ÜÇ BOYUTLU BOUGUER ANOMALİSİNİN TÜREV KULLANILMADAN YENİ BİR YÖNTEMLE HESAPLANIŞI. Hasan CAVŞAK 1

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "ÜÇ BOYUTLU BOUGUER ANOMALİSİNİN TÜREV KULLANILMADAN YENİ BİR YÖNTEMLE HESAPLANIŞI. Hasan CAVŞAK 1 cavsak@ktu.edu.tr"

Transkript

1 ÜÇ OTL OER NOMLİSİNİN TÜREV KLLNILMDN ENİ İR ÖNTEMLE HESPLNIŞI Hasan VŞK Ö: lm Dünyasına genel anlama b büyülüğün stenen b yöne gaent yan eğşm o yöne alınan tüevle saptanı. u yöntem aman aman ço ço uun ve amaşı esapla geeten ve olayısıyla uun esap amanı yanına üçümsenmeyece blgsaya yuvalatma atalaınaa neen olan b yöntem. en yönteme se tüev şlemne gee göülmeen yepyen b algotma ullanılaa bu eğşm esaplanacatı. u çalışmaa gelşgüel şell üç boyutlu ütlele yüeyle üçenlele tanımlanaa bunlaın gavte tes esaplanmataı. He üçenle esap notası aasına oluştuulan ütlenn sala gavte potansyel anomals oonat sstem çesne vetöel şlemle yapılaa uygun oonat çevmeleyle bell posyona getlee ntege elmete. unun üşey yöne eğşm /g y esaplama çn tea es ateyen oonatlaa önülmes geemete. Netce toplama alne ısıman oluşmataı. unlaan l ısım oluça ısa ama ğe nc ısım se oluça uun ve aışı olup bço paameteen oluşmataı. İl ve nc ısımlaın bblene eşt olulaı tesbt elğnen gavte tesnn esabına üşey yöne tüev çeen nc ısımın ullanılmasına gee göülmemşt. ş avte anomalsnn esaplanması çn üç boyutlu gelşgüel b ütlenn çogen yüey yalaşımıyla tanımlanması en etl b yalaşımı. (Holstene Rn et al. 999 Holstene Rn 00). an ütle yüey üçen yüeylele tanımlanmıştı. uaa bu üçenlemey ve ntegasyonu geçeleşten b fotan pogamı gelştlmşt (Çavsa 99). u çalışmaa bu poğamın esn b şele gavte tesn esaplaığını göstemes amaçlanmıştı. uaa oonat önüşümü ve vetöel şlemlen tam anlamıyla ullanılablmes ve gavte potansyelnn analt çöümü ve üşey yöne tüevnn g esaplanması çn b tasla moel çalışması yapılmıştı. Düşey yöne tüev g/ esabı es oonat sstem x-y- ye ge önülmesn geetmete ve bu uuma bbnen tamamen ayı b olay ama ğe ço o analt ısım oluşmataı. Eğe nüme olaa esapla yapılaca olusa şaşılaca b şele bu analt ısım b bne eşt çımataı. u uuma aışı ve uun olan ısmı ullanma geememete. Kısa ve bast olan ısım gavte tesnn g esabını em ılı b şele yapablmete ve eme sayısal esap assasyetn yüseltmete. Nüme olaa oğuluğu anıtlanan bu eştlğn neen analt olaa enü tam anlamıyla bulunamaı. u çalışmayla bu geçeğn oğuluğu nüme olaa test elee anıtlanmış ve lglenenle bunun oğuluğunu analt yolla aaştımaya avet elmşle. Kullanılan öntem avte anomalsnn esaplanması çn üç boyutlu gelşgüel ütlele çogen yüey yalaşımıyla tanımlanmıştı. uaa bu üçenlemey ve ntegasyonu geçeleşten b fotan pogamı gelştlmşt (Çavsa 99). u çalışmaa bu poğamın esn b şele gavte tesn esaplaığını göstemes amaçlanmıştı. uaa oonat önüşümü ve vetöel şlemle ullanılmıştı avte Potansyelnn Düşey öne Tüev maç üç boyutlu gelşgüel ütlele yüeyle geeen sılıta üçenlee bölünee ço yüeyl geomet b şel olaa tanımlayablmet. u yöntem ğe geomet yalaşımlala ütle tanımlamalaınan ço aa assas ve olayı. Ço yüeyl geomet şeln yüeyne tanımlanan üçenlele esap notalaı aasına oluştuulan üçen Pmala esaplaa ayı ayı moelle olaa göönüne alınıla ve bütün yüey aplayan Kaaen Ten Ünvestes Jeof Müenslğ ölümü Tabon

2 bu pmalaın tamamı ana ütley oluştuula. u elen gavte anomalse şte bu psmalaa at esaplanan anomallen toplamıı. u esaplaa öneml olan esap notalaının üçenle ütle ışınan (es) yaa ç taafınan gömesne göe (atı) b yönün abul elmes. Eğe esap notası O nun ütle yüeyne üçenlen tamamıyla oluştuuğu üçen pamtlen eps esaplaa al elyosa sonuçla oğuu. aşlangıç onat sstem x-y- olaa alınmıştı. uaa gavte oğultusu yan üşey yönü göste. Üçen bu oonat sstem çesne gelşgüel b posyona umataı. u sstem çne ntegal alma oluça güçtü. u neenle b oonat önüşümü yapılmıştı. öylece üçenle yen oonat sstem çesne esenne paalel ale getlen b enaıa ().-esenne paalel yapılmıştı. u önüşüm vetöel şlemlele geçeleştlmşt. (Şe.): Te egt of te tetaeon ( 0 ) 0 O max max Şel en Konat Sstem İçne Üçenn Posyonu Şel Integal Hesaplaı İçn Paametele O O O () ( ) ve ( ) ayn şele tanımlanı O notasına bm acım V çn gavte potansyelnn analt çöümü. (Şel ). Tales teoemne göe max max () V

3 ( ) max ( ) an an ye aa () () ve () () enalaı aasına ntegasyon. buaa üçen pamtn yüselğ ve le göstelmşt. () ρ () () ρ ( ) () ( ) 0 () (3) () ( ) () ve / ln / [ ( ) ] () olsunla ( Şel ). çn: () () tanβ tanα ρ ρ ln [( tan β ) ( tan β ) ] () () () β cos ln sn β cos β tan β actan () () çne şlemle aynıı. Üçgen psmanın tamamı çn O (Şel ). ρ () () 3 ( ) 4 () (4) () ve tan α ve fo ()

4 tanβ ve fo şağıa gb yaabl tanβ tan α tan α tanβ olsun. ve (4) eştlğe aynı şele yaılabl : { ( ) ( ) 3( ) 4( )} ρ (5) şağıa tamamı yaılan eştl oluça aışıtı. ρ ln cosβ tanβ snβ actan cosβ ln cosβ β tan β sn actan cosβ ln ln cosα sn α actan cosα cosβ α sn α actan cos tan α tan α (6) avte Tesnn Hesaplanması Ço yüeyl gelşgüel ütlenn gavte tes gavte potansyelnn üşey yöne tüev le vel. g ( ) (7) Tea l oonat sstemne önülee vs. xy paameteleyle eğştl(şel ).

5 ve Ço ço uun olan eştlğ buaa yamıyou. ma aşağıa ısaltılmış olaa Eştl 6 an tüetlen fomülü yaıyou. () { } ρ ) y ) y y) ) y ) y () { } y) y) y) y) u ısaltma ullanılaa: { } ρ (8) an ço uun olan eştl yuaa le tanımlanaa aşağıa fomul ısaca yaılabl. ρ g (9) şağıa (Ço ço aa uun ve aışı olan bu eştl. uaa göstelmyo) (0) Üçene olan bm vetöün -bleşen y x Eştl 9 an { } ρ () yaabl Şm öneml olan a aşağıa gb tanımlanı $ an ρ () ve bunana aşağıa eştl yaılı:

6 (3) avte potansyel analt olaa ntege elğnen bu ullanılmata olup ve eştl e göülen sağ taafta paamete nün bulunuğu ısmın ullanılmasına gee almamataı. uaa eştlğn sağ ısmının bmnn m/s oluğuna at en. Çünü eştl (3) e bm vetö nn bm m/m. Sonuna yüeyne n-tane üçen psma otutulaa tanımlanan ço yüeyl ütlenn gavte potansyel ns ullanılaa aşağıa gb yaılabl. n Nüme Öne oyutlaı (a 3 xxm 3 yoğunluğu 000 g/m 3 ) olan b üb çn esab assasyet ve güvenllğn test etme amacıyla üçen yüeylele tanımlanmış ço yüeyl b ütlenn gavte anomalsn esaplayan b fotan poğamı yaılı. u üb çn esaplanan gavte eğe ütles bu übün ütlesne eşt olan ve übün meene esap notası O an aa ualıta olaca şele otutulan nota ütlenn esaplanan gavte anomalsyle aşılaştıılı. 0 8 mal aa benel at çemete. 00 m (a/ 0 5 ) çn e esap aasına fa 5 aa yaa ölatf ata aaı. 500 m (a/ 0 ) çn ata mtaı mal aa yaa ölatf ata aaı ve aynı şele 000 m (a/ ) çn se toplam ata yalaşı 0 mal e aa çımataı yan elatf ata >% olmataı. u uum at çec assas b yalaşımı. 6 Elbette nota ütle üenen 500 ve 000 lomete yuaıa yaa üb alınması uumuna 0 le 6 0 olan a/ oanı çn geçe ve atta elatf atanın bu aa eğşmelee açıtı. Elbette yuvalatılan bu sayısal ata oanlaı güvenlp abul eleblle. 0 5 aet xx m 3 ten oluşan 00x00x00 m 3 lü b moel ço büyü yuvalama atalaına sebep olabl. ma üblen büyülülenn atıılmasıyla bu atala yete aa üçültülee patte bu yöntemn ullanılmasına saınca oluştumala. uaa onu elen e şey poğamlanı ve bunlaın nüme esaplaa ullanılması ço aa a assas netcle ve. Öneğn 00 m çn 0-3 mal yaa elatf olaa % 0 ata. Sonuçla ve Öet Ço yüeyl ütlelen ve üçen pamtlen gavte anomalsn esaplama çn tanımlanan fomülle yuaıa ısmın bbne eştlğnn ullanılmasıyla bast b şele fae eleblle. unlaan bs aa ısa ve bast ğe se aa uun ve aışıtı. vanta otaa umataı. Netcele at çeece aa aa assastı. u ço üçü b übün esap notası O an ço ço uata olan b notaa gavte etsyle göstel. Kaşı şell moelle üçenleme yalaşımıyla tanımlanablle. ço test esaplaı tanımlanan bu algotmanın assas netcele üettğn göstemşt. KNKLR. Çavşa H.: Dctemoelle fü en mtteleuopäscen bscntt e ET aufgun e gemensamen Inveson von eo Scwee un efatonssesmsc emttelte Kustenstutu. (n eman: Densty moels fot te cental Euopean Secton of ET on te bass of ont nveson of geo gavty an efacton sesmc custal stuctue) P.D. Tess Man nvesty 99. Holsten H.: avmagnetc smlaty n anomaly fomulas fo unfom polyea. eopyscs Holsten H.: Invaance n gavmagnetc anomaly fomulas fo unfom polyea. eopyscs

7 4. Holsten H. Scüol P. Sta.J. aabot M.: ompason of gavmetc fomulas fo unfom polyea. eopyscs

DUAL KUATERNİYONLAR ÜZERİNDE SİMPLEKTİK GEOMETRİ E. ATA

DUAL KUATERNİYONLAR ÜZERİNDE SİMPLEKTİK GEOMETRİ E. ATA DÜ Fe Blmle Esttüsü Degs Dual Kuateyola 6. Sayı (Em l004) Üzede Smlet Geomet DUAL KUATERNİYONLAR ÜZERİNDE SİMLEKTİK GEOMETRİ E. ATA Özet Bu maalede dual uateyola üzede smlet gu, smlet etö uzayı e smlet

Detaylı

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTİ

AĞIRLIK MERKEZİ VE ALAN ATALET MOMENTİ ĞLK MEKEZİ VE LN TLET MMENTİ 1 1. ĞLK MEKEZİ (CENTD) ğılık meke paalel kuvvetleen otaa çıkan geometk kavamı. Yalnıca paalel kuvvetle ağılık meke vaı. ğılık meke fksel csmn vea paçacıkla sstemnn tüm ağılığının

Detaylı

θ A **pozitif dönüş yönü

θ A **pozitif dönüş yönü ENT B Kuvvetn B Noktaa Göe oment o o d θ θ d.snθ o..snθ d. **poztf dönüş önü noktasına etk eden hehang b kuvvetnn noktasında medana geteceğ moment o ; ı tanımlaan e vektöü le kuvvet vektöünün vektöel çapımıdı.

Detaylı

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS Seventh Edton VECTOR ECHNICS OR ENGINEERS: STTICS ednand. ee E. Russell Johnston, J. Des Notu: Ha CR İstanbul Ten Ünvestes Tel: 285 31 46 / 116 E-mal: acah@tu.edu.t Web: http://atlas.cc.tu.edu.t/~acah

Detaylı

İLERİ DİNAMİK. Yücel Ercan

İLERİ DİNAMİK. Yücel Ercan İERİ DİNAİK Yücel Ecan İERİ DİNAİK Yücel Ecan Bnc Süüm: Aalı 4 SBN: 978-65-3-98- Coght 4: Yücel Ecan Bu tabın telf halaı aaa att. Yaa tabın açı ana olaa ullanımına n vemşt. Kta ana beltme suetle sebestçe

Detaylı

11. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 4. Konu MANYETİZMA ETKİNLİK VE TEST ÇÖZÜMLERİ

11. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 4. Konu MANYETİZMA ETKİNLİK VE TEST ÇÖZÜMLERİ 11. SINIF KONU ANLATIMLI. ÜNİTE: ELEKTRİK VE MANYETİZMA 4. Konu MANYETİZMA ETKİNLİK VE TEST ÇÖZÜMLERİ 4 Manyetzma 1.. Ünte 4. Konu (Manyetzma) A nın Çözümle P 1 1 3. Üzenen akımı geen yaıçaplı b halkanın

Detaylı

ELEKTRİKSEL KUVVET VE ELEKTRİKSEL ALAN

ELEKTRİKSEL KUVVET VE ELEKTRİKSEL ALAN . BÖÜ TRİS UVVT V TRİS IŞTIRR ÇÖZÜR TRİS UVVT V TRİS. v no ta sın a i yü ün no ta sın a bu lu nan yü e uy gu la ı ğı uv vet,.. 0. & 0 olu. b. 5 0.. 0. 0.. ( 6 olu... 5 0.. 0. 0.. ( 6 olu. uv vet le eşit

Detaylı

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B-Grubu 2014-2015 Bahar Yarıyılı Bölüm-II 25.02.2015 Ankara. Aysuhan OZANSOY

Ankara Üniversitesi Fen Fakültesi Kimya Bölümü B-Grubu 2014-2015 Bahar Yarıyılı Bölüm-II 25.02.2015 Ankara. Aysuhan OZANSOY FİZ10 FİZİK-II Ankaa Ünvestes Fen Fakültes Kmya Bölümü B-Gubu 014-015 Baha Yaıyılı Bölüm-II 5.0.015 Ankaa Aysuhan OZANSOY Bölüm : Elektk Alan 1. Elektk Alan. Elektk Alan Çzgle 3. Süekl Yük Dağılımlaı 4.

Detaylı

TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2.

TORK. τ = 2.6 4.sin30.2 + 2.cos60.4 = 12 4 + 4 = 12 N.m Çubuk ( ) yönde dönme hareketi yapar. τ K. τ = F 1. τ 1. τ 2. τ 3. τ 4. 1. 2. AIŞIRMAAR 8 BÖÜM R ÇÖZÜMER R cos N 4N 0 4sin0 N M 5d d N ve 4N luk kuv vet lein çu bu ğa dik bi le şen le i şekil de ki gi bi olu nok ta sı na gö e top lam tok; τ = 6 4sin0 + cos4 = 4 + 4 = Nm Çubuk yönde

Detaylı

11. SINIF SORU BANKASI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 4. Konu MANYETİZMA TEST ÇÖZÜMLERİ

11. SINIF SORU BANKASI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 4. Konu MANYETİZMA TEST ÇÖZÜMLERİ 11. SINI SORU ANKASI. ÜNİTE: ELEKTRİK VE MANYETİZMA 4. Konu MANYETİZMA TEST ÇÖZÜMLERİ 4 Manyetzma Test 1 n Çözümle 3. y 1. T R P x S P + tel 1 S ve T noktalaınak bleşke manyetk alanlaın eşt olablmes çn

Detaylı

ĐDEAL BĐR DC/DC BUCK DÖNÜŞTÜRÜCÜNÜN GENELLEŞTĐRĐLMĐŞ DURUM UZAY ORTALAMA METODU ĐLE MODELLENMESĐ

ĐDEAL BĐR DC/DC BUCK DÖNÜŞTÜRÜCÜNÜN GENELLEŞTĐRĐLMĐŞ DURUM UZAY ORTALAMA METODU ĐLE MODELLENMESĐ ĐDEA BĐR D/D BUK DÖNÜŞTÜRÜÜNÜN GENEEŞTĐRĐMĐŞ DURUM UZAY ORTAAMA METODU ĐE MODEENMESĐ Meral ATINAY Ayşe ERGÜN AMAÇ Ercüment KARAKAŞ 3,,3 Elektrk Eğtm Bölümü Teknk Eğtm Fakültes Kocael Ünerstes, 4, Anıtpark

Detaylı

DALMIŞ YÜZEYLERDEKİ KUVVETLER

DALMIŞ YÜZEYLERDEKİ KUVVETLER 9 DALMIŞ YÜZEYLERDEKİ KUVVETLER Kalınlığı olmayan bir yüzeyi göz önüne alalım. Sıvı içine almış bir yüzeye Arşimet Prensipleri geçerli olmala birlite yüzeyinin her ii tarafı aynı sıvı ile oluruluğuna uvvet

Detaylı

YENİ BİR BORÇ ÖDEME MODELİ A NEW LOAN AMORTIZATION MODEL

YENİ BİR BORÇ ÖDEME MODELİ A NEW LOAN AMORTIZATION MODEL Süleyma Demel Üvestes Sosyal Blmle Esttüsü DegsYıl: 203/, Sayı:7 Joal of Süleyma Demel Uvesty Isttte of Socal ScecesYea: 203/, Nme:7 YENİ Bİ BOÇ ÖDEME MODELİ ÖZET Allah EOĞLU Bakala taafıa e çok kllaıla

Detaylı

ELEKTROSTATİK. 3. K kü re si ön ce L ye do kun - du rul du ğun da top lam yü kü ya rı çap la rıy la doğ ru oran tı lı ola rak pay la şır lar.

ELEKTROSTATİK. 3. K kü re si ön ce L ye do kun - du rul du ğun da top lam yü kü ya rı çap la rıy la doğ ru oran tı lı ola rak pay la şır lar. . BÖÜ EETROSTATİ AIŞTIRAAR ÇÖÜER EETROSTATİ. 3 olu. 3. kü e si ön ce ye o kun - u ul u ğun a top lam yü kü ya çap la y la oğ u oan t l ola ak pay la ş la. top 3 olu. Bu u um a, 3 6 ve olu. Da ha son a

Detaylı

- 1 - 3 4v A) 450 B) 500 C) 550 D) 600 E) 650

- 1 - 3 4v A) 450 B) 500 C) 550 D) 600 E) 650 - -. Bi cisi uzunutai younu sabit hızı ie at eteye başıyo. Cisi youn yaısını at ettiğinde hızını yaıya düşüüp aan youn yaısını at ettiğinde yine hızını yaıya düşüetedi. Cisi aan youn yaısını gittiğinde

Detaylı

DC-DC Boost Konvertörün PID ve Kesirli Dereceli PID ile Simulink/Matlab Ortamında Kontrolü

DC-DC Boost Konvertörün PID ve Kesirli Dereceli PID ile Simulink/Matlab Ortamında Kontrolü TO 214 Blr tabı 11-13 Eylül 214, ocael - Boot onvertörün PI ve erl erecel PI le Smuln/Matlab Ortamına ontrolü Aın Özel 1, Nuret Tan 2 1 Ten Blmler MYO Eletr Programı Bngöl Ünverte, Bngöl aozel@bngol.eu.tr

Detaylı

Düzlemsel, silindirik ve küresel yüzeyler için taşınım direnci

Düzlemsel, silindirik ve küresel yüzeyler için taşınım direnci FORMÜ KĞIDI Fourier ısı iletim yasası T Newton soğuma yasası T Yüzeyin ışınım yayma gücü 4 T Düzlemsel yüzeyler için iletim irenci R i Düzlemsel, siliniri ve üresel yüzeyler için taşınım irenci R i Düzlemsel

Detaylı

Optik Sorularının Çözümleri

Optik Sorularının Çözümleri Ünite 4 Optik Soulaının Çözümlei 1- Gölgele ve Ayınlanma 2- Işığın Yansıması ve Düzlem Aynala 3- üesel Aynala 4- Işığın ıılması 5- Renkle 6- ecekle 1 Gölgele ve Ayınlanma Testleinin Çözümlei 3 Test 1

Detaylı

Bir Otomobil Fabrikasının Şanzuman Üretim Bölümü İçin Hücresel Üretim Sistemi Önerisi

Bir Otomobil Fabrikasının Şanzuman Üretim Bölümü İçin Hücresel Üretim Sistemi Önerisi Anadolu Ünvestes Sosyal Blmle Degs Anadolu Unvesty Jounal of Socal Scences B Otomobl Fabkasının Şanzuman Üetm Bölümü İçn Hücesel Üetm Sstem Önes A Cellula Manufactung System Poposal Fo the Geabox Poducton

Detaylı

10. SINIF KONU ANLATIMLI. 4. ÜNİTE: OPTİK 1. Konu GÖLGELER ve AYDINLANMA ETKİNLİK ÇÖZÜMLERİ

10. SINIF KONU ANLATIMLI. 4. ÜNİTE: OPTİK 1. Konu GÖLGELER ve AYDINLANMA ETKİNLİK ÇÖZÜMLERİ 0. SNF ONU NTM 4. ÜNİTE: OPTİ. onu GÖGEER ve YDNNM ETİNİ ÇÖZÜMERİ Ünite 4 Optik. 5. Ünite. onu (yınlanma) nın Yanıtlaı pee. a. yaklaştıılmalıı. b. uzaklaştıılmalıı. B nin Yanıtlaı X Y. a. ekan. 3. şık

Detaylı

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ

MODEL SORU - 1 DEKİ SORULARIN ÇÖZÜMLERİ ÖÜM TRİS UT TRİS N MD SRU - Dİ SRURIN ÇÖZÜMRİ uvveti bileşenleine ayılığına yatay ve üşey bileşenle bibiine eşit olu u uuma, 4 4 yü ü nün işa e ti ( ol ma lı ı yü ü nün yü ü ne uy gu la ığı ele ti sel

Detaylı

DENEYSAN EĞİTİM CİHAZLARI SANAYİ VE TİCARET LTD. ŞTİ.

DENEYSAN EĞİTİM CİHAZLARI SANAYİ VE TİCARET LTD. ŞTİ. DENEY FÖYLERİ DENEYSAN EĞİTİM CİHAZLARI SANAYİ VE TİCARET LTD. ŞTİ. Küçük Sanayi sitesi 12 Ekim Cad. 36.Sok. No6A-B BALIKESİR Tel0266 2461075 Faks0266 2460948 ttp//www.deneysan.com mail deneysan@deneysan.com

Detaylı

İÇİ SIVI DOLU TEK KATMANLI KOMPOZİT TÜPTE KOLAJEN LİFLERİN ETKİSİ

İÇİ SIVI DOLU TEK KATMANLI KOMPOZİT TÜPTE KOLAJEN LİFLERİN ETKİSİ Osmanga Ünveses üh.m.fa.degs C.XV S. Eng.&h.Fa.Osmanga nvesy Vol.XV No: İÇİ SV DOL TEK KTNL KOOZİT TÜTE KOLJEN LİFLERİN ETKİSİ Selm ŞENGEL ÖZET : B çalışmaa Büyü sa sonl ye eğşmele üene üçü nam ye eğşmelen

Detaylı

4.BÖLÜM 4.1 HİDROLİK POMPALAR

4.BÖLÜM 4.1 HİDROLİK POMPALAR BÖLÜM 1 HİDROLİK POMPALAR Pompala çalıştıklaına iki temel göevi yeine getiile a) Vakum yaatmak, akışkanı emmek (105 m en sona poblemli) b) Akışkanı sisteme basmak Emilen akışkan içeisine yaklaşık %10 (hacimsel

Detaylı

MADDESEL NOKTALARIN DİNAMİĞİ

MADDESEL NOKTALARIN DİNAMİĞİ MÜHENDİSLİK MEKANİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ DİNAMİK MADDESEL NOKTALARIN DİNAMİĞİ İÇİNDEKİLER 1. GİRİŞ - Konum, Hız ve İvme - Newton Kanunları 2. MADDESEL NOKTALARIN KİNEMATİĞİ - Doğrusal

Detaylı

DENEYSAN EĞİTİM CİHAZLARI SANAYİ VE TİCARET LTD. ŞTİ.

DENEYSAN EĞİTİM CİHAZLARI SANAYİ VE TİCARET LTD. ŞTİ. DENEY FÖYLERİ DENEYSAN EĞİTİM CİHAZLARI SANAYİ VE TİCARET LTD. ŞTİ. Küçük Sanayi sitesi 12 Ekim Cad. 52.Sok. No:18/A BALIKESİR Tel:0266 2461075 Faks:0266 2460948 ttp://www.deneysan.com mail: deneysan@deneysan.com

Detaylı

3-P C ile h a b e r le şm e y e u y g u n b ir a r a b ir im. (IS A, P C I, U S B g ib i )

3-P C ile h a b e r le şm e y e u y g u n b ir a r a b ir im. (IS A, P C I, U S B g ib i ) M O D E M N E D İR : M o d u la to r -D e m o d u la to r k e lim e le r in in k ıs a ltm a s ı M O D E M. Y a n i v e r ile r i s e s s in y a lle r in e s e s s in y a lle r in i v e r ile r e d ö n

Detaylı

Kredi Değeri(Nominal Değer): Senet üzerinde yazılı olan ve vade gününde ödenmesi gereken tutardır.

Kredi Değeri(Nominal Değer): Senet üzerinde yazılı olan ve vade gününde ödenmesi gereken tutardır. 1 İSKONTO HESAPLAR Tcaret alanına alım-satım şlemler her zaman peşn para le yapılmaz. Bu şlemlern öneml br kısmı kreye ayanır ve veresye yapılan alış-verşler br belgeye bağlanır. Özellkle şletmeler arasına

Detaylı

R DEVRESİ L DEVRESİ C DEVRESİ

R DEVRESİ L DEVRESİ C DEVRESİ 6 BÖÜM ATENATİF AKIM AIŞTIMAA - ÇÖÜME DEESİ DEESİ DEESİ f 80 4 A olu 0 snωt snπft 4vsnπ50t 4vsn00πt olu Akıın zaanla dğş dnklndn, (t) snft sn50 400 sn 4 v A olu Gln aksu dğ, 0v 0v olu Gl dnkl, (t) snft

Detaylı

TEMEL ROBOT K Ders sorumlusu: Yrd.Doç.Dr.Hilmi KU ÇU

TEMEL ROBOT K Ders sorumlusu: Yrd.Doç.Dr.Hilmi KU ÇU EMEL ROBOK De oumuu: Yd.Doç.D.Hm KUÇU EMEL ROBOK De oumuu: Yd.Doç.D.Hm KUÇU e Yön (Düz) Knemat B obot ana çeçeveden aaç çeçevee dou bbne pzmat veya döne eemee baanm e uzuvadan ouu. uzuv aanda b homoen

Detaylı

3. BÖLÜM. HİDROLİK-PNÖMATİK Prof.Dr.İrfan AY

3. BÖLÜM. HİDROLİK-PNÖMATİK Prof.Dr.İrfan AY HİDROLİK-PNÖMATİK 3. BÖLÜM 3.1 PİSTON, SİLİNDİR MEKANİZMALARI Hiolik evelee piston-silini ikilisi ile oluşan oğusal haeket aha sona önel, yaı önel, oğusal önel haeket olaak çevilebili. Silinile: a) Tek

Detaylı

Mustafa YAĞCI, yagcimustafa@yahoo.com Geometrik Kombinasyon

Mustafa YAĞCI, yagcimustafa@yahoo.com Geometrik Kombinasyon Mustafa YĞI w www.mustafayagci.com.tr, 0 ebir Notları Mustafa YĞI, yagcimustafa@yahoo.com Geometri Kombinasyon H er farlı ii notanın bir oğru belirttiğini biliyoruz. Pei hangi oğruyu belirtiyorları? O

Detaylı

ö ğ ğ ğ ö ö ö ö ç ö çö ç ö ö ö ğ ç ö ç ğ ğ ö ğ ö ç ğ ö ğ ç ğ ğ ç ğ Ö ğ ğ ç ç ö ç ğ ö ğ ç ö ğ ç ç ö ö ğ ç ğ ğ ö ğ ç ğ ğ ö ç ö ç ö ö ğ ö ç Ş Ü ğ Ü ö Ö Ş ğ Ş Ü ö ğ ö ğ ö ö Ü ö «Ç ğ ö ğ ç ğ ğ ğ çö ç ğ ö ğ

Detaylı

Ğ Ğ Ğ Ç Ç Ç Ş ç Ş Ü ö çö ö ö Ç ö ç ç ç ö ö ç ç ç ö Ç Ç ç Ç Ç Ç Ç ç ç ç Ç Ö Ç ç Ç ç ç ç ö ç ö ö Ç ç ö ö ö ö ç ö Ş Ş Ü Ü ç ö ö Ö ö ö ö çö ç Ğ ö ç Ğ ö Ü Ü ç ö ö Ö Ç Ç ç Ç Ç ç Ç Ö ö ö ç Ş Ç ç ö Ö Ş Ş Ü Ü ç

Detaylı

Ğ İ Ç Ü Ö Ö ö Ü ö ç İ ö ç ç ğ ç «Ü İ ğ İ Ü Ü İ İ İ ğ Ü Ü İ İ ğ ç ç ğ ğ ö ö Ç Ö İ ö İ ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ ğ ğ ç ğ ö ğ ğ ğ ç ğ ğ ğ ğ ö ö ö ö ç ç ö ç ç ö ö ç ç ö ğ ğ ç ğ ğ ğ ö ğ ğ

Detaylı

* : Bu örnek, bu Yönetmelikten önceki uygulamada kullanılan Örnek 63'e karşılık gelmektedir.

* : Bu örnek, bu Yönetmelikten önceki uygulamada kullanılan Örnek 63'e karşılık gelmektedir. T.C. ÜNYE İCRA DAİRESİ 2015/2839 ESAS TAŞINIRIN AÇIK ARTIRMA İLANI Aşağıa cns, mktar ve eğerler yazılı mallar satışa çıkarılmış olup: Örnek No: 25* Brnc artırmanın aşağıa belrtlen gün, saat ve yere yapılacağı

Detaylı

1. Düğüm noktası ve eleman tabloları hazırlanır.

1. Düğüm noktası ve eleman tabloları hazırlanır. Yapı tatğ - Mats Ye Değştme Yöntemne Gş / Doç DBlgeDOAN Öne : Şelde göülen sstem Mats Deplasman Yöntem le, velen dış yüle çn çözülmüş ve ç uvvetle hesaplanmıştı x Nm N N N/m z N/m m m EI Nm,EA 7 N Düğüm

Detaylı

3. Telin kesit alanı, 4. lsıtılan telin diren ci, R = R o. 5. Devreden geçen proton sayısı, q = (N e. 6. X ve Y ilet ken le ri nin di renç le ri,

3. Telin kesit alanı, 4. lsıtılan telin diren ci, R = R o. 5. Devreden geçen proton sayısı, q = (N e. 6. X ve Y ilet ken le ri nin di renç le ri, . ÖÜ EETİ ODE SOU - DEİ SOUN ÇÖZÜEİ. Teln kest alanı, 400 mm 4.0 4 m. a a a a n boyu,, a n kest alanı, a.a a a a Teln drenc se, ρ., 500 4.0 6. 4 5 Ω dur. 40. Telden geçen akım, ohm kanunundan, 40 48 amper

Detaylı

ITAP_Exam_28_March_2012 (Deneme Sınavı)

ITAP_Exam_28_March_2012 (Deneme Sınavı) ITAP_Exam_8_March_ (Deneme Sınavı). Kütlesi m olan bir aam ütlesi Mm olan bir utuyu uvara oğru bir maara sistemiyle itmeliir (şeilei gibi). Aam zemineyen bu işi gerçeleme için en az F 6N büyülüte bir uvvet

Detaylı

7. SINIF MATEMATİK A. 2. Aşağıdakilerden hangisi 2

7. SINIF MATEMATİK A. 2. Aşağıdakilerden hangisi 2 . Mee, şeilei gibi puanlanmış heef ahasına 2 aış yapıyor. Poziif am sayıların oluğu her bölgeye iişer o, negaif am sayıların oluğu her bölgeye üçer o isabe eiriyor. Mee isabe eiriği her o için o bölgeei

Detaylı

BASAMAK TİPİ DEVRE YAPISI İLE ALÇAK GEÇİREN FİLTRE TASARIMI

BASAMAK TİPİ DEVRE YAPISI İLE ALÇAK GEÇİREN FİLTRE TASARIMI BASAMAK TİPİ DEVRE YAPISI İE AÇAK GEÇİREN FİTRE TASARIMI Adnan SAVUN 1 Tugut AAR Aif DOMA 3 1,,3 KOÜ Mühendislik Fakültesi, Elektonik ve abeleşme Müh. Bölümü 41100 Kocaeli 1 e-posta: adnansavun@hotmail.com

Detaylı

= + ise bu durumda sinüzoidal frekansı. genlikli ve. biçimindeki bir taşıyıcı sinyalin fazının modüle edildiği düşünülsün.

= + ise bu durumda sinüzoidal frekansı. genlikli ve. biçimindeki bir taşıyıcı sinyalin fazının modüle edildiği düşünülsün. 4.2. çı Modülasyonu Yüse reanslı bir işaret ile bilgi taşıa, işaretin genliğinin, reansının veya azının bir esaj işareti ile odüle edilesi ile gerçeleştirilebilir. Bu üç arlı odülasyon yöntei sırasıyla,

Detaylı

Stokastik envanter model kullanılarak iş makinelerinin onarımında kullanılan kritik yedek parçalar için envanter yönetim sistemi oluşturulması

Stokastik envanter model kullanılarak iş makinelerinin onarımında kullanılan kritik yedek parçalar için envanter yönetim sistemi oluşturulması Stokastk envante model kullanılaak ş maknelenn onaımında kullanılan ktk yedek paçala çn envante yönetm sstem oluştuulması İlke Bçe 2 Jandama Genel Komutanlığı, Beştepe, Ankaa Nhat Kasap Sabancı Ünvestes,

Detaylı

KARMAŞIK SAYILAR. Derse giriş için tıklayın...

KARMAŞIK SAYILAR. Derse giriş için tıklayın... KARMAŞIK SAYILAR Derse grş çn tıklayın A Tanım B nn Kuvvetler C İk Karmaşık Sayının Eştlğ D Br Karmaşık Sayının Eşlenğ E Karmaşık Sayılarda Dört İşlem Toplama - Çıkarma Çarpma Bölme F Karmaşık Dülem ve

Detaylı

BÖLÜM 1 LİNEER DENKLEM TAKIMLARININ ÇÖZÜM YÖNTEMLERİ

BÖLÜM 1 LİNEER DENKLEM TAKIMLARININ ÇÖZÜM YÖNTEMLERİ BÖLÜM LİEER DEKLEM TAKIMLARII ÇÖZÜM YÖTEMLERİ - Gş Mtse Lnee enem tımının çözüm yönteme Gss emnsyon yöntem Gss-Jon Yöntem Thoms yöntem LU Ayıştım yönteme Jco st tesyon yöntem Gss-Se tesyon yöntem 7 SOR

Detaylı

C) 2 2 2 2H c. D) v = v + 2uv + 2u ; tanθ= C) v 0 =10 3 m/s; tanθ= 2 3

C) 2 2 2 2H c. D) v = v + 2uv + 2u ; tanθ= C) v 0 =10 3 m/s; tanθ= 2 3 . Bi uça sesten ızı oaa, H yüseiğinde üstüüzden uçaen ta tepeizden geçtiten τ süe sona sesini duyabiiyouz. es ızı c ise uçağın ızını buunuz. H c τ H c τ H c τ H c τ H c τ tenis oeti u o v tenis topu. Kütesi

Detaylı

HANNOVER YAKLAŞIMI İLE GEOMETRİK ANALİZ SÜRECİNE BİR KISA YOL ÖNERİSİ

HANNOVER YAKLAŞIMI İLE GEOMETRİK ANALİZ SÜRECİNE BİR KISA YOL ÖNERİSİ HAVE YAKLAŞIMI İLE GEMEİK AALİZ SÜECİE Bİ KISA YL ÖEİSİ S. DEMİKAYA,.G. HŞBAŞ, H. EKAYA Yılız eknk Ünverstes, Meslek Yüksekokulu, İstanbul, emrkay@ylz.eu.tr Yılız eknk Ünverstes, İnşaat Fakültes, Jeoez

Detaylı

Faiz oranının rastlantı değişkeni olması durumunda tam hayat ve dönem sigortaları

Faiz oranının rastlantı değişkeni olması durumunda tam hayat ve dönem sigortaları wwwsascleog İsasçle Degs 009-8 İsasçle Degs Fa oaıı aslaı değşe olması duumuda am haya ve döem sgoalaı sa Saıcı Haceee Üveses Fe Faüles İsas Bölümü eelago@haceeeedu Cea dem Haceee Üveses Fe Faüles üeya

Detaylı

TÜMEVARIM DİZİ - SERİ

TÜMEVARIM DİZİ - SERİ 99 A = {, N } ve P() öemes vels. Eğe :. P() doğu,. A ç P() doğu e P(+) öemes de doğu se; P() öemes A ç doğudu. TOPLAM SEMBOLÜ R ve N olm üzee;... dı. c c. c c b b < m < ç m m p p p 0 F F F F F F F F A

Detaylı

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler

Adi Diferansiyel Denklemler NÜMERİK ANALİZ. Adi Diferansiyel Denklemler. Adi Diferansiyel Denklemler 6.4.7 NÜMERİK ANALİZ Yrd. Doç. Dr. Hatce ÇITAKOĞLU 6 Müendslk sstemlernn analznde ve ugulamalı dsplnlerde türev çeren dferansel denklemlern analtk çözümü büük öneme saptr. Sınır değer ve/vea başlangıç

Detaylı

30 %30iskonto oranı bulunur.

30 %30iskonto oranı bulunur. Örne 9: 900 TL re eğerl ve 80 gün vael br senen peşn eğer, ç soo üzernen 8000 TL olara hesaplanığına göre uygulanan soo oranı ner? çözü:.yol: =900 TL n=80 gün P 8000TL t=? P..900 8000 80t 8000( 80t).900

Detaylı

Yüzey basıncı. Yukarıda bir pernonun yerine takılış şekli görülmektedir. τ = 4 Eğilme; ) W M W. e e

Yüzey basıncı. Yukarıda bir pernonun yerine takılış şekli görülmektedir. τ = 4 Eğilme; ) W M W. e e ERNOLR afsallı bağlantılara, trllrin taşııcı göv bağlanmasına ullanılır. rnoları aslaran aıran başlıca özlliği, bağlantılarınai msafnin ısa olması nnil ğilm momntlrinin üçü olması, olaısı il üz basıncının

Detaylı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı

Deney No: 2. Sıvı Seviye Kontrol Deneyi. SAKARYA ÜNİVERSİTESİ Dijital Kontrol Laboratuvar Deney Föyü Deneyin Amacı SRY ÜNİVERSİESİ Djtal ontrol Laboratuvar Deney Föyü Deney No: 2 Sıvı Sevye ontrol Deney 2.. Deneyn macı Bu deneyn amacı, doğrusal olmayan sıvı sevye sstemnn belrlenen br çalışma noktası cvarında doğrusallaştırılmış

Detaylı

BÖLÜM 5 İNCE PROFİLLER İÇİN SAYISAL UYGULAMALAR

BÖLÜM 5 İNCE PROFİLLER İÇİN SAYISAL UYGULAMALAR BÖLÜM 5 İE PROFİLLER İÇİ SAYISAL UYGULAMALAR 5. Grş 5. İne profl teors 5.. Analt çözümler 5.. Kamburlu eğrsne polnom şelnde eğr uydurulması 5.. Fourer ntegrallernn sayısal hesabı 5. Kümelenmş-grdaplar

Detaylı

YAPI MALZEMELERİNDE BUHAR DİFÜZYONU VE YOĞUŞMA

YAPI MALZEMELERİNDE BUHAR DİFÜZYONU VE YOĞUŞMA 46 YAPI MALZEMELERİNDE BUHAR DİFÜZYONU VE YOĞUŞMA Hasan A. HEPERKAN M. Murat BİRCAN M. Kemal SEVİNDİR ÖZET Su buharı füzyonu sonucu oluşan yoğuşma, yapı malzemelerne ve yapı malzemelerne meyana gelen ısı

Detaylı

FOTOGRAMETRİK NOKTA AĞLARI İÇİN BASİT BİR OPTİMİZASYON METODU

FOTOGRAMETRİK NOKTA AĞLARI İÇİN BASİT BİR OPTİMİZASYON METODU Selçuk Ünverstes Jeode ve Fotogrametr Mühendslğ Öğretmnde 0. õl Sempoumu6-8 Ekm 00 Kona SUNULMUŞ İLDİRİ FOTOGRMETRİK NOKT ĞLRI İÇİN SİT İR OTİMİSON METODU Esra TUNÇ Jurgen FRIEDRICH Fev KRSLI Karaden Teknk

Detaylı

CDMA SİSTEMLERİNDE İNTERFERANS ANALİZİ

CDMA SİSTEMLERİNDE İNTERFERANS ANALİZİ DMA SİSTEMLERİNDE İNTERFERANS ANALİZİ Muammet ŞİMŞEK Aktül KAVAS, Elektonk ve Habeleşme Müenslğ Bölümü Elektk-Elektonk Fakültes Yılız Teknk Ünvestes,339, Beşktaş,İstanbul. e-posta: muammet_smsek@yaoo.com

Detaylı

TEST - 1 ÜRETEÇLER. ε 3 =6V. ε 2. ε i=3a. ε 3 =12V. ε 2 =36V. ε ε. Devrenin eflde er direnci = = 6Ω olur. Devrenin eflde er direnci

TEST - 1 ÜRETEÇLER. ε 3 =6V. ε 2. ε i=3a. ε 3 =12V. ε 2 =36V. ε ε. Devrenin eflde er direnci = = 6Ω olur. Devrenin eflde er direnci ÜETEÇE TEST - 1 1. 3 10Ω 3. =5 2 15Ω = 1 1 =36 2 =12 1 = 2 = 3 =6 3 = Devenn eflde e denc efl = 6 3 1 = 10Ω Devenn eflde e denc efl = 3 1 1 1 = / 36 12 6 30 = = = = 5 / 6 6 na koldan geçen ak m, / 25 25

Detaylı

BÖLÜM 2 VİSKOZ OLMAYAN SIKIŞTIRILAMAZ AKIMIN ESASLARI

BÖLÜM 2 VİSKOZ OLMAYAN SIKIŞTIRILAMAZ AKIMIN ESASLARI ÖLÜM İSKOZ OLMAYAN SIKIŞTIRILAMAZ AKIMIN ESASLARI. Açısal hı, otisite e Sikülasyon. otisitenin eğişme Hıı.3 Sikülasyonun eğişme Hıı Kelin Teoemi.4 İotasyonel Akım Hı Potansiyeli.5 ida Üeindeki e Sonsudaki

Detaylı

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI

ÜNİVERSİTEYE GİRİŞ SINAV SORULARI ÜNİVERSİTEYE GİRİŞ SINV SORULRI. 99 ÖYS D C 5. 99 ÖYS fonksionunun ba lan g ç nok ta s na en a k n olan nok ta s n n, ba lan g ç nok ta s na uzak l kaç bi im di? O bi im olan bi a çem be in içi ne çi zi

Detaylı

EMAT ÇALIŞMA SORULARI

EMAT ÇALIŞMA SORULARI EMAT ÇALIŞMA SORULARI 1) A = 4. ı x 2. ı y ı z ve B = ı x + 4. ı y 4. ı z vektörlerinin dik olduğunu gösteriniz. İki vektörün skaler çarpımlarının sıfır olması gerekir. A. B = 4.1 + ( 2). 4 + ( 1). ( 4)

Detaylı

Fresnel Denklemleri. 2008 HSarı 1

Fresnel Denklemleri. 2008 HSarı 1 Feel Deklemle 8 HSaı 1 De İçeğ Aa Yüzeyde Mawell Deklemle Feel şlkle Yaıma Kıılma 8 HSaı Kayak(la Oc ugee Hech, Alfed Zajac Addo-Weley,199 Kuaum leko-diamğ (KDİ, Rchad Feyma, (Çev. Ömü Akyuz, NAR Yayılaı,

Detaylı

3. EŞPOTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ. Bir çift elektrot tarafından oluşturulan elektrik alan ve eş potansiyel çizgilerini görmek.

3. EŞPOTANSİYEL VE ELEKTRİK ALAN ÇİZGİLERİ AMAÇ. Bir çift elektrot tarafından oluşturulan elektrik alan ve eş potansiyel çizgilerini görmek. 3. EŞPOTNSİYEL VE ELEKTRİK LN ÇİZGİLERİ MÇ i çift elektot taafından oluştuulan elektik alan ve eş potansiyel çizgileini gömek. RÇLR Güç kaynağı Galvanomete Elektot (iki adet) Pob (iki adet) İletken sıvı

Detaylı

AKM 202. Akõşkanlar Mekaniği. Ders Notları. 2.Bölüm. Temel Kavramlar. Gemi İnşaatõ ve Deniz Bilimleri Fakültesi. Hazõrlayan

AKM 202. Akõşkanlar Mekaniği. Ders Notları. 2.Bölüm. Temel Kavramlar. Gemi İnşaatõ ve Deniz Bilimleri Fakültesi. Hazõrlayan KM 0 õşala Meağ Des Notlaı ölüm Temel Kavamla İTÜ Gem İşaatõ ve De lmle Faültes Haõlaa Yd Doç D Şafa Nu Etü Oda No:47 Tel: 85 68 e-posta: etu@tuedut DERS NOTLRI TEMEL KRMLR KM 0 KIŞKNLR MEKNİĞİ Süel Otam

Detaylı

Cebir Notları. Kombinasyon. www.mustafayagci.com, 2005. Mustafa YAĞCI, yagcimustafa@yahoo.com

Cebir Notları. Kombinasyon. www.mustafayagci.com, 2005. Mustafa YAĞCI, yagcimustafa@yahoo.com ve ve n tane farlı elemanan oluşan bir ümenin altümelerine birer ombinasyon enir. n, r 0 r n olma üzere, n elemanlı A ümesinin r elemanlı altümelerinen her birine A ümesinin r li bir ombinasyonu enir ve

Detaylı

MATEMATİK. ise = işleminin? sonucu kaçtır? ONDOKUZ MAYIS ÜNİVERSİTESİ YÖS SINAVI 9,9-1 4 B) 5 E) 3 5 C) 5 D) 2 5 5 A) 0,01 B) 0,09 C) D) 10 E) 9

MATEMATİK. ise = işleminin? sonucu kaçtır? ONDOKUZ MAYIS ÜNİVERSİTESİ YÖS SINAVI 9,9-1 4 B) 5 E) 3 5 C) 5 D) 2 5 5 A) 0,01 B) 0,09 C) D) 10 E) 9 ).. 9,9 - A) 0,0 ) 0,09 C) işleminin sonucu kaçtır? 0 D) 0 E) 9 a = 8 ) b = 6 A) - ) a b ise = işleminin? sonucu kaçtır? a+ b - C) - D) E) ) A sayısının 7 ile bölümünden kalan ise, aşağıdakilerden hangisi

Detaylı

VEKTÖRLER Koordinat Sistemleri. KONULAR: Koordinat sistemleri Vektör ve skaler nicelikler Bir vektörün bileşenleri Birim vektörler

VEKTÖRLER Koordinat Sistemleri. KONULAR: Koordinat sistemleri Vektör ve skaler nicelikler Bir vektörün bileşenleri Birim vektörler 11.10.011 VEKTÖRLER KONULR: Koordnat ssteler Vektör ve skaler ncelkler r vektörün bleşenler r vektörler Koordnat Ssteler Karteen (dk koordnatlar: r noktaı tesl etenn en ugun olduğu koordnat ssten kullanırı.

Detaylı

TEKNOLOJİK ARAŞTIRMALAR

TEKNOLOJİK ARAŞTIRMALAR www.teknolojkarastrmalar.com ISSN:35-63X Yapı eknolojler Elektronk ergs 6 () - EKNOLOJİK ARAŞIRMALAR Makale Yamula arajına eformasyon Analz emel AYRAK Nğe Ünverstes Aksaray Mühenslk akültes Jeoez ve otogrametr

Detaylı

Güvenlik Stokları. Tedarik Zincirlerinde Belirsizlik Yönetimi: Güvenlik Stokları. Güvenlik Stokları Belirlenirken Sorulması gereken sorular

Güvenlik Stokları. Tedarik Zincirlerinde Belirsizlik Yönetimi: Güvenlik Stokları. Güvenlik Stokları Belirlenirken Sorulması gereken sorular Güvenl Stoları Tedar Zncrlernde Belrszl Yönetm: Güvenl Stoları Güvenl Stoğu: Herhang br dönemde, talebn tahmn edlen mtarın üzernde gerçeleşen mtarını arşılama çn elde bulundurulan sto mtarıdır Q Çevrm

Detaylı

T.C SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KALMAN FİLTRELEME YÖNTEMİYLE DEFORMASYON ANALİZİ SERKAN DOĞANALP

T.C SELÇUK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ KALMAN FİLTRELEME YÖNTEMİYLE DEFORMASYON ANALİZİ SERKAN DOĞANALP İ.C SELÇUK ÜNİVERSİESİ FEN BİLİMLERİ ENSİÜSÜ KALMAN FİLRELEME YÖNEMİYLE DEFORMASYON ANALİZİ SERKAN DOĞANALP YÜKSEK LİSANS SEMİNERİ JEODEZİ VE FOOGRAMERİ ANABİLİM DALI Kona,003 KALMAN FİLRELEME YÖNEMİYLE

Detaylı

f (a+h) f (a) h + f(a)

f (a+h) f (a) h + f(a) DERS 7 Marjinal Analiz 7.. Marjinal Değerler. f fonksiyonunun (a, f(a noktasınaki teğetinin eğiminin f (a ve teğetin enkleminin e y f (a ( a + f(a oluğunu biliyoruz. a ya yakın bir a+h eğeri için f (a+h

Detaylı

Optoelektronik Ara Sınav-Çözümler

Optoelektronik Ara Sınav-Çözümler Optelektk Aa Sıav-Çöümle s (.57 ) Su : Dğusal laak kutuplamış ışık ç elektk ala 5 π + t + ( + ) 5 velmekted. uada ala gelğ ˆ ˆ se bu ışık dalgasıı, a) aetk alaı (vektöel) ç b fade tüet ( pua) b) Otamı

Detaylı

AZIRBAYCAN HALK MÜZİGİ MAKAMLARıNDAN RAST MAKAMıNıN İNCILINMESi

AZIRBAYCAN HALK MÜZİGİ MAKAMLARıNDAN RAST MAKAMıNıN İNCILINMESi AZIRBAYCAN HALK MÜZİGİ MAKAMLARıNDAN RAST MAKAMıNıN İNCILINMES Arş. Gör. Yavuz ŞEN* Türl< müzğnde bast mal

Detaylı

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit

) ( k = 0,1,2,... ) iterasyon formülü kullanılarak sabit Karadez Te Üverstes Blgsayar Mühedslğ Bölümü 5-6 Güz Yarıyılı Sayısal Çözümleme Ara Sıav Soruları Tarh: Kasım 5 Perşembe Süre: daa. f ( ( + a e fosyouu sabt otası olmadığı bldğe göre, a 'ı alableceğ e

Detaylı

LYS MATEMATİK DENEME - 2

LYS MATEMATİK DENEME - 2 LYS MATEMATİK DENEME - BU SORULAR FİNAL EĞİTİM KURUMLARI TARAFINDAN SAĞLANMIŞTIR. İZİNSİZ KOPYALANMASI VE ÇOĞALTILMASI YASAKTIR, YAPILDIĞI TAKDİRDE CEZAİ İŞLEM UYGULANACAKTIR. LYS MATEMATİK TESTİ. Bu testte

Detaylı

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II

BÝREY DERSHANELERÝ SINIF ÝÇÝ DERS ANLATIM FÖYÜ MATEMATÝK - II ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS NLTIM FÖYÜ DERSHNELERÝ Konu Ders dý ölüm Sýnav DF No. MTEMTÝK - II TRÝGONOMETRÝ - IV MF TM LYS Ders anlatým föyleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr.

Detaylı

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ. Doç.Dr. Cüneyt BAYILMIŞ. Sayısal Analiz. Doç.Dr. Cüneyt BAYILMIŞ SAYISAL ANALİZ Doç.Dr. Cüneyt BAYILMIŞ Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz SAYISAL ANALİZ SAYISAL TÜREV Numercal Derentaton Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analz İÇİNDEKİLER Sayısal Türev Ger Farklar

Detaylı

Eğik Yüzeye Gelen Güneş Işınımı Değerlerinin Deneysel Olarak İncelenmesi

Eğik Yüzeye Gelen Güneş Işınımı Değerlerinin Deneysel Olarak İncelenmesi UGHEK 006:. ULUSAL GÜNEŞ VE HİDROJEN ENERJİSİ KONGRESİ -3 HAZİRAN 006, ESOGÜ, ESKİŞEHİR Eğik Yüeye Gelen Güneş şınımı Değerlerinin Deneysel Olarak İncelenmesi Hüsamettin Bulut, Asım Fatih Durma ve Bülent

Detaylı

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi

Journal of Engineering and Natural Sciences Mühendislik ve Fen Bilimleri Dergisi Jounal of Enneen an Natual Scences Mühenslk ve Fen lmle Des Sma 9, 8-47, 0 Reseach tcle / aştıma Makales RESERH ND PROEION OF ENERGY RNSMISSION INES FROM HE FERRORESONNE OEROGES hmet NYIR* Fath Ünvestes,

Detaylı

Prefabrik Yapılar. Cem AYDEMİR Yıldız Teknik Üniversitesi / İstanbul

Prefabrik Yapılar. Cem AYDEMİR Yıldız Teknik Üniversitesi / İstanbul Prefabrik Yapılar Uygulama-1 Cem AYDEMİR Yıldız Teknik Üniversitesi / İstanbul 2010 Sunuma Genel Bir Bakış 1. Taşıyıcı Sistem Hakkında Kısa Bilgi 1.1 Sistem Şeması 1.2 Sistem Detayları ve Taşıyıcı Sistem

Detaylı

Harita 1: Esenyurt un Đstanbuldaki Yeri..2 Harita 2: Esenyurt Mahalli Yapısı...3 Harita 3: Su Kaynakları Bakımından Esenyurt...4 A.

Harita 1: Esenyurt un Đstanbuldaki Yeri..2 Harita 2: Esenyurt Mahalli Yapısı...3 Harita 3: Su Kaynakları Bakımından Esenyurt...4 A. ĐÇĐNEKĐLER Sayfa No Harita : Esenyurt un Đstanbulaki Yeri..2 Harita 2: Esenyurt Maalli Yapısı...3 Harita 3: Su Kaynakları Bakımınan Esenyurt...4 A. Kaynaktan Alınan Suyun Yerleşim Merkezine Getirilmesi

Detaylı

IŞIK VE GÖLGE BÖLÜM 24

IŞIK VE GÖLGE BÖLÜM 24 IŞI VE GÖLGE BÖLÜM 24 MODEL SORU 1 DE SORULARIN ÇÖÜMLER MODEL SORU 2 DE SORULARIN ÇÖÜMLER 1 1 Dünya Ay Günefl 2 2 Bu olay ışı ğın fak lı say am o la a fak lı hız la a yayıl ı ğı nı açık la ya maz Şe kil

Detaylı

6 II. DERECEDEN FONKSÝYONLAR 2(Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MATEMATÝK. y f(x) f(x)

6 II. DERECEDEN FONKSÝYONLAR 2(Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MATEMATÝK. y f(x) f(x) 6 II. DERECEDEN FNKSÝYNLR (Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MTEMTÝK 1. f(). f() 6 8 T Yukarıda grafiği verilen = f() parabolünün denklemi nedir?( = 6) Yukarıda grafiği verilen

Detaylı

2011 L 2 4 5 6 7 8 10 12 14 16 20 24 47 48 49 50 Y L Y Y L L I 51 54 55 57 58 60 61 61 62 62 63 63 64 75 L L L Y L L L 76 77 80 81 81 82 83 87 193 300 2 Y Y L 3 4 21 03 2012 L L L L 5 LI Y I I Y L Y L

Detaylı

2013 2013 LYS LYS MATEMATİK Soruları

2013 2013 LYS LYS MATEMATİK Soruları LYS LYS MATEMATİK Soulaı. LYS 5. LYS ( + a ) = 8 < < olmak üzee, olduğuna öe, a kaçtı? I. A) D) II. + III. (.) ifadeleinden hanileinin değei neatifti? A) Yalnız I Yalnız II Yalnız III D) I ve III II ve

Detaylı

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x. 4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.

Detaylı

KONTROL SİSTEMLERİ YIL İÇİ UYGULAMA. Problem No

KONTROL SİSTEMLERİ YIL İÇİ UYGULAMA. Problem No KONTRO SİSTEMERİ YI İÇİ UYGUAMA Problem No AD SOYAD 10 haneli öğrenci NO Şeil 1 Şeil 1 dei sistem için transfer fonsiyonunu bulalım. Sistem ii serbestli derecesine sahiptir.her bir ütle diğerinin sabit

Detaylı

8 LAURENT SER I GÖSTER IMLER I

8 LAURENT SER I GÖSTER IMLER I 8 LAURENT SER I GÖSTER IMLER I Tan m. C n ; n 0; ; ; : : : kompleks sabitler olmak üere serisine Laurent serisi denir. Burada n X C n ( X X X C n ( 0 ) n a n ( 0 ) n b n + ( 0 ) n 0 ) n dir. Teore8.. (Laurent

Detaylı

YÜKSEK GERİLİM TEKNİĞİ 1

YÜKSEK GERİLİM TEKNİĞİ 1 . Yüse Geilim Teniği nin Gelişimi ve Yalıtan Malzemele YÜKSEK GERİLİM TEKNİĞİ Refeansla. Yüse Geilim Teniği, Pof.D. Muzaffe ÖZKAYA, Cilt, Bisen Yayınevi, 996.. Yüse Geilim Teniğinin Temellei, Pof.D.Sefa

Detaylı

11. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 1. Konu ELEKTRİKSEL KUVVET VE ELEKTRİK ALANI ETKİNLİK VE TEST ÇÖZÜMLERİ

11. SINIF KONU ANLATIMLI. 2. ÜNİTE: ELEKTRİK VE MANYETİZMA 1. Konu ELEKTRİKSEL KUVVET VE ELEKTRİK ALANI ETKİNLİK VE TEST ÇÖZÜMLERİ SINI KONU NLTIMLI ÜNİTE: ELEKTRİK VE MNYETİZM Konu ELEKTRİKSEL KUVVET VE ELEKTRİK LNI ETKİNLİK VE TEST ÇÖZÜMLERİ Elektriksel Kuvvet ve Elektrik lanı Ünite Konu nın Çözümleri kuvvetinin yatay ve üşey bileşenleri

Detaylı

Tork ve Denge. Test 1 in Çözümleri

Tork ve Denge. Test 1 in Çözümleri 9 ork ve Denge est in Çözümleri M. Sistemlerin engee olması için toplam momentin (torkun) sıfır olması gerekir. Verilen üç şekil için enge koşulunu yazalım. F. br =. br F = Şekil II G =. +. +. =. 6 = 6

Detaylı

1. ÜNİTE: MODERN ATOM TEORİSİ

1. ÜNİTE: MODERN ATOM TEORİSİ . ÜNİTE: MODERN ATOM TEORİSİ.4. Elektron Dizilimi ve Periyodik Sisteme Yerleşim Atomun Kuantum Modeli oluşturulduktan sonra Bohr, yaptığı çalışmalarda periyodik cetvel ile kuantum teorisi arasında bir

Detaylı

ASTRONOTİK DERS NOTLARI 2014

ASTRONOTİK DERS NOTLARI 2014 YÖRÜNGE MEKANİĞİ Yöüngeden Hız Hesabı Küçük bi cismin yöüngesi üzeinde veilen hehangi bi noktadaki hızı ve bu hızın doğultusu nedi? Uydu ve çekim etkisinde bulunan cisim (Ye, gezegen, vs) ikili bi sistem

Detaylı

TRANSFORMATÖRLER. 4. a) Pri mer dev re ye uy gu la nan al ter na tif ge ri li min et kin de ğe ri; 1. İdeal transformatörler için,

TRANSFORMATÖRLER. 4. a) Pri mer dev re ye uy gu la nan al ter na tif ge ri li min et kin de ğe ri; 1. İdeal transformatörler için, 7. BÖÜ TRAFORATÖRER AIŞTIRAAR ÇÖZÜER TRAFORATÖRER. İdeal transformatörler çn, eştlğn kullanırsak, 0 00 & 0 0. 0 A 800 400 Transformatör deal olduğundan, 400 8 800 4A A ampermetresnn gösterdğ değer 4A A

Detaylı

FİZ121 FİZİK. Ankara Üniversitesi Diş Hekimliği Fakültesi. 26.09.2013 Ankara. Aysuhan Ozansoy

FİZ121 FİZİK. Ankara Üniversitesi Diş Hekimliği Fakültesi. 26.09.2013 Ankara. Aysuhan Ozansoy FİZ121 FİZİK naa Ünvestes Dş Hemlğ Faültes 2. Des naa suhan Oanso ölüm:2 Vetöle 1. Vetöel ve Sale Ncelle 2. Vetölen Göstem 3. Vetölede Toplama 3.1. Koodnat Sstemle 3.2. Uç uca eleme Yöntem 3.3. Paalele

Detaylı

KARMAŞIK SAYILAR ÇALIŞMA SORULARI 1 1.

KARMAŞIK SAYILAR ÇALIŞMA SORULARI 1 1. KARMAŞIK SAYILAR ÇALIŞMA SORULARI.., +.,.,. +.,,. +, + Re( ) İm( ) +. olmak üere? olmak üere.. + )? (. 6 +.. 9 + 8 ( ) olduğua göre İm (Z) Re (Z)?. + + 9 + 6 +... + 89 6. 0 + + +... + 7. P(x) x 7 + x x

Detaylı

T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İKİ BOYUTTA ETKİLEŞEN TUZAKLANMIŞ AŞIRI SOĞUK BOZONLAR

T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İKİ BOYUTTA ETKİLEŞEN TUZAKLANMIŞ AŞIRI SOĞUK BOZONLAR T.C. TRAKYA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İKİ BOYUTTA ETKİLEŞEN TUZAKLANMIŞ AŞIRI SOĞUK BOZONLAR Al hsan MEŞE DOKTORA TEZİ FİZİK ANABİLİM DALI Danışman :. Pof. D. Eol OKAN. Pof.D. Zeha AKDENİZ EDİRNE

Detaylı

BASİT HARMONİK HAREKET... 35. Basit Harmonik Hareket... 35. Yaya Bağlı Bir Kütlenin Basit Harmonik Hareketi... 37. Basit Sarkaç...

BASİT HARMONİK HAREKET... 35. Basit Harmonik Hareket... 35. Yaya Bağlı Bir Kütlenin Basit Harmonik Hareketi... 37. Basit Sarkaç... KUVVET VE HREKET Sayfa No BSİT HRMONİK HREKET................................................ 35 Basit Haoni Haeet............................................ 35 Yaya Bağlı Bi Kütlenin Basit Haoni Haeeti.......................

Detaylı