta, iki veya üç kanal vardı ve her kanal bir çift kablo ile abonelere dağıtılıyordu. Abone tercih ettiği kanalı televizyon setinin üstüne veya yakınına yerleştirilen bir anahtarla seçerdi. Kapalı tv nin blok şeması şekil-1.5 de gösterilmiştir. Bazı büyük mağazalarda, mağaza içinde birçok yerlere küçük kameralar yerleştirilir. Bir izleme odasındaki monitörlerden müşteriler izlenir. Trafik teşkilatları oto yollarını gözlerken, yine kapalı devre televizyon devreleri kullanılır. Böylece kazaların izlenmesi, sürücülerin uyarılması, can kurtaran ve tamir araçlarının hızla olay yerine gönderilmesi sağlanır. Bazı uzun araç ve kamyonların arkalarına yerleştirilen kameralarla, arkadaki yolu, sürücünün açıkça görmesi sağlanır. Fabrika da işçilerin çalışması izlenebilir. Hastanelerde, ameliyatların yakından izlenebilmesinde, hatta bazen hastanedeki bir hastanın hastalığının, kilometrelerce uzaklıktaki uzmanlar tarafından teşhisi sağlanabilir. Bazı şirketler, diğer merkezlerdeki şubelerle bağlantılarını kapalı devre tv ile sağlarlar. Bir konferans için başka kentlerdeki iş yerleri ile bağlantı kurabilirler. Bazı telefonlarda konuşanların birbirlerini görmeleri bu sistemle sağlanır. Okullarda ve üniversitelerde eğitim maksadı ile yaygın olarak kullanılır. Her ne kadar pahalı olurlarsa da sağladıkları fayda ve zaman tasarrufu ile yine de tercih edilirler. Şekil 1.5. Kapalı devre tv nin blok diyagramı. Kapalı devre televizyon sisteminde, vericideki kamera; duran resmi veya hareketli resmi alır. Resim taranarak, resim elemanları elde edilir. Her eleman ışık şiddeti ile orantılı olarak bir elektrik sinyaline dönüştürülür. Senkronize palsları ilave edilerek, alıcı ile vericinin birlikte tarama yapması sağlanır. Sinyal güç amplifikatör katları ile yeterince yükseltilerek, koaksiyel kablolarla alıcıya taşınır. Alıcıda; ses ve resim sinyalleri tekrar yükseltilir. Dedekte edilen resim sinyali monitöre uygulanarak görüntü elde edilir. Güç amplifikatörü tarafından yükseltilen ses sinyali, hoparlöre uygulanarak sese çevrilir Televizyon yayın sistemi Normal televizyon sisteminde resim ve ses sinyallerinin; vericiden alıcıya taşınması, elektromanyetik dalgalarla olur. Radyo yayınında bir tek taşıyıcı kullanıldığı halde, tv yayınında ses ve resim taşıyıcıları ayrı ayrıdır ve farklı frekanslarda çalışırlar. Tv yayınlarında; resim sinyallerinin taşınması geniş bir frekans bandı gerektirir. Bu nedenle tv yayınlarında VHF ve Fırat Üniversitesi, Elektronik ve Bilgisayar Eğitimi Bölümü 7

10 UHF bantları kullanılır. Vericinin gönderdiği bileşik video (resim) sinyalinde; resim, boşluk palsları ve senkron palsları bulunur. Alıcı antenleri ile alınan bu sinyaller, önce yeterince yükseltilerek ilgili devrelerden seçilerek geçerler Kablolu televizyonun geliştirilmesi Bir çok ülkede ki büyük şehirlerde, televizyon yayıncılığı problemleri büyük boyutlarda idi. Öyle ki CATV sistemlerinin abone sayılarında hızlı bir yükselme oldu. Özellikle, bir çok gökdelen binasının varolduğu ABD de durum böyle idi. Bir çok yayımcılık program kanalı vardı. Aynı zamanda, yöresel ilgiler, klasik müzik ve eğitim gibi belirli kesimler için özel olarak hazırlanmış programları yayınlayan ses ve televizyon kanallarına duyulan ihtiyaç artıyordu. Ana televizyon merkezi, yerel yayım kanallarını bir ana anten üzerinden alabilir, bu kanallar ve diğer özel olarak hazırlanmış radyo ve televizyon programlarını yayımlayabilir. Bütün bu programlar, büyük geniş bantlı koaksiyel kablolarla çeşitli dağıtım merkezlerine bağlanırlar. Buradan daha küçük bant genişlikli küçük koaksiyel kablolarla abonelere bağlanır. Günümüzde teknolojik gelişmeler, sistemin etkileşimli olmasına yol açmıştır. Bu sistemde aboneler herhangi bir anda dağıtım merkezine bir bilgi göndererek mevcut kanallar arasından sınırlı sayıda kanalı seçebilir. Ayrıca, sınırlı çekiciliğe sahip özel programlar için karıştırma özelliği eklenebilir. Böylece, yalnızca belirli paralı-kanallar, televizyon setiyle ilgili karıştırmayı önleyicinin çalışmasını alabilir. Bir çift telden ya da koaksiyel kablodan daha geniş bant genişliğine ve düşük zayıflatmaya sahip fiber optik kablolar, kablo televizyon sistemlerinin daha geniş alanlara yayılmalarını sağlayacaktır. Dr. İbrahim Türkoğlu 8

11 Fırat Üniversitesi, Elektronik ve Bilgisayar Eğitimi Bölümü 9

12 Şekil 1.6. Yıldız bağlantılı kablolu tv. Kablolu televizyon, her ülkede farklı bir gelişme göstermiştir. Özellikle, 2000 yılında tv izleyici nüfusunun yalnızca yarısının kablolu TV ye sahip olacağının tahmin edildiği İngiltere de, bu gelişme yavaş olmuştur Uydu aracılığı ile doğrudan yayımcılık (BDS) Uydu çanak antenleri, oldukça geniş ışınları dünya yüzeyindeki geniş alanlara iletir. Böylece sinyal, herhangi bir noktada zayıf bir sinyal özelliği gösterecek şekilde genişçe yayılır. Bu da yer istasyonunda büyük bir alıcı çanak anteni ve düşük sıcaklıklarda çalışan, pahalı ve düşük gürültülü alıcı gerektirir. Örneğin tipik bir yer istasyonu çanağı en azında 11 metre çapa sahiptir. Günümüzde teknoloji, uydu vericisinin gücünün artması sağlanmıştır. Çanak antenler dar-ışın iletimlerini yaratabilir. Böylece dünya yüzeyindeki daha küçük coğrafi bölgeler üzerinde daha yüksek seviyede sinyaller oluşur. Bu da belirli bölgedeki bireysel evlere yaklaşık cm çapındaki küçük antenlerle televizyon sinyallerinin yayılmasını sağlar. Değişik ülkelere hizmet etmek için belirli noktalara uyduların yerleştirildiği dairevi ekvatoral ve yere göre sabit yörüngelerin planlanması sağlanmıştır. Bazı uydular yalnızca belli bir ülkeye yayın yapmak için kullanılırken, bazı uydularda birbirlerinin programlarını değiştirmek için amacıyla birkaç ülke tarafından kullanılmaktadır. Dr. İbrahim Türkoğlu 10

13 2. KAMERA SİSTEMLERİ Kamera lambalarının çalışması şekil 2.1 de gösterilmiştir. Bu prensip siyah-beyaz ve renkli kameralarda kırmızı, mavi ve yeşil renkler için uygulanabilir. Görüntüden gelen ışık ışınları mercekle odaklanarak foto elektrik hayali bir plaka üzerinde elde edilir. Resmin incelenmesi için ayrıca, optik hayali de görülür. Hayalin elde edildiği plaka üzerindeki farklı ışık noktaları, fotoelektrik prensipleri ile, elektriksel titreşimlere çevrilir. Bir elektron hüzmesi, hayal plakasını arkadan, hat hat ve alan alan tarar. Gelen resim alanı tarafından taranan plakanın arka yüzünden kamera sinyali elde edilir. Elde edilen bu sinyale sonradan senkron ve boşluk palsları ilave edilerek, birleşik video sinyali elde edilir. Verici tarafından alıcılara gönderilen Y.F. sinyali; birleşik video sinyali ile modüle edilir. Kamera lambalarının bazıları, ikonoskop, hayal ortikonu, vidikon plambikon, yarı geçirgen hayal sensörü ve renkli kamera lambasıdır. Şekil 2.1. Bir kamera lambasının çalışma prensibi. Hayal kamerasının fotoelektrik madde olması, ışık şiddetindeki değişme ile orantılı, elektriksel sinyal elde edilmesini sağlar. Işık şiddeti ile orantılı olarak foto emisyondan çıkan elektronlar artar. Devre direncinin değişmesi ışığın miktarına bağlıdır. Işık artarsa devre direnci düşer. Vidikon ve plambikon da ise kamera sinyali, foto iletkenlik ile elde edilir. Bir yarı iletkenin birleşme bölgesine düşen ışık, uçlarda bir potansiyel fark oluşturur. Hayalin oluştuğu plakadaki görüntünün, sinyal değişmesine çevrilebilmesi için, tarama sisteminin ilave edilmesi gerekir. Satır satır ve yukarıdan aşağıya doğru yapılan tarama ile resim; elemanlarına ayrılır. Girişteki hayal plakası fotoelektrik ise de, resim elemanları yapı bakımından yalıtılmıştır Foto Emisyon Bazı metaller yüzeylerine düşen ışık ışınları ile elektron emisyonu yapabilirler. Bu yolla çıkan elektronlara foto elektronlar denir. Elektron çıkaran yüzeye ise foto katot denir. Işığa hassas elementlerden bazıları şunlardır; sezyum, gümüş, sodyum, potasyum, lityum ve bir grup alkali metallerdir. Genellikle sezyum oksit kullanılır. Çünkü ışık ile yüksek foto emisyon duyarlığa sahiptir. Foto elektrik olayı şekil-2.2 de gösterilmiştir. Foto elektrik etkinin açıklanmasında, ışık enerjisinin en küçük parçasına FOTON denir. Foto katot yüzeyine çarpan fotonların verdiği enerji ile foto elektronlar yeterince enerji kazanarak yüzeyi terk ederler. Çıkan elektronların miktarı ışığın şiddetine bağlıdır. Foto elektronların hızı ise, ışığın dalga boyuna bağlıdır. Dalga boyu ışığın rengini tayin eder. Bu Fırat Üniversitesi, Elektronik ve Bilgisayar Eğitimi Bölümü 11

14 faktör kamera lambalarının; ışık spektrumundaki renklere karşı farklı duyarlıkta olmasına neden olur. Şekil-2.2. Bir kamera lambasında foto emisyonla elektron hayalinin elde edilmesi Foto iletkenlik Foto elektrik etki; ışık şiddetindeki değişme ile bir direncin değerinin değişmesidir. Işık arttığında direnç düşer. Genellikle selenyum, tellür, kurşun gibi yarı iletken metalleri ile oksitleri; foto iletkenlik özelliği gösterirler Elektron Tarama Hüzmesi Kamera lambalarında tarama, bir elektron tabancası tarafından üretilen, ince ve yoğun elektron hüzmesiyle olur. Elektron hüzmesi target veya hayal plakasanı tarar. Resim lambalarında ise elektron tabancası ile fosforlu ekran taranır. Elektron tabancaları havası boşaltılmış cam zarf içinde bulunurlar. Filaman ısındıkça katot elektron yayar, bu elektronlar kontrol gri tarafından kontrol edilirler. Hızlandırıcı gri ile hızlandırılıp, odaklama bobinleri ile hayal plakası üzerine odaklanırlar. Saptırma bobinleri ile saptırılarak, tarama yapılır. Şekil 2.3. Bir kamera lambasındaki hayal plağının foto iletkenliği. Kontrol grinin yapısı silindir bir boruya benzer. Çıkış ucunda dar bir delik vardır. Bu delikten geçen elektronların miktarı, kontrol geriye uygulanan negatif polarmaya ve uygulanan Dr. İbrahim Türkoğlu 12

15 kontrol sinyaline bağlıdır. Hızlandırıcı grinin yapısı yine bir silindir boruya benzer. Uygulanan pozitif gerilim ile içinden geçen elektronların hızlanmaları sağlanır. Bu tip lambalarda iki odaklama anodu farklı gerilimdedir. Saptırma bobinleri ise yatay ve düşey olmak üzere ikişer çifttir. Düşey saptırıcılar yatay konumda, yatay saptırıcılar düşey konumda bulunur. Kamera lambalarında odaklama ve saptırma: manyetiktir. Resim lambalarında ise statik odaklama ve manyetik saptırma kullanılır Kamera Tüpleri Televizyonun ilk çıktığı zamanlardan itibaren kamera tüpleri olarak "Orthicon" tüpleri kullanılmaktaydı. Ancak günümüzde daha modern tüpler olan "Vidicon" tüpleri kullanılmaktadır. Bir orthicon tüpünün basitleştirilmiş şeması, şekil-2.4. de gösterilmiştir. Burada görüntülenmek istenen sahnenin imajı, bir fotokatod üzerine uygun optik düzenler ile düşürülür. Bu imajın ışık durumuna göre foto Katod'tan elektronlar üretilir. Üretilen elektron miktarı, sahnenin çeşitli bölümlerinin parlaklığı ile orantılı olup çok aydınlık bir nokta, fazla, elektron üretilmesine sebep olur. Foto katot tarafından ışık ile orantılı olarak üretilen elektronlar, hemen arkasındaki bir "hedef" tarafından çekilirler. Dolayısıyla bu hedef üzerinde, sahnenin ışık durumu ile orantılı bir elektron dağılımı oluşur. Bu dağılım, normaldir ve sahne değiştikçe değişir. Kamera tüpünün diğer ucunda bulunan bir elektron tabancası do elektron ışınları üretmektedir ve bu ışınlar, tarama kısmında anlatıldığı gibi yatay ve düşey olarak saptırılmaktadır. Bu suretle üretilen elektron ışınının, hedefi yatay ve düşey olarak taraması sağlanır. Hedef üzerine düşen elektron ışını, hedefin o noktasının elektron miktarına göre bazen geri yansır, bazen de hedef tarafından yutulurlar. Bu işlemin genel neticesi olarak yansıyan elektron ışınları hedef üzerindeki elektron dağılımının, dolayısı ile de ekran üzerindeki görüntünün bilgilerini taşır. Örnek olarak ekran üzerindeki görüntünün parlak bir noktası, arkasındaki hedef üzerinde karşı geldiği noktada yoğun bir elektron kümesi oluşturur. Bu nokta elektron ışını tarafından tarandığı anda, yansıyan elektron ışınının yoğunluğunda da büyük değişiklik olur. Yansıyan ışınlar, tüpün arkasında bulunan bir görüntü yükselteci tarafından yükseltilerek taranan bilgilerin hassasiyetleri arttırılmış olur. Şekil 2.4- Bir Orthicon kamera tüpünün başlıca elemanları. Fırat Üniversitesi, Elektronik ve Bilgisayar Eğitimi Bölümü 13

16 Vidicon tüpü Bir Vidicon tüpünün başlıca elemanları, Şekil 2.5 de gösterilmiştir. Bu kamera tüpü kapalı devre televizyon ve transistörlü portatif televizyon kameralarında kullanılır. Bunların uzunlukları 15 cm dir. Foto gerilim ışık alan yüzeylerde gerilimin doğması olayları 2-3 cm kadardır. Bu tüp foto gerilim ve foto direnç olayına göre çalışır. Foto direnç ise üzerine ışık düşen maddelerin şekil 2.6 da görüldüğü gibi elektrik dirençlerinin değiştirilmesi olayıdır. Işık şiddeti arttıkça foto direnç değeri düşer, azaldıkça artar. Şekil 2.5. Bir Vidikon kamera tüpünün başlıca elemanları. Vidikon tüpünün çıkış gerilimi şekil 2.7 de gösterilmiştir. Resim görüntüsü tüpün önündeki yüzey plaka üzerinde odaklaştırılır. Cam yüzey, plakanın içine bakan yüzeyi, foto iletken olan ince ve şeffaf bir madde ile kaplanmıştır. Buna foto katot maddesi de denir. Foto katot maddesi elektron tabancasından gelen elektron hüzmesi ile taranır. Bu çeşit tüplerin üç ana parçası, elektron tabancası, tarama sistemi ve Orthicon tüpünde olduğu gibi görüntünün aktarıldığı hedeftir. Şekil 2.6. Bir Vidikon kamera tüpünün iç yapısı. Dr. İbrahim Türkoğlu 14

17 Şekil 2.7. Vidikon tüpünün çıkış gerilimi. Elektron tabancasında katotta üretilen elektron ışını, satir ve alan saptırma bobinleri ile de tarama işlevini görmeye zorlanır. Şekilde gösterilen ışın ayar bobini, tüpün mekanik yapısından ileri gelecek küçük hataları gidermek amacı ile kullanılır. Hedef olarak kullanılan foto iletken maddenin düşük ışık seviyelerinde direnci çok yüksek olup, üzerine ışık düşmesi halinde direnci azalmaktadır. Hedef alanı, elektron ışını ile soldan sağa ve yukardan aşağı taranması nedeniyle, çok sayıda küçük direnç elemanlarından oluşmuş gibi varsayılabilir. Bu küçük direnç elemanlarına ilaveten, yine çok küçük şönt kondansatörler eşdeğer devreyi meydana getirirler (Şekil 2.8). Direnç elemanları foto-iletkenleri, kondansatör elemanları ise foto-iletken elemanların kendileri ile arkalarındaki şeffaf iletken tarafından oluşturulan kapasitansı temsil etmektedir. Bu direnç-kondansatör sisteminin birer uçlan hedef elektroduna bağlı olup diğer uçları ise elektron ışını çarpıncaya kadar açık devredir. Elektron ışını isminden de anlaşılacağı gibi elektronlar taşımaktadır, yani bir elektrik iletkenidir. Şekil 2.8 den de görüleceği gibi eşdeğer elektrik devresinde elektrik yolu, bir yük direnci üzerinden tamamlanmaktadır. Elektron ışını saptırıcılar vasıtası ile tarandığında, bu ışın sıra ile RC devrelerinin uçlarına bağlanmış gibi olmaktadır. Her kondansatör elemanına bir direnç bağlı olduğundan dolayı, elektron ışınının her geçişinde dolan bu kondansatörler, ışının bir sonraki gelişine kadar bağlı bulunduğu direnç üzerinden boşalır. Işının bir sonraki gelişinde ise kaybettiği yükü tekrar alabilmek için yeniden şarj olur ve bu esnada devreden bir akım gelmesine yol açar. Fırat Üniversitesi, Elektronik ve Bilgisayar Eğitimi Bölümü 15

18 Şimdi bir an için kameranın karanlıkta çalıştığını varsayalım. Daha önce de bahsettiğimiz gibi karanlıkta eşdeğer devredeki dirençler, hemen hemen açık devredir. Bu durumda elektron ısınının aynı RC elemanından birbirini takip eden geçişleri arcısında kondansatör boşalamayacağı için toplam devreden de bir akım geçmeyecektir. Bu işlemin tam tersi olarak, kameranın aydınlık bir sahne üzerinde çalıştığını varsayarsak, üzerine ışık düşen RC elemanlarında R direncinin değeri düşük olacak, elektron ışınının bu elemanlardan her geçişinde de toplam devreden önemli miktarda akım akacaktır. Böylece bir görüntünün elektrik sinyallerine dönüşmesi, yük direnci üzerinden akan değişik genliklerdeki akımların oluşturduğu gerilim şeklinde olacaktır. Şekil 2.8. Vidikon kamera tüpünün eşdeğer elektrik devresi İkonoskop kamera tüpü Şekil-2-9 da ikonoskop kamera tüpünün yapısı ve sinyal devresi verilmiştir. Hayal plakasının tarama yüzüne, birbirinden yalıtılmış mozaik kürecikler dizilmiştir. Kürecikler ışığa hassas olup, üzerine ışık düştüğünde elektron çıkarırlar. Plakanın arka yüzeyi sinyal plakası olup çıkış sinyali buradan alınır. Lambanın iç yüzeyi iletkendir ve kollektör tabakası ile örtülmüştür. Kollektör; foto elektronlarla sekonder elektronları çeker. Kürecikler sezyum oksit taneleri olup, büyüklükleri 1 mikron (1/1000mm) dir. Mozaik yüzey elektron hüzmesi ile taranır. Tarama elektron statik ve manyetik olabilir. Çekimi yapılan sahneden gelen ışık ışınları, mozaik yüzeye düşürülür. Sinyal plakasından, görüntüden gelen ışıklarla orantılı çıkış sinyali alınır. Dr. İbrahim Türkoğlu 16

19 Şekil-2.9 a) İkonoskop tüpün yapısı b) Sinyal devresi Süperikonoskop kamera tüpü Bu tüpte elemanlarına ayrılacak resim, bir mercek yardımıyla P 1foto katot maddesi üzerine düşürülür. Buradan çıkarılan primer (birincil) elektronlar L saptırıcı bobin yardımıyla mozaik foto katot elemanı üzerine düşürülür. Çıkan sekonder (ikincil) elektron K kollektörü yardımıyla tüpün içinden alınır. Emisyon yapan mozaik foto katot maddesi elektron kaybettiği için pozitif olarak dolar. Elektron tabancası ile taranan resim dolu mozaik fotokatot maddelerini boşaltır. Bu dolma ve boşaltmalar kollektörle resim ekranın metal levhası arasında çıkış resim sinyali olarak alınır Ortikon kamera tüpü Bunlar; Bu kamera tüpü şekil 2.10 da gösterilmiştir. Bu kamera tüpüne hayal ortikonu da denir. Hayal ortikonun kısımlarını üç parçaya ayırabiliriz. Bunlar; 1- Hayal kısmı 2- Tarama kısmı 3- Elektron çoğaltıcıdır. Görüntüden gelen ışık, kamera mercekleri ile odaklanarak, hayal kısmındaki foto katot üzerine düşürülür. Hayal kısmında; foto elektrik hayal, target plakası üzerinde uygun elektriksel şarz hayali oluşturur. Target plakasının bir yüzü foto elektronları alırken, diğer yüzü tarama kısmı yardımı ile elektron hüzmesiyle taramaktadır. Bu olay sonunda giren hayal ile orantılı bir sinyal akımı, dönen elektron hüzmesi ile, elektron çoğaltıcıya taşınır. Bu sinyal akımı elektron çoğaltıcılar ile yükseltilir. Kamera çıkış sinyali olarak alınır. Şekil Bir ortikon tüpünün yapısı. Fırat Üniversitesi, Elektronik ve Bilgisayar Eğitimi Bölümü 17

20 Plumbikon kamera tüpü Plumbikon kamera tüpünün yapılışı ve çalışması vidikon tüpüne benzer. Vidikon tüpünden daha küçüktür. Uzunluğu cm dir bu tüp diğer kamera tüplerine göre çok küçüktür. Fakat kalitesi diğerlerinden çok iyidir. Özellikle insan gözünün spektrum duyarlığına uygunluğu en büyük avantajdır. Işık duyarlık maddesi olarak kurşun-monoksit (PbO) kullanılır. (Şekil-2.11.) Şekil Plumbikon kamera tüpü. Dr. İbrahim Türkoğlu 18

21 3. TARAMA VE SENKRONİZASYON 3.1. Hareketli Resimlerin Prensipleri Bir sinema projektörü ile hareketli resimlerin konusunda bilgi sahibi olabiliriz. Birbirinden çok farklı hareketsiz resimler çok hızlı olarak bir ekranda sırasıyla insan gözüne sunulur. Eğer göze birbiri ardına sunulan hareketsiz resimlerin sayısı saniyede 16 dan fazla olursa hissedilir bir titreme olmadan hareketli manzara görüntüsü elde edilir. Bu yüzden bir televizyon sistemi, televizyon alıcısından insan gözüne saniyede 16 ya da daha fazla sayıda resim sunacak şekilde tasarlanmalıdır Katod Işın Tüpünün Prensipleri Bir elektronik görüntü sinyalinin ışık enerjisine geri dönüştürülmesi katod ışın tüpü ile gerçekleştirilir. Video kuv. Sync ayırıcı Şekil-3.1. Televizyon alıcıları için katod ışın tüpü prensipleri Tüp, arka tarafı silindir ve ön tarafa doğru dikdörtgen biçiminde genişletilerek ekranı oluşturan içi boşaltılmış cam bir çerçevedir. Silindirik tüpün sonuna bir katod yerleştirilmiştir. Bu katod elektron yaymak için ısıtılır. Elektron tabancası, yayılan elektronları ince bir ışın demetine odaklamakta kullanılır. Bu ışın demeti bir anot düzeneğine uygulanan pozitif gerilimin etkisi ile tüp boyunca ateşlenir. Elektron ışını, tüpün boynunun dışına kelepçelenmiş saptırma bobinlerinden geçen akım tarafından üretilen manyetik alanlar ile yatay ve dikey yönlerde hareket ettirilebilir. Dikdörtgen ekranın iç yüzeyi, ışık yayan bir madde ile kaplanmıştır. Eğer tüp boyunca ateşlenen elektron ışını, ekran kaplamasına yeterli bir hızla çarparsa elektron ışının, enerjisi yüzey kaplamasından bir ışık yayılmasına sebep olur ve tüp ekranına önden bakıldığında küçük bir ışık noktası görülür. Fırat Üniversitesi, Elektronik ve Bilgisayar Eğitimi Bölümü 19

Renklerin dalga boyları gibi parlaklıkları da değişiktir. Renk spektrumunda yeşil renk en

Renklerin dalga boyları gibi parlaklıkları da değişiktir. Renk spektrumunda yeşil renk en 1. GÖRÜNTÜ SİSTEMİ 1.1. Işık Işık hakkında çeşitli teoriler vardır. Işığın hem madde (kütle), hem de enerji (dalga) olduğu ispatlanmıştır. Işık, ışık tarafından yayılan küçük dalgacıklardır. Bu dalgacıklar

Detaylı

Antenler, Türleri ve Kullanım Yerleri

Antenler, Türleri ve Kullanım Yerleri Antenler, Türleri ve Kullanım Yerleri Sunum İçeriği... Antenin tanımı Günlük hayata faydaları Kullanım yerleri Anten türleri Antenlerin iç yapısı Antenin tanımı ve kullanım amacı Anten: Elektromanyetik

Detaylı

AC Devrelerde Ölçme OSİLOSKOP Elektriksel gerilimlerin zamana ve birbirlerine göre değişimlerini grafik olarak gösteren cihaza osiloskop denilmektedir. Osiloskopta tek gerilim şekli

Detaylı

BÖLÜM IX DALGA MEYDANA GETİRME USULLERİ

BÖLÜM IX DALGA MEYDANA GETİRME USULLERİ BÖLÜM IX DALGA MEYDANA GETİRME USULLERİ 9.1 DALGA MEYDANA GETİRME USÜLLERİNE GİRİŞ Dalga üreteçleri birkaç hertzden, birkaç gigahertze kadar sinyalleri meydana getirirler. Çıkışlarında sinüsoidal, kare,

Detaylı

ANALOG VİDEO TEMELLERİ

ANALOG VİDEO TEMELLERİ ANALOG VİDEO TEMELLERİ Video sinyali; bir görüntünün kamera vasıtası ile elektriksel hale dönüştürülmesiyle oluşan sinyaldir.video sinyali ilk zamanlarda renksiz (siyah/beyaz) olarak iafade edilebilmiş

Detaylı

BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme

BÖLÜM X OSİLATÖRLER. e b Yükselteç. Be o Geri Besleme. Şekil 10.1 Yükselteçlerde geri besleme BÖLÜM X OSİLATÖRLER 0. OSİLATÖRE GİRİŞ Kendi kendine sinyal üreten devrelere osilatör denir. Böyle devrelere dışarıdan herhangi bir sinyal uygulanmaz. Çıkışlarında sinüsoidal, kare, dikdörtgen ve testere

Detaylı

YAKLAŞIM SENSÖRLERİ (PROXIMITY) Endüktif, Kapasitif ve Optik Yaklaşım Sensörleri

YAKLAŞIM SENSÖRLERİ (PROXIMITY) Endüktif, Kapasitif ve Optik Yaklaşım Sensörleri YAKLAŞIM SENSÖRLERİ (PROXIMITY) Endüktif, Kapasitif ve Optik Yaklaşım Sensörleri Sanayi fabrika otomasyonunda proximity (yaklasım) sensorler kullanılır. Porximity sensorler profesyonel yapıda cevre sartlarından

Detaylı

KIRIKKALE ÜNİVERSİTESİ

KIRIKKALE ÜNİVERSİTESİ KIRIKKALE ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ SAYISAL ELEKTRONİK LAB. DENEY FÖYÜ DENEY 4 OSİLATÖRLER SCHMİT TRİGGER ve MULTİVİBRATÖR DEVRELERİ ÖN BİLGİ: Elektronik iletişim sistemlerinde

Detaylı

BAŞKENT ÜNİVERSİTESİ

BAŞKENT ÜNİVERSİTESİ BAŞKENT ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM-201 DEVRE TEORİSİ-1 LAB. DENEY-1 SİNYAL ÜRETECİ ve OSİLOSKOP AMAÇ Bu deneyde iki yeni cihazla tanışacaksınız: Sinyal (işaret) üreteci ve

Detaylı

ANALOG HABERLEŞME (GM)

ANALOG HABERLEŞME (GM) ANALOG HABERLEŞME (GM) Taşıyıcı sinyalin sinüsoidal olduğu haberleşme sistemidir. Sinüs işareti formül olarak; V. sin(2 F ) ya da i I. sin(2 F ) dır. Formülde; - Zamana bağlı değişen ani gerilim (Volt)

Detaylı

DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 1.

DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 1. DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 1. DENEY GENLİK MODÜLASYONUNUN İNCELENMESİ-1 Arş. Gör. Osman

Detaylı

T.C. MİLLİ EĞİTİM BAKANLIĞI

T.C. MİLLİ EĞİTİM BAKANLIĞI T.C. MİLLİ EĞİTİM BAKANLIĞI MEGEP (MESLEKİ EĞİTİM VE ÖĞRETİM SİSTEMİNİN GÜÇLENDİRİLMESİ PROJESİ) ELEKTRİK ELEKTRONİK TEKNOLOJİSİ TELEVİZYON SİSTEMİ ANKARA 2007 Milli Eğitim Bakanlığı tarafından geliştirilen

Detaylı

6. Osiloskop. Periyodik ve periyodik olmayan elektriksel işaretlerin gözlenmesi ve ölçülmesini sağlayan elektronik bir cihazdır.

6. Osiloskop. Periyodik ve periyodik olmayan elektriksel işaretlerin gözlenmesi ve ölçülmesini sağlayan elektronik bir cihazdır. 6. Osiloskop Periyodik ve periyodik olmayan elektriksel işaretlerin gözlenmesi ve ölçülmesini sağlayan elektronik bir cihazdır. Osiloskoplar üç gruba ayrılabilir; 1. Analog osiloskoplar 2. Dijital osiloskoplar

Detaylı

Harici Fotoelektrik etki ve Planck sabiti deney seti

Harici Fotoelektrik etki ve Planck sabiti deney seti Deneyin Temeli Harici Fotoelektrik etki ve Planck sabiti deney seti Fotoelektrik etki modern fiziğin gelişimindeki anahtar deneylerden birisidir. Filaman lambadan çıkan beyaz ışık ızgaralı spektrometre

Detaylı

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ LABORATUARI

SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ LABORATUARI SAKARYA ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ LABORATUARI DENEYİ YAPTIRAN: DENEYİN ADI: DENEY NO: DENEYİ YAPANIN ADI ve SOYADI:

Detaylı

Şekil Sönümün Tesiri

Şekil Sönümün Tesiri LC Osilatörler RC osilatörlerle elde edilemeyen yüksek frekanslı osilasyonlar LC osilatörlerle elde edilir. LC osilatörlerle MHz seviyesinde yüksek frekanslı sinüsoidal sinyaller elde edilir. Paralel bobin

Detaylı

İletken, Yalıtkan ve Yarı İletken

İletken, Yalıtkan ve Yarı İletken Diyot, transistör, tümleşik (entegre) devreler ve isimlerini buraya sığdıramadağımız daha birçok elektronik elemanlar, yarı iletken malzemelerden yapılmışlardır. Bu kısımdaki en önemli konulardan biri,

Detaylı

ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ

ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ ELEKTRONİK DEVRE TASARIM LABORATUARI-I MOSFET YARI İLETKEN DEVRE ELEMANININ DAVRANIŞININ İNCELENMESİ Yrd. Doç. Dr. Özhan ÖZKAN MOSFET: Metal-Oksit Yarıiletken Alan Etkili Transistor (Geçidi Yalıtılmış

Detaylı

TRAMVAY OTOMATİK MAKAS KONTROL SİSTEMİ

TRAMVAY OTOMATİK MAKAS KONTROL SİSTEMİ TRAMVAY OTOMATİK MAKAS KONTROL SİSTEMİ PROJENİN AMACI: Tramvay hattındaki makasların makinist tarafından araç üzerinden otomatik olarak kontrol edilmesi. SİSTEMİN GENEL YAPISI Tramvay Otomatik Makas Kontrol

Detaylı

BÖLÜM 4 RADYO ALICILARI. 4.1 Süperheterodin Alıcı ANALOG HABERLEŞME

BÖLÜM 4 RADYO ALICILARI. 4.1 Süperheterodin Alıcı ANALOG HABERLEŞME BÖLÜM 4 RADYO ALIILARI 4. Süperheterodin Alıcı Radyo alıcıları ortamdaki elektromanyetik sinyali alır kuvvetlendirir ve hoparlöre iletir. Radyo alıcılarında iki özellik bulunur, bunlar ) Duyarlılık ) Seçicilik

Detaylı

DENEY 2: DĠYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERĠ

DENEY 2: DĠYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERĠ DENEY 2: DĠYOTLU KIRPICI, KENETLEME VE DOĞRULTMA DEVRELERĠ 1- Kırpıcı Devreler: Girişine uygulanan sinyalin bir bölümünü kırpan devrelere denir. En basit kırpıcı devre, şekil 1 'de görüldüğü gibi yarım

Detaylı

ALTERNATİF AKIMIN TEMEL ESASLARI

ALTERNATİF AKIMIN TEMEL ESASLARI ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ DERSİ ALTERNATİF AKIMIN TEMEL ESASLARI Dr. Öğr. Üyesi Ahmet ÇİFCİ Elektrik enerjisi, alternatif akım ve doğru akım olarak

Detaylı

BÖLÜM 6 STEREO VERİCİ VE ALICILAR. 6.1 Stereo Sinyal Kodlama/Kod Çözme Teknikleri ANALOG HABERLEŞME

BÖLÜM 6 STEREO VERİCİ VE ALICILAR. 6.1 Stereo Sinyal Kodlama/Kod Çözme Teknikleri ANALOG HABERLEŞME BÖLÜM 6 STEREO VERİCİ VE ALICILAR 6.1 Stereo Sinyal Kodlama/Kod Çözme Teknikleri Stereo kelimesi, yunanca 'da "üç boyutlu" anlamına gelen bir kelimeden gelmektedir. Modern anlamda stereoda ise üç boyut

Detaylı

İstanbul Teknik Üniversitesi IEEE Öğrenci Kolu

İstanbul Teknik Üniversitesi IEEE Öğrenci Kolu Direnç Dirençler elektronik devrelerin vazgeçilmez elemanlarıdır. Yaptıkları iş ise devre içinde kullanılan diğer aktif elemanlara uygun gerilimi temin etmektir. Elektronik devreler sabit bir gerilim ile

Detaylı

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler. Yard.Doç.Dr. Ahmet Özkurt.

ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler. Yard.Doç.Dr. Ahmet Özkurt. ELK273 Elektrik ve Elektronik Mühendisliğinin Temelleri Ders 8- AC Devreler Yard.Doç.Dr. Ahmet Özkurt Ahmet.ozkurt@deu.edu.tr http://ahmetozkurt.net İçerik AC ve DC Empedans RMS değeri Bobin ve kondansatörün

Detaylı

Alternatif Akım Devre Analizi

Alternatif Akım Devre Analizi Alternatif Akım Devre Analizi Öğr.Gör. Emre ÖZER Alternatif Akımın Tanımı Zamaniçerisindeyönüveşiddeti belli bir düzen içerisinde (periyodik) değişen akıma alternatif akımdenir. En bilinen alternatif akım

Detaylı

Multivibratörler. Monastable (Tek Kararlı) Multivibratör

Multivibratörler. Monastable (Tek Kararlı) Multivibratör Multivibratörler Kare dalga veya dikdörtgen dalga meydana getiren devrelere MULTİVİBRATÖR adı verilir. Bu devreler temel olarak pozitif geri beslemeli iki yükselteç devresinden oluşur. Genelde çalışma

Detaylı

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-4 Kondansatörler ve Bobinler

Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi. Ders Notu-4 Kondansatörler ve Bobinler Makine Mühendisliği İçin Elektrik-Elektronik Bilgisi Ders Notu-4 Kondansatörler ve Bobinler Kondansatörler Kondansatör, elektronların kutuplanarak elektriksel yükü elektrik alanın içerisinde depolayabilme

Detaylı

Transformatör nedir?

Transformatör nedir? Transformatörler Transformatör nedir? Alternatif akımın gerilimini veya akımını alçaltmaya veya yükseltmeye yarayan devre elemanlarına "transformatör" denir. Alternatif akım elektromanyetik indüksiyon

Detaylı

Modern Fiziğin Teknolojideki Uygulamaları

Modern Fiziğin Teknolojideki Uygulamaları 40 Modern Fiziğin Teknolojideki Uygulamaları 1 Test 1 in Çözümleri 1. USG ve MR cihazları ile ilgili verilen bilgiler doğrudur. BT cihazı c-ışınları ile değil X-ışınları ile çalışır. Bu nedenle I ve II.

Detaylı

1. Diyot Çeşitleri ve Yapıları 1.1 Giriş 1.2 Zener Diyotlar 1.3 Işık Yayan Diyotlar (LED) 1.4 Fotodiyotlar. Konunun Özeti

1. Diyot Çeşitleri ve Yapıları 1.1 Giriş 1.2 Zener Diyotlar 1.3 Işık Yayan Diyotlar (LED) 1.4 Fotodiyotlar. Konunun Özeti Elektronik Devreler 1. Diyot Çeşitleri ve Yapıları 1.1 Giriş 1.2 Zener Diyotlar 1.3 Işık Yayan Diyotlar (LED) 1.4 Fotodiyotlar Konunun Özeti * Diyotlar yapım tekniğine bağlı olarak; Nokta temaslı diyotlar,

Detaylı

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME

TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME TRANSİSTÖRLÜ YÜKSELTEÇLERDE GERİBESLEME Amaç Elektronikte geniş uygulama alanı bulan geribesleme, sistemin çıkış büyüklüğünden elde edilen ve giriş büyüklüğü ile aynı nitelikte bir işaretin girişe gelmesi

Detaylı

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV)

BÖLÜM 2. FOTOVOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (PV) BÖLÜM 2. FOTOOLTAİK GÜNEŞ ENERJİ SİSTEMLERİ (P) Fotovoltaik Etki: Fotovoltaik etki birbirinden farklı iki malzemenin ortak temas bölgesinin (common junction) foton radyasyonu ile aydınlatılması durumunda

Detaylı

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak

RÖNTGEN FİZİĞİ X-Işını oluşumu. Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak RÖNTGEN FİZİĞİ X-Işını oluşumu Doç. Dr. Zafer KOÇ Başkent Üniversitesi Tıp Fak X-IŞINI TÜPÜ X-IŞINI TÜPÜ PARÇALARI 1. Metal korunak (hausing) 2. Havası alınmış cam veya metal tüp 3. Katot 4. Anot X-ışın

Detaylı

Elektromanyetik Dalgalar. Test 1 in Çözümleri

Elektromanyetik Dalgalar. Test 1 in Çözümleri 38 Elektromanyetik Dalgalar 1 Test 1 in Çözümleri 1. Radyo dalgaları elektronların titreşiminden doğan elektromanyetik dalgalar olup ışık hızıyla hareket eder. Radyo dalgalarının titreşim frekansı ışık

Detaylı

Aşağıdaki formülden bulunabilir. S16-Kesiti S1=0,20 mm²,uzunluğu L1=50 m,özdirenci φ=1,1 olan krom-nikel telin direnci kaç ohm dur? R1=?

Aşağıdaki formülden bulunabilir. S16-Kesiti S1=0,20 mm²,uzunluğu L1=50 m,özdirenci φ=1,1 olan krom-nikel telin direnci kaç ohm dur? R1=? S1-5 kw lık bir elektrik cihazı 360 dakika süresince çalıştırılacaktır. Bu elektrik cihazının yaptığı işi hesaplayınız. ( 1 saat 60 dakikadır. ) A-30Kwh B-50 Kwh C-72Kwh D-80Kwh S2-400 miliwatt kaç Kilowatt

Detaylı

Sensörler. Yrd.Doç.Dr. İlker ÜNAL

Sensörler. Yrd.Doç.Dr. İlker ÜNAL Sensörler Yrd.Doç.Dr. İlker ÜNAL Optik Sensörler Üzerine düşen ışığa bağlı olarak üstünden geçen akımı değiştiren elemanlara optik eleman denir. Optik transdüserler ışık miktarındaki değişmeleri elektriksel

Detaylı

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ Elektrik ve Elektronik Ölçmeler Laboratuvarı Deney Adı: Sensörler. Deney 5: Sensörler. Deneyin Amacı: A.

ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ Elektrik ve Elektronik Ölçmeler Laboratuvarı Deney Adı: Sensörler. Deney 5: Sensörler. Deneyin Amacı: A. Deneyin Amacı: Deney 5: Sensörler Sensör kavramının anlaşılması, kullanım alanlarının ve kullanım yerine göre çeşitlerinin öğrenilmesi. Çeşitli sensör tipleri için çalışma mantığı anlaşılıp sağlamlık testi

Detaylı

Bölüm 12 İşlemsel Yükselteç Uygulamaları

Bölüm 12 İşlemsel Yükselteç Uygulamaları Bölüm 12 İşlemsel Yükselteç Uygulamaları DENEY 12-1 Aktif Yüksek Geçiren Filtre DENEYİN AMACI 1. Aktif yüksek geçiren filtrenin çalışma prensibini anlamak. 2. Aktif yüksek geçiren filtrenin frekans tepkesini

Detaylı

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 KONDANSATÖRLER VE BOBİNLER Doç. Dr. İbrahim YÜCEDAĞ Arş. Gör. M.

Detaylı

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri

Şekil-1. Doğru ve Alternatif Akım dalga şekilleri 2. Alternatif Akım =AC (Alternating Current) Değeri ve yönü zamana göre belirli bir düzen içerisinde değişen akıma AC denir. En çok bilinen AC dalga biçimi Sinüs dalgasıdır. Bununla birlikte farklı uygulamalarda

Detaylı

11.1. ELEKTRONİK ATEŞLEME SİSTEMLERİ ( ELECTRONIC IGNATION )

11.1. ELEKTRONİK ATEŞLEME SİSTEMLERİ ( ELECTRONIC IGNATION ) 11. DİĞER ELEKTRONİK SİSTEMLER 11.1. ELEKTRONİK ATEŞLEME SİSTEMLERİ ( ELECTRONIC IGNATION ) Elektronik ateşlemenin diğerlerinden farkı, motorun her durumda ateşleme zamanlamasının hassas olarak hesaplanabilmesidir.

Detaylı

FM VERİCİ YAPIMI VE ÇALIŞMA PRENSİBİNİN ÖĞRENİLMESİ

FM VERİCİ YAPIMI VE ÇALIŞMA PRENSİBİNİN ÖĞRENİLMESİ FM VERİCİ YAPIMI VE ÇALIŞMA PRENSİBİNİN ÖĞRENİLMESİ İşlem Basamakları 1-) Devre elemanları temin edildi ve bu elemanların sağlamlık kontrolü aşağıda belirtildiği şekilde yapıldı Dirençlerin sağlamlık kontrolü;

Detaylı

Endüstriyel Sensörler ve Uygulama Alanları Kalite kontrol amaçlı ölçme sistemleri, üretim ve montaj hatlarında imalat sürecinin en önemli aşamalarındandır. Günümüz teknolojisi mükemmelliği ve üretimdeki

Detaylı

OSİLOSKOBUN TANITILMASI VE BİR ALTERNATİF GERİLİM ŞEKLİNİN OSİLOSKOBDA İNCELENMESİ

OSİLOSKOBUN TANITILMASI VE BİR ALTERNATİF GERİLİM ŞEKLİNİN OSİLOSKOBDA İNCELENMESİ FIRAT ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ EEM NİN TEMELLERİ-2 DENEY NO:2 OSİLOSKOBUN TANITILMASI VE BİR ALTERNATİF GERİLİM ŞEKLİNİN OSİLOSKOBDA İNCELENMESİ 1. Katot

Detaylı

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ

ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİNE GİRİŞ Giresun Üniversitesi Mühendislik Fakültesi Elektrik Elektronik Mühendisliği Bölümü Bölüm Başkanı Bölümün tanıtılması Elektrik Elektronik Mühendisliğinin tanıtılması Mühendislik Etiği Birim Sistemleri Direnç,

Detaylı

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison

Sensörler Öğr. Gör. Erhan CEMÜNAL Thomas Alva Edison Sensörler Öğr. Gör. Erhan CEMÜNAL Sıkı bir çalışmanın yerini hiç bir şey alamaz. Deha yüzde bir ilham ve yüzde doksandokuz terdir. Thomas Alva Edison İçerik TEMEL ELEKTRONİK KAVRAMLARI Transdüser ve Sensör

Detaylı

DENEY 5: GENLİK KAYDIRMALI ANAHTARLAMA (ASK) TEMELLERİNİN İNCELENMESİ

DENEY 5: GENLİK KAYDIRMALI ANAHTARLAMA (ASK) TEMELLERİNİN İNCELENMESİ DENEY 5: GENLİK KAYDIRMALI ANAHTARLAMA (ASK) TEMELLERİNİN İNCELENMESİ Deneyin Amacı: Bilgisayar ortamında Genlik Kaydırmalı Anahtarlama modülasyonu ve demodülasyonu için ilgili kodların incelenmesi ve

Detaylı

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU

GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU GÜNEŞİN ELEKTROMANYETİK SPEKTRUMU Güneş ışınımı değişik dalga boylarında yayılır. Yayılan bu dalga boylarının sıralı görünümü de güneş spektrumu olarak isimlendirilir. Tam olarak ifade edilecek olursa;

Detaylı

EEM0304 SAYISAL ELEKTRONİK LABORATUVARI DENEY FÖYLERİ

EEM0304 SAYISAL ELEKTRONİK LABORATUVARI DENEY FÖYLERİ EEM0304 SAYISAL ELEKTRONİK LABORATUVARI DENEY FÖYLERİ BİTLİS EREN ÜNİVERSİTESİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ DENEYLER İÇİN GEREKLİ ÖN BİLGİLER Tablo 1: Direnç kod tablosu OSİLOSKOP KULLANIMINA

Detaylı

Hazırlayan: Tugay ARSLAN

Hazırlayan: Tugay ARSLAN Hazırlayan: Tugay ARSLAN ELEKTRİKSEL TERİMLER Nikola Tesla Thomas Edison KONULAR VOLTAJ AKIM DİRENÇ GÜÇ KISA DEVRE AÇIK DEVRE AC DC VOLTAJ Gerilim ya da voltaj (elektrik potansiyeli farkı) elektronları

Detaylı

OSİLOSKOP KULLANIMINA AİT TEMEL BİLGİLER

OSİLOSKOP KULLANIMINA AİT TEMEL BİLGİLER OSİLOSKOP KULLANIMINA AİT TEMEL BİLGİLER Elektriksel işaretlerin ölçülüp değerlendirilmesinde kullanılan aletler içinde en geniş ölçüm olanaklarına sahip olan osiloskop, işaretin dalga şeklinin, frekansının

Detaylı

12. SINIF KONU ANLATIMLI

12. SINIF KONU ANLATIMLI 12. SINIF KONU ANLATIMLI 3. ÜNİTE: DALGA MEKANİĞİ 2. Konu ELEKTROMANYETİK DALGA ETKİNLİK VE TEST ÇÖZÜMLERİ 2 Elektromanyetik Dalga Etkinlik A nın Yanıtları 1. Elektromanyetik spektrum şekildeki gibidir.

Detaylı

DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 3.

DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 3. DÜZCE ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ ELEKTRİK ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ TEMEL HABERLEŞME SİSTEMLERİ TEORİK VE UYGULAMA LABORATUVARI 3. DENEY AÇI MODÜLASYONUNUN İNCELENMESİ-1 Arş. Gör. Osman DİKMEN

Detaylı

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir.

ANALOG ELEKTRONİK - II. Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. BÖLÜM 6 TÜREV ALICI DEVRE KONU: Opampla gerçekleştirilen bir türev alıcı (differantiator) çalışmasını ve özellikleri incelenecektir. GEREKLİ DONANIM: Multimetre (Sayısal veya Analog) Güç Kaynağı: ±12V

Detaylı

OPTİK Işık Nedir? Işık Kaynakları Işık Nasıl Yayılır? Tam Gölge - Yarı Gölge güneş tutulması

OPTİK Işık Nedir? Işık Kaynakları Işık Nasıl Yayılır? Tam Gölge - Yarı Gölge güneş tutulması OPTİK Işık Nedir? Işığı yaptığı davranışlarla tanırız. Işık saydam ortamlarda yayılır. Işık foton denilen taneciklerden oluşur. Fotonların belirli bir dalga boyu vardır. Bazı fiziksel olaylarda tanecik,

Detaylı

A A A A A A A A A A A

A A A A A A A A A A A S 2 FİZİ TESTİ. Bu testte 0 soru vardır. 2. Cevaplarınızı, cevap kâğıdının Fizik Testi için ayrılan kısmına işaretleyiniz.. Aşağıdakilerden hangisi momentum birimidir? joule joule A) B) newton saniye weber

Detaylı

Elektrik Mühendisliğinin Temelleri-I EEM 113

Elektrik Mühendisliğinin Temelleri-I EEM 113 Elektrik Mühendisliğinin Temelleri-I EEM 113 1 1 Terim Terimler, Birimleri ve Sembolleri Formülsel Sembolü Birimi Birim Sembolü Zaman t Saniye s Alan A Metrekare m 2 Uzunluk l Metre m Kuvvet F Newton N

Detaylı

Şekil 5-1 Frekans modülasyonunun gösterimi

Şekil 5-1 Frekans modülasyonunun gösterimi FREKANS MODÜLASYONU (FM) MODÜLATÖRLERİ (5.DENEY) DENEY NO : 5 DENEY ADI : Frekans Modülasyonu (FM) Modülatörleri DENEYİN AMACI :Varaktör diyotun karakteristiğinin ve çalışma prensibinin incelenmesi. Gerilim

Detaylı

1 ALTERNATİF AKIMIN TANIMI

1 ALTERNATİF AKIMIN TANIMI 1 ALTERNATİF AKIMIN TANIMI Alternatif Akımın Tanımı Doğru gerilim kaynağının gerilim yönü ve büyüklüğü sabit olmakta; buna bağlı olarak devredeki elektrik akımı da aynı yönlü ve sabit değerde olmaktadır.

Detaylı

KURANPORTÖR SİSTEMİ MEHMET ŞENLENMİŞ ELEKTRONİK BAŞ MÜHENDİSİ

KURANPORTÖR SİSTEMİ MEHMET ŞENLENMİŞ ELEKTRONİK BAŞ MÜHENDİSİ MEHMET ŞENLENMİŞ ELEKTRONİK BAŞ MÜHENDİSİ Üretim merkezlerinde üretilen elektrik enerjisini dağıtım merkezlerine oradan da kullanıcılara güvenli bir şekilde ulaştırmak için EİH (Enerji İletim Hattı) ve

Detaylı

MEKATRONİĞİN TEMELLERİ TEMEL ELEKTRONİK KAVRAMLARI

MEKATRONİĞİN TEMELLERİ TEMEL ELEKTRONİK KAVRAMLARI MEKATRONİĞİN TEMELLERİ TEMEL ELEKTRONİK KAVRAMLARI KONDANSATÖR Kondansatör iki iletken plaka arasına bir yalıtkan malzeme konarak elde edilen ve elektrik enerjisini elektrostatik enerji olarak depolamaya

Detaylı

Ekran, görüntü sergilemek için kullanılan elektronik araçların genel adıdır.

Ekran, görüntü sergilemek için kullanılan elektronik araçların genel adıdır. Ekran Ekran, görüntü sergilemek için kullanılan elektronik araçların genel adıdır. Ekrandaki tüm görüntüler noktalardan olusur. Ekrandaki en küçük noktaya pixel adı verilir. Pixel sayısı ne kadar fazlaysa

Detaylı

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 5 : IŞIK

ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 5 : IŞIK ÖĞRENME ALANI : FİZİKSEL OLAYLAR ÜNİTE 5 : IŞIK C IŞIĞIN KIRILMASI (4 SAAT) 1 Kırılma 2 Kırılma Kanunları 3 Ortamların Yoğunlukları 4 Işık Işınlarının Az Yoğun Ortamdan Çok Yoğun Ortama Geçişi 5 Işık Işınlarının

Detaylı

ÖLÇÜ TRANSFORMATÖRLERİ

ÖLÇÜ TRANSFORMATÖRLERİ 1 ÖLÇÜ TRANSFORMATÖRLERİ Normalde voltmetrelerle en fazla 1000V a kadar gerilimler ölçülebilir. Daha yüksek gerilimlerde; Voltmetrenin çekeceği güç artar. Yüksek gerilimden kaynaklanan kaçak akımların

Detaylı

Şekil 1: Zener diyot sembol ve görünüşleri. Zener akımı. Gerilim Regülasyonu. bölgesi. Şekil 2: Zener diyotun akım-gerilim karakteristiği

Şekil 1: Zener diyot sembol ve görünüşleri. Zener akımı. Gerilim Regülasyonu. bölgesi. Şekil 2: Zener diyotun akım-gerilim karakteristiği ZENER DİYOT VE AKIM-GERİLİM KARAKTERİSTİĞİ Küçük sinyal diyotları, delinme gerilimine yakın değerlerde hasar görebileceğinden, bu değerlerde kullanılamazlar. Buna karşılık, Zener diyotlar delinme gerilimi

Detaylı

ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini

ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini ÜNİTE 5 KLASİK SORU VE CEVAPLARI (TEMEL ELEKTRONİK) Transformatörün tanımını yapınız. Alternatif akımın frekansını değiştirmeden, gerilimini alçaltmaya veya yükseltmeye yarayan elektro manyetik indüksiyon

Detaylı

ELEKTRİK MOTORLARI VE SÜRÜCÜLER ELEKTRİK MOTORLARINDA DENETİM PRENSİPLERİ

ELEKTRİK MOTORLARI VE SÜRÜCÜLER ELEKTRİK MOTORLARINDA DENETİM PRENSİPLERİ BÖLÜM 2 ELEKTRİK MOTORLARINDA DENETİM PRENSİPLERİ 2.1.OTOMATİK KONTROL SİSTEMLERİNE GİRİŞ Otomatik kontrol sistemleri, günün teknolojik gelişmesine paralel olarak üzerinde en çok çalışılan bir konu olmuştur.

Detaylı

DENEY 8: BOBİNLİ DEVRELERİN ANALİZİ

DENEY 8: BOBİNLİ DEVRELERİN ANALİZİ A. DENEYİN AMACI : Bobin indüktansının deneysel olarak hesaplanması ve basit bobinli devrelerin analizi. B. KULLANILACAK ARAÇ VE MALZEMELER : 1. AC güç kaynağı,. Değişik değerlerde dirençler ve bobin kutusu.

Detaylı

GÜNEŞ PİLLERİ (FOTOVOLTAİK PİLLER) I. BÖLÜM

GÜNEŞ PİLLERİ (FOTOVOLTAİK PİLLER) I. BÖLÜM GÜNEŞ PİLLERİ (FOTOVOLTAİK PİLLER) I. BÖLÜM Prof. Dr. Olcay KINCAY Y. Doç. Dr. Nur BEKİROĞLU Y. Doç. Dr. Zehra YUMURTACI İ ç e r i k Genel bilgi ve çalışma ilkesi Güneş pili tipleri Güneş pilinin elektriksel

Detaylı

Bölüm 14 Temel Opamp Karakteristikleri Deneyleri

Bölüm 14 Temel Opamp Karakteristikleri Deneyleri Bölüm 14 Temel Opamp Karakteristikleri Deneyleri 14.1 DENEYİN AMACI (1) Temel OPAMP karakteristiklerini anlamak. (2) OPAMP ın ofset gerilimini ayarlama yöntemini anlamak. 14.2 GENEL BİLGİLER 14.2.1 Yeni

Detaylı

12. SINIF KONU ANLATIMLI

12. SINIF KONU ANLATIMLI 12. SINIF KONU ANLATIMLI 3. ÜNİTE: DALGA MEKANİĞİ 2. Konu ELEKTROMANYETİK DALGA ETKİNLİK VE TEST ÇÖZÜMLERİ 2 Elektromanyetik Dalga Testin 1 in Çözümleri 1. B manyetik alanı sabit v hızıyla hareket ederken,

Detaylı

Alternatif Akım Devreleri

Alternatif Akım Devreleri Alternatif akım sürekli yönü ve şiddeti değişen bir akımdır. Alternatif akımda bazı devre elemanları (bobin, kapasitör, yarı iletken devre elemanları) doğruakım devrelerinde olduğundan farklı davranırlar.

Detaylı

ALTERNATİF AKIMIN TANIMI

ALTERNATİF AKIMIN TANIMI ALTERNATİF AKIM ALTERNATİF AKIMIN TANIMI Belirli üreteçler sürekli kutup değiştiren elektrik enerjisi üretirler. (Örnek: Döner elektromekanik jeneratörler) Voltajın zamana bağlı olarak sürekli yön değiştirmesi

Detaylı

ELEKTRONİK DEVRE ELEMANLARI

ELEKTRONİK DEVRE ELEMANLARI ELEKTRONİK DEVRE ELEMANLARI 1. Direnç Renk Kodları Direnç Renk Tablosu Renk Sayı Çarpan Tolerans SİYAH 0 1 KAHVERENGİ 1 10 ± %1 KIRMIZI 2 100 ± %2 TURUNCU 3 1000 SARI 4 10.000 YEŞİL 5 100.000 ± %0.5 MAVİ

Detaylı

Deneyle İlgili Ön Bilgi:

Deneyle İlgili Ön Bilgi: DENEY NO : 4 DENEYİN ADI :Transistörlü Akım ve Gerilim Kuvvetlendiriciler DENEYİN AMACI :Transistörün ortak emetör kutuplamalı devresini akım ve gerilim kuvvetlendiricisi, ortak kolektörlü devresini ise

Detaylı

ANALOG FİLTRELEME DENEYİ

ANALOG FİLTRELEME DENEYİ ELEKTRİK-ELEKTRONİK MÜHENDİSLİĞİ BÖLÜMÜ ANALOG FİLTRELEME DENEYİ Ölçme ve telekomünikasyon tekniğinde sık sık belirli frekans bağımlılıkları olan devreler gereklidir. Genellikle belirli bir frekans bandının

Detaylı

EGE ÜNİVERSİTESİ EGE MYO MEKATRONİK PROGRAMI

EGE ÜNİVERSİTESİ EGE MYO MEKATRONİK PROGRAMI EGE ÜNİVERSİTESİ EGE MYO MEKATRONİK PROGRAMI SENSÖRLER VE DÖNÜŞTÜRÜCÜLER SEVİYENİN ÖLÇÜLMESİ Seviye Algılayıcılar Şamandıra Seviye Anahtarları Şamandıralar sıvı seviyesi ile yukarı ve aşağı doğru hareket

Detaylı

T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ SINIF DEĞERLENDİRME SINAVI

T.C. MİLLÎ EĞİTİM BAKANLIĞI ÖLÇME, DEĞERLENDİRME VE SINAV HİZMETLERİ GENEL MÜDÜRLÜĞÜ SINIF DEĞERLENDİRME SINAVI T.C. MİLLÎ EĞİTİM BAKANLIĞI 05-06. SINIF DEĞERLENDİRME SINAVI - 4 05-06.SINIF FEN BİLİMLERİ TESTİ (LS ) DEĞERLENDİRME SINAVI - 4 Adı ve Soyadı :... Sınıfı :... Öğrenci Numarası :... SORU SAISI : 80 SINAV

Detaylı

2- Tristör ile yük akımı değiştirilerek ayarlı yükkontrolü yapılabilir.

2- Tristör ile yük akımı değiştirilerek ayarlı yükkontrolü yapılabilir. Tristörlü Redresörler ( Doğrultmaçlar ) : Alternatif akımı doğru akıma çeviren sistemlere redresör denir. Redresörler sanayi için gerekli olan DC gerilimin elde edilmesini sağlar. Büyük akım ve gerilimlerin

Detaylı

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir.

Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. ALTERNATiF AKIM Alternatif Akım; Zaman içerisinde yönü ve şiddeti belli bir düzen içerisinde değişen akıma alternatif akım denir. Doğru akım ve alternatif akım devrelerinde akım yönleri şekilde görüldüğü

Detaylı

BMT104 ELEKTRONİK DEVRELER DERSİ LABORATUVAR UYGULAMALARI

BMT104 ELEKTRONİK DEVRELER DERSİ LABORATUVAR UYGULAMALARI T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT104 ELEKTRONİK DEVRELER DERSİ LABORATUVAR UYGULAMALARI CİHAZLARIN TANITIMI ve SİNYALLER Doç. Dr. İbrahim YÜCEDAĞ Arş. Gör.

Detaylı

ELM 331 ELEKTRONİK II LABORATUAR DENEY FÖYÜ

ELM 331 ELEKTRONİK II LABORATUAR DENEY FÖYÜ ELM 33 ELEKTRONİK II LABORATUAR DENEY ÖYÜ DENEY 2 Ortak Emitörlü Transistörlü Kuvvetlendiricinin rekans Cevabı. AMAÇ Bu deneyin amacı, ortak emitörlü (Common Emitter: CE) kuvvetlendiricinin tasarımını,

Detaylı

OPTİK. Işık Nedir? Işık Kaynakları

OPTİK. Işık Nedir? Işık Kaynakları OPTİK Işık Nedir? Işığı yaptığı davranışlarla tanırız. Işık saydam ortamlarda yayılır. Işık foton denilen taneciklerden oluşur. Fotonların belirli bir dalga boyu vardır. Bazı fiziksel olaylarda tanecik,

Detaylı

Elektrik Devre Lab

Elektrik Devre Lab 2010-2011 Elektrik Devre Lab. 2 09.03.2011 Elektronik sistemlerde işlenecek sinyallerin hemen hepsi düşük genlikli, yani zayıf sinyallerdir. Elektronik sistemlerin pek çoğunda da yeterli derecede yükseltilmiş

Detaylı

VAROL, A.: Televizyon Yayın Sistemi, Konutbirlik, Sayı: 108, Nisan 1993, S:22-23 3.4. TELEVİZYON YAYIN SİSTEMİ

VAROL, A.: Televizyon Yayın Sistemi, Konutbirlik, Sayı: 108, Nisan 1993, S:22-23 3.4. TELEVİZYON YAYIN SİSTEMİ 3.4. TELEVİZYON YAYIN SİSTEMİ Asaf VAROL Fırat Üniversitesi Elektronik-Bilgisayar Eğitimi Bölüm Başkanı Uydu sinyalini almak için kullanılan bir sisteme ait çanak ile çok düşük seviyedeki sinyaller mümkün

Detaylı

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7

T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 T.C. DÜZCE ÜNİVERSİTESİ TEKNOLOJİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ BMT103 ELEKTRİK DEVRE TEMELLERİ DERSİ LABORATUVARI DENEY NO: 7 KONDANSATÖRLER VE BOBİNLER Doç. Dr. İbrahim YÜCEDAĞ Arş. Gör. Sümeyye

Detaylı

Doğru Akım (DC) Makinaları

Doğru Akım (DC) Makinaları Doğru Akım (DC) Makinaları Doğru akım makinaları motor veya jeneratör olarak kullanılabilir. Genellikle DC makinalar motor olarak kullanılır. En büyük avantajları hız ve tork ayarının kolay yapılabilmesidir.

Detaylı

AET 113 DOĞRU AKIMI DEVRE ANALİZİ 1. HAFTA

AET 113 DOĞRU AKIMI DEVRE ANALİZİ 1. HAFTA AET 113 DOĞRU AKIMI DEVRE ANALİZİ 1. HAFTA İçindekiler Temel Kavramlar Devre Elemanları Elektrik Devre Kaynakları GERİLİM (v) Pozitif ve negatif yük birbirinden ayrıldığı zaman enerji harcanır. Gerilim,

Detaylı

ASENKRON MOTOR ASENKRON (İNDÜKSİYON) MOTOR. Genel

ASENKRON MOTOR ASENKRON (İNDÜKSİYON) MOTOR. Genel Genel ASENKRON (İNDÜKSİYON) MOTOR Asenkron makinalar motor ve jeneratör olarak kullanılabilmekle birlikte, jeneratör olarak kullanım rüzgar santralleri haricinde yaygın değildir. Genellikle sanayide kullanılan

Detaylı

TEMEL ELEKTRİK-ELEKTRONİK DERSİ SORU BANKASI

TEMEL ELEKTRİK-ELEKTRONİK DERSİ SORU BANKASI TEMEL ELEKTRİK-ELEKTRONİK DERSİ SORU BANKASI TEMEL ELEKTRİK ELEKTRONİK 1 1. Atomun çekirdeği nelerden oluşur? A) Elektron B) Proton C) Proton +nötron D) Elektron + nötron 2. Elektron hangi yükle yüklüdür?

Detaylı

YÜKSELTEÇLER Ö Ğ R. G Ö R. D R. E S R A B İ L A L Ö N D E R

YÜKSELTEÇLER Ö Ğ R. G Ö R. D R. E S R A B İ L A L Ö N D E R Ö Ğ R. G Ö R. D R. E S R A B İ L A L Ö N D E R 2 0 1 5 RF YÜKSELTEÇLERİ SINIFLANDIRMA 1. Dar bant akortlu RF yükselteçleri 2. Geniş bant akortlu RF yükselteçleri 3. Entegre devreli RF yükselteçleri IF

Detaylı

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu

Hareket halindeki elektrik yüklerinin oluşturduğu bir sistem düşünelim. Belirli bir bölgede net bir yük akışı olduğunda, akımın mevcut olduğu Akım ve Direnç Elektriksel olaylarla ilgili buraya kadar yaptığımız tartışmalar durgun yüklerle veya elektrostatikle sınırlı kalmıştır. Şimdi, elektrik yüklerinin hareket halinde olduğu durumları inceleyeceğiz.

Detaylı

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak.

EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ. 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. EŞ POTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ: 1. Zıt yükle yüklenmiş iki iletkenin oluşturduğu eş potansiyel çizgileri araştırıp bulmak. 2. Bu eş potansiyel çizgileri kullanarak elektrik alan çizgilerinin

Detaylı

AŞIRI AKIM KORUMA RÖLELERİ Trafolarda Meydana Gelen Aşırı Akımların Nedenleri

AŞIRI AKIM KORUMA RÖLELERİ Trafolarda Meydana Gelen Aşırı Akımların Nedenleri Koruma Röleleri AŞIRI AKIM KORUMA RÖLELERİ Trafolarda Meydana Gelen Aşırı Akımların Nedenleri Trafolarda meydana gelen arızaların başlıca nedenleri şunlardır: >Transformatör sargılarında aşırı yüklenme

Detaylı

20.03.2012. İlk elektronik mikroskobu Almanya da 1931 yılında Max Knoll ve Ernst Ruska tarafından icat edilmiştir.

20.03.2012. İlk elektronik mikroskobu Almanya da 1931 yılında Max Knoll ve Ernst Ruska tarafından icat edilmiştir. SERKAN TURHAN 06102040 ABDURRAHMAN ÖZCAN 06102038 1878 Abbe Işık şiddetinin sınırını buldu. 1923 De Broglie elektronların dalga davranışına sahip olduğunu gösterdi. 1926 Busch elektronların magnetik alanda

Detaylı

DENEY 3. Tek Yan Bant Modülasyonu

DENEY 3. Tek Yan Bant Modülasyonu DENEY 3 Tek Yan Bant Modülasyonu Tek Yan Bant (TYB) Modülasyonu En basit genlik modülasyonu, geniş taşıyıcılı çift yan bant genlik modülasyonudur. Her iki yan bant da bilgiyi içerdiğinden, tek yan bandı

Detaylı

AC YÜKSEK GERİLİMLERİN ÜRETİLMESİ

AC YÜKSEK GERİLİMLERİN ÜRETİLMESİ AC İN Genel olarak yüksek alternatif gerilimler,yüksek gerilim generatörleri ve yüksek gerilim transformatörleri yardımıyla üretilir. Genellikle büyük güçlü yüksek gerilim generatörleri en çok 10 ile 20

Detaylı

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜÇ ELEKTRONİĞİ 3. HAFTA

A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜÇ ELEKTRONİĞİ 3. HAFTA A.Ü. GAMA MYO. Elektrik ve Enerji Bölümü GÜÇ ELEKTRONİĞİ 3. HAFTA 1 İçindekiler Tristör Triyak 2 TRİSTÖR Tristörler güç elektroniği devrelerinde hızlı anahtarlama görevinde kullanılan, dört yarı iletken

Detaylı

YTÜ Makine Mühendisliği Bölümü Termodinamik ve Isı Tekniği Anabilim Dalı Özel Laboratuvar Dersi Radyasyon (Işınım) Isı Transferi Deneyi Çalışma Notu

YTÜ Makine Mühendisliği Bölümü Termodinamik ve Isı Tekniği Anabilim Dalı Özel Laboratuvar Dersi Radyasyon (Işınım) Isı Transferi Deneyi Çalışma Notu YTÜ Makine Mühendisliği Bölümü Termodinamik ve Isı Tekniği Anabilim Dalı Özel Laboratuvar Dersi Radyasyon (Işınım) Isı Transferi Deneyi Çalışma Notu Laboratuar Yeri: E1 Blok Termodinamik Laboratuvarı Laboratuar

Detaylı