Onüçüncü Bölüm Zaman Serisi Analizi

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "Onüçüncü Bölüm Zaman Serisi Analizi"

Transkript

1 OnüçüncüBölüm ZamanSerisiAnalizi Hedefler Buüniteyiçalktansonra; Zaman serisine en uygun tahmin denklemini belirler, Tahmin denklemini kullanarak projeksiyon yapar, Tahminler için yaplan hatay ölçer, Belli bir olask düzeyinde tahmin aral belirler, Bulduu sonuçlar yorumlar. Anahtar Kavramlar Zamanserisi Zamanserisigrafi Hareketliortalama Enküçükkareleryöntemi Trend çindekiler 13.ZamanSerisiAnalizi 13.1ZamanSerisiAnalizi 1)Artan Zaman Serisi )Azalan Zaman Serisi 3)Durgun ve Dalgal Zaman Serileri 13.ZamanSerileriniEtkileyenFaktörler 13.3HareketliOrtalamalar 13.4EnKüçükKareleröntemi 1)Doru Denklemi (l Say Tek) ) Doru Denklemi (l Say Çift)

2 Zaman Serisi Analizi 13. ZAMAN SER 13.1 ZAMAN SER ANAL Gözlem sonuçlarn yl, hafta ve gün gibi bir zaman vasfn klarna göre ralanmasyla zaman serisi elde edilir. Zaman serisinde, zaman vasfn karnda gözlem deerleri yer almakta, bu ekilde istatistik ararmasna konu olan olayn zaman içinde sergiledii dekenlik gözlenmektedir. 1) Artan Zaman Serisi Serideki deerler zamanla artma eilimi tayorsa, bu serilere artan zaman serisi denir. Tablo 1 Bir firmann Üretimi llar Üretim (Adet)

3 statistik 3 ekil 1 Bir firmann üretimi Artan zaman serisine örnek olarak yllar itibariyle ülke nüfusu, bir ülkedeki isizlerin say, otomobil üretimi, kii bana düen çelik tüketimi vs gibi olaylar gösterilebilir. ) Azalan Zaman Serisi Deerler zaman içinde düme eilimi tayorsa azalan zaman serilerinden bahsedilir. Okuma yazma bilmeyen say, doal ipek üretimi gibi olaylar azalan zaman serilerine konu olabilir. Grafikte bir firmann birim maliyetleri azalan bir seri halinde gösterilmitir. Tablo Bir firmann birim maliyetleri llar Birim Maliyet (TL/Adet) , , , ,4 01 3

4 4 Zaman Serisi Analizi ekil Bir firmann birim maliyetleri 3) Durgun ve Dalgal Zaman Serileri Üretim, fiyat, sat, içi say gibi ekonomik olaylar çou kez dalgal bir yapda görülür. iyecek, içecek ve giyecek talebinde mevsime ba olarak art ve azallar meydana gelebilir. Örnein dondurma satlar mevsimin etkisiyle yaz aylarnda artarken, havalarn soumasyla satlar azalmaya balar. Durgun zaman serilerinde olay, hiçbir deme göstermez, hep ayn kalr. Baz gelimi ülkelerde nüfus art buna örnek olarak gösterilebilir. Tablo 3 Aylara göre iten ayrlan içilerin da Ocak 15 Temmuz 8 ubat 10 ustos 0 Mart 8 Eylül 10 Nisan 18 Ekim 5 Mays 30 Kasm 10 Haziran 34 Aralk 18

5 statistik 5 ekil 3 Aylara göre iten ayrlan içilerin da 13. ZAMAN SERLER ETKLEEN FAKTÖRLER Zaman serileri incelendiinde, bu serilerin çeitli hareketler gösterdii izlenir. Bu hareketler düzensiz ini çlar eklinde olabilecei gibi vadeye göre uzun veya ksa dalgalanmalar eklinde de görülebilir. Bir zaman serisinde ile gösterilen fiili gözlem deerleri, Genel eilim (Trend), Konjonktür, Mevsim ve arzi faktörlerin etkisi ile meydana gelir ve u ekilde gösterilir: T K M A

6 6 Zaman Serisi Analizi ekil 4 irmi yllk zaman sürecinde konjonktür Pek çok zaman serisi uzun dönemde kararl bir ekilde yükselme ya da düme eilimi gösterir. Bu görüntüye genel eilim veya "trend" ad verilir HAREKETL ORTALAMALAR öntemin esas, zaman serisini kümelere ayrmak ve her kümenin aritmetik ortalamas hesaplayarak kümenin ortasna isabet eden yn üzerinde bir nokta aretlemektir. Daha sonra bu noktalar birletirerek hareketli ortalamalar eilim (trend) çizgisini çizmektir. Kümeler oluturulurken zaman serisindeki fiili gözlem deerleri her seferinde bir yl aya kaydlarak ortalamalar hesapland için bu yönteme "hareketli ortalamalar" ad verilir. Zaman serisindeki kümelere ayrlan fiili gözlem sayna göre hareketli ortalamalar ikierli, üçerli, dörderli,, on ikierli gibi isimler alr. Hareketli Ortalama çin Kümelerdeki Gözlem Sayn Belirlenmesi: Hareketli ortalamalarn dalga uzunluuna eit olacak ekilde hesaplanmas gerekir. Bunun için zaman serisinin grafii çizilerek iki maksimum ya da iki minimum deer arasndaki zaman periyodu yl baznda belirlenir.

7 statistik 7 ekilde görüldüü gibi, bu zaman serisi için iki minimum arasndaki dalga uzunluu dikkate alrsa, beerli hareketli ortalama kullanlmas uygun olur. Baz durumlarda birden fazla dalga ortaya çkabilir ve bunlarn da uzunluklar farkl farkl olabilir. Örnein dalga uzunluklar 3, 4,6 ve 3 olan bir zaman serisinde hareketli ortalamalarn kaçarl olaca hesaplamak için bunlarn ortalamas alrsa 4 bulunur. Hesaplanan ortalamann ondalkl çkmas durumunda en yakn tamsay alr. Tablo 4 Tek say hareketli ortalamalar Fiili Deerler Üçerli Hareketli Ortalamalar Beerli Hareketli Ortalamalar n1 n n1 n n 1-3 n - -

8 8 Zaman Serisi Analizi Üçerli hareketli ortalama hesaplanrken ilk üç deerin ortalamas alnmakta, ortadaki ikinci deerin yerine geçmektedir. Üçerli ortalamalar hesaplanrken batan ve sondan birer olmak üzere toplam iki deer eksilirken, beerli hareketli ortalamalarda ise toplam dört terim eksilmektedir. Tablo 5 Üçerli hareketli ortalamalar llar Üretim Üçerli hareketli ortalamalar Dalga uzunluklar üçer yl olduundan üçerli hareketli ortalamalar hesaplanr ve grafik üzerinde gösterilirse trend belirlenmi olur. ekil 13-6 Üçerli hareketli ortalamalarla trend

9 statistik EN KÜÇÜK KARELER ÖNTEM En küçük kareler yöntemi (EKK), regresyon ve korelasyon konusunda ayrnt biçimde açkland. Zaman serisinin grafii çizildiinde, fiili gözlem deerlerini temsil eden noktalar arasndan en uygun erinin geçirilmesi, en küçük kareler yönteminin temel konusudur. ekil 5 X firmasn dönemi satlar ukardaki ekilde görüldüü gibi zaman serisinin uzun dönemli eilimini temsil etmesi için fiili noktalar arasndan geçebilecek çok sayda fonksiyon olup, bunlardan bazlar unlardr: 1) a bx (doru denklemi) ) a bx cx (ikinci dereceden eri - Parabol) 3) X ab (üstel eri) 1) Doru Denklemi (l Say Tek) Grafikteki noktalarn konumuna göre, doru denkleminin uygun olduunu kabul ederek, X firmasn yllar arasndaki sat deerleri için en küçük kareler yöntemi ile trend dorusu ve deerlerini hesaplayalm:

10 10 Zaman Serisi Analizi Tablo 6 EKK ile trend dorusu (uzun yoldan) llar X X X (1) 3, () 3, (3) 4, (4) 4, (5) 5, (6) 6, (7) 6, (8) 7, (9) 7, (10) 8, (11 9, 0 01 Toplam Doru denkleminde a ve b gibi iki parametre olduundan bunlar EKK ile ve uzun yolla hesaplayabilmek için adaki normal denklemler kullanr. na + b X X a X + b X ' a bx ukardaki örnekte gözlem say n 11 dir. Denklemlerde dekenlere ait deerleri yazr ve gerekli ilemler yaprsa; 66 11a 66 b a 506 b Birinci normal denklemin her iki taraf ( - 6 ) ile çarpr ve gerekli sadeletirmeler yaprsa;

11 statistik a b a 506 b b b ,6 Trend dorusunun b katsay b 0, 6 hesaplanm olur. ekil 6 EKK ile doru trend denklemi Bulunan bu b deeri, normal denklemlerden herhangi birinde yerine yazr ve gerekli lemler yaprsa a,4 bulunur. Tahmin dorusu denklemi uzun metotla u ekilde elde edilir. ' X Bu denklemde, X yerine deerleri koyulursa yllar arasndaki tahmini ' deerleri hesaplanabilir: Zaman serisinde bamsz deken konumundaki yllar yerine X deerlerini aritmetik bir dizi eklinde ve toplamlar sr olacak ekilde düzenlenir, ilemler buna göre yapr.

12 1 Zaman Serisi Analizi Tablo 7 EKK ile trend dorusu (ksa yoldan) llar X X X ' ,6( 5) 3, ,6( 4) 3, ,6( 3) 4, ,6( ) 4, ,6( 1) 5, ,6(0) 6, ,6( 1) 6, ,6( ) 7, ,6( 3) 7, ,6( 4) 8, ,6( 5) 9, 0 01 Toplam ' a bx Doru denkleminde a ve b gibi iki parametre olduundan bunlar hesaplayabilmek için iki denklem gerekir. na + b X X a X + b X X 0 olduundan normal denklemler na X b X eklinde sadeleir ve a ve b kolayca hesaplanabilir a b n X X yukardaki tabloda elde edilen, X ve X denklemindeki a ve b parametreleri u ekilde hesaplanr: deerleri yardyla doru

13 statistik X 66 a 6 b 0. 6 n 11 X 110 a ve b parametreleri denklemde u ekilde gösterilir: ' X denklemde X yerine deerleri koyarak yllar arasndaki tahmini ' deerleri hesaplanabilir: ekil 7 EKK ile ksa yoldan doru trend denklemi ) Doru Denklemi (l Say Çift) l say çift olursa, X deerleri için ortaya düen bir deer bulunmaz. Bu durumda serinin ortasndaki iki yn ortasna düen tarih orijin kabul edilir aralndaki 10 yllk zaman serisinde ortadaki iki yl 007 ile 008 dr. 007 y için X deeri ( 1) 008 y için (+ 1) alr. 007 den önceki yllar ikier ikier azalrken, 008 dan sonraki yllar ise ikier ikier artr. Bu ekilde elde edilen X deerleri hem aritmetik bir dizi oluturur, hem de toplamlar sr çkar.

14 14 Zaman Serisi Analizi llar X X X ' ,9 0,3( 9) 4, ,9 0,3( 7) 4, ,9 0,3( 5) 5, ,9 0,3( 3) ,9 0,3( 1) 6, ,9 0,3( 1) 7, ,9 0,3( 3) 7, ,9 0,3( 5) 8, ,9 0,3( 7) ,9 0,3( 9) 9, a b n X X ,9 0.1 Doru denkleminin a ve b parametreleri hesaplandktan sonra; ' 6,6 0. 1X ekilde bulunur.

15 statistik 15 DeerlendirmeSorular 1. = 10.5 X denkleminde bamsz deken 4 olursa baml deken ne olur? (a) (b).5 (c) 5 (d) 7.5 (e) X dorusu eksenini hangi noktada keser? (a) 0 (b) 0,5 (c) 1 (d) 5 (e) 5, X dorusu eksenini hangi noktada keser? (a) 0 (b) 0,5 (c) 1 (d) 5 (e) 5,5 4. daki grafikte noktalar en iyi temsil eden dorusal fonksiyon hangisidir? (a) = 4X (b) = X- 4 (c) = 4 + X (d) = X + (e) = + X

16 16 Zaman Serisi Analizi 5. daki zaman serisinde dalga uzunluu kaç yldr? (a) (b) 4 (c) 5 (d) 6 (e) 8 6. dakilerden hangisi trend hesabnda kullanlan yöntemlerden biridir? (a) Serbest çizim yöntemi (b) ar ortalamalar yöntemi (c) Hareketli ortalamalar yöntemi (d) En küçük kareler yöntemi (e) Hepsi 7. daki doruyu en iyi temsil eden fonksiyon hangisidir? (a) = (b) = X- (c) = - + X (d) = X + (e) = X 8. Bir zaman serisini meydana getiren faktör adakilerden hangisidir? (a) Trend, (b) Mevsim, (c) Konjonktür, (d) Düzensiz hareketler, (e) Hepsi

17 statistik Ekonomideki uzun vadeli dalgalanmalara ne denir? (a) Trend, (b) Mevsim, (c) Konjonktür, (d) Düzensiz hareketler, (e) Hiçbiri 10. En küçük kareler yöntemi ile ne hesaplanr? (a) Trend denklemi, (b) Olask, (c) Fiyat indeksi, (d) Miktar indeksi, (e) Standart sapma Kaynakça Özkan, lmaz (008), Uygulamalstatistik II, Sakarya aynck, Sakarya.

3 1 x 2 ( ) 2 = E) f( x) ... Bir sigorta portföyünde, t poliçe yln göstermek üzere, sigortal saysnn

3 1 x 2 ( ) 2 = E) f( x) ... Bir sigorta portföyünde, t poliçe yln göstermek üzere, sigortal saysnn SORU : Aada tanm verilen f fonksiyonlarndan hangisi denklemini her R için salar? f + = f t dt integral e A) f = e B) f = e C) f D) f = E) f = e ( ) = e ( ) SORU : Bir sigorta portföyünde, t poliçe yln

Detaylı

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız.

Örnek. Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. Örnek Aşağıdaki veri setlerindeki X ve Y veri çiftlerini kullanarak herbir durumda X=1,5 için Y nin hangi değerleri alacağını hesaplayınız. i. ii. X 1 2 3 4 1 2 3 4 Y 2 3 4 5 4 3 2 1 Örnek Aşağıdaki veri

Detaylı

ÜN TE 2 2. DERECEDEN DENKLEMLER VE

ÜN TE 2 2. DERECEDEN DENKLEMLER VE 31 0 ZMR 5 8 5 63 8 MECYEKÖY 7 3 3 NSAN KAYNAKLARI MERKEZ BEKTA 7 76 70 KOCAEL DENZL 65 09 90 ÜNTE. DERECEDEN DENKLEMLER VE TSZLKLER 0 31 0 ZMR 5 8 5 63 8 MECYEKÖY 7 3 3 NSAN KAYNAKLARI MERKEZ BEKTA 7

Detaylı

009 BS 400- İstatistik sonılannın cevaplanmasında gerekli olabilecek tablolar ve formüller bu kitapçığın sonunda verilmiştir. 1. şağıdakilerden hangisi doğal birimdir? l TV alıcısı Bl Trafik kazası CL

Detaylı

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören

Zaman Serileri. IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serileri IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere sahip değișkenlere zaman serisi adı verilmektedir. Genel olarak zaman serisi,

Detaylı

Matematiksel denklemlerin çözüm yöntemlerini ara t r n z. 9. FORMÜLLER

Matematiksel denklemlerin çözüm yöntemlerini ara t r n z. 9. FORMÜLLER ÖRENME FAALYET-9 AMAÇ ÖRENME FAALYET-9 Gerekli atölye ortam ve materyaller salandnda formülleri kullanarak sayfada düzenlemeler yapabileceksiniz. ARATIRMA Matematiksel denklemlerin çözüm yöntemlerini aratrnz.

Detaylı

MAK 210 SAYISAL ANALİZ

MAK 210 SAYISAL ANALİZ MAK 210 SAYISAL ANALİZ BÖLÜM 6- İSTATİSTİK VE REGRESYON ANALİZİ Doç. Dr. Ali Rıza YILDIZ 1 İSTATİSTİK VE REGRESYON ANALİZİ Bütün noktalardan geçen bir denklem bulmak yerine noktaları temsil eden, yani

Detaylı

L SANS YERLE T RME SINAVI 1

L SANS YERLE T RME SINAVI 1 LSNS YRLTRM SINVI GOMTR TST SORU KTPÇII 9 HZRN 00. bir üçgen 80 = m() = m() m() = 80 m() = Yukardaki verilere göre kaç derecedir? ) 40 ) 45 ) 50 ) 60 ) 75. bir üçgen m() = 90 = 9 cm = 4 cm Yukardaki ekilde

Detaylı

K NC DERECEDEN DENKLEMLER E TS ZL KLER ve FONKS YONLAR

K NC DERECEDEN DENKLEMLER E TS ZL KLER ve FONKS YONLAR KNC DERECEDEN DENKLEMLER ETSZLKLER ve FONKSYONLAR ÜNTE. ÜNTE. ÜNTE. ÜNTE. ÜNT kinci Dereceden Denklemler. Kazanm kinci dereceden bir bilinmeyenli denklemlerin köklerini ve çözüm kümesini belirler.. Kazanm

Detaylı

Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr.

Zaman Serileri-1. If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist. IENG 481 Tahmin Yöntemleri Dr. Zaman Serileri-1 If you have to forecast, forecast often. EDGAR R. FIEDLER, American economist IENG 481 Tahmin Yöntemleri Dr. Hacer Güner Gören Zaman Serisi nedir? Kronolojik sırayla elde edilen verilere

Detaylı

İstatistik ve Olasılık

İstatistik ve Olasılık İstatistik ve Olasılık KORELASYON ve REGRESYON ANALİZİ Doç. Dr. İrfan KAYMAZ Tanım Bir değişkenin değerinin diğer değişkendeki veya değişkenlerdeki değişimlere bağlı olarak nasıl etkilendiğinin istatistiksel

Detaylı

İşaret ve Sistemler. Ders 3: Periyodik İşaretlerin Frekans Spektrumu

İşaret ve Sistemler. Ders 3: Periyodik İşaretlerin Frekans Spektrumu İşaret ve Sistemler Ders 3: Periyodik İşaretlerin Frekans Spektrumu Fourier Serileri Periyodik işaretlerin spektral analizini yapabilmek için periyodik işaretler sinüzoidal işaretlerin toplamına dönüştürülür

Detaylı

Keynesyen makro ekonomik modelin geçerli oldu(u bir ekonomide aa(daki ifadelerden hangisi yanltr?

Keynesyen makro ekonomik modelin geçerli oldu(u bir ekonomide aa(daki ifadelerden hangisi yanltr? SORU 31: 3 / 4 Bir ekonomide kii ba üretim fonksiyonu y = 2k biçiminde verilmektedir. Nüfus art hz %2, teknik ilerleme hz %2 ve amortisman oran %6 iken tasarruf oran da %30 ise bu ekonomideki kii ba sermaye

Detaylı

Cebirsel Fonksiyonlar

Cebirsel Fonksiyonlar Cebirsel Fonksiyonlar Yazar Prof.Dr. Vakıf CAFEROV ÜNİTE 4 Amaçlar Bu üniteyi çalıştıktan sonra; polinom, rasyonel ve cebirsel fonksiyonları tanıyacak ve bu türden bazı fonksiyonların grafiklerini öğrenmiş

Detaylı

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ

ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ ZAMAN SERİLERİNDE AYRIŞTIRMA YÖNTEMLERİ 1 A. GİRİŞ Gözlemlerin belirli bir dönem için gün, hafta, ay, üç ay, altı ay, yıl gibi birbirini izleyen eşit aralıklarla yapılması ile elde edilen seriler zaman

Detaylı

İSTATİSTİK ÖRNEK SORULARI

İSTATİSTİK ÖRNEK SORULARI 1. Aşağıda gruplandırılmış seri verilmiştir. (n) 0-10 den az 5 10-20 den az 6 20-30 den az 9 30-40 den az 11 40-50 den az 4 50-60 den az 3 TOPLAM 38 İSTATİSTİK ÖRNEK SORULARI a) Mod değerini bulunuz? (15

Detaylı

Türkiye - EuropeAid/126747/D/SV/TR_ Alina Maric, Hifab 1

Türkiye - EuropeAid/126747/D/SV/TR_ Alina Maric, Hifab 1 1 Maliyet kontrolü proje bütçelendirmesi çerçevesinde gerçek proje maliyetlerini kontrol etmeyi hedefleyen bir yönetim sürecidir. Türkiye - EuropeAid/126747/D/SV/TR_ Alina Maric, Hifab 2 Girdiler: Cost

Detaylı

Ç NDEK LER. Bölüm 4: Üslü Say lar...44 Üslü fadeler...44 Al t rmalar...47 Test Sorular...49

Ç NDEK LER. Bölüm 4: Üslü Say lar...44 Üslü fadeler...44 Al t rmalar...47 Test Sorular...49 Ç NDEK LER Bölüm1: Say Sistemleri...1 Say Sistemi...2 Desimal (Onluk) Say Sistemi...2 Say Basamaklar ve Taban...4 Binary ( kilik) Say Sistemi...4 Oktal (Sekizlik) Say Sistemi...7 Heksadesimal (Onalt l

Detaylı

1989 ÖYS. olduğuna göre a-b kaçtır? A) 2 B) 2 C) 2 2 D) 2 2 E) 4

1989 ÖYS. olduğuna göre a-b kaçtır? A) 2 B) 2 C) 2 2 D) 2 2 E) 4 989 ÖYS. a a a b 8 olduğuna göre a-b kaçtır? C). a ile b nin aritmetik ortalaması 5 tir. a ile geometrik ortalaması 0, b ile geometrik ortalaması 0 olan sayı nedir? 0 C) 8 ise a+b+d toplamı ne-. a+b+c=d

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

Mühendislikte İstatistik Yöntemler

Mühendislikte İstatistik Yöntemler .0.0 Mühendislikte İstatistik Yöntemler İstatistik Parametreler Tarih Qma.3.98 4..98 0.3.983 45 7..984 37.3.985 48 0.4.986 67.4.987 5 0.3.988 45.5.989 34.3.990 59.4.99 3 4 34 5 37 6 45 7 45 8 48 9 5 0

Detaylı

Deneysel Verilerin Değerlendirilmesi

Deneysel Verilerin Değerlendirilmesi Deneysel Verilerin Değerlendirilmesi Ölçme-Birimler-Anlamlı Rakamlar Ölçme: Bir nesnenin bazı özelliklerini (kütle, uzunluk vs..) standart olarak belirlenmiş birimlere göre belirlenmesi işlemidir (ölçüm,

Detaylı

Nedensel Modeller Y X X X

Nedensel Modeller Y X X X Tahmin Yöntemleri Nedensel Modeller X 1, X 2,...,X n şeklinde tanımlanan n değişkenin Y ile ilgili olmakta; Y=f(X 1, X 2,...,X n ) şeklinde bir Y fonksiyonu tanımlanmaktadır. Fonksiyon genellikle aşağıdaki

Detaylı

Onikinci Bölüm Korelasyon ve Regresyon

Onikinci Bölüm Korelasyon ve Regresyon OnkncBölüm KorelasyonveRegresyon Hedefler Buünteyçalktansonra; k deken arasnda lk olup olmad arar, lknn anlaml olup olmad belrler, Anlaml br lk varsa lknn modeln formüle eder, Dekenlerden br le dern tahmn

Detaylı

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir.

Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. Temel Kavramlar 1 Doğal sayılar: N = {0, 1, 2, 3,.,n, n+1,..} kümesinin her bir elamanına doğal sayı denir ve N ile gösterilir. a) Pozitif doğal sayılar: Sıfır olmayan doğal sayılar kümesine Pozitif Doğal

Detaylı

ÜSTEL DÜZLEŞTİRME YÖNTEMİ

ÜSTEL DÜZLEŞTİRME YÖNTEMİ ÜSEL DÜLEŞİRME YÖNEMİ ÜSEL DÜLEŞİRME YÖNEMİ Bu bölüme kadar anlatılan yöntemler zaman içinde değişmeyen parametre varsayımına uygun serilerin tahminlerinde kullanılmaktaydı. Bu tür seriler deterministik

Detaylı

YGS MATEMAT K DENEME SINAVI

YGS MATEMAT K DENEME SINAVI MATEMAT K DENEME SINAVI I Muharrem ŞAHİN muharrem49@gmail.com Maatteemaatti ikk Deeneemee Sınaavvı I Muhaarrrreem Şaahi in. 9 8 0 0 0 0 5 işleminin sonucu kaçtır? x x 3. 0, 0, 3 0, 0, olduğuna göre, x

Detaylı

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI

DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI DOĞU AKDENİZ ÜNİVERSİTESİ MATEMATİK BÖLÜMÜ 23. LİSELERARASI MATEMATİK YARIŞMASI BİREYSEL YARIŞMA SORULARI CEVAPLARI CEVAP KAĞIDI ÜZERİNE YAZINIZ. SORU KİTAPÇIĞINI KARALAMA MAKSATLI KULLANABİLİRSİNİZ 1

Detaylı

Görsel Tasar m. KaliteOfisi.com

Görsel Tasar m. KaliteOfisi.com Görsel Tasarm KaliteOfisi.com KaliteOfisi.com un bir hizmetidir. zin alnmaksn alnt ve çoaltma yaplabilir. 2 www.kaliteofisi.com KaliteOfisi Hakknda Kalite ofisi; ülkemizde kalite bilincinin yerlemesine

Detaylı

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK

YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK YAZILI SINAV SORU ÖRNEKLERİ MATEMATİK SORU 1: Aşağıdaki grafik, bir okuldaki spor yarışmasına katılan öğrencilerin yaşa göre dağılışını göstermektedir. Öğrenci sayısı 5 3 9 10 1 14 Yaş 1.1: Yukarıdaki

Detaylı

1.BÖLÜM SORU SORU. (x 1) (x 3) = A + B. x 3 ise, d(p(x)) ve d(q(x)) polinomlar n derecelerini göstermek. A. B çarp m kaçt r?

1.BÖLÜM SORU SORU. (x 1) (x 3) = A + B. x 3 ise, d(p(x)) ve d(q(x)) polinomlar n derecelerini göstermek. A. B çarp m kaçt r? 1.BÖLÜM MATEMAT K Derginin bu say s nda Polinomlar konusunda çözümlü sorular yer almaktad r. Bu konuda, ÖSS de ç kan sorular n çözümü için gerekli temel bilgileri ve pratik yollar, sorular m z n çözümü

Detaylı

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14.

Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma TEST D 9. E 10. C 11. B 14. D 16. D 12. C 12. A 13. B 14. 1. Ünite: Polinomlar Polinomlar, Temel Kavramlar, Polinomlar Kümesinde Toplama, Çıkarma, Çarpma 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Polinomlarda Bölme, Bölüm ve Kalan Bulma 1 1 1 1 1 1 1 1 1

Detaylı

2. Senkron motorla ayn milde bulunan uyart m dinamosunu motor olarak çal rarak yol vermek.

2. Senkron motorla ayn milde bulunan uyart m dinamosunu motor olarak çal rarak yol vermek. Senkron Motorlara Yol Verme ekilleri Bir asenkron motora gerilim uygulandnda direkt olarak yol alr. Bunun için yardmc bir düzenee ihtiyaç yoktur. Senkron motorlar ise gerilim uygulandnda direkt olarak

Detaylı

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A

istatistik El 10 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre Al 4 Bl 6 cı 7 Dl 8 Al 5 B) 12 CL 27 D) 28 E) 35 2Q 10 BS 4200-A 2Q 10 BS 4200- İstatistik sorulannın cevap l anmasında gerekli olabilecek tablolar ve f ormüller bu kita p ç ığın sonunda ver-ilmiştir. 1_ ve 2_ sorular a Ş3 gldakl bilgilere göre cevaplandırılacaktır

Detaylı

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ

Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ I Doç. Dr. Dilek ALTAŞ İSTATİSTİKSEL ANALİZ II Yayın No : 2845 Teknik Dizisi : 158 1. Baskı Şubat 2013 İSTANBUL ISBN 978-605 - 377 868-4 Copyright Bu kitabın bu basısı için Türkiye deki yayın hakları BETA

Detaylı

ÖZEL SEKTÖR DI BORCU_2015 UBAT

ÖZEL SEKTÖR DI BORCU_2015 UBAT ÖZEL SEKTÖR DI BORCU_ UBAT Doç.Dr.Mehmet Emin Altundemir 1 Sakarya Akademik Dan man Söz konusu veriler, özel sektörün yurt d ndan sa lad k sa ve uzun vadeli kredilerin borçlu ve alacakl bilgileri, döviz

Detaylı

Avrasya Ekonomik Birliği Elektrik Piyasası Entegrasyonu Kapsamında Kırgızistan ın Enerji Tüketim Projeksiyonu

Avrasya Ekonomik Birliği Elektrik Piyasası Entegrasyonu Kapsamında Kırgızistan ın Enerji Tüketim Projeksiyonu Avrasya Ekonomik Birliği Elektrik Piyasası Entegrasyonu Kapsamında Kırgızistan ın Enerji Tüketim Projeksiyonu Prof. Dr. Ahmet BurçinYERELİ Hacettepe Üniversitesi, İktisadi ve İdari Bilimler Fakültesi,

Detaylı

LYS MATEMATİK DENEME - 1

LYS MATEMATİK DENEME - 1 LYS MATEMATİK DENEME - BU SORULAR FİNAL EĞİTİM KURUMLARI TARAFINDAN SAĞLANMIŞTIR. İZİNSİZ KOPYALANMASI VE ÇOĞALTILMASI YASAKTIR, YAPILDIĞI TAKDİRDE CEZAİ İŞLEM UYGULANACAKTIR. LYS MATEMATİK TESTİ. Bu testte

Detaylı

A t a b e y M e s l e k Y ü k s e k O k u l u İstatistik Sunum 4 Öğr.Gör. Şükrü L/O/G/O KAYA www.sukrukaya.org www.themegallery.com 1 Yer Ölçüleri Yer ölçüleri, verilerin merkezini veya yığılma noktasını

Detaylı

2015 OCAK ÖZEL SEKTÖR DI BORCU

2015 OCAK ÖZEL SEKTÖR DI BORCU OCAK ÖZEL SEKTÖR DI BORCU Doç.Dr.Mehmet Emin Altundemir 1 Sakarya Akademik Dan man Özel sektörün yurt d ndan sa lad k sa ve uzun vadeli kredilerin borçlu ve alacakl bilgileri, döviz cinsi, kullan m, anapara/faiz

Detaylı

1. YAPISAL KIRILMA TESTLERİ

1. YAPISAL KIRILMA TESTLERİ 1. YAPISAL KIRILMA TESTLERİ Yapısal kırılmanın araştırılması için CUSUM, CUSUMSquare ve CHOW testleri bize gerekli bilgileri sağlayabilmektedir. 1.1. CUSUM Testi (Cumulative Sum of the recursive residuals

Detaylı

1) Ekonominin Genel Durumu ve Piyasalar:

1) Ekonominin Genel Durumu ve Piyasalar: 01/01/2005-30/06/2005 DÖNEMNE LKN YAPI KRED EMEKLLK A.. GELR AMAÇLI KAMU BORÇLANMA ARAÇLARI (DÖVZ) EMEKLLK YATIRIM FONU FAALYET RAPORU 1) Ekonominin Genel Durumu ve Piyasalar: 2005 yl gelimekte olan ülke

Detaylı

Mali Yönetim ve Denetim Dergisinin May s-haziran 2008 tarihli 50. say nda yay nlanm r.

Mali Yönetim ve Denetim Dergisinin May s-haziran 2008 tarihli 50. say nda yay nlanm r. HURDAYA AYRILAN VARLIKLARIN MUHASEBELELMELER VE YAPILAN YANLILIKLAR Ömer DA Devlet Muhasebe Uzman info@omerdag.net 1.G Kamu idarelerinin kaytlarnda bulunan tarlar ile maddi duran varlklar doalar gerei

Detaylı

8. BÖLÜM: DEĞİŞEN VARYANS

8. BÖLÜM: DEĞİŞEN VARYANS 8. BÖLÜM: DEĞİŞEN VARYANS Bu bölümde; Değişen Varyans Tespiti için Grafik Çizme Değişen Varyans Testi: Park Testi Değişen Varyans Testi: White Testi Değişen Varyans Probleminin Çözümü: Ağırlıklandırılmış

Detaylı

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN

KORELASYON VE REGRESYON ANALİZİ. Doç. Dr. Bahar TAŞDELEN KORELASYON VE REGRESYON ANALİZİ Doç. Dr. Bahar TAŞDELEN Günlük hayattan birkaç örnek Gelişim dönemindeki bir çocuğun boyu ile kilosu arasındaki ilişki Bir ailenin tükettiği günlük ekmek sayısı ile ailenin

Detaylı

Ç NDEK LER II. C LT KONULAR Sayfa Öz De er Öz Vektör.. 2. Lineer Cebir ve Sistem Analizi...

Ç NDEK LER II. C LT KONULAR Sayfa Öz De er Öz Vektör.. 2. Lineer Cebir ve Sistem Analizi... ÇNDEKLER II. CLT KONULAR 1. Öz Deer Öz Vektör.. 1 Kare Matrisin Öz Deeri ve Öz Vektörleri... 21 Matrisin Karakteristik Denklemi : Cayley Hamilton Teoremi.. 26 Öz Deer - Öz Vektör ve Lineer Transformasyon

Detaylı

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol

1. BÖLÜM Polinomlar BÖLÜM II. Dereceden Denklemler BÖLÜM II. Dereceden Eşitsizlikler BÖLÜM Parabol ORGANİZASYON ŞEMASI . BÖLÜM Polinomlar... 7. BÖLÜM II. Dereceden Denklemler.... BÖLÜM II. Dereceden Eşitsizlikler... 9. BÖLÜM Parabol... 5 5. BÖLÜM Trigonometri... 69 6. BÖLÜM Karmaşık Sayılar... 09 7.

Detaylı

TREND VE REGRESYON METODUNUN FiNANSAL TAHMiNLEMEDE KULLANILMASI

TREND VE REGRESYON METODUNUN FiNANSAL TAHMiNLEMEDE KULLANILMASI TREND VE REGRESYON METODUNUN FiNANSAL TAHMiNLEMEDE KULLANILMASI Dr. ŞENER DiLEK 1 - Genel Açıklama : Gü'nümüzde modern işletmeler geleceklerini garanti altına almayı hedef kabul etmi.şlerdir. Dengeli ve,istikrarlı

Detaylı

Prof.Dr.İhsan HALİFEOĞLU

Prof.Dr.İhsan HALİFEOĞLU Prof.Dr.İhsan HALİFEOĞLU Örnek: Aşağıda 100 yetişkine ilişkin kolesterol değerlerini sınıflandırılarak aritmetik ortalamasını bulunuz (sınıf aralığını 20 alınız). 2 x A fb C 229.5 n 40 20 100 221.5 3 Örnek:.

Detaylı

İÇİNDEKİLER 1. GİRİŞ...

İÇİNDEKİLER 1. GİRİŞ... İÇİNDEKİLER 1. GİRİŞ... 1 1.1. Regresyon Analizi... 1 1.2. Uygulama Alanları ve Veri Setleri... 2 1.3. Regresyon Analizinde Adımlar... 3 1.3.1. Problemin İfadesi... 3 1.3.2. Konu ile İlgili Potansiyel

Detaylı

Hareketli Ortalama ile Mevsimsel Ayrıştırma (Yöntem-2)

Hareketli Ortalama ile Mevsimsel Ayrıştırma (Yöntem-2) Tahmin Yöntemleri Hareketli Ortalama ile Mevsimsel Ayrıştırma (Yöntem-2) Mevsimsel etkenin tahmininde kullanılan diğer bir yöntem de N dönemlik hareketli ortalamaların alınmasıdır. Burada N değeri aynı

Detaylı

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir?

Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin ortalamasını 5 yapabilmek için son sınavdan kaç alması gerekmektedir? İSTATİSTİK Bir sonuç çıkarmak ya da çözüme ulaşabilmek için gözlem, deney, araştırma gibi yöntemlerle toplanan bilgiye veri adı verilir. Örnek...4 : İlk iki sınavında 75 ve 82 alan bir öğrencinin bu dersin

Detaylı

2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir?

2. Dereceden Denklem ve Eşitsizlikler x 2 2x + 2m + 1 = 0 denkleminin kökleri x 1 ve x 2 dir. 4x 1 + 5x 2 = 7 ise m aşağıdakilerden hangisidir? MC www.matematikclub.com, 006 Cebir Notları Gökhan DEMĐR, gdemir3@ahoo.com.tr. Dereceden Denklem ve Eşitsizlikler- TEST I A) 1 B) C) 3 D) 4 E) 5 1. 1/ = 0 denkleminin köklerinin toplamı aşağıdakilerden

Detaylı

TANIMLAYICI İSTATİSTİKLER

TANIMLAYICI İSTATİSTİKLER TANIMLAYICI İSTATİSTİKLER Tanımlayıcı İstatistikler ve Grafikle Gösterim Grafik ve bir ölçüde tablolar değişkenlerin görsel bir özetini verirler. İdeal olarak burada değişkenlerin merkezi (ortalama) değerlerinin

Detaylı

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37

İÇİNDEKİLER. BÖLÜM 1 Değişkenler ve Grafikler 1. BÖLÜM 2 Frekans Dağılımları 37 İÇİNDEKİLER BÖLÜM 1 Değişkenler ve Grafikler 1 İstatistik 1 Yığın ve Örnek; Tümevarımcı ve Betimleyici İstatistik 1 Değişkenler: Kesikli ve Sürekli 1 Verilerin Yuvarlanması Bilimsel Gösterim Anlamlı Rakamlar

Detaylı

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?

PARABOL Test -1. y x 2x m 1 parabolü x eksenini kesmiyorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir? PROL est -. m parabolü eksenini kesmiorsa m nin alabileceği değerler kümesi aşağıdakilerden hangisidir?. f a b c (, ) ) (, ) (, ) (, ) ( 6, ). m parabolü eksenini iki farklı noktada kesmektedir. una göre,

Detaylı

2 400 TL tutarndaki 1 yllk kredi, aylk taksitler halinde aadaki iki opsiyondan biri ile geri ödenebilmektedir:

2 400 TL tutarndaki 1 yllk kredi, aylk taksitler halinde aadaki iki opsiyondan biri ile geri ödenebilmektedir: SORU 1: 400 TL tutarndaki 1 yllk kredi, aylk taksitler halinde aadaki iki opsiyondan biri ile geri ödenebilmektedir: (i) Ayla dönütürülebilir yllk nominal %7,8 faiz oran ile her ay eit taksitler halinde

Detaylı

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım

2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI Tanım 2. REGRESYON ANALİZİNİN TEMEL KAVRAMLARI 2.1. Tanım Regresyon analizi, bir değişkenin başka bir veya daha fazla değişkene olan bağımlılığını inceler. Amaç, bağımlı değişkenin kitle ortalamasını, açıklayıcı

Detaylı

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x

Çalışma Soruları 1. a) x > 5 b) y < -3 c) xy > 0 d) x 3 < y e) (x-2) 2 + y 2 > 1. ( ) 2x Çalışma Soruları. Aşağıdaki denklemleri çözünüz: 7x = 4x + b) x 7x = x 4 c) x 4 x + = 0. Aşağıdaki eşitsizliklerin çözüm kümelerini belirleyiniz ve aralıklar cinsinden ifade ediniz: 4x > 9 b) x 4 < - c)

Detaylı

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI SORU 1. Köşeleri (1,4) (3,0) (7,2) noktaları olan ABC üçgeninin bir ikizkenar dik üçgen (İpucu:, ve vektörlerinden yararlanın) SORU 2. Bir ABC üçgeninin

Detaylı

II. DERECEDEN DENKLEMLER Test -1

II. DERECEDEN DENKLEMLER Test -1 II. DERECEDEN DENKLEMLER Test -. 5 {, 5} {, 5} { 5, } {, 5} {, 5} 5. 5 {,, } {,, } {,, } {,, } {,, }.. 5 7 7 5 5,, 5 5, 5 5, 5 5, 6. 7. 5 95 { 5,, } {,, 5} { 5,, 9} {,, 5} { 9,, 5} 6 66 {, } {,, } {,,

Detaylı

B ol um 5 ANALOG IS ARETLER IN SPEKTRUM ANAL IZ I

B ol um 5 ANALOG IS ARETLER IN SPEKTRUM ANAL IZ I Bölüm 5 ANALOG İŞARETLERİN SPEKTRUM ANALİZİ 10 Bölüm 5. Analog İşaretlerin Spektrum Analizi 5.1 Fourier Serisi Sınırlı (t 1, t 2 ) aralığında tanımlanan f(t) fonksiyonunun sonlu Fourier serisi açılımı

Detaylı

İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere 2. ÜNİTE. İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR

İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere 2. ÜNİTE. İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR - 1-2 ÜNİTE İKİNCİ DERECEDEN DENKLEMLER, EŞİTSİZLİKLER ve FONKSİYONLAR ÖĞRENME ALANI CEBİR İKİNCİ DERECEDEN BİR BİLİNMEYENLİ DENKLEMLER,, olmak üzere Şeklindeki açık önermelere, ikinci dereceden bir bilinmeyenli

Detaylı

İÇİNDEKİLER ÖN SÖZ...

İÇİNDEKİLER ÖN SÖZ... İÇİNDEKİLER ÖN SÖZ... v GİRİŞ... 1 1. İSTATİSTİK İN TARİHÇESİ... 1 2. İSTATİSTİK NEDİR?... 3 3. SAYISAL BİLGİDEN ANLAM ÇIKARILMASI... 4 4. BELİRSİZLİĞİN ELE ALINMASI... 4 5. ÖRNEKLEME... 5 6. İLİŞKİLERİN

Detaylı

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü

Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü Mühendislikte İstatistiksel Yöntemler Yrd. Doç. Dr. Fatih TOSUNOĞLU Erzurum Teknik Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü 1 Araştırma sonuçlarının açıklanmasında frekans tablosu

Detaylı

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu

PARABOL. çözüm. kavrama sorusu. çözüm. kavrama sorusu PARABL Bu bölümde birinci dereceden fonksion =f()=a+b ve ikinci dereceden fonksion =f()=a +b+c grafiklerini üzesel olarak inceleeceğiz. f()=a +b+c ikinci dereceden bir bilinmeenli polinom fonksionun grafiği

Detaylı

Sürelerine Göre Tahmin Tipleri

Sürelerine Göre Tahmin Tipleri Girişimcilik Bölüm 5: Talep Tahmini scebi@ktu.edu.tr 5.1. Talep Tahmini Tahmin: Gelecek olayları önceden kestirme bilim ve sanatı. İstatistiksel Tahmin: Geçmiş verileri matematiksel modellerde kullanarak

Detaylı

P I. R dir. Bu de er stator sarg lar n direnci. : Stator bir faz sarg n a.c. omik direncini ( ) göstermektedir.

P I. R dir. Bu de er stator sarg lar n direnci. : Stator bir faz sarg n a.c. omik direncini ( ) göstermektedir. Asenkron Motorun Bota Çalmas Bota çallan asenkron motorlar ebekeden bir güç çekerler. Bu çekilen güç, stator demir kayplar ile sürtünme ve vantilasyon kayplarn toplam verir. Bota çalan motorun devir say

Detaylı

#$% &'#(# Konular. Bits of Information. Binary Özellikler Superimposed Coding Signature Formation Deerlendirme

#$% &'#(# Konular. Bits of Information. Binary Özellikler Superimposed Coding Signature Formation Deerlendirme !" #$% &'#(# Konular Binary Özellikler Deerlendirme Binary Özellikler Bir binary özellik iki deer alabilir (kapalı veya açık; var veya yok gibi) Bir kiiye ait bilgiler binary olarak aaıdaki gibi gösterilebilir

Detaylı

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN

Tanımlayıcı İstatistikler. Yrd. Doç. Dr. Emre ATILGAN Tanımlayıcı İstatistikler Yrd. Doç. Dr. Emre ATILGAN 1 Tanımlayıcı İstatistikler Yer Gösteren Ölçüler Yaygınlık Ölçüleri Merkezi Eğilim Ölçüleri Konum Ölçüleri 2 3 Aritmetik Ortalama Aritmetik ortalama,

Detaylı

SOSYAL GÜVENLK KURMUNUN YAPISI VE LEY. Sosyal Güvenlik Kurumu Bakanl Strateji Gelitirme Bakan Ahmet AÇIKGÖZ

SOSYAL GÜVENLK KURMUNUN YAPISI VE LEY. Sosyal Güvenlik Kurumu Bakanl Strateji Gelitirme Bakan Ahmet AÇIKGÖZ SOSYAL GÜVENLK KURMUNUN YAPISI VE LEY Sosyal Güvenlik Kurumu Bakanl Strateji Gelitirme Bakan Ahmet AÇIKGÖZ KURUMUN AMACI ve GÖREVLER' Sosyal sigortalar ile genel salk sigortas bakmndan kiileri güvence

Detaylı

2001 KPSS 1. Aşağıdakilerden hangisi A malının talep eğrisinin sola doğru kaymasına neden olur?

2001 KPSS 1. Aşağıdakilerden hangisi A malının talep eğrisinin sola doğru kaymasına neden olur? 2001 KPSS 1. Aşağıdakilerden hangisi A malının talep eğrisinin sola doğru kaymasına neden olur? A) A malını tüketen insanların sayısının artmasına yol açan bir nüfus artışı B) A normal bir mal ise, tüketici

Detaylı

BÖLÜM 5. Gerilim Azaltan Dönü türücünün Kal Durum Devre Analizi

BÖLÜM 5. Gerilim Azaltan Dönü türücünün Kal Durum Devre Analizi BÖÜM 5 DC-DC DÖNÜTÜRÜCÜER A. Deneyin Amac DC-DC erilim azaltan dönütürücü (buck converter) ve DC-DC erilim artran dönütürücü (boost converter) devrelerinin davranlar incelemek. Bu deneyde erilim azaltan

Detaylı

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1

3. TAHMİN En Küçük Kareler (EKK) Yöntemi 1 3. TAHMİN 3.1. En Küçük Kareler (EKK) Yöntemi 1 En Küçük Kareler (EKK) yöntemi, regresyon çözümlemesinde en yaygın olarak kullanılan, daha sonra ele alınacak bazı varsayımlar altında çok aranan istatistiki

Detaylı

XIV. Ulusal Antalya Matematk Olmpyat Brnc A³ama Snav Sorular -2009

XIV. Ulusal Antalya Matematk Olmpyat Brnc A³ama Snav Sorular -2009 XIV. Ulusal ntalya Matematk Olmpyat rnc ³ama Snav Sorular -009 c www.sbelian.wordpress.com sbelianwordpress@gmail.com Soru 1. dar açl üçgeninde m() = 45 'dir. 'dan 'ye indirilmi³ dikmenin aya E ve 'den

Detaylı

Merkezi Eğilim ve Dağılım Ölçüleri

Merkezi Eğilim ve Dağılım Ölçüleri Merkezi Eğilim ve Dağılım Ölçüleri Soru Öğrencilerin derse katılım düzeylerini ölçmek amacıyla geliştirilen 16 soruluk bir test için öğrencilerin ilk 8 ve son 8 soruluk yarılardan aldıkları puanlar arasındaki

Detaylı

VERİLERİN GRAFİKLER YARDIMIYLA SUNUMU. 3.2.1.Daire Grafikleri Yardımıyla Verilerin Sunumu. 3.2.2.Sütun(Çubuk) Grafikleri Yardımıyla Sunumu

VERİLERİN GRAFİKLER YARDIMIYLA SUNUMU. 3.2.1.Daire Grafikleri Yardımıyla Verilerin Sunumu. 3.2.2.Sütun(Çubuk) Grafikleri Yardımıyla Sunumu SAÜ 3. BÖLÜM VERİLERİN GRAFİKLER YARDIMIYLA SUNUMU PROF. DR. MUSTAFA AKAL İÇİNDEKİLER 3.2.Grafiksel Sunumlar 3.2.1.Daire Grafikleri Yardımıyla Verilerin Sunumu 3.2.2.Sütun(Çubuk) Grafikleri Yardımıyla

Detaylı

TÜREV VE UYGULAMALARI

TÜREV VE UYGULAMALARI TÜREV VE UYGULAMALARI 1-TÜREVİN TANIMI VE GÖSTERİLİŞİ a,b R olmak üzere, f:[a,b] R fonksiyonu verilmiş olsun. x 0 (a,b) için lim x X0 f(x)-f( x 0 ) limiti bir gerçel sayı ise bu limit değerine f fonksiyonunun

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

BÖLÜM 7 BİLGİSAYAR UYGULAMALARI - 1

BÖLÜM 7 BİLGİSAYAR UYGULAMALARI - 1 1 BÖLÜM 7 BİLGİSAYAR UYGULAMALARI - 1 Belli bir özelliğe yönelik yapılandırılmış gözlemlerle elde edilen ölçme sonuçları üzerinde bir çok istatistiksel işlem yapılabilmektedir. Bu işlemlerin bir kısmı

Detaylı

Araştırma Notu 15/177

Araştırma Notu 15/177 Araştırma Notu 15/177 02 Mart 2015 YOKSUL İLE ZENGİN ARASINDAKİ ENFLASYON FARKI REKOR SEVİYEDE Seyfettin Gürsel *, Ayşenur Acar ** Yönetici özeti Türkiye İstatistik Kurumu (TÜİK) tarafından yapılan enflasyon

Detaylı

2) Bir mağazada, bir ürüne satış fiyatı üzerinden %7 indirim yapılmış. Eğer yeni fiyatı 372 TL ise, kaç liralık indirim yapılmıştır?

2) Bir mağazada, bir ürüne satış fiyatı üzerinden %7 indirim yapılmış. Eğer yeni fiyatı 372 TL ise, kaç liralık indirim yapılmıştır? MATE 106 SOSYAL BİLİMLER İÇİN TEMEL ANALİZ Ad-Soyad No Uygun cevabı bulunuz. 1)A = πr2 formülü r yarıçaplı çemberin A alanını vermektedir. Bir masa örtüsü A alanına sahipse, yarıçapını A'nın bir fonksiyonu

Detaylı

08.11.2014-10:30 Adı-Soyadı:... No:... NOT:...

08.11.2014-10:30 Adı-Soyadı:... No:... NOT:... OREN435 TESİS PLNLM 014-015 GÜZ YRIYILI RSINVI CEVP NHTRI 1 08.11.014-10:30 dı-soyadı:... No:... NOT:... Sorular eşit puanlıdır. Yardımcı bellek kullanılabilir. Süre 70 fakikadır. 1. Endüstriyel üretim

Detaylı

DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ

DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ DOĞRUSAL DENKLEMLER VE KOORDİNAT SİSTEMİ Örnek : Taksi ile yapılan yolculukların ücreti taksimetre ile belirlenir Bir taksimetrenin açılış ücreti 2 TL, sonraki her kilometre başına 1 TL ücret ödendiğine

Detaylı

rasgele değişkeninin olasılık yoğunluk fonksiyonu,

rasgele değişkeninin olasılık yoğunluk fonksiyonu, 3.6. Bazı Sürekli Dağılımlar 3.6.1 Normal Dağılım Normal dağılım hem uygulamalı hem de teorik istatistikte kullanılan oldukça önemli bir dağılımdır. Normal dağılımın istatistikte önemli bir yerinin olmasının

Detaylı

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-I

ÜNİTE. MATEMATİK-1 Doç.Dr.Murat SUBAŞI İÇİNDEKİLER HEDEFLER TÜREV UYGULAMALARI-I HEDEFLER İÇİNDEKİLER TÜREV UYGULAMALARI-I Artan ve Azalan Fonksiyonlar Fonksiyonların Maksimum ve Minimumu Birinci Türev Testi İkinci Türev Testi Türevin Geometrik Yorumu Türevin Fiziksel Yorumu MATEMATİK-1

Detaylı

- 2-1 0 1 2 + 4a a 0 a 4a

- 2-1 0 1 2 + 4a a 0 a 4a İKİNCİ DERECEDEN FNKSİYNLARIN GRAFİKLERİ a,b,c,z R ve a 0 olmak üzere, F : R R f() = a + b + c şeklinde tanımlanan fonksionlara ikinci dereceden bir değişkenli fonksionlar denir. Bu tür fonksionların grafikleri

Detaylı

leri Excel E itim Notlar

leri Excel E itim Notlar leri Excel Eitim Notlar Formüller deerleri nasl hesaplar? Bir formül, bir çalma sayfasndaki verileri çözümleyen bir eitliktir. Formüller, çalma sayfas deerleri üzerinde, toplama, çarpma ve karlarma gibi

Detaylı

Bileenler arasndaki iletiim ise iletiim yollar ad verilen kanallar yardm ile gerçekleir: 1 Veri Yollar 2 Adres Yollar 3 Kontrol Yollar

Bileenler arasndaki iletiim ise iletiim yollar ad verilen kanallar yardm ile gerçekleir: 1 Veri Yollar 2 Adres Yollar 3 Kontrol Yollar Von Neumann Mimarisinin Bileenleri 1 Bellek 2 Merkezi lem Birimi 3 Giri/Çk Birimleri Yazmaçlar letiim Yollar Bileenler arasndaki iletiim ise iletiim yollar ad verilen kanallar yardm ile gerçekleir: 1 Veri

Detaylı

BÖLÜM 4 4- TÜREV KAVRAMI 4- TÜREV KAVRAMI. Tanım y = fonksiyonunda x değişkeni x. artımını alırken y de. kadar artsın. = x.

BÖLÜM 4 4- TÜREV KAVRAMI 4- TÜREV KAVRAMI. Tanım y = fonksiyonunda x değişkeni x. artımını alırken y de. kadar artsın. = x. - TÜREV KAVRAMI - TÜREV KAVRAMI 7 iadesinin türevini alınız. Çözüm lim lim 7 7 lim 7 7 lim lim onksionunun türevini alınız. Tanım onksionunda değişkeni artımını alırken de kadar artsın. oranının giderken

Detaylı

MATEMATK TEST. 5. Olimpiyatlara haz%rlanan bir atlet her gün, bir

MATEMATK TEST. 5. Olimpiyatlara haz%rlanan bir atlet her gün, bir MTMTK TST. 46 4,6 23 23 + : ileminin sonucu kaçt%r? 0,23 2323 ) 000 ) 0 ) 0 ) 0 5. limpiyatlara haz%rlanan bir atlet her gün, bir önceki gün kotu9u mesafenin 5 6 kat% kadar kouyor. u atlet ilk gün 625

Detaylı

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014)

İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) İstatistik Dersi Çalışma Soruları Arasınav(Matematik Müh. Bölümü-2014) S-1) Bir otoyol üzerinde radarla hız kontrolü yapan, polis ekipler tarafından tespit edilen tane aracın hızları aşağıdaki tabloda

Detaylı

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER

ÜNİTE. MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI İÇİNDEKİLER HEDEFLER DOĞRULAR VE PARABOLLER HEDEFLER İÇİNDEKİLER DOĞRULAR VE PARABOLLER Birinci Dereceden Polinom Fonksiyonlar ve Doğru Doğru Denklemlerinin Bulunması İkinci Dereceden Polinom Fonksiyonlar ve Parabol MATEMATİK-1 Yrd.Doç.Dr.Ömer TARAKÇI

Detaylı

Kantitatif Tahmin Yöntemleri. Yrd.Doç.Dr. S.Kerem AYTULUN

Kantitatif Tahmin Yöntemleri. Yrd.Doç.Dr. S.Kerem AYTULUN Kantitatif Tahmin Yöntemleri Yrd.Doç.Dr. S.Kerem AYTULUN Tahmin Nedir? Günlük hayatta bilinçli veya bilinçsiz birçok tahminde bulunuruz. Hava durumu, trafik, sınav soruları, kişisel ilişkiler... Peki Firmalar???

Detaylı

KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ

KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ KORELASYON VE TEKLİ REGRESYON ANALİZİ-EN KÜÇÜK KARELER YÖNTEMİ 1 KORELASYON ANALİZİ İki değişken arasındaki doğrusal ilişkinin gücünü(derecesini) ve yönünü belirlemek için hesaplanan bir sayıdır. Belirli

Detaylı

Endüstri Mühendisliğine Giriş

Endüstri Mühendisliğine Giriş Endüstri Mühendisliğine Giriş 5 ve 19 Aralık 2012, Şişli-Ayazağa, İstanbul, Türkiye. Yard. Doç. Dr. Kamil Erkan Kabak Endüstri Mühendisliği Bölümü,, Şişli-Ayazağa, İstanbul, Türkiye erkankabak@beykent.edu.tr

Detaylı

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ

MATEMATÝK TEMEL SEVÝYE DEVLET OLGUNLUK SINAVI. Testin Çözme Süresi: 180 dakika ADAY ÝÇÝN AÇIKLAMALAR - YÖNERGE DEVLET SINAV MERKEZÝ ADAYIN ÞÝFRESÝ ADAYIN ÞÝFRESÝ BURAYA YAPIÞTIR DEVLET OLGUNLUK SINAVI DEVLET SINAV MERKEZÝ MATEMATÝK - TEMEL SEVÝYE MATEMATÝK TEMEL SEVÝYE Testin Çözme Süresi: 180 dakika Haziran, 2009 yýlý BÝRÝNCÝ deðerlendiricinin þifresi

Detaylı

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir.

Genel olarak test istatistikleri. Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri. olmak üzere 2 grupta incelenebilir. 3.SUNUM Genel olarak test istatistikleri Merkezi Eğilim (Yığılma) Ölçüleri Merkezi Dağılım (Yayılma) Ölçüleri olmak üzere 2 grupta incelenebilir. 2 Merkezi Eğilim Ölçüleri, belli bir özelliğe ya da değişkene

Detaylı

f : R + R, f(x) = log a 0 < a < 1 için f(x) = log a a. f : ;, 4m R, f(x) = log2 x b. f : R + R, f(x) = log 1, f(2) = 2 2

f : R + R, f(x) = log a 0 < a < 1 için f(x) = log a a. f : ;, 4m R, f(x) = log2 x b. f : R + R, f(x) = log 1, f(2) = 2 2 Fonksionlar f : R R, f() = a Fonksionunun Grafi i f : R R, f() = log a Fonksionunun Grafi i a > için f() = a üstel fonksionunun grafi i andaki gibidir. = a a > için f() = log a fonksionunun grafi i andaki

Detaylı

LYS MATEMATÝK II - 10

LYS MATEMATÝK II - 10 ÝREY DERSHNELERÝ SINIF ÝÇÝ DERS UYGULM FÖYÜ (MF-TM) DERSHNELERÝ LYS MTEMTÝK II - 0 PRL - I Ders anlatým föleri öðrenci tarafýndan dersten sonra tekrar çalýþýlmalýdýr. dý Soadý :... u kitapçýðýn her hakký

Detaylı