G( q ) yer çekimi matrisi;

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "G( q ) yer çekimi matrisi;"

Transkript

1 RPR (DÖNEL PRİZATİK DÖNEL) EKLE YAPISINA SAHİP BİR ROBOTUN DİNAİK DENKLELERİNİN VEKTÖR-ATRİS FORDA TÜRETİLESİ Aytaç ALTAN Osmancık Ömer Derindere eslek Yüksekokulu Hitit Üniversitesi ÖZET Bu çalışmada, RPR (Dönel-Prizmatik-Dönel) eklem yapısına sahip robot kolunun dinamik denklemleri türetilmiştir. Robot kolunun link uzunlukları birinci link için L,ikinci link için L, üçüncü link için L olarak alınmıştır. Link kütleleri ise link uçlarında nokta kütle olarak sırasıyla m, m ve m olarak alınmıştır. Dinamik denklemeler vektör-matris formunda türetilmiş, robot kolunun dinamik denklem ifadesi içerisinde yer alan atalet, yer çekimi, coriolis ve merkezkaç vektörleri matris formunda hesaplanmıştır. Anahtar Kelimeler: RPR, robot dinamiği, robot kolu, robot, dinamik denklem. GİRİŞ Bir robot kolunun dinamiği, robot kolunun kendi hareketinden oluşan eşitliklerin matematiksel olarak belirli bir formda ifade edilmesidir. Bir robot kolunun hareketinden üretilen dinamik eşitlikler, robot kolunun dinamik davranışını tanımlayan matematiksel ifadelerden oluşmaktadır. Robot kolunun dinamik analizi, eklemlere tahrik elemanları tarafından uygulanan moment veya kuvvet büyüklükleri ile robot kolunun zamana göre konumu, hızı ve ivmesi arasındaki ilişkilerin incelenmesi olarak tanımlanabilir. Genel olarak bir robot kolunun performansı, etkili kontrol algoritmasının ve uygun dinamik modelinin elde edilmesine bağlıdır. RPR eklem yapısına sahip robotun dinamik denklemleri, kinetik ve potansiyel enerji farkından yararlanan Langrange denklemi kullanılarak sade şekilde modellenmiştir. RPR eklem yapısına sahip robotun dinamik denklemi; üç kolun toplam kinetik enerjisi ile toplam potansiyel enerjisi arasındaki farkın, dönel eklemler için eklem açısı, prizmatik eklemler için link uzunluğunu ifade eden değişkenlere göre kısmi türevlerinden faydalanılarak bulunmuştur. Söz konusu robotun dinamik denklemi içerisinde yer alan ( q ) atalet matrisi; ( q) V ( q, q& ) coriolis ve merkezkaç matrisi; V V ( q, q) V V () & () G( q ) yer çekimi matrisi; G G( q) G G yapıda olacaktır. (4). RPR EKLE YAPISINA SAHİP ROBOTUN GENEL DİNAİK DENKLE İFADESİ RPR eklem yapısına sahip Şekil de gösterilen robotun genel dinamik denklemi vektör-matris formda aşağıda verilmiştir. n τ f ( q) q&& + V ( q, q& ) + G( q) n () Şekil : RPR eklem yapısına sahip robot kolu Sistemin link değişkenleri q [ θ d θ T şeklinde τ [ n f n T verilmektedir. Elde edilecek tork ifadesi şeklinde olacaktır. 59

2 .. RPR Eklem Yapısına Sahip Robot Kolunun Kinetik ve Potansiyel Enerji Denklemlerinin Çıkarılması Robot kolunun link uzunlukları birinci link için L, ikinci link için L, üçüncü link için L olarak alınmıştır. Link kütleleri ise link uçlarında nokta kütle olarak sırasıyla m, m ve m olarak alınmıştır. K m v K ml & θ (7) P m gy P m gl cosθ (8) nci link için; ω & θ (9) x d cosθ L sinθ p (0) y L cosθ + d sinθ () v ( x& ) + ( y& ) () v cos θ cos θθ& d & ( L cosθ + d sin θ) + & θ ( L cosθ + d sin θ) + sin θ + sin θθ& ( L sinθ + d cos θ ) + & θ ( L sinθ + d cos θ ) K m v () K m L & θ d & + & θ ( L + d (4) Şekil : RPR eklem yapısına sahip robot kolunun koordinat sistemine yerleştirilmesi Linklerin atalet momentleri 0 olarak kabul edildiğinde, x L cosα L cos(90 θ) x L sinθ (5) y L sinα L sin(90 θ ) y L cosθ (6) xa d cosθ (7) y d sinθ (8) A x xa x x d cosθ L sinθ (9) y y + y y L cosθ + d sinθ (0) A xb L cos( θ + θ) () y L sin( θ + θ ) () B x x + xb x d cosθ L sinθ + L cos( θ + θ) () y y + y y L cosθ + d sinθ + L sin( θ + θ ) (4) B P m gy m g( L cosθ + d sin θ ) (5) üncü link için; ω & θ + & θ (6) x d cosθ L sinθ + L cos( θ + θ) (7) p y L cosθ + d sinθ + L sin( θ + θ) v ( x& ) + ( y& ) (8) v L & θ d & + & θ ( L + d ) L sin θ ( & θ + & θ) + L ( & θ + & θ & θ )( L sinθ + d cos θ ) + L ( & θ + & θ ) K m v (9) (0) inci link için; ω & θ (5) v ω L & θ L (6) olacaktır. () () 60

3 .. RPR Eklem Yapısına Sahip Robotun Toplam Kinetik ve Potansiyel Enerjisi RPR eklem yapısına sahip robotun toplam kinetik ve potansiyel enerjisi, her link için hesaplanan kinetik ve potansiyel enerjilerinin toplamı olarak ifade edilir. Toplam kinetik ve potansiyel enerji aşağıdaki gibi elde edilir. K K + K + K () K m L & θ + m L & θ d & + & θ ( L d + + m [ L & θ d & + & θ ( L + d ) L sin θ ( & θ + & θ) + L ( & θ + & θθ& )( L sinθ + d cos θ ) + L ( & θ + & θ ) (4) P P + P + P (5) P m gl cos θ + m g( L cosθ + d sin θ ) [ cosθ sinθ sin( θ θ ) + m g L + d + L + (6) d L ml && θ ( m + m) L & + ( m + m )( L + d )&& θ dt & θ + ( m + m ) d & θ m L sinθ & m L cosθ & θ + ml cos θ + & θ( L cosθ d sin θ( & θ + & θ) + m L ( L sinθ + d cos θ )(&& θ + && θ ) + m L (&& θ + && θ ) L m gl sin θ mg( d cosθ L sin θ) θ [ cosθ sinθ cos( θ θ ) m g d L + L + (4) (4) Denklem (40), (4) ve (4) denklem (9) da yerlerine konulduğunda inci link için elde edilen tork ifadesi aşağıdaki şekilde olur. n ml + ( m + m )( L + d ) + m L ( L sinθ + d cos θ) + m L && θ + [ ( m + m ) L m L sin θ & + m L ( L sinθ + d cos θ) + ml && θ + ( m + m ) d & θ + m L cos θ & θ d & + m L ( L cosθ d sin θ)( & θθ& + & θ m gl sin θ + m g( d cosθ L sin θ ) + m g d cosθ L sinθ + L cos( θ + θ ).. Lagrange-Euler Denklemi ile Dinamik odelin Çıkarılması RPR eklem yapısına sahip robotun toplam kinetik enerjisi ile toplam potansiyel enerjisi arasındaki farkı temsil eden Langrange fonksiyon ifadesi; L K P (7) L m L & θ + m L & θ d & + & θ ( L d + + m [ L & θ d & + & θ ( L + d ) L sin θ ( & θ + & θ) + L ( & θ + & θ & θ )( L sinθ + d cos θ ) + L ( & θ + & θ ) m gl cos θ m g( L cosθ + d sin θ ) m g L cosθ + d sinθ + L sin( θ + θ ) (8) nci link için elde edilecek kuvvet ifadesi; f dt d L ( m + m ) ( m + m) L & θ ml sin θ( & θ + & θ) d L ( m + m) & ( m + m) L && θ ml sin θ( && θ + && θ) dt m L cos θ ( & θ & θ + & θ ) L ( m + m) d & θ + ml cos θ( & θ + & θ & θ ) ( m + m) g sinθ d (4) (44) (45) (46) şeklinde elde edilir.. RPR EKLE YAPISINA SAHİP ROBOTUN TOPLA TORK VE KUVVET İFADESİNİN ELDE EDİLESİ inci link için elde edilecek tork ifadesi; n dt & θ θ (9) Denklem (44), (45) ve (46) denklem (4) de yerlerine konulduğunda nci link için elde edilen kuvvet ifadesi aşağıdaki şekilde olur: f ( m + m ) L m L sin θ && θ + ( m + m ) & + ( m L sin θ )&& θ + ml cos θ( & θ + & θ) ( m + m ) d & θ + + [( m m ) gsinθ üncü link için elde edilecek tork ifadesi; L m L & θ ( m + m ) Ld & + ( m + m )( L + d ) & θ m L sinθ d & & θ + m L ( L sinθ + d cos θ )( & θ + & θ ) + m L ( & θ + & θ ) (40) n dt & θ θ L m L sin θ + m L ( L sinθ + d cos θ) & θ + m L (& θ + & θ) & θ (47) (48) 6

4 d L ml sinθ& ml cosθ & θ d & dt & θ (49) + ml cos θ & θ d & + ml ( L cosθ d sin θ) & θ & θ + m L ( L sinθ + d cos θ )&& θ + m L (&& θ + && θ ) L m L cos θ ( & θ + & θ) + ml ( & θ + & θθ& )( L cosθ d sin θ) (50) θ m gl cos( θ + θ ) Denklem (48), (49) ve (50) denklem (47) de yerlerine konulduğunda üncü link için elde edilen tork ifadesi aşağıdaki şekilde olur: n m L ( L sinθ + d cos θ) + m L && θ + ( ml sin θ) & + ( ml )&& θ + m L cos θ & θ m L ( L cosθ d sin θ) & θ + m gl cos( θ + θ) 4. RPR EKLE YAPISINA SAHİP ROBOTUN DİNAİK DENKLE BİLEŞENLERİ Elde edilen n, f ve ( q) n ifadelerinden; ml + ( m + m )( L + d ) + ml ( L sin θ + d cos θ ) + ml ( m + m ) L m L sinθ m L ( L sinθ + d cos θ ) + m L ( m + m ) L m L sinθ m + m m L sinθ m L ( L sinθ + d cos θ ) + m L m L sinθ m L, ( q ) matrisi simetriktir. ve olduğundan V ( q, q& ) V V V V ( m + m) d & θ + ml cos θθ& + ml( Lcos θ d sin θ )( && θθ + & θ ) V m L cos θ ( & θ + & θ ) ( m + m ) d & θ V m L cos θ & θ m L ( L cosθ d sin θ ) & θ G( q) G G G G mgl sin θ + mg( d cos θ Lsin θ) + mg d cos θ Lsin θ + Lcos( θ + θ ) G ( m + m ) g sinθ G m gl cos( θ + θ ) 5. VEKTÖR-ATRİS FORDA TÜRETİLEN DİNAİK DENKLELER İLE PD (ORANSAL VE TÜREVSEL) HESAPLANIŞ TORK DENETLEYİCİSİ TASARII Vektör-matris formda türetilen RPR eklem yapısına sahip robot kolunun dinamik denklem bileşenlerinden atalet coriolis ve merkezkaç matrisi ve yer çekimi matrisinde yer alan değişkenlere değer ataması yapılarak ATLAB ortamında robot kolu ve kontrolör kısmına ilişkin yazılan program ile deneyleri yapılmış ve tasarlanan sistemin istenilen yörüngeleri takip ettiği gözlemlenmiştir. Yapılan simülasyonda RPR eklem yapısına sahip robotun; kütleleri m kg, m,5kg ve m 0,5kg alınmış, link uzunlukları L 0,75m ve L 0,5 alınmıştır. Eklem değişkenlerinin izlemesi istenilen yörüngeler; θ d 0sint, d d sint ve θ d 5cost olarak belirlenmiştir. Vektör-matris formda türetilen RPR eklem yapısına sahip robot kolunun dinamik denklemleri kullanılarak tasarlanan hesaplanmış tork denetleyicisinin takip hataları ve eklem değişkenlerine ilişkin ATLAB simülasyon sonuçları aşağıda sunulmuştur. Elde edilen sonuç grafiklerinden de anlaşılacağı gibi, RPR eklem yapısına sahip robot kolunun dinamik denklemleri kullanılarak ATLAB ortamında tasarımı gerçekleştirilen PD hesaplanmış tork denetleyicisinin yukarıda belirtilen yörüngeleri takip ettiği gözlemlenmiştir. Bu gözlem neticesi, vektör-matris formda türetilen RPR eklem yapısına sahip robotun dinamik denklemlerinin doğruluğunu da teyit etmektedir. 6

5 Takip Hataları e (t), e (t) ve e (t) (rad ) Eklem Değişkenleri θ (t), d (t) ve θ (t) 6. SONUÇLAR RPR (Dönel-Prizmatik-Dönel) eklem yapısına sahip robot kolunun dinamik denklem bileşenleri; atalet coriolis ve merkezkaç matrisi ve yer çekimi matrisi vektör matris formunda türetilmiş ve RPR robotun genel dinamik denklem ifadesi tork eşitliği yardımıyla denklem () ifade edildiği şekilde tanımlanmıştır. Bir robot kolunun performansı kontrol algoritması ve dinamik denklem ifadelerine doğrudan bağlı olduğundan, performansı maksimize edecek en uygun dinamik modelin elde edilmesi robot kolunun kontrolünde önemli rol oynamaktadır. Denklem () de ifade edilen dinamik denklem ifadesi için alındığında ifadeler vektör matris formunda açık bir şekilde görülecektir. Elde edilen dinamik denklem ifadeleri vasıtasıyla, sistemin hesaplanmış tork denetleyicisi ve kontrolör kısmı daha rahat kontrol edilebilir ve sistemin diğer katmanları için oluşturulacak uygun tasarıma olumlu yönde katkı sağlayabilir. 7. KAYNAKLAR [ Lewis, F.L., Dawson, D.. and Abdallah C.T., ``Robot anipulator Control Theory and Practice'', arcel Dekker, Inc., New York-Basel, 004. [ Bingül, Z., ve Küçük, S., Robot Dinamiği ve Kontrolü, Birsen Yayınevi, İstanbul,

Fizik 101: Ders 23 Gündem

Fizik 101: Ders 23 Gündem Fizik 101: Ders 3 Gündem Basit Harmonik Hereket Yatay yay ve kütle Sinus ve cosinus lerin anlamı Düşey yay ve kütle Enerji yaklaşımı Basit sarkaç Çubuk sarkaç Basit Harmonik Hareket (BHH) Ucunda bir kütle

Detaylı

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi 1) Giriş Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Pendulum Deneyi.../../2015 Bu deneyde amaç Linear Quadratic Regulator (LQR) ile döner ters sarkaç (rotary inverted

Detaylı

KATI CİSİMLERİN BAĞIL İVME ANALİZİ:

KATI CİSİMLERİN BAĞIL İVME ANALİZİ: KATI CİSİMLERİN BAĞIL İVME ANALİZİ: Genel düzlemsel hareket yapmakta olan katı cisim üzerinde bulunan iki noktanın ivmeleri aralarındaki ilişki, bağıl hız v A = v B + v B A ifadesinin zamana göre türevi

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 17 Rijit Cismin Düzlemsel Kinetiği; Kuvvet ve İvme Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

5 SERBESTLİK DERECELİ ROBOT KOLUNUN KİNEMATİK HESAPLAMALARI VE PID İLE YÖRÜNGE KONTROLÜ

5 SERBESTLİK DERECELİ ROBOT KOLUNUN KİNEMATİK HESAPLAMALARI VE PID İLE YÖRÜNGE KONTROLÜ 5 SERBESTLİK DERECELİ ROBOT KOLUNUN KİNEMATİK HESAPLAMALARI VE PID İLE YÖRÜNGE KONTROLÜ Fatih Pehlivan * Arif Ankaralı Karabük Üniversitesi Karabük Üniversitesi Karabük Karabük Özet Bu çalışmada, öncelikle

Detaylı

Fizik 101: Ders 17 Ajanda

Fizik 101: Ders 17 Ajanda izik 101: Ders 17 Ajanda Dönme hareketi Yön ve sağ el kuralı Rotasyon dinamiği ve tork Örneklerle iş ve enerji Dönme ve Lineer Kinematik Karşılaştırma açısal α sabit 0 t 1 0 0t t lineer a sabit v v at

Detaylı

ELEKTRİKSEL POTANSİYEL

ELEKTRİKSEL POTANSİYEL ELEKTRİKSEL POTANSİYEL Elektriksel Potansiyel Enerji Elektriksel potansiyel enerji kavramına geçmeden önce Fizik-1 dersinizde görmüş olduğunuz iş, potansiyel enerji ve enerjinin korunumu kavramları ile

Detaylı

Newton un II. yasası. Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır.

Newton un II. yasası. Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır. Newton un II. yasası Bir cismin ivmesi, onun üzerine etki eden bileşke kuvvetle doğru orantılı ve kütlesi ile ters orantılıdır. Bir cisme F A, F B ve F C gibi çok sayıda kuvvet etkiyorsa, net kuvvet bunların

Detaylı

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır.

Newton un ikinci yasası: Bir cisim ivmesi cisim üzerine etki eden toplam kuvvet ile doğru orantılı cismin kütlesi ile ters orantılıdır. Bölüm 5: Hareket Yasaları(Özet) Önceki bölümde hareketin temel kavramları olan yerdeğiştirme, hız ve ivme tanımlanmıştır. Bu bölümde ise hareketli cisimlerin farklı hareketlerine sebep olan etkilerin hareketi

Detaylı

Fizik 101: Ders 21 Gündem

Fizik 101: Ders 21 Gündem Fizik 101: Ders 21 Gündem Yer çekimi nedeninden dolayı tork Rotasyon (özet) Statik Bayırda bir araba Statik denge denklemleri Örnekler Asılı tahterevalli Asılı lamba Merdiven Ders 21, Soru 1 Rotasyon Kütleleri

Detaylı

Gravite alanı belirlemede modern yaklaşımlar

Gravite alanı belirlemede modern yaklaşımlar Gravite alanı belirlemede modern yaklaşımlar Lisansüstü Ders Notları Aydın ÜSTÜN Selçuk Üniversitesi Harita Mühendisliği austun@selcuk.edu.tr Konya, 2016 A. Üstün (Selçuk Üniversitesi) Gravite alanı belirleme

Detaylı

HARRAN ÜNİVERSİTESİ 2016 YILI ZİRAAT FAKÜLTESİ FİNAL SINAVI SORU ÖRNEKLERİ

HARRAN ÜNİVERSİTESİ 2016 YILI ZİRAAT FAKÜLTESİ FİNAL SINAVI SORU ÖRNEKLERİ HARRAN ÜNİVERSİTESİ 016 YILI ZİRAAT FAKÜLTESİ FİNAL SINAVI SORU ÖRNEKLERİ Soru 1 - Bir tekerlek, 3.5 rad/ s ' lik sabit bir açısal ivmeyle dönüyor. t=0'da tekerleğin açısal hızı rad/s ise, (a) saniyede

Detaylı

Bölüm-4. İki Boyutta Hareket

Bölüm-4. İki Boyutta Hareket Bölüm-4 İki Boyutta Hareket Bölüm 4: İki Boyutta Hareket Konu İçeriği 4-1 Yer değiştirme, Hız ve İvme Vektörleri 4-2 Sabit İvmeli İki Boyutlu Hareket 4-3 Eğik Atış Hareketi 4-4 Bağıl Hız ve Bağıl İvme

Detaylı

Kuvvet. Kuvvet. Newton un 1.hareket yasası Fizik 1, Raymond A. Serway; Robert J. Beichner Editör: Kemal Çolakoğlu, Palme Yayınevi

Kuvvet. Kuvvet. Newton un 1.hareket yasası Fizik 1, Raymond A. Serway; Robert J. Beichner Editör: Kemal Çolakoğlu, Palme Yayınevi Kuvvet izik 1, Raymond A. Serway; Robert J. Beichner Editör: Kemal Çolakoğlu, Palme Yayınevi 2 Kuvvet Kuvvet ivmelenme kazandırır. Kuvvet vektörel bir niceliktir. Kuvvetler çift halinde bulunur. Kuvvet

Detaylı

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK

1. STATİĞE GİRİŞ 1.1 TANIMLAR MEKANİK RİJİT CİSİMLER MEKANİĞİ ŞEKİL DEĞİŞTİREN CİSİMLER AKIŞKANLAR MEKANİĞİ DİNAMİK STATİK STATİK Ders Notları Kaynaklar: 1.Engineering Mechanics: Statics, 9e, Hibbeler, Prentice Hall 2.Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige 1. STATİĞE GİRİŞ 1.1 TANIMLAR

Detaylı

KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ

KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ KİNETİK ENERJİ, İŞ-İŞ ve ENERJİ PRENSİBİ Amaçlar 1. Kuvvet ve kuvvet çiftlerinin yaptığı işlerin tanımlanması, 2. Rijit cisme iş ve enerji prensiplerinin uygulanması. UYGULAMALAR Beton mikserinin iki motoru

Detaylı

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü

DİNAMİK - 7. Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi. Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü DİNAMİK - 7 Yrd. Doç. Dr. Mehmet Ali Dayıoğlu Ankara Üniversitesi Ziraat Fakültesi Tarım Makinaları ve Teknolojileri Mühendisliği Bölümü 7. HAFTA Kapsam: Parçacık Kinetiği, Kuvvet İvme Yöntemi Newton hareket

Detaylı

Doç.Dr. Cesim ATAŞ MEKANİK ŞEKİL DEĞİŞTİREN CİSİMLER MEKANİĞİ DİNAMİK

Doç.Dr. Cesim ATAŞ MEKANİK ŞEKİL DEĞİŞTİREN CİSİMLER MEKANİĞİ DİNAMİK STATİK (Ders Notları) Kaynak: Engineering Mechanics: Statics, SI Version, 6th Edition, J. L. Meriam, L. G. Kraige, Wiley Yardımcı Kaynak: Mühendislik Mekaniği: Statik, R.C Hibbeler & S.C. Fan, Literatür

Detaylı

Chapter 1 İçindekiler

Chapter 1 İçindekiler Chapter 1 İçindekiler Kendinizi Test Edin iii 10 Birinci Mertebeden Diferansiel Denklemler 565 10.1 Arılabilir Denklemler 566 10. Lineer Denklemler 571 10.3 Matematiksel Modeller 576 10.4 Çözümü Olmaan

Detaylı

Fizik 103 Ders 9 Dönme, Tork Moment, Statik Denge

Fizik 103 Ders 9 Dönme, Tork Moment, Statik Denge Fizik 3 Ders 9 Döne, Tork Moent, Statik Denge Dr. Ali ÖVGÜN DAÜ Fizik Bölüü www.aovgun.co q θ Döne Kineatiği s ( π )r θ nın birii radyan (rad) dır. Bir radyan, yarçapla eşit uzunluktaki bir yay parasının

Detaylı

r r r F İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine kuvvetini göstermektedir. Parçacık A noktasından

r r r F İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine kuvvetini göstermektedir. Parçacık A noktasından İŞ : Şekil yörüngesinde hareket eden bir parçacık üzerine etkiyenf r kuvvetini göstermektedir. Parçacık A noktasından r r geçerken konum vektörü uygun bir O orijininden ölçülmektedir ve d r A dan A ne

Detaylı

Fizik 101: Ders 22. Gündem

Fizik 101: Ders 22. Gündem Fizik 101: Ders 22 Tekrar Gündem Kalas & Teller Ya tel koparsa? Merdiven Asılı Krişler Denge Kamyonda Buzdolabı Statik (tekrar) Herhangi bir statik problemini çözmek için genelde 2 denklem F 0 0 kullanırız.

Detaylı

BTÜ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI DERSİ

BTÜ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI DERSİ 1 BTÜ MAKİNE MÜHENDİSLİĞİ BÖLÜMÜ MAKİNE LABORATUVARI DERSİ ROTORLARDA STATİK VE DİNAMİKDENGE (BALANS) DENEYİ 1. AMAÇ... 2 2. GİRİŞ... 2 3. TEORİ... 3 4. DENEY TESİSATI... 4 5. DENEYİN YAPILIŞI... 7 6.

Detaylı

MADDESEL NOKTANIN EĞRİSEL HAREKETİ

MADDESEL NOKTANIN EĞRİSEL HAREKETİ Silindirik Koordinatlar: Bazı mühendislik problemlerinde, parçacığın hareketinin yörüngesi silindirik koordinatlarda r, θ ve z tanımlanması uygun olacaktır. Eğer parçacığın hareketi iki eksende oluşmaktaysa

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 2. yapılırsa bu durumda θ ya z nin esas argümenti denir ve Argz ile gösterilir. argz = Argz + 2nπ, n Z

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 2. yapılırsa bu durumda θ ya z nin esas argümenti denir ve Argz ile gösterilir. argz = Argz + 2nπ, n Z MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 1.. Kutupsal Formda Gösterim z x + iy vektörünün pozitif reel eksenle yaptığı açıya θ diyelim. cos θ x, sin θ y ve buradan tan θ y θ arctan y olup θ ya z z

Detaylı

Bölüm: Matlab e Giriş.

Bölüm: Matlab e Giriş. 1.Bölüm: Matlab e Giriş. Aşağıdaki problemleri MATLAB komut penceresinde komut yazarak çözünüz. Aşağıdaki formüllerde (.) ondalıklı sayı için, ( ) çarpma işlemi için kullanılmıştır. 1.. 8.5 3 3 1500 7

Detaylı

ALTERNATİF AKIMIN DENKLEMİ

ALTERNATİF AKIMIN DENKLEMİ 1 ALTERNATİF AKIMIN DENKLEMİ Ani ve Maksimum Değerler Alternatif akımın elde edilişi incelendiğinde iletkenin 90 ve 270 lik dönme hareketinin sonunda maksimum emk nın indüklendiği görülür. Alternatif akımın

Detaylı

BAHAR YARIYILI FİZİK 2 DERSİ. Doç. Dr. Hakan YAKUT. Fizik Bölümü

BAHAR YARIYILI FİZİK 2 DERSİ. Doç. Dr. Hakan YAKUT. Fizik Bölümü 2015-2016 BAHAR YARIYILI FİZİK 2 DERSİ Doç. Dr. Hakan YAKUT SAÜ Fen Edebiyat Fakültesi Fizik Bölümü Ofis: FEF A Blok, 3. Kat, Oda No: 812, İş tel.: 6092 (+90 264 295 6092) BÖLÜM 7 MANYETİK ALANLAR 2 İÇERİK

Detaylı

MADDESEL NOKTALARIN DİNAMİĞİ

MADDESEL NOKTALARIN DİNAMİĞİ MÜHENDİSLİK MEKANİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ İÇİNDEKİLER 1. GİRİŞ - Konum, Hız ve İvme - Newton Kanunları 2. MADDESEL NOKTALARIN KİNEMATİĞİ - Doğrusal

Detaylı

DETERMINING JOINT ANGLES OF ROBOT ARM BY ARTIFICIAL NEURAL NETWORK. Muhammet Ali ARSERİM 1*, Yakup DEMİR 2

DETERMINING JOINT ANGLES OF ROBOT ARM BY ARTIFICIAL NEURAL NETWORK. Muhammet Ali ARSERİM 1*, Yakup DEMİR 2 DETERMINING JOINT ANGLES OF ROBOT ARM BY ARTIFICIAL NEURAL NETWORK Muhammet Ali ARSERİM 1*, Yakup DEMİR 2 *1 Electrical and Electronics Engineering Department, Dicle University,Diyarbakir, Turkey 2 Electrical

Detaylı

RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU

RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU RİJİT CİSMİN DÜZLEMSEL KİNETİĞİ: ENERJİNİN KORUNUMU Amaçlar: a) Korunumlu kuvvetlerin potansiyel enerjisinin hesabı. b) Enerjinin korunumu prensibinin uygulanması. ENERJİNİN KORUNUMU Enerjinin korunumu

Detaylı

Cebir Notları. Trigonometri TEST I. 37π 'ün esas ölçüsü kaçtır? Gökhan DEMĐR,

Cebir Notları. Trigonometri TEST I. 37π 'ün esas ölçüsü kaçtır? Gökhan DEMĐR, , 00 M ebir Notları Gökhan EMĐR, gdemir@yahoo.com.tr Trigonometri. TEST I π 'ün esas ölçüsü kaçtır? ) p ) p ) p ) π p. tanθ = ) ) olduğuna göre, sinθ değeri kaçtır? ) ). 0 'nin esas ölçüsü kaçtır?. θ

Detaylı

Genel Bilgiler. Giriş Titreşimlerin Sebepleri Titreşimlerin Sonuçları Sistemlerin Titreşim Analizi Titreşim ve İnsan

Genel Bilgiler. Giriş Titreşimlerin Sebepleri Titreşimlerin Sonuçları Sistemlerin Titreşim Analizi Titreşim ve İnsan Kaynaklar: Makina Dinamiği Yıldız Teknik Üniversitesi Yayını, Prof.Necati Tahralı Prof.Dr.Faris Kaya Y.Doç.Dr.İsmail Yüksek Y.Doç.Dr.Rahmi Güçlü. Mekanik Titreşimler Ders Notları, Prof.Dr.Özgür Turhan.

Detaylı

3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması. 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile Çarpımı RİJİT CİSİMLER MEKANİĞİ

3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması. 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile Çarpımı RİJİT CİSİMLER MEKANİĞİ 1-STATİĞİN TEMEL İLKELERİ 1- BİRİMLER 2-TRİGONOMETRİ 3-VEKTÖRLER 3.1 Vektör Tipleri 3.2 Vektörlerin Toplanması 3.3 Vektörlerin uç-uca eklenerek toplanması 3.4 Poligon Kuralı 3.5 Bir Vektörün Skaler ile

Detaylı

ENİNE DEMET DİNAMİĞİ. Prof. Dr. Abbas Kenan Çiftçi. Ankara Üniversitesi

ENİNE DEMET DİNAMİĞİ. Prof. Dr. Abbas Kenan Çiftçi. Ankara Üniversitesi ENİNE DEMET DİNAMİĞİ Prof. Dr. Abbas Kenan Çiftçi Ankara Üniversitesi 1 Dairesel Hızlandırıcılar Yönlendirme: mağnetik alan Odaklama: mağnetik alan Alan indisi zayıf odaklama: 0

Detaylı

9.14 Burada u ile u r arasındaki açı ve v ile u θ arasındaki acının θ olduğu dikkate alınarak trigonometrik eşitliklerden; İfadeleri elde edilir.

9.14 Burada u ile u r arasındaki açı ve v ile u θ arasındaki acının θ olduğu dikkate alınarak trigonometrik eşitliklerden; İfadeleri elde edilir. 9.14 Burada u ile u r arasındaki açı ve v ile u θ arasındaki acının θ olduğu dikkate alınarak trigonometrik eşitliklerden; İfadeleri elde edilir. 9.15 Bu bölümde verilen koordinat dönüşümü uygulanırsa;

Detaylı

30 NİSAN-14 MAYIS ZEYNEP KAYAR. 1) L : R 3 R 2, L(x 1, x 2, x 3 ) = ( 3x 1 + 2x 3 4x 2, 2x 1 + x 2 3x 3 )

30 NİSAN-14 MAYIS ZEYNEP KAYAR. 1) L : R 3 R 2, L(x 1, x 2, x 3 ) = ( 3x 1 + 2x 3 4x 2, 2x 1 + x 2 3x 3 ) 3 NİSAN-4 MAYIS ZEYNEP KAYAR MATEMATİK BÖLÜMÜ LİNEER CEBİR-II DERSİ ÖDEV 4 Soru I: Aşağıda verilen dönüşümlerin lineer olup olmadığını gösteriniz. ) L : R 3 R, L(x, x, x 3 ) = ( 3x + x 3 4x 4, x + x 3x

Detaylı

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR

İÇİNDEKİLER ÖNSÖZ Bölüm 1 SAYILAR 11 Bölüm 2 KÜMELER 31 Bölüm 3 FONKSİYONLAR İÇİNDEKİLER ÖNSÖZ III Bölüm 1 SAYILAR 11 1.1. Sayı Kümeleri 12 1.1.1.Doğal Sayılar Kümesi 12 1.1.2.Tam Sayılar Kümesi 13 1.1.3.Rasyonel Sayılar Kümesi 14 1.1.4. İrrasyonel Sayılar Kümesi 16 1.1.5. Gerçel

Detaylı

Kesirli Türevde Son Gelişmeler

Kesirli Türevde Son Gelişmeler Kesirli Türevde Son Gelişmeler Kübra DEĞERLİ Yrd.Doç.Dr. Işım Genç DEMİRİZ Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü 6-9 Eylül, 217 Kesirli Türevin Ortaya Çıkışı Gama ve Beta Fonksiyonları Bazı

Detaylı

Bölüm 9: Doğrusal momentum ve çarpışmalar

Bölüm 9: Doğrusal momentum ve çarpışmalar Bölüm 9: Doğrusal momentum ve çarpışmalar v hızıyla hareket eden m kütleli bir parçacığın doğrusal momentumu kütle ve hızın çarpımına eşittir; p = mv Momentum vektörel bir niceliktir, yönü hız vektörü

Detaylı

DENEY 5 DÖNME HAREKETİ

DENEY 5 DÖNME HAREKETİ DENEY 5 DÖNME HAREKETİ AMAÇ Deneyin amacı merkezinden geçen eksen etrafında dönen bir diskin dinamiğini araştırmak, açısal ivme, açısal hız ve eylemsizlik momentini hesaplamak ve mekanik enerjinin korunumu

Detaylı

Fizik 101: Ders 18 Ajanda

Fizik 101: Ders 18 Ajanda Fizik 101: Ders 18 Ajanda Özet Çoklu parçacıkların dinamiği Makara örneği Yuvarlanma ve kayma örneği Verilen bir eksen etrafında dönme: hokey topu Eğik düzlemde aşağı yuvarlanma Bowling topu: kayan ve

Detaylı

KST Lab. Shake Table Deney Föyü

KST Lab. Shake Table Deney Föyü KST Lab. Shake Table Deney Föyü 1. Shake Table Deney Düzeneği Quanser Shake Table, yapısal dinamikler, titreşim yalıtımı, geri-beslemeli kontrol gibi çeşitli konularda eğitici bir deney düzeneğidir. Üzerine

Detaylı

Fizik 101: Ders 6 Ajanda. Tekrar Problem problem problem!! ivme ölçer Eğik düzlem Dairesel hareket

Fizik 101: Ders 6 Ajanda. Tekrar Problem problem problem!! ivme ölçer Eğik düzlem Dairesel hareket Fizik 101: Ders 6 Ajanda Tekrar Problem problem problem!! ivme ölçer Eğik düzlem Dairesel hareket Özet Dinamik. Newton un 3. yasası Serbest cisim diyagramları Problem çözmek için sahip olduğumuz gereçler:

Detaylı

EĞRİSEL YAPI ELEMANLARININ ETKİN SAYISAL ANALİZİ ÜZERİNE BİR ARAŞTIRMA 1. A Study on An EfficientNumerical Analysis of TheCurvedStructuralElements

EĞRİSEL YAPI ELEMANLARININ ETKİN SAYISAL ANALİZİ ÜZERİNE BİR ARAŞTIRMA 1. A Study on An EfficientNumerical Analysis of TheCurvedStructuralElements EĞRİSEL YAPI ELEMANLARININ ETKİN SAYISAL ANALİZİ ÜZERİNE BİR ARAŞTIRMA 1 A Study on An EfficientNumerical Analysis of TheCurvedStructuralElements Timuçin Alp ASLAN İnşaat Mühendisliği Anabilim Dalı Beytullah

Detaylı

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ

BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ BÖLÜM 1: MADDESEL NOKTANIN KİNEMATİĞİ 1.1. Giriş Kinematik, daha öncede vurgulandığı üzere, harekete sebep olan veya hareketin bir sonucu olarak ortaya çıkan kuvvetleri dikkate almadan cisimlerin hareketini

Detaylı

ÖNGÖRÜLÜ KONTROL İLE ALTI EKLEMLİ BİR ROBOT KOLUNUN EKLEM ESASLI YÖRÜNGE KONTROLÜ

ÖNGÖRÜLÜ KONTROL İLE ALTI EKLEMLİ BİR ROBOT KOLUNUN EKLEM ESASLI YÖRÜNGE KONTROLÜ ÖNGÖRÜLÜ KONTROL İLE ALTI EKLEMLİ BİR ROBOT KOLUNUN EKLEM ESASLI YÖRÜNGE KONTROLÜ Burhanettin DURMUŞ, Hasan TEMURTAŞ 2 Dumlupınar Üniversitesi, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü,

Detaylı

1. Giriş. 2. Dört Rotorlu Hava Aracı Dinamiği 3. Kontrolör Tasarımı 4. Deneyler ve Sonuçları. 5. Sonuç

1. Giriş. 2. Dört Rotorlu Hava Aracı Dinamiği 3. Kontrolör Tasarımı 4. Deneyler ve Sonuçları. 5. Sonuç Kayma Kipli Kontrol Yöntemi İle Dört Rotorlu Hava Aracının Kontrolü a.arisoy@hho.edu.tr TOK 1 11-13 Ekim, Niğde M. Kemal BAYRAKÇEKEN k.bayrakceken@hho.edu.tr Hava Harp Okulu Elektronik Mühendisliği Bölümü

Detaylı

MÜHENDİSLER İÇİN VEKTÖR MEKANİĞİ: STATİK. Bölüm 1 Temel Kavramlar ve İlkeler

MÜHENDİSLER İÇİN VEKTÖR MEKANİĞİ: STATİK. Bölüm 1 Temel Kavramlar ve İlkeler MÜHENDİSLER İÇİN VEKTÖR MEKANİĞİ: STATİK Bölüm 1 Temel Kavramlar ve İlkeler Mekanik Mekanik Rijit-Cisim Mekaniği Şekil değiştiren Cismin Mekaniği Statik Dinamik Dengedeki Cisimler Hareketsiz veya durgun

Detaylı

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN Mukavemet-II PROF. DR. MURAT DEMİR AYDIN KAYNAK KİTAPLAR Cisimlerin Mukavemeti F.P. BEER, E.R. JOHNSTON Mukavemet-2 Prof.Dr. Onur SAYMAN, Prof.Dr. Ramazan Karakuzu Mukavemet Mehmet H. OMURTAG 1 SİMETRİK

Detaylı

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu

2012 LYS MATEMATİK SORU VE ÇÖZÜMLERİ Niyazi Kurtoğlu .SORU 8 sayı tabanında verilen (5) 8 sayısının sayı tabanında yazılışı nedir?.soru 6 3 3 3 3 4 6 8? 3.SORU 3 ise 5? 5 4.SORU 4 5 olduğuna göre, ( )? 5.SORU (y z) z(y ) y z yz bulunuz. ifadesinin en sade

Detaylı

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM

BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM BÖLÜM 4: MADDESEL NOKTANIN KİNETİĞİ: İMPULS ve MOMENTUM 4.1. Giriş Bir önceki bölümde, hareket denklemi F = ma nın, maddesel noktanın yer değiştirmesine göre integrasyonu ile elde edilen iş ve enerji denklemlerini

Detaylı

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16.MATEMATİK YARIŞMASI 10. SINIF FİNAL SORULARI

ÖZEL EGE LİSESİ EGE BÖLGESİ OKULLAR ARASI 16.MATEMATİK YARIŞMASI 10. SINIF FİNAL SORULARI 10. SINIF FİNAL SORULARI 1. a,b,c,d sıfırdan farklı reel sayılar olmak üzere, + c + d = 0 denkleminin kökleri a ve b, + a + b = 0 denkleminin kökleri c ve d ise b + d değerini bulunuz.. sin + cos cos +

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1 Y. Doç. Dr. Güray Doğan 1 Kinematik Kinematik: akışkanların hareketlerini tanımlar Kinematik harekete sebep olan kuvvetler ile ilgilenmez. Akışkanlar mekaniğinde

Detaylı

Akışkan Kinematiği 1

Akışkan Kinematiği 1 Akışkan Kinematiği 1 Akışkan Kinematiği Kinematik, akışkan hareketini matematiksel olarak tanımlarken harekete sebep olan kuvvetleri ve momentleri gözönüne almadan; Yerdeğiştirmeler Hızlar ve İvmeler cinsinden

Detaylı

MEKANİK TİTREŞİMLER DERS NOTLARI

MEKANİK TİTREŞİMLER DERS NOTLARI SAKARYA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MAKİNA MÜHENDİSLİĞİ BÖLÜMÜ MEKANİK TİTREŞİMLER DERS NOTLARI 2015 BAHAR 2 KAYNAKLAR 1. Mekanik Titreşimler, Birsen Kitabevi, Prof. Dr. Fuat Pasin 2. Mechanical

Detaylı

BASİT HARMONİK HAREKET

BASİT HARMONİK HAREKET BASİT HARMONİK HAREKET Bir doğru üzerinde bulunan iki nokta arasında periyodik olarak yer değiştirme ve ivmesi değişen hareketlere basit harmonik hareket denir. Sarmal yayın ucuna bağlanmış bir cismin

Detaylı

DENEY 6 BASİT SARKAÇ

DENEY 6 BASİT SARKAÇ DENEY 6 BASİT SARKAÇ AMAÇ: Bir basit sarkacın temel fiziksel özelliklerinin incelenmesi. TEORİ: Basit sarkaç şekilde görüldüğü gibi kütlesiz bir ip ve ucuna asılı noktasal bir kütleden ibarettir. Şekil

Detaylı

Statik Manyetik Alan

Statik Manyetik Alan Statik Manyetik Alan Noktasal Yüke Etki eden Manyetik Kuvvet Akım Elemanına Etki Eden Manyetik Kuvvet Biot-Savart Kanunu Statik Manyetik Alan Statik manyetik alan, sabit akımdan veya bir sürekli mıknatıstan

Detaylı

ARAZİ ÖLÇMELERİ. İki Boyutlu Koordinat sistemleri Arası Dönüşüm

ARAZİ ÖLÇMELERİ. İki Boyutlu Koordinat sistemleri Arası Dönüşüm İki Boyutlu Koordinat sistemleri Arası Dönüşüm Amaç, bir koordinat sistemine göre elde edilmiş olan koordinatların, diğer bir koordinat sistemindeki koordinat değerlerini elde etmektir. İki haritanın koordinat

Detaylı

KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji)

KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji) KATI CİSMİN DÜZLEMSEL KİNETİĞİ (Kinetik Enerji) Partikülün kinetiği bahsinde, hız ve yer değiştirme içeren problemlerin iş ve enerji prensibini kullanarak kolayca çözülebildiği söylenmişti. Ayrıca, kuvvet

Detaylı

O xyz OXYZ. Düzgün Doğrusal Öteleme. O 1 in yörüngesi bir Doğru olacak

O xyz OXYZ. Düzgün Doğrusal Öteleme. O 1 in yörüngesi bir Doğru olacak 3.14 Bağıl Hareket Bu ana kadar Newton un ikinci kanununu, enerji-iş eşitliklerini ve impuls-momentum eşitliklerini, sait ir eksen takımına göre uyguladık. Gerçekte hiç ir eksen takımı ise gerçekte sait

Detaylı

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4.

POLİNOMLAR I MATEMATİK LYS / 2012 A1. 1. Aşağıdakilerden kaç tanesi polinomdur? 6. ( ) ( ) 3 ( ) 2. 2. ( ) n 7 8. ( ) 3 2 3. ( ) 2 4. POLİNOMLAR I MATEMATİK. Aşağıdakilerden kaç tanesi polinomdur? I. ( ) P = + II. ( ) P = + III. ( ) + + P = + 6. ( ) ( ) ( ) P = a b a + b sabit polinom olduğuna göre ( ) ( ) ( ) P a +P b +P 0 toplamı kaçtır?

Detaylı

DENEY.3 - DC MOTOR KONUM-HIZ KONTROLÜ

DENEY.3 - DC MOTOR KONUM-HIZ KONTROLÜ DENEY.3 - DC MOTOR KONUM-HIZ KONTROLÜ 3.1 DC MOTOR MODELİ Şekil 3.1 DC motor eşdeğer devresi DC motor eşdeğer devresinin elektrik şeması Şekil 3.1 de verilmiştir. İlk olarak motorun elektriksel kısmını

Detaylı

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan

ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1. Y. Doç. Dr. Güray Doğan ÇEV207 AKIŞKANLAR MEKANİĞİ KİNEMATİK-1 Y. Doç. Dr. Güray Doğan 1 Kinematik Kinematik: akışkanların hareketlerini tanımlar Kinematik harekete sebep olan kuvvetler ile ilgilenmez. Akışkanlar mekaniğinde

Detaylı

İKİ SERBESTLİK DERECELİ BİR SİMÜLATÖR PLATFORMUNUN KİNEMATİK VE KİNETİK ANALİZİ

İKİ SERBESTLİK DERECELİ BİR SİMÜLATÖR PLATFORMUNUN KİNEMATİK VE KİNETİK ANALİZİ 4. Otomotiv OTEKON 16 8. Otomotiv Teknolojileri Kongresi 23 24 Mayıs 216, BURSA İKİ SERBESTLİK DERECELİ BİR SİMÜLATÖR PLATFORMUNUN KİNEMATİK VE KİNETİK ANALİZİ S. Çağlar Başlamışlı*, E. Teoman Önder*,

Detaylı

MEKANĠK TĠTREġĠMLER DENEYĠ

MEKANĠK TĠTREġĠMLER DENEYĠ MK-LB00 MEKNĠK TĠTREġĠMLER DENEYĠ. DENEYĠN MCI Mekanik titreşimler deneyi titreşim teorisi bilgilerinin daha iyi kavranmasına yardımcı olmak ve deneysel beceri kazandırmak amacıyla yapılmaktadır.. DENEY

Detaylı

(Mekanik Sistemlerde PID Kontrol Uygulaması - 1) SÜSPANSİYON SİSTEMLERİNİN PID İLE KONTROLÜ. DENEY SORUMLUSU Arş.Gör. Sertaç SAVAŞ

(Mekanik Sistemlerde PID Kontrol Uygulaması - 1) SÜSPANSİYON SİSTEMLERİNİN PID İLE KONTROLÜ. DENEY SORUMLUSU Arş.Gör. Sertaç SAVAŞ T.C. ERCİYES ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ MEKATRONİK LABORATUVARI 1 (Mekanik Sistemlerde PID Kontrol Uygulaması - 1) SÜSPANSİYON SİSTEMLERİNİN PID İLE KONTROLÜ DENEY

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

KLASİK BULANIK MANTIK DENETLEYİCİ PROBLEMİ : INVERTED PENDULUM

KLASİK BULANIK MANTIK DENETLEYİCİ PROBLEMİ : INVERTED PENDULUM KLASİK BULANIK MANTIK DENETLEYİCİ PROBLEMİ : INVERTED PENDULUM M.Ali Akcayol Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Bilgisayar Mühendisliği Bölümü (Yüksek Lisans Tezinden Bir Bölüm) Şekil 1'

Detaylı

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz.

2. (1 + y ) ln(x + y) = yy dif. denk. çözünüz. 3. xy dy y 2 dx = (x + y) 2 e ( y/x) dx dif. denk. çözünüz. D DİFERANSİYEL DENKLEMLER ÇALIŞMA SORULARI Fakülte No:................................................... Adı ve Soyadı:................................................. Bölüm:...................................................................

Detaylı

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır.

MATEMATİK TESTİ LYS YE DOĞRU. 1. Bu testte Matematik ile ilgili 50 soru vardır. MTMTİK TSTİ LYS-. u testte Matematik ile ilgili 0 soru vardır.. evaplarınızı, cevap kâğıdının Matematik Testi için ayrılan kısmına işaretleyiniz.. u testteki süreniz 7 dakikadır.. a, b, c birer reel sayı

Detaylı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

Öğrenci Seçme Sınavı (Öss) / 18 Haziran Matematik II Soruları ve Çözümleri. = 1 olur.

Öğrenci Seçme Sınavı (Öss) / 18 Haziran Matematik II Soruları ve Çözümleri. = 1 olur. Öğrenci Seçme Sınavı (Öss) / 8 Haziran 6 Matematik II Soruları ve Çözümleri x, x. f(x) x ise fonksiyonu için,, x olduğuna göre, a b kaçtır? lim + x f ( x) a ve lim x f ( x) b A) B) C) D) E) Çözüm x x için

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği

Fizik 101-Fizik I 2013-2014. Dönme Hareketinin Dinamiği -Fizik I 2013-2014 Dönme Hareketinin Dinamiği Nurdan Demirci Sankır Ofis: 364, Tel: 2924332 İçerik Vektörel Çarpım ve Tork Katı Cismin Yuvarlanma Hareketi Bir Parçacığın Açısal Momentumu Dönen Katı Cismin

Detaylı

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Dinamik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Dinamik Yrd.Doç.Dr. Akın Ataş Bölüm 14 Parçacık Kinetiği: İş ve Enerji Kaynak: Mühendislik Mekaniği: Dinamik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 14 Parçacık

Detaylı

Fizik Dr. Murat Aydemir

Fizik Dr. Murat Aydemir Fizik-1 2017-2018 Dr. Murat Aydemir Ankara University, Physics Engineering, Bsc Durham University, Physics, PhD University of Oxford, Researcher, Post-Doc Ofis No: 35 Merkezi Derslikler Binasi murat.aydemir@erzurum.edu.tr

Detaylı

MATRİS - DETERMİNANT Test -1

MATRİS - DETERMİNANT Test -1 MRİS - DEERMİNN est - x y x 3., B olmak üzere, y y = B olduğuna göre, y x farkı kaçtır? 5. 5 4 0, B 4 3 7 3 matrisleri veriliyor. + B matrisi aşağıdakilerden hangisidir? 3 4 5 6 5 3 0 8 5 6 6 5 0 5 6 0

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 4- LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ Doç. Dr. Ali Rıza YILDIZ MAK 210 - Sayısal Analiz 1 LİNEER OLMAYAN DENKLEMLERİN ÇÖZÜMÜ Matematikte veya hidrolik, dinamik, mekanik, elektrik

Detaylı

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi

MKM 308 Makina Dinamiği. Eşdeğer Noktasal Kütleler Teorisi MKM 308 Eşdeğer Noktasal Kütleler Teorisi Eşdeğer Noktasal Kütleler Teorisi Maddesel Nokta (Noktasal Kütleler) : Mekanikte her cisim zihnen maddesel noktalara ayrılabilir yani noktasal kütlelerden meydana

Detaylı

Algoritmalar ve Programlama. DERS - 4 Yrd. Doç. Dr. Ahmet SERBES

Algoritmalar ve Programlama. DERS - 4 Yrd. Doç. Dr. Ahmet SERBES Algoritmalar ve Programlama DERS - 4 Yrd. Doç. Dr. Ahmet SERBES Geçen Derste Değişken oluşturma Skaler Diziler, vektörler Matrisler Aritmetik işlemler Bazı fonksiyonların kullanımı Operatörler İlk değer

Detaylı

DİNAMİK DERS NOTLARI. Doç.Dr. Cesim ATAŞ

DİNAMİK DERS NOTLARI. Doç.Dr. Cesim ATAŞ DİNMİK DERS NOTLRI Kaynaklar: Engineering Mechanics: Dynamics,, SI Version, 6th Edition, J. L. Meriam,, L. G. Kraige Vector Mechanics for Engineers: : Dynamics, Sith Edition, Beer and Johnston Doç.Dr.

Detaylı

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi

Fizik 101-Fizik I 2013-2014. Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi -Fizik I 2013-2014 Katı Bir Cismin Sabit Bir Eksen Etrafında Dönmesi Nurdan Demirci Sankır Ofis: 325, Tel: 2924332 İçerik Açısal Yerdeğiştirme, Hız ve İvme Dönme Kinematiği Açısal ve Doğrusal Nicelikler

Detaylı

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü

Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Massachusetts Teknoloji Enstitüsü-Fizik Bölümü Fizik 8.01 Ödev # 7 Güz, 1999 ÇÖZÜMLER Dru Renner dru@mit.edu 7 Kasım 1999 Saat: 21.50 Problem 7.1 (Ohanian, sayfa 271, problem 55) Bu problem boyunca roket

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek

5. Boyut Analizi. 3) Bir deneysel tasarımda değişken sayısının azaltılması 4) Model tasarım prensiplerini belirlemek Boyut analizi, göz önüne alınan bir fiziksel olayı etkileyen deneysel değişkenlerin sayısını ve karmaşıklığını azaltmak için kullanılan bir yöntemdir. Akışkanlar mekaniğinin gelişimi ağırlıklı bir şekilde

Detaylı

KİNETİK GAZ KURAMI. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 1

KİNETİK GAZ KURAMI. Doç. Dr. Faruk GÖKMEŞE Kimya Bölümü Hitit Üniversitesi Fen Edebiyat Fakültesi 1 Kinetik Gaz Kuramının Varsayımları Boyle, Gay-Lussac ve Avagadro deneyleri tüm ideal gazların aynı davrandığını göstermektedir ve bunları açıklamak üzere kinetik gaz kuramı ortaya atılmıştır. 1. Gazlar

Detaylı

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi

Fizik-1 UYGULAMA-7. Katı bir cismin sabit bir eksen etrafında dönmesi Fizik-1 UYGULAMA-7 Katı bir cismin sabit bir eksen etrafında dönmesi 1) Bir tekerlek üzerinde bir noktanın açısal konumu olarak verilmektedir. a) t=0 ve t=3s için bu noktanın açısal konumunu, açısal hızını

Detaylı

elde ederiz. Bu son ifade yeniden düzenlenirse,

elde ederiz. Bu son ifade yeniden düzenlenirse, Deney No : M2 Deneyin Adı : İKİ BOYUTTA ESNEK ÇARPIŞMA Deneyin Amacı : İki boyutta esnek çarpışmada, enerji ve momentum korunum bağıntılarını incelemek, momentumun vektörel, enerjini skaler bir büyüklük

Detaylı

Ortak Akıl MATEMATİK DENEME SINAVI

Ortak Akıl MATEMATİK DENEME SINAVI Ortak Akıl LYS MATEMATİK DENEME SINAVI 0505- Ortak Akıl Adem ÇİL Ali Can GÜLLÜ Ayhan YANAĞLIBAŞ Barbaros GÜR Barış DEMİR Celal İŞBİLİR Deniz KARADAĞ Engin POLAT Erhan ERDOĞAN Ersin KESEN Fatih TÜRKMEN

Detaylı

AST413 Gezegen Sistemleri ve Oluşumu. Ders 3 : Kepler Denklemlerinden Ötegezegen Keşiflerine

AST413 Gezegen Sistemleri ve Oluşumu. Ders 3 : Kepler Denklemlerinden Ötegezegen Keşiflerine AST413 Gezegen Sistemleri ve Oluşumu Ders 3 : Kepler Denklemlerinden Ötegezegen Keşiflerine Kepler 1. Yasa (1609) Gezegenler, Güneş'in etrafında eliptik yörüngeler üzerinde dolanırlar! Aphel: enöte Perihel:

Detaylı

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ 3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F

Detaylı

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi

Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Ege Üniversitesi Elektrik Elektronik Mühendisliği Bölümü Kontrol Sistemleri II Dersi Ball and Beam Deneyi.../../205 ) Giriş Bu deneyde amaç kök yerleştirme (Pole placement) yöntemi ile top ve çubuk (ball

Detaylı

Fizik 101: Ders 7 Ajanda

Fizik 101: Ders 7 Ajanda Fizik 101: Ders 7 Ajanda Sürtünme edir? asıl nitelendirebiliriz? Sürtünme modeli Statik & Kinetik sürtünme Sürtünmeli problemler Sürtünme ne yapar? Yeni Konu: Sürtünme Rölatif harekete karşıdır. Öğrendiklerimiz

Detaylı

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7. Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. BÖLÜM 7 Adi Diferansiyel Denklemlerin Sayısal Çözümü Copyright The McGraw-Hill Companies, Inc. Permission required

Detaylı

FİNAL SORULARI GÜZ DÖNEMİ A A A A A A A

FİNAL SORULARI GÜZ DÖNEMİ A A A A A A A AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ BİTİRME ÖDEVİ FİNAL SORULARI 25-26 GÜZ DÖNEMİ ADI SOYADI :... NO :... SINAV TARİHİ VE SAATİ : A A A A A A A Bu sınav 4 sorudan oluşmaktadır ve sınav süresi 9 dakikadır.

Detaylı

SUYUN EK KÜTLESİNİN DENİZ BETONARME PETROL PLATFORMASININ DİNAMİĞİNE ETKİSİ

SUYUN EK KÜTLESİNİN DENİZ BETONARME PETROL PLATFORMASININ DİNAMİĞİNE ETKİSİ Yapım Matbaacılık Ltd., İstanbul, 1999 Editörler :A. İ. ALDOĞAN Y. ÜNSAN E BAYRAKARKAAL GEMİ İNŞAAI VE DENİZ EKNOLOJİSİ EKNİK KONGRESİ 99 BİLDİRİ KİABI GİRİŞ SUYUN EK KÜLESİNİN DENİZ BEONARME PEROL PLAFORMASININ

Detaylı

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13

İÇİNDEKİLER. Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 İÇİNDEKİLER ÖNSÖZ III Bölüm 1 MATEMATİKSEL İKTİSADA GİRİŞ 11 1.1.İktisat Hakkında 12 1.2.İktisatta Grafik ve Matematik Kullanımı 13 Bölüm 2 STATİK DENGE ANALİZİ 19 2.1 İktisatta Denge Kavramı 20 2.1.1.

Detaylı