SMARANDACHE EĞRİLERİNE AİT BİR UYGULAMA. Süleyman ŞENYURT 1* Selin SİVAS 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "SMARANDACHE EĞRİLERİNE AİT BİR UYGULAMA. Süleyman ŞENYURT 1* Selin SİVAS 1"

Transkript

1 Ordu Üniv. il. Tek. Derg. Cilt: Sayı: /Ordu Univ. J. Sci. Tech. Vol: No: SMARANDACHE EĞRİLERİNE AİT İR UYGULAMA Süleyman ŞENYURT * Selin SİVAS Ordu Üniversitesi Fen Edebiyat Fakültesi Matematik ölümü ÖZET u çalışmada bir eğrisinin Frenet vektörleri T N ve birim Darboux vektörü C olmak üzere -Smarandache eğrisi tanımlanarak bu eğri ile birlikte N vetn -Smarandache eğrilerinin eğrilik ve torsiyonu hesaplanmıştır. Key wor: Smarandache Curves Mathematics Subject Classification (00) 5A04. AN APPLICATION OF SMARANDACHE CURVE ASTRACT In this paper Firstly we define -Smarandache curve then we calculate the curvature and torsion of N and TN- Smarandache curves together with -Smarandache curve. Here T N and are Frenet vectors of a curve α and vector C is unit Darboux vector. Key wor: Smarandache Curves Mathematics Subject Classification (00) 5A04. * Sorumlu yazar: 46

2 Süleyman ŞENYURT & Selin SİVAS.GİRİŞ Eğrilerin diferansiyel geometrisi üzerinde birçok çalışmalar mevcuttur. 008 de M. Turgut ve S. Yılmaz tarafından yapılan Smarandache Curves in Minkowski Space-time isimli çalışmada Smarandache eğrileri tanımlanmıştır []. Daha sonra bu eğriler farklı uzaylarda farklı çatılar ele alınarak incelenmiş ve yeni sonuçlar elde edilmiştir [456].. GENEL İLGİLER : I IR E s s s s eğrisinin Frenet -ayaklısı regüler birim hızlı bir eğri olsun. s s s T s N s s T s N s. dır. Eğrinin eğriliği s torsiyonu s ile gösterilirse s s s. olur. u durumda Frenet formülleri T s s N s N s s T s s s s s N s. şeklinde verilir [7]. eğrisinin T N vektörünün binormal vektörü ile yaptığı açı ile gösterilirse Frenet çatısına bağlı olarak oluşan W Darboux 47

3 Smarandache Eğrilerine Ait ir Uygulama sin cos W olur ve buradan birim Darboux vektörü şeklinde bulunur. W.4.5 C sint cos Tanım.:Konum vektörü herhangi bir eğrisinin Frenet çatıları tarafından oluşturulan ve bu vektör tarafından çizilen regüler eğriye Smarandache eğrisi denir[]. Tanım.: : I E T N olsun. birim hızlı regüler eğrinin Frenet çatısı s TN T N s N N s TN T N eğrisinetn -Smarandache eğrisi.6 eğrisine N -Smarandache eğrisi.7 eğrisinetn -Smarandache eğrisi denir []..8 TN -Smarandache eğrisinin eğriliği TN ve torsiyonu TN gösterilirse TN.9 bulunur. urada TN.0 48

4 Süleyman ŞENYURT & Selin SİVAS ( dır []..Smarandache Eğrilerinin Uygulamaları : I E birim hızlı regüler eğrinin Frenet çatısı T N olsun. Konum vektörü s a s b s c s a s T s b s N s c s s. olan vektörün çizdiği regüler eğriye Smarandache eğrisi denilmektedir.urada a sin s b c cos s alınırsa. ifadesi sin cos s st s s s N s olur..5 bağıntısı burada yerine yazılırsa elde edilen yeni eğri s C s N s. olur ve bu eğri -Smarandache eğrisi olarak isimlendirilir. s ile gösterilirse eğrisinin yay parametresi d cos T sin. 49

5 Smarandache Eğrilerine Ait ir Uygulama olur. Norm alınırsa vektörü W W bulunur. uradan eğrisinin teğet T s cos T sin W W.4 şeklinde olur. u ifadenin tekrar türevi alınırsa 4 cos cos sin cos sin sin sin sin cos sin cos sin cos cos sin cos sin sin cos cos cos cos 4 sin cos 4 sin sin sin sin 4 cos sin sin cos sin cos cos cos cos sin cos cos cos sin sin cos sin olmak üzere T s T N W W.5 bulunur. eğrisinin eğriliği ile gösterilirse W W.6 50

6 Süleyman ŞENYURT & Selin SİVAS olur. Diğer yandan N T T s s olduğundan asli normal vektör T N N.7 olur. T N ifadesinden de binormal vektör W W sin T. sin cos N cos şeklinde bulunur. eğrisinin ikinci ve üçüncü türevleri sırasıyla cos sin T cos sin N sin cos cos sin cos cos sin cos sin cos sin sin cos cos sin.8.9 olmak üzere 5

7 Smarandache Eğrilerine Ait ir Uygulama T N.0 olur.. bağıntısında torsiyonu..9 ve.0 ifadeleri yerine yazılırsa eğrisinin. şeklinde bulunur. urada sin cos sin sin cos sin cos sin cos sin. Sonuç.: : I E eğrisinin Frenet çatısı T N -Smarandache eğrisinin eğriliği ve torsiyonu sırasıyla eğriliği ve torsiyonu olsun. W W şeklinde verilir..7 bağıntısında N -Smarandache eğrisinin yay parametresi s ile gösterilirse 5

8 Süleyman ŞENYURT & Selin SİVAS d N T N. olur ve norm alınırsa bulunur. uradan N eğrisinin teğet vektörü T N T N s. şeklinde olur. u ifadenin tekrar türev alınırsa ve olmak üzere T N s T N.4 bulunur. Eğrilik tanımından N eğrisinin N eğriliği N.5 şeklinde olur. Diğer yandan N N T N T N s s olduğundan asli normal vektör T N N N.6 5

9 Smarandache Eğrilerine Ait ir Uygulama olur. T N ifadesinden de binormal vektör N N N N T N.7 şeklinde bulunur. N eğrisinin ikinci ve üçüncü türevleri sırasıyla N T N.8 olmak üzere T N N.9 olur.. bağıntısında torsiyonu N şeklinde bulunur. Sonuç.:..8 ve.9 ifadeleri yerine yazılırsa N eğrisinin N : I E eğrisinin FrenetçatısıT N N -Smarandache eğrisinin N eğriliği ve N torsiyonu sırasıyla.0 eğriliği ve torsiyonu olsun. 54

10 Süleyman ŞENYURT & Selin SİVAS N N şeklinde verilir..8 bağıntısındatn -Smarandache eğrisinin yay parametresi s ile gösterilirse d TN T N. olur ve norm alınırsa vektörü 6 bulunur. uradan TN eğrisinin teğet T TN s T N. şeklinde olur. u ifadenin tekrar türev alınırsa olmak üzere T TN s 4 T N. bulunur. Eğrilik tanımından TN eğrisinin TN eğriliği 55

11 Smarandache Eğrilerine Ait ir Uygulama TN 4 şeklinde olur. Diğer yandan N TN T TN T TN s s olduğundan asli normal vektör.4 T N N TN.5 olur. T N ifadesinden de binormal vektör TN TN TN TN T N.6 şeklinde bulunur. TN eğrisinin ikinci ve üçüncü türevleri alınırsa sırasıyla TN T N.7 olmak üzere T N TN.8 bulunur.. bağıntısında TN torsiyonu..7 ve.8 ifadeleri yerine yazılırsa TN eğrisinin 56

12 Süleyman ŞENYURT & Selin SİVAS TN şeklinde bulunur. urada.9 Sonuç.:. : I E eğrisinin FrenetçatısıT N TN -Smarandache eğrisinin TN eğriliği ve TN eğriliği ve torsiyonu olsun. torsiyonu sırasıyla TN 4 TN şeklinde verilir Örnek.: s sin6s sin 6 s cos6s cos 6 s sin0s eğrisinin Frenet vektörleri [] ve birim Darboux vektörü T s cos6s cos 6 s sin6s sin 6 s cos0s 5 N s cos 6 s sin 6 s s sin6s sin 6 s cos 6s cos6 s sin0s 5 5 C s cos 6 s sin 6 s şeklinde bulunur ( Şekil ). u eğriye ait -Smarandache eğrisi 57

13 Smarandache Eğrilerine Ait ir Uygulama olur (Şekil ) s cos 6 sin 6 s s Şekil : eğrisi Darboux vektörü Şekil : Örnek.: s cos sin Smarandache eğrisi s s s helis eğrisinin Frenet vektörleri ve birim 58

14 Süleyman ŞENYURT & Selin SİVAS s s T s sin cos s s N s cos sin 0 s s s sin cos C s 00 şeklinde bulunur (Şekil ). TN N TN ve -Smarandache eğrileri sırasıyla TN N s s s s s s sin cos cos sin s s s s cos sin sin cos TN s s s s 6 cos sin s s cos sin olur ( Şekil 4). y x z 0 Şekil : eğrisi 59

15 Smarandache Eğrilerine Ait ir Uygulama Şekil 4: TN N TN ve Smarandache eğrileri KAYNAKLAR [] TurgutM.YılmazS.008. Smarandache Curves in Minkowski space-time International Journal of Mathematical Combinatorics Vol. pp [] Ali A. T. 00. Special Smarandache Curves in the Euclidean Space International Journal of Mathematical Combinatorics Vol. pp.0-6. [] Çetin M. Tuncer Y. and Karacan M. K. 0. Smarandache Curves According to ishop Frame in Euclidean - Space arxiv: v [math. DG]. [4] ektaş Ö.Yüce S. 0. Special Smarandache Curves According to Darboux Frame in Euclidean - Space Romanian Journal of Mathematics and Computer science vol:ıssue:pp: [5] ayrak N. ektaş Ö. and Yüce S.0. Special Smarandache Curves in [math.ho]. E arxiv:04.566v [6] Taşköprü K. Tosun M.04. Smarandache Curves on S oletim da Sociedade paranaense de Matemtica srie. vol: no: pp.5-59 ıssn [7] Hacısalioğlu H.H.98. Diferensiyel Geometri. İnönü Üniversitesi Fen-Edebiyat Fakültesi Yayınları Mat. no.7 Malatya. 60

BERTRAND EĞRİ ÇİFTİNE AİT FRENET ÇATISINA GÖRE SMARANDACHE EĞRİLERİ ÜNZİLE ÇELİK

BERTRAND EĞRİ ÇİFTİNE AİT FRENET ÇATISINA GÖRE SMARANDACHE EĞRİLERİ ÜNZİLE ÇELİK .C. ORDU ÜNİVERSİESİ FEN İLİMLERİ ENSİÜSÜ ERRAND EĞRİ ÇİFİNE Aİ FRENE ÇAISINA GÖRE SMARANDACHE EĞRİLERİ ÜNZİLE ÇELİK YÜKSEK LİSANS EZİ ORDU 06 I II III ÖZE ERRAND EĞRİ ÇİFİNE Aİ FRENE ÇAISINA GÖRE SMARANDACHE

Detaylı

BOZOK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BİTİRME TEZİ E 3-BOYUTLU ÖKLİD UZAYINDA HELİSLER VE UYGULAMALARI.

BOZOK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BİTİRME TEZİ E 3-BOYUTLU ÖKLİD UZAYINDA HELİSLER VE UYGULAMALARI. BOZOK ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ BİTİRME TEZİ E -BOYUTLU ÖKLİD UZAYINDA HELİSLER VE UYGULAMALARI Hasibe ŞENOL 16104210046 Danışman: Yrd. Doç. Dr. Murat BABAARSLAN YOZGAT 201 ÖZET

Detaylı

SAÜ Fen Edebiyat Dergisi (2009-II) ÜÇ BOYUTLU LORENTZ UZAYI MANNHEİM EĞRİ ÇİFTİ ÜZERİNE A. ZEYNEP AZAK

SAÜ Fen Edebiyat Dergisi (2009-II) ÜÇ BOYUTLU LORENTZ UZAYI MANNHEİM EĞRİ ÇİFTİ ÜZERİNE A. ZEYNEP AZAK SAÜ Fen Edebiyat Dergisi (009-II) ÜÇ BOYUTLU LORENTZ UZAYI L DE TIMELIKE MANNHEİM EĞRİ ÇİFTİ ÜZERİNE A. ZEYNEP AZAK Saarya Üniversitesi, Fen-Edebiyat Faültesi Matemati Bölümü, 5487, SAKARYA apirdal@saarya.edu.tr

Detaylı

3-Boyutlu Öklid Uzayında Bertrand Eğriler ve Bishop Çatısı. Bertrand Curves and Bishop Frame in the 3-Dimensional Euclidean Space

3-Boyutlu Öklid Uzayında Bertrand Eğriler ve Bishop Çatısı. Bertrand Curves and Bishop Frame in the 3-Dimensional Euclidean Space Sakarya Ünirsitesi Fen Bilimleri Enstitüsü Dergisi, Vol(o): pp, year SAKARYA ÜİVERSİTESİ FE BİLİMLERİ ESTİTÜSÜ DERGİSİ SAKARYA UIVERSITY JOURAL OF SCIECE e-iss: 47-85X Dergi sayfası: http://dergipark.gov.tr/saufenbilder

Detaylı

Darboux Ani Dönme Vektörleri ile. SPACELIKE ve TIMELIKE YÜZEYLER GEOMETRİSİ. Celal Bayar Üniversitesi Yayınları Yayın No: 0006

Darboux Ani Dönme Vektörleri ile. SPACELIKE ve TIMELIKE YÜZEYLER GEOMETRİSİ. Celal Bayar Üniversitesi Yayınları Yayın No: 0006 Darboux Ani Dönme Vektörleri ile SPACELIKE ve TIMELIKE YÜZEYLER GEOMETRİSİ Prof. Dr. H. Hüseyin UĞURLU Prof. Dr. Ali ÇALIŞKAN Celal Bayar Üniversitesi Yayınları Yayın No: 0006 0 Celal Bayar Üniversitesi

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ FRENET HAREKETLERİ VE YÜZEYLER Naser MASROURİ MATEMATİK ANABİLİM DALI ANKARA 0 Her hakkı saklıdır ÖZET Doktora Tezi FRENET HAREKETLERİ VE YÜZEYLER

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ

ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ VE ESERLER LİSTESİ DOÇ.DR. AYŞE FUNDA YALINIZ Adres : Dumlupınar Üniversitesi Fen Edebiyat Fakültesi Matematik Bölümü Evliya Çelebi Yerleşkesi Tavşanlı Yolu 10.km. KÜTAHYA Telefon : 2742652031-3058

Detaylı

HACETTEPE ÜNİVERSİTESİ FEN FAKÜLTESİ/MATEMATİK BÖLÜMÜ/GEOMETRİ ANABİLİM DALI

HACETTEPE ÜNİVERSİTESİ FEN FAKÜLTESİ/MATEMATİK BÖLÜMÜ/GEOMETRİ ANABİLİM DALI 2017 yılı için özgeçmiş BENGÜ BAYRAM DOÇENT E-Posta Adresi benguk@balikesir.edu.tr Telefon (İş) Telefon (Cep) Faks Adres 2666121000-1216 BALIKESİR ÜNİVERSİTESİ/FEN-EDEBİYAT FAKÜLTESİ/MATEMATİK BÖLÜMÜ/GEOMETRİ

Detaylı

DUMLUPINAR ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ BELGESİ

DUMLUPINAR ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ BELGESİ DUMLUPINAR ÜNİVERSİTESİ AKADEMİK ÖZGEÇMİŞ BELGESİ KİMLİK VE İLETİŞİM BİLGİLERİ Unvanı Adı Soyadı E posta Prof. Dr. Erhan ATA erhan.ata@dpu.edu.tr Telefon 507 7631676 Dumlupınar Ün. Evliya Çelebi Yerleşkesi

Detaylı

ÖZGEÇMİŞ. 1. Adı Soyadı: MUSTAFA KAZAZ 2. Doğum Tarihi: Unvanı: Doçent 4. Öğrenim Durumu:

ÖZGEÇMİŞ. 1. Adı Soyadı: MUSTAFA KAZAZ 2. Doğum Tarihi: Unvanı: Doçent 4. Öğrenim Durumu: . Adı Soyadı: MUSTAFA KAZAZ. Doğum Tarihi:..965. Unvanı: Doçent. Öğrenim Durumu: ÖZGEÇMİŞ Derece Alan Üniversite Yıl Lisans MATEMATİK KARADENİZ TEKNİK ÜNİVERSİTESİ 987 Y. Lisans MATEMATİK KARADENİZ TEKNİK

Detaylı

DOÇ. DR. İSMAİL GÖK. : Matematik Bilim alanında Doçent ünvanı almıştır.

DOÇ. DR. İSMAİL GÖK. : Matematik Bilim alanında Doçent ünvanı almıştır. ÖZGEÇMİŞ VE ESERLER LİSTESİ DOÇ. DR. İSMAİL GÖK ÖZGEÇMİŞ Ankara Üniversitesi, Fen Fakültesi Tel : +90312 2126720-1253 Matematik Bölümü Tando gan, 06100, ANKARA, TÜRKIYE e-mail: igok@science.ankara.edu.tr

Detaylı

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10 Diferenisyel Geometri 2 Yazokulu 2010 AdıSoyadı: No : 1. ϕ (u, v) = ( u + 2v, v + 2u, u 2 v ) parametrizasyonu ile verilen M kümesinin bir regüler yüzey olduğunu gösteriniz. (15 puan) 3. V, R 3 ün açık

Detaylı

Name: Diferensiyel Geometri Spring 2014

Name: Diferensiyel Geometri Spring 2014 Çalışma soruları Tanim [Basit egri] α : (a, b) R 3 egrisi verilsin. Farkli t 1, t 2 (a, b) noktalari icin α(t 1 ) α(t 2 ) oluyorsa α egrisine basit egri adi verilir (kendisini kesmeyen egriye basit egri

Detaylı

Prof.Dr.Mustafa ÇALIŞKAN ın Özgeçmişi

Prof.Dr.Mustafa ÇALIŞKAN ın Özgeçmişi Prof.Dr.Mustafa ÇALIŞKAN ın Özgeçmişi - 03.04.1955 tarihinde Samsun Çarşamba da doğdu. - Đlkokul ve ortaokulu Çarşamba da bitirdi. - 1970 yılında Perşembe Öğretmen Lisesi ne girdi. - 1972 yılında Ankara

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ

ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ Adı Soyadı : Murat Kemal KARACAN Doğum Tarihi : 24 Nisan 1970 Doğum Yeri : Yeşilhisar-KAYSERİ Tel : 02762212121-2535 e-mail : murat.karacan@usak.edu.tr Öğrenim Durumu:

Detaylı

Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması.

Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması. Proje Adı: Sonlu Bir Aritmetik Dizinin Terimlerinin Kuvvetleri Toplamının İndirgeme Bağıntısıyla Bulunması. Projenin Amacı: Aritmetik bir dizinin ilk n-teriminin belirli tam sayı kuvvetleri toplamının

Detaylı

T.C. NİĞDE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI ÜÇ BOYUTLU ÖKLİDYEN VE MİNKOWSKİ UZAYINDA YÜZEYLER

T.C. NİĞDE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI ÜÇ BOYUTLU ÖKLİDYEN VE MİNKOWSKİ UZAYINDA YÜZEYLER YÜKSEK LİSANS TEZİ V.ÇİÇEK,05 T.C. NİĞDE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MATEMATİK ANABİLİM DALI ÜÇ BOYUTLU ÖKLİDYEN VE MİNKOWSKİ UZAYINDA YÜZEYLER NİĞDE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ VEYSİ

Detaylı

Para-Kenmotsu Manifoldların Warped Çarpım Hemislant Alt Manifoldlarının Varlık Problemi

Para-Kenmotsu Manifoldların Warped Çarpım Hemislant Alt Manifoldlarının Varlık Problemi Erciyes Ünirsitesi Fen Bilimleri Enstitüsü Derisi Cilt 33, Sayı, 07 0 Erciyes Unirsity Journal of atural and Applied Sciences Volume 33, Issue, 07 Para-Kenmotsu Manifoldların Warped Çarpım Hemislant Alt

Detaylı

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ YAZ OKULU DERS İÇERİGİ. Bölümü Dersin Kodu ve Adı T P K AKTS

FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ YAZ OKULU DERS İÇERİGİ. Bölümü Dersin Kodu ve Adı T P K AKTS Bir Dönemde Okutulan Ders Saati MAT101 Genel I (Mühendislik Fakültesi Bütün Bölümler, Fen Fakültesi Kimya ve Astronomi Bölümleri) 1 Kümeler, reel sayılar, bir denklem veya eşitsizliğin grafiği 2 Fonksiyonlar,

Detaylı

TÜREVİN GEOMETRİK YORUMU

TÜREVİN GEOMETRİK YORUMU TÜREVİN GEOMETRİK YORUMU f :R R, =f ( fonksionuna düzlemde A karşılık gelen f( +h eğri anda ki =f( P gibi olsun. f( Eğrinin P(,f( noktasındaki teğetlerini +h araştıralım. Bunun için P(,f( noktasının sağıda

Detaylı

ÖZGEÇMİŞ. Yardımcı Doçent Matematik Fırat Üniv. 1985-1990. Doçent Matematik Fırat Üniv. 1990-1996. Doçent Matematik İstanbul Üniv.

ÖZGEÇMİŞ. Yardımcı Doçent Matematik Fırat Üniv. 1985-1990. Doçent Matematik Fırat Üniv. 1990-1996. Doçent Matematik İstanbul Üniv. ÖZGEÇMİŞ 1. Adı Soyadı: Mehmet Erdoğan 2. Doğum Tarihi: 01.02.1954 3. Unvanı: Prof. Dr. 4. Öğrenim Durumu: Derece Alan Üniversite Yıl Lisans Matematik Ankara Üniversitesi 1973 Y. Lisans Matematik Fırat

Detaylı

KUTUPSAL KOORDİNATLAR

KUTUPSAL KOORDİNATLAR KUTUPSAL KOORDİNATLAR Geometride, bir noktanın konumunu belirtmek için değişik yöntemler uygulanır. Örnek olarak çok kullanılan Kartezyen (Dik ) Koordinat sistemini anımsatarak çalışmamıza başlayalım.

Detaylı

TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi

TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi TEMEL ELEKTROT SİSTEMLERİ Eş Merkezli Küresel Elektrot Sistemi Merkezleri aynı, aralarında dielektrik madde bulunan iki küreden oluşur. Elektrik Alanı ve Potansiyel Yarıçapları ve ve elektrotlarına uygulanan

Detaylı

ÖZGEÇMİŞ. Yardımcı Doçent Matematik Fırat Üniv Doçent Matematik (Geometri) Fırat Üniv

ÖZGEÇMİŞ. Yardımcı Doçent Matematik Fırat Üniv Doçent Matematik (Geometri) Fırat Üniv ÖZGEÇMİŞ 1. Adı Soyadı: Mehmet Erdoğan 2. Doğum Tarihi: 01.02.1954 3. Unvanı: Prof. Dr. 4. Öğrenim Durumu: Derece Alan Üniversite Yıl Lisans Matematik Ankara Üniversitesi 1973 Lisans Matematik Öğr. Ankara

Detaylı

Topolojik Uzaylarda Süreklilik Çeşitleri Üzerine

Topolojik Uzaylarda Süreklilik Çeşitleri Üzerine S Ü Fen Ed Fak Fen Derg Sayı 26 (2005) 43-50, KONYA Topolojik Uzaylarda Süreklilik Çeşitleri Üzerine Kemal USLU 1, Şaziye YÜKSEL Selçuk Üniversitesi Fen Edebiyat Fakültesi Matematik Bölümü Kampüs-Konya

Detaylı

T.C. SEMI-RIEMANNIAN UZAYLARINDA BAZI ÖZEL EĞRİLERİN GEOMETRİSİ DOKTORA TEZİ

T.C. SEMI-RIEMANNIAN UZAYLARINDA BAZI ÖZEL EĞRİLERİN GEOMETRİSİ DOKTORA TEZİ T.C. İNÖNÜ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ SEMI-RIEMANNIAN UZAYLARINDA BAZI ÖZEL EĞRİLERİN GEOMETRİSİ Mehmet GÖÇMEN DOKTORA TEZİ MATEMATİK ANABİLİM DALI MALATYA Haziran 2012 Tezin Başlığı : Semi-Riemannian

Detaylı

Doç.Dr. MUSTAFA ÖZDEMİR

Doç.Dr. MUSTAFA ÖZDEMİR Doç.Dr. MUSTAFA ÖZDEMİR ÖZGEÇMİŞ DOSYASI KİŞİSEL BİLGİLER Doğum Yılı : Doğum Yeri : Sabit Telefon : Faks : E-Posta Adresi : Web Adresi : Posta Adresi : 1975 BOZKIR T: 2423102234 2423102386 F: mozdemir@akdeniz.edu.tr

Detaylı

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir.

x e göre türev y sabit kabul edilir. y ye göre türev x sabit kabul edilir. TÜREV y= f(x) fonksiyonu [a,b] aralığında tanımlı olsun. Bu aralıktaki bağımsız x değişkenini h kadar arttırdığımızda fonksiyon değeri de buna bağlı olarak değişecektir. Fonksiyondaki artma miktarını değişkendeki

Detaylı

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ

RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ RİJİT CİSİMLERİN DÜZLEMSEL KİNEMATİĞİ MUTLAK GENEL DÜZLEMSEL HAREKET: Genel düzlemsel hareket yapan bir karı cisim öteleme ve dönme hareketini eşzamanlı yapar. Eğer cisim ince bir levha olarak gösterilirse,

Detaylı

2 Ders Kodu: FZK Ders Türü: Zorunlu 4 Ders Seviyesi Lisans

2 Ders Kodu: FZK Ders Türü: Zorunlu 4 Ders Seviyesi Lisans FİZİKSEL MATEMATİK II 1 Ders Adi: FİZİKSEL MATEMATİK II 2 Ders Kodu: FZK2004 3 Ders Türü: Zorunlu 4 Ders Seviyesi Lisans 5 Dersin Verildiği Yıl: 2 6 Dersin Verildiği Yarıyıl 4 7 Dersin AKTS Kredisi: 8.00

Detaylı

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ T.C. YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DÜZLEMSEL HOMOTETİK HAREKETLER ALTINDA KAPALI YÖRÜNGE EĞRİSİNİN KUTUPSAL ATALET MOMENTİ İÇİN HOLDITCH-TİPİ TEOREMLER MUTLU AKAR DOKTORA TEZİ MATEMATİK

Detaylı

A COMMUTATIVE MULTIPLICATION OF DUAL NUMBER TRIPLETS

A COMMUTATIVE MULTIPLICATION OF DUAL NUMBER TRIPLETS . Sayı Mayıs 6 A COMMTATIVE MLTIPLICATION OF DAL NMBER TRIPLETS L.KLA * & Y.YAYLI * *Ankara Üniversitesi Fen Fakültesi, Matematik Bölümü 6 Tandoğan-Ankara, Türkiye ABSTRACT Pfaff [] using quaternion product

Detaylı

Salih Zeki Matematik Araştırma Projeleri

Salih Zeki Matematik Araştırma Projeleri Salih Zeki Matematik Araştırma Projeleri PROJENİN ADI: ÖKLİD NE SÖYLER CAUCHY NE ANLAR HAZIRLAYANLAR : AYŞE İREM AKYILDIZ ZEYNEP KOÇYİĞİT ÖZEL BÜYÜKÇEKMECE ÇINAR FEN LİSESİ İSTANBUL-04 Projenin Adı: Öklid

Detaylı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı

fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki olsun. Fonksiyonda meydana gelen artma miktarı 10.1 Türev Kavramı fonksiyonu için in aralığındaki bütün değerleri için sürekli olsun. in bu aralıktaki bir değerine kadar bir artma verildiğinde varılan x = x 0 + noktasında fonksiyonun değeri olsun.

Detaylı

2014-2015 EĞİTİM-ÖĞRETİM YILI YAZ OKULU EŞDEĞER YAPILACAK DERSLER FAKÜLTE : MÜHENDİSLİK FAKÜLTESİ BÖLÜM : Bilgisayar Mühendisliği

2014-2015 EĞİTİM-ÖĞRETİM YILI YAZ OKULU EŞDEĞER YAPILACAK DERSLER FAKÜLTE : MÜHENDİSLİK FAKÜLTESİ BÖLÜM : Bilgisayar Mühendisliği 2014-2015 EĞİTİM-ÖĞRETİM YILI YAZ OKULU FAKÜLTE : MÜHENDİSLİK FAKÜLTESİ BÖLÜM : Bilgisayar Mühendisliği Dersin Açıldığı Bölüm Dersin Dersin 501001042010 Matematik 1 Fen Fak. Fizik Bölümü MAT0157 Matematik

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 5002

DOKUZ EYLÜL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜ DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 5002 Dersi Veren Birim: Fen Bilimleri Enstitüsü Dersin Türkçe Adı: Numerik ve Yaklaşık Yöntemler Dersin Orjinal Adı: Numerical and Approximate Methods Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora)

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Öğr. Gör. Volkan ÖĞER MAT 1010 Matematik II 1/ 172 Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası)

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası) ve bu noktadan geçen ve birbirine dik olan üç yönlü doğruyu seçerek sabitlememiz gerekir.

Detaylı

PROJE ADI: Bir Koniğin Üzerindeki Veya Dışındaki Bir Noktadan Çizilen Teğetlerin Denklemlerini Matrisler Yardımıyla Bulma

PROJE ADI: Bir Koniğin Üzerindeki Veya Dışındaki Bir Noktadan Çizilen Teğetlerin Denklemlerini Matrisler Yardımıyla Bulma PROJE ADI: Bir Koniğin Üzerindeki Veya Dışındaki Bir oktadan Çizilen Teğetlerin Denklemlerini Matrisler Yardımıyla Bulma PROJEİ AMACI: Bu projede herhangi bir koniğin üzerindeki veya dışındaki bir noktadan

Detaylı

Derece Alan Üniversite Yıl Lisans Matematik/Fen-Ede. Fak. Ataturk Üniversitesi 1982 Y. Lisans Matematik/Fen Bilimleri Selcuk Üniversitesi 1987

Derece Alan Üniversite Yıl Lisans Matematik/Fen-Ede. Fak. Ataturk Üniversitesi 1982 Y. Lisans Matematik/Fen Bilimleri Selcuk Üniversitesi 1987 1. Adı Soyadı: Ali ÖZDEMİR. Doğum Tarihi: 1960. Unvanı: Yrd.Doç. Dr. 4. Öğrenim Durumu: Doktora. ÖZGEÇMİŞ Derece Alan Üniversite Yıl Lisans Matematik/Fen-Ede. Fak. Ataturk Üniversitesi 198 Y. Lisans Matematik/Fen

Detaylı

ÜNİTE. MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK İÇİNDEKİLER HEDEFLER TÜREV VE TÜREV ALMA KURALLARI. Türev Türev Alma Kuralları

ÜNİTE. MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK İÇİNDEKİLER HEDEFLER TÜREV VE TÜREV ALMA KURALLARI. Türev Türev Alma Kuralları HEDEFLER İÇİNDEKİLER TÜREV VE TÜREV ALMA KURALLARI Türev Türev Alma Kuralları MATEMATİK-1 Prof.Dr.Ahmet KÜÇÜK Bu üniteyi çalıştıktan sonra Burada türevin tanımı verilecek, Geometride bir eğrinin bir noktadaki

Detaylı

Diferansiyel Geometri (MATH 374) Ders Detayları

Diferansiyel Geometri (MATH 374) Ders Detayları Diferansiyel Geometri (MATH 374) Ders Detayları Ders Adı Diferansiyel Geometri Ders Kodu MATH 374 Dönemi Ders Uygulama Laboratuar Kredi AKTS Saati Saati Saati Güz 3 0 0 3 6 Ön Koşul Ders(ler)i MATH 251

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ

ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ Adı Soyadı: Semra SARAÇOĞLU ÇELİK Doğum Tarihi: 19.04.1978 Öğrenim Durumu: Derece Bölüm/Program Üniversite Yıl Lisans Matematik Yüzüncü Yıl Üniversitesi 1996-2000 Y.

Detaylı

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ SABİT EĞİMLİ YÜZEYLER VE UYGULAMALARI. Murat BABAARSLAN MATEMATİK ANABİLİM DALI ANKARA 2013

ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ SABİT EĞİMLİ YÜZEYLER VE UYGULAMALARI. Murat BABAARSLAN MATEMATİK ANABİLİM DALI ANKARA 2013 ANKARA ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ SABİT EĞİMLİ YÜZEYLER VE UYGULAMALARI Murat BABAARSLAN MATEMATİK ANABİLİM DALI ANKARA Her hakkı saklıdır ÖZET Doktora Tezi SABİT EĞİMLİ YÜZEYLER

Detaylı

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984.

Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. Çankırı Karatekin Üniversitesi Matematik Bölümü 2015 Kaynaklar Shepley L. Ross, Differential Equations (3rd Edition), 1984. (Adi ) Bir ya da daha fazla bağımsız değişkenden oluşan bağımlı değişken ve türevlerini

Detaylı

Jeodezi

Jeodezi 1 Jeodezi 5 2 Jeodezik Eğri Elipsoid Üstünde Düşey Kesitler Elipsoid yüzünde P 1 noktasındaki normalle P 2 noktasından geçen düşey düzlem, P 2 deki yüzey normalini içermez ve aynı şekilde P 2 de yüzey

Detaylı

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ. 2015-2016 Öğretim Yılı Güz Dönemi Haftalık Ders Programı

T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ. 2015-2016 Öğretim Yılı Güz Dönemi Haftalık Ders Programı T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2015-2016 Öğretim Yılı Güz Dönemi Haftalık Ders Programı A. Fakülte İçinde "BÖLÜMÜMÜZ" Öğrencilerine Verdiğimiz Dersler I. YARIYIL 405001072003 Soyut Matematik

Detaylı

Özgeçmiş, Erhan Güler

Özgeçmiş, Erhan Güler Özgeçmiş, Erhan Güler Eğitim Adres (iş) e-posta Bartın Üniversitesi Fen Fakültesi Matematik Bölümü 74100 Bartın, Türkiye eguler@bartin.edu.tr Telefon +90 378 223 5238 Faks +90 378 223 5230 Derece Bölüm

Detaylı

ÖZGEÇMİŞ. Derece Üniversite Alanı Yılı Bütünleşik Doktora Ege Üniversitesi Matematik (Cebirsel 2009-2014. Lisans Ege Üniversitesi Matematik 2009

ÖZGEÇMİŞ. Derece Üniversite Alanı Yılı Bütünleşik Doktora Ege Üniversitesi Matematik (Cebirsel 2009-2014. Lisans Ege Üniversitesi Matematik 2009 ÖZGEÇMİŞ 1. Adı Soyadı : ÖZGÜR EGE 2. Doğum Tarihi : 15.06.1987 3. Doğum Yeri : İZMİR 4. Ünvanı : Araştırma Görevlisi Doktor 5. Adres : Celal Bayar Üniversitesi Fen-Edebiyat Fakültesi Matematik Bölümü

Detaylı

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi

Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi Afyon K Afyon Kocatepe University Journal of Science and Engineering AKÜ FEMÜBİD 16 (2016) 021304(256 264) AKU J. Sci. Eng. 16 (2016) 021304(256

Detaylı

Özgeçmiş, Erhan Güler

Özgeçmiş, Erhan Güler son güncelleme 13 10 2014 1 Özgeçmiş, Erhan Güler Adres (iş) e-posta Bartın Üniversitesi Fen Fakültesi, Matematik Bölümü 74100 Bartın, Türkiye ergler@gmail.com eguler@bartin.edu.tr Telefon +90 378 223

Detaylı

ÖZGEÇMİŞ VE ESERLER LİSTESİ

ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ VE ESERLER LİSTESİ ÖZGEÇMİŞ Adı Soyadı: Ahu Açıkgöz Öğrenim Durumu: Derece Bölüm/Program Üniversite Yıl Lisans Matematik Selçuk Üniversitesi 1998 Y. Lisans Matematik Selçuk Üniversitesi 2001 Doktora

Detaylı

TASLAK. Jeodezi ve Fotogrametri Mühendisliğinde Diferansiyel Geometri. Lisans Ders Notları. Selçuk Üniversitesi. Konya

TASLAK. Jeodezi ve Fotogrametri Mühendisliğinde Diferansiyel Geometri. Lisans Ders Notları. Selçuk Üniversitesi. Konya Jeodezi ve Fotogrametri Mühendisliğinde Diferansiyel Geometri Lisans Ders Notları Aydın ÜSTÜN Selçuk Üniversitesi Harita Müh. Bölümü Konya 2013 İçindekiler 1 GİRİŞ 1 2 VEKTÖRLER ve VEKTÖR FONKSİYONLAR

Detaylı

Özgeçmiş, Erhan Güler

Özgeçmiş, Erhan Güler Özgeçmiş, Erhan Güler Adres (iş) e-posta Bartın Üniversitesi Fen Fakültesi Matematik Bölümü 74100 Bartın, Türkiye eguler@bartin.edu.tr Telefon +90 378 223 5238 Faks +90 378 223 5230 eğitim derece bölüm

Detaylı

Chapter 1 İçindekiler

Chapter 1 İçindekiler Chapter 1 İçindekiler Kendinizi Test Edin iii 10 Birinci Mertebeden Diferansiel Denklemler 565 10.1 Arılabilir Denklemler 566 10. Lineer Denklemler 571 10.3 Matematiksel Modeller 576 10.4 Çözümü Olmaan

Detaylı

MATEMATÝK GEOMETRÝ DENEMELERÝ

MATEMATÝK GEOMETRÝ DENEMELERÝ NM 1 MTMTÝK OMTRÝ NMLRÝ 1. o o = 75 ve y = 5 olduğuna göre,. 3 + 8 = 0 sin( y)cos( + y) + sin( + y)cos( y) sin( y)sin( + y) cos( + y)cos( y) denkleminin kaç tane farklı reel kökü vardır? ifadesinin eşiti

Detaylı

Prof.Dr. Uğur DURSUN Işık Üniversitesi Matematik Bölümü udursun@isikun.edu.tr

Prof.Dr. Uğur DURSUN Işık Üniversitesi Matematik Bölümü udursun@isikun.edu.tr Prof.Dr. Uğur DURSUN Işık udursun@isikun.edu.tr 1. Doğum Tarihi: 02.01.1964 2. Öğrenim Durumu: ÖĞRENİM DÖNEMİ DERECE ÜNİVERSİTE ÖĞRENİM ALANI 1982-1986 Lisans İstanbul Teknik 1988-1990 Yüksek Lisans İstanbul

Detaylı

Özgeçmiş, Erhan Güler

Özgeçmiş, Erhan Güler Özgeçmiş, Erhan Güler eğitim Adres (iş) e-posta Bartın Üniversitesi Fen Fakültesi Matematik Bölümü 74100 Bartın, Türkiye eguler@bartin.edu.tr Telefon +90 378 223 5238 Faks +90 378 223 5230 Derece Bölüm

Detaylı

IQ PLUS BUTİK EĞİTİM MERKEZİ

IQ PLUS BUTİK EĞİTİM MERKEZİ TÜRKÇE www.ilusegitim.com 0 232 2013 2013 www.ilusegitim.com www.ilusegitim.com 0 232 2013 2013 www.ilusegitim.com 2013 www.ilusegitim.com 0 232 2013 www.ilusegitim.com www.ilusegitim.com 0 232 www.ilusegitim.com

Detaylı

Yrd. Doç. Dr. Ersin ASLAN

Yrd. Doç. Dr. Ersin ASLAN Yrd. Doç. Dr. Ersin ASLAN ÖĞRENİM DURUMU Derece Üniversite Bölüm / Program Yıllar Lisans 000-005 Y. Lisans 005-007 Doktora 007-0 Adres İLETİŞİM BİLGİLERİ Celal Bayar Üniversitesi Turgutlu Meslek Yüksekokulu

Detaylı

Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri

Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri Üç Boyutlu Uzayda Bazı Yüzeyler ve Koordinat Sistemleri Yazar Doç.Dr. Hüseyin AZCAN ÜNİTE 10 Amaçlar Bu üniteyi çalıştıktan sonra; Küresel Koordinatlar Silindirik Koordinatları Dönel Yüzeylerin Elde Edilmesi

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Yard. Doç. Dr. İrfan DELİ. Matematik

Yard. Doç. Dr. İrfan DELİ. Matematik Unvanı Yard. Doç. Dr. Adı Soyadı İrfan DELİ Doğum Yeri ve Tarihi: Çivril/Denizli -- 06.04.1986 Bölüm: E-Posta Matematik irfandeli20@gmail.com, irfandeli@kilis.edu.tr AKADEMİK GELİŞİM ÜNİVERSİTE YIL Lisans

Detaylı

Özgeçmiş, Erhan Güler

Özgeçmiş, Erhan Güler Son güncelleme: 15 Ocak 2015 1 Özgeçmiş, Erhan Güler Eğitim Adres (iş) e-posta Bartın Üniversitesi Fen Fakültesi Matematik Bölümü 74100 Bartın, Türkiye eguler@bartin.edu.tr Telefon +90 378 223 5238 Faks

Detaylı

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500

1984 ÖYS A) 875 B) 750 C) 625 D) 600 E) 500 984 ÖYS. + + a a + a + a işleminin sonucu nedir? a A) +a B) a C) +a D) a E) +a a b ab. ifadesinin kısaltılmış biçimi a b + a b + ab a + b A) a b a b D) a b B) a b a + b E) ab(a-b) C) a b a + b A) 87 B)

Detaylı

Özgeçmiş, Erhan Güler

Özgeçmiş, Erhan Güler Özgeçmiş, Erhan Güler Adres (iş) e-posta Bartın Üniversitesi Fen Fakültesi Matematik Bölümü 74100 Bartın, Türkiye eguler@bartin.edu.tr Telefon +90 378 223 5238 Faks +90 378 223 5230 eğitim derece bölüm

Detaylı

Math 322 Diferensiyel Denklemler Ders Notları 2012

Math 322 Diferensiyel Denklemler Ders Notları 2012 1 Genel Tanımlar Bir veya birden fazla fonksiyonun türevlerini içeren denklemlere diferensiyel denklem denmektedir. Diferensiyel denklemler Adi (Sıradan) diferensiyel denklemler ve Kısmi diferensiyel denklemler

Detaylı

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 2. yapılırsa bu durumda θ ya z nin esas argümenti denir ve Argz ile gösterilir. argz = Argz + 2nπ, n Z

MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 2. yapılırsa bu durumda θ ya z nin esas argümenti denir ve Argz ile gösterilir. argz = Argz + 2nπ, n Z MAT355 Kompleks Fonksiyonlar Teorisi I Hafta 1.. Kutupsal Formda Gösterim z x + iy vektörünün pozitif reel eksenle yaptığı açıya θ diyelim. cos θ x, sin θ y ve buradan tan θ y θ arctan y olup θ ya z z

Detaylı

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür.

Bir özvektörün sıfırdan farklı herhangi bri sabitle çarpımı yine bir özvektördür. ÖZDEĞER VE ÖZVEKTÖRLER A n n tipinde bir matris olsun. AX = λx (1.1) olmak üzere n 1 tipinde bileşenleri sıfırdan farklı bir X matrisi için λ sayıları için bu denklemi sağlayan bileşenleri sıfırdan farklı

Detaylı

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77

1. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi... 71. 2. BÖLÜM uzayda düzlem denklemleri... 77 UZAYDA DOĞRU VE DÜZLEM Sayfa No. BÖLÜM uzayda Bir doğrunun vektörel ve parametrik denklemi.............. 7. BÖLÜM uzayda düzlem denklemleri.......................................... 77. BÖLÜM uzayda Bir

Detaylı

Eğri ve Yüzey Modelleme. Prof. Dr. Necmettin Kaya

Eğri ve Yüzey Modelleme. Prof. Dr. Necmettin Kaya Eğri ve Yüzey Modelleme Prof. Dr. Necmettin Kaya Noktalardan geçen eğri tanımı Spline ı oluşturacak noktaların üzerinden geçerek bir spline eğrisi oluşturulur. Spline derecesi = Nokta sayısı - 1 DERECE

Detaylı

Math 103 Lineer Cebir Dersi Final Sınavı

Math 103 Lineer Cebir Dersi Final Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Final Sınavı 3 Araliık 27 Hazırlayan: Yamaç Pehlivan Başlama saati: 2: Bitiş Saati: 3:4 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ

DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ DİKKAT! SORU KİTAPÇIĞINIZIN TÜRÜNÜ A OLARAK CEVAP KÂĞIDINIZA İŞARETLEMEYİ UNUTMAYINIZ. MATEMATİK SINAVI MATEMATİK TESTİ. Bu testte 50 soru vardır.. Cevaplarınızı, cevap kâğıdının Matematik Testi için arılan

Detaylı

III. DERS DİFERENSİYELLENEBİLİR YÜZEYLER

III. DERS DİFERENSİYELLENEBİLİR YÜZEYLER Bölüm 1 III. DERS DİFERENSİYELLENEBİLİR YÜZEYLER 1.1 YÜZEYLER:TANIM VE ÖRNEKLER Bu kesimin amacı R 3 de yüzeyler teorisini incelemek ve bunun içinde manifoldlar teorisinin gerekli kısmını aktarmaktır.

Detaylı

Dersi Alan Dersi Veren Dersin Optik Kod Dersin Adı Saat Öğr. Grubu Öğretim Üyesi Yeri

Dersi Alan Dersi Veren Dersin Optik Kod Dersin Adı Saat Öğr. Grubu Öğretim Üyesi Yeri T. C. E. Ü. FEN FAKÜLTESİ MATEMATİK BÖLÜMÜ 2015-2016 Öğretim Yılı Güz Dönemi Haftalık Ders Programı İkinci Öğretim A. Fakülte İçinde "BÖLÜMÜMÜZ" Öğrencilerine Verdiğimiz Dersler I. YARIYIL 1104001062003

Detaylı

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun

fonksiyonunun [-1,1] arasındaki grafiği hesaba katılırsa bulunan sonucun . UŞAK FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ ANALİZ II FİNAL SORULARI ÇÖZÜMLERİ d belirli integralinin aşağıdaki çözümünün doğru olup olmadığını belirtiniz. Eğer çözüm yanlış ise sebebini açıklayınız.

Detaylı

KENMOTSU F.PK-MANİFOLDLAR. Ramazan SARI YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ŞUBAT 2010 ANKARA

KENMOTSU F.PK-MANİFOLDLAR. Ramazan SARI YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ŞUBAT 2010 ANKARA KENMOTSU F.PK-MANİFOLDLAR Ramazan SARI YÜKSEK LİSANS TEZİ MATEMATİK GAZİ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ŞUBAT 2010 ANKARA Ramazan SARI tarafından hazırlanan KENMOTSU F.PK-MANİFOLDLAR adlı bu tezin

Detaylı

TASLAK. Harita Mühendisliğinde Diferansiyel Geometri. Lisans Ders Notları. Kocaeli Üniversitesi. Selçuk Üniversitesi. Konya

TASLAK. Harita Mühendisliğinde Diferansiyel Geometri. Lisans Ders Notları. Kocaeli Üniversitesi. Selçuk Üniversitesi. Konya Harita Mühendisliğinde Aydın ÜSTÜN Kocaeli Üniversitesi Harita Müh. Bölümü İzmit Lisans Ders Notları İ. 2015 Öztuğ BİLDİRİCİ Selçuk Üniversitesi Harita Müh. Bölümü Konya İçindekiler 1 GİRİŞ 1 2 VEKTÖRLER

Detaylı

ÖZGEÇMİŞ. Derece Bölüm/Program Üniversite Yıl

ÖZGEÇMİŞ. Derece Bölüm/Program Üniversite Yıl ÖZGEÇMİŞ Adı Soyadı: Fatih Koyuncu Doğum Tarihi: 10 Haziran 1971 Akademik Ünvanı : Y. Doç. Dr. Çalışma Alanları: Cebir, Cebirsel Sayı Teorisi, Cebirsel Geometri, Kodlama Teorisi, Kriptoloji, Cebirsel Topoloji.

Detaylı

Mustafa Özdemir İrtibat İçin : veya Altın Nokta Yayınevi

Mustafa Özdemir İrtibat İçin : veya Altın Nokta Yayınevi 2 Matematik Olimpiyatlarına Hazırlık 5 Mustafa Özdemir MATEMATİK OLİMPİYATLARINA HAZIRLIK 5 (460 sayfa) ANALİZ CEBİR 2 TANITIM DÖKÜMANI (Kitabın içeriği hakkında bir bilgi verilmesi amacıyla bu döküman

Detaylı

Özgeçmiş, Erhan Güler

Özgeçmiş, Erhan Güler Özgeçmiş, Erhan Güler eğitim Adres (iş) e-posta Bartın Üniversitesi Fen Fakültesi Matematik Bölümü 74100 Bartın, Türkiye eguler@bartin.edu.tr Telefon +90 378 223 5238 Faks +90 378 223 5230 Derece Bölüm

Detaylı

Özgeçmiş, Erhan Güler

Özgeçmiş, Erhan Güler Özgeçmiş, Erhan Güler Adres (iş) e-posta Bartın Üniversitesi Fen Fakültesi Matematik Bölümü 74100 Bartın, Türkiye eguler@bartin.edu.tr Telefon +90 378 223 5238 Faks +90 378 223 5230 eğitim derece bölüm

Detaylı

ÖZGEÇMİŞ. Çalışma Alanları: Cebir ve sayılar teorisi, cebirsel sayı teorisi, cebirsel geometri, cebirsel kodlama teorisi.

ÖZGEÇMİŞ. Çalışma Alanları: Cebir ve sayılar teorisi, cebirsel sayı teorisi, cebirsel geometri, cebirsel kodlama teorisi. ÖZGEÇMİŞ Adı Soyadı: Fatih Koyuncu Doğum Tarihi: 10 Haziran 1971 Ünvanı : Doç. Dr. Çalışma Alanları: Cebir ve sayılar teorisi, cebirsel sayı teorisi, cebirsel geometri, cebirsel kodlama teorisi. 1. Öğrenim

Detaylı

1995 ÖYS. a+ =3a a= Cevap:D. Çözüm: Çözüm: Çözüm:

1995 ÖYS. a+ =3a a= Cevap:D. Çözüm: Çözüm: Çözüm: 99 ÖYS. a b c d ve a, b, c, d tek sayılar olmak üzere, abcd dört basamaklı en büyük sayıdır? Bu sayı aşağıdakilerden hangisine kalansız bölünebilir? A) B) 6 C) 9 D) E) a, b, c, d rakamları birbirinden

Detaylı

Özgeçmiş, Erhan Güler

Özgeçmiş, Erhan Güler Özgeçmiş, Erhan Güler eğitim Adres (iş) e-posta Bartın Üniversitesi Fen Fakültesi Matematik Bölümü 74100 Bartın, Türkiye eguler@bartin.edu.tr Telefon +90 378 223 5238 Faks +90 378 223 5230 derece bölüm

Detaylı

Özgeçmiş, Erhan Güler

Özgeçmiş, Erhan Güler Özgeçmiş, Erhan Güler Adres (iş) e-posta Bartın Üniversitesi Fen Fakültesi Matematik Bölümü 74100 Bartın, Türkiye eguler@bartin.edu.tr Telefon +90 378 223 5238 Faks +90 378 223 5230 eğitim derece bölüm

Detaylı

Ders Kodu Dersin Adı Yarıyıl Teori Uygulama Lab Kredisi AKTS MATH 501 İleri Analiz

Ders Kodu Dersin Adı Yarıyıl Teori Uygulama Lab Kredisi AKTS MATH 501 İleri Analiz İçerik Ders Kodu Dersin Adı Yarıyıl Teori Uygulama Lab Kredisi AKTS MATH 501 İleri Analiz 1 3 0 0 3 8 Ön Koşul Derse Kabul Koşulları Dersin Dili Türü Dersin Düzeyi Dersin Amacı İçerik Kaynaklar Türkçe

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU MATEMATİK II. Dersin Kodu: MAT 1010

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU MATEMATİK II. Dersin Kodu: MAT 1010 Dersi Veren Birim: Mühendislik Fakültesi Dersin Adı: MATEMATİK II Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: MAT 1010 Dersin Öğretim Dili: Türkçe Formun Düzenleme / Yenilenme

Detaylı

PARABOL. Merkezil parabol. 2px. 2py F 0, 2 F,0. Şekil I. Şekil II. p Odağı F 2. Odağı F 0, Doğrultmanı x. Doğrultmanı y

PARABOL. Merkezil parabol. 2px. 2py F 0, 2 F,0. Şekil I. Şekil II. p Odağı F 2. Odağı F 0, Doğrultmanı x. Doğrultmanı y ARABL Tanım: Düzlemde verilen sabit bir noktası ile bir d doğrusuna uzaklıkları eşit olan noktaların geometrik erine arabol denir. Sabit noktaa arabolün odağı; doğrua ise doğrultmanı denir. Merkezil arabol

Detaylı

ÖZGEÇMİŞ. Araştırma Görevlisi: Eskişehir Osmangazi Üniversitesi, Fen-Edebiyat Fak. Matematik Bölümü

ÖZGEÇMİŞ. Araştırma Görevlisi: Eskişehir Osmangazi Üniversitesi, Fen-Edebiyat Fak. Matematik Bölümü 1. Adı Soyadı: Pınar ANAPA SABAN 2. Doğum Tarihi: 14.04.1973 3. Öğrenim Durumu: ÖZGEÇMİŞ Derece Alan Üniversite Yıl Lisans Matematik Eskişehir Osmangazi Üniv. 1995 Y.Lisans Matematik (Geometri) Eskişehir

Detaylı

Yrd. Doç. Dr. İsmail KENAR

Yrd. Doç. Dr. İsmail KENAR Yrd. Doç. Dr. İsmail KENAR Dumlupınar Üniversitesi Eğitim Fakültesi İlköğretim Bölümü Fen Bilgisi Öğretmenliği Ana Bilim Dalı Evliya Çelebi Yerleşkesi (43100) KÜTAHYA Cep Telefonu: Telefon: 02742652031/4591

Detaylı

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x.

2014 LYS MATEMATİK. x lü terimin 1, 3. 3 ab olduğuna göre, ifadesinin değeri kaçtır? 2b a ifade- sinin değeri kaçtır? olduğuna göre, x. 4 LYS MATEMATİK. a b b a ifade- ab olduğuna göre, sinin değeri kaçtır? 5. ifadesinin değeri kaçtır? 5. P() polinomunda katsaısı kaçtır? 4 lü terimin 4 log log çarpımının değeri kaçtır? 6. 4 olduğuna göre,.

Detaylı

Math 103 Lineer Cebir Dersi Final Sınavı

Math 103 Lineer Cebir Dersi Final Sınavı Haliç Üniversitesi, Uygulamalı Matematik Bölümü Math 3 Lineer Cebir Dersi Final Sınavı 3 Araliık 7 Hazırlayan: Yamaç Pehlivan Başlama saati: : Bitiş Saati: 3:4 Toplam Süre: Dakika Lütfen adınızı ve soyadınızı

Detaylı

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır?

12. SINIF. Fonksiyonlar - 1 TEST. 1. kx + 6 fonksiyonu sabit fonksiyon olduğuna göre aşağıdakilerden hangisidir? k. = 1 olduğuna göre k. kaçtır? . SINIF M Fonksionlar. f ( + a ) + vef( ) 7 olduğuna göre a kaçtır? E) TEST. f ( ) k + 6 fonksionu sabit fonksion olduğuna f ( ) göre aşağıdakilerden k E). f( ) 6 k ve f ( ) olduğuna göre k kaçtır? E)

Detaylı

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 1010

DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ DEKANLIĞI DERS/MODÜL/BLOK TANITIM FORMU. Dersin Kodu: MAT 1010 Dersi Veren Birim: Mühendislik Fakültesi Dersin Türkçe Adı: MATEMATİK II Dersin Orjinal Adı: MATEMATİK II Dersin Düzeyi:(Ön lisans, Lisans, Yüksek Lisans, Doktora) Lisans Dersin Kodu: MAT 1010 Dersin Öğretim

Detaylı

Fen Edebiyat Fakültesi Matematik Bölümü Bölüm Kodu: 3201

Fen Edebiyat Fakültesi Matematik Bölümü Bölüm Kodu: 3201 Fen Edebiyat Fakültesi 2016-2017 Matematik Bölümü Bölüm Kodu: 3201 01. Yarıyıl Dersleri 02. Yarıyıl Dersleri MTK 101 Analiz I Analysis I 4 1 5 6 MTK 102 Analiz II Analysis II 4 1 5 6 MTK 121 Lineer Cebir

Detaylı

GAZİOSMANPAŞA ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ/MATEMATİK BÖLÜMÜ/MATEMATİK PR.

GAZİOSMANPAŞA ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ/MATEMATİK BÖLÜMÜ/MATEMATİK PR. İRFAN DELİ YARDIMCI DOÇENT E-Posta Adresi irfandeli@kilis.edu.tr Telefon (İş) Telefon (Cep) Faks Adres 3488142662-1731 3488142663 Kilis 7 aralık üniv. Eğitim fak. kilis/merkez Öğrenim Bilgisi Doktora 2010

Detaylı

6 II. DERECEDEN FONKSÝYONLAR 2(Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MATEMATÝK. y f(x) f(x)

6 II. DERECEDEN FONKSÝYONLAR 2(Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MATEMATÝK. y f(x) f(x) 6 II. DERECEDEN FNKSÝYNLR (Parabol) (Grafikten Parabolün Denklemi-Parabol ve Doðru) LYS MTEMTÝK 1. f(). f() 6 8 T Yukarıda grafiği verilen = f() parabolünün denklemi nedir?( = 6) Yukarıda grafiği verilen

Detaylı

DERS NOTU 01 TÜKETİCİ TEORİSİ

DERS NOTU 01 TÜKETİCİ TEORİSİ DERS NOTU 01 TÜKETİCİ TEORİSİ Bugünki dersin işleniş planı: I. Hanehalkı Karar Problemi... 1 A. Bütçe Doğrusu... 1 II. Seçimin Temeli: Fayda... 5 A. Azalan Marjinal Fayda... 5 B. Fayda Fonksiyonu... 9

Detaylı

Özgeçmiş, Erhan Güler

Özgeçmiş, Erhan Güler Özgeçmiş, Erhan Güler Adres (iş) e-posta Bartın Üniversitesi Fen Fakültesi Matematik Bölümü 74100 Bartın, Türkiye eguler@bartin.edu.tr Telefon +90 378 223 5238 Faks +90 378 223 5230 eğitim derece bölüm

Detaylı