1.9. Deformasyon elips alanları ve jeolojik önemleri

Save this PDF as:
 WORD  PNG  TXT  JPG

Ebat: px
Şu sayfadan göstermeyi başlat:

Download "1.9. Deformasyon elips alanları ve jeolojik önemleri"

Transkript

1 1.9. Deformasyon elips alanları ve jeolojik önemleri Deformasyon elipsleri 1+e 1 apsiste, 1+e 2 ise ordinatta gösterilerek basitçe sınıflana bilir. 1+e 2 hacim azalması 3.Alan hacim artışı 1. Alan 2. Alan 1+e 1

2 1+e 2 1 hacim azalması Birim daire (deforme olmamış Durum) 3.Alan 1 hacim artışı 1+e 1 1. Alan 2. Alan e 1 e 2 olduğundan üst kesime elips düşmez. Bütün elipsler (0,0) ve x-ekseniyle 45 o açı yapan doğrunun altına düşecektir. (1,1) noktası birim daireyi gösterir ve diğer tüm pozitif veya negatif dilatasyonlu daireler bu doğru üzerinde yer alır. Elipsler diyagram üzerinde üç alana düşer

3 1.ALAN: e 1 ve e 2 nin + olduğu elipsleri kapsar. Deformasyon elipsi, türedikleri birim dairenin dışındadır. Alan büyümesi söz konusudur. 1.Alan elipsleri, elipse dik yönde şiddetli kısalmanın olduğu şartlarda gelişir ve yassılma veya yassı disk şeklinde deformasyon elipsoidi oluşturan üç boyutlu deformasyon sonucu gelişirler. Bu deformasyon tipine bağlı olarak kayaçlar içinde her yönde budinajlar gelişir (Şekil 1.20a ve b). Bu tip budinajlar yassılma tipi tek bir deformasyonla veya eş eksenli olmayan iki veya daha çok deformasyon evresinin üstelenmesiyle gelişir. Bu budinaja çukulata tableti budinajı denir.

4 2 1+e 2 1 Birim daire Alan 1 Alan Alan 3 1+e 1 3

5

6 Budinler genellikle seyrek olarak çukulata tableti şeklinde düzenlidirler. Eğer deformasyon tek bir evrede gelişmişse, budinaj boyutları oldukça düzensiz olacaktır (Şekil 1.20b). Maksimum uzama yönüne dik olanlar daha geniş bir ayrılım sunacaktır. İki deformasyon evresinin üstelenmesiyle gelişen budinajlar, daha düzenli bir dizilim sunacaktır (Şekil 1.20a). Bu durumda budinler arasındaki açı 90 o veya daha küçük olabilir.

7 Çukulata tableti budinajı Bozdağlar masifi Konya

8 Bozdağlar Masifi-Konya

9 2.ALAN: Bu alanda e 1 (+), e 2 (-) dir. Bu tür elipslerde bir yönde uzama diğer yönde ise kısalma vardır. Deformasyon elipsi birim daireyi, elipsin asal eksenlerine simetrik olarak yönlenmiş iki doğru boyunca keser. Bunlar uzamasız doğrulardır. Alanda küçülme veya büyüme olabilir. Bu alanda birbirine dik budinaj ve kıvrım oluşacaktır.

10 3.ALAN : e 1, e 2 (-) değerlidir. Elips tümüyle birim dairenin içindedir. Alanda küçülme vardır. Bunlar elipse dik yönde şiddetli uzamanın olduğu üç boyutlu deformasyon sonucu gelişirler ve sigara şekilli elipsoid oluştururlar. Yüzey üzerinde her yönde kısalma söz konusudur. Böylece birbirini kesen kıvrımlar oluşur. Bu kıvrımlar her yönde sıkışmanın olduğu tek bir deformasyon sonucu veya iki evreli deformasyon sonucu oluşurlar.

11 Eğer deformasyon tek fazlıysa, oluşacak kıvrımlar, her yönden sıkıştırılmış masa örtüsünün oluşturduğu kıvrımlara benzer bir şekilde düzensiz ve karmaşık olacaktır. Kıvrımların eksen ve eksen düzlemleri çok değişik yönelimler sunacak ve kesişim ilişkileri sistematik olmayacaktır. Tersine deformasyon iki evreliyse, oluşacak kıvrımlar sistematik bir girişim sunacaktır. Yine kıvrım eksenleri farklı yönelimlidir fakat sıralıdır. Benzer olarak eksen düzlemleri de birbirinden ayırt edilebilir. Çünkü biri diğeri tarafından bükülmüştür. Genellikle sonra gelişen kıvrımlar daha düzenli bir yönelim sunar.

12 Deformasyon elipsi tipleri 1.tip 2.tip her yönde boy uzaması e1>e2>0 bir yönde boy uzaması e1>e2=0 3.Tip 4.tip Bir yönde boy uzaması Bir yönde boy kısalması e1>0>e2>-1 5.tip Bir yönde boy kısalması e=0>e>-1 Her yönde boy kısalması 0>e1>-e2>-1

13 γ ' DEFORMASYON Deformasyon elipslerinin Mohr diyagramında gösterilmesi I III V λ II IV λ=λ =1

14 1.9.2.Kompetent bir tabakada deformasyon elipsinin yönelimine göre gelişecek yapılar Tabakalı kayaç istiflerinde, tabakalar farklı litolojik özelliklerde iseler kısalma veya uzama kayaçlarda sırasıyla kıvrımlanma ve budinaj oluşturur. Kompetent tabaka yüzeyi bu deformasyon elipslerinden birinin özelliğini gösterir ve kıvrım ile budinajın ilişkili olduğu değişik yapılar gelişir.

15 Deformasyondan önce birim daire içinde farklı yönelimli A, B, C ve D ile gösterilen farklı yönelimli 4 doğruyu ele alalım (Şekil 1.23). A B C D Bu doğrular deformasyondan sonra deformasyon elipsi içinde farklı bölgelere düşeceklerdir. Bu durumda deformasyon sonucu kayaçlar içinde farklı yönelimli düzlemsel yapılarda farklı yapılar gelişecektir. A B C D

16 A' B' DEFORMASYON A B C D C' D' A -Simetrik budin yapısı B -Kademeli budin yapısı C -Asimetrik kıvrım D -Simetrik kıvrım

17 Simetrik kıvrım Asimetrik kıvrım

18 Gülek Boğazı

19 Eğirdir

20 Simetrik budinaj Asimetrik budinaj

21 Meram-Konya

22 Meram-Konya

Uzamaya ve kısalmaya bağlı olarak gelişen yapılar

Uzamaya ve kısalmaya bağlı olarak gelişen yapılar Uzamaya ve kısalmaya bağlı olarak gelişen yapılar 1.10. Boy değişiminin jeolojik önemi Deformasyon incelemelerinde olduğu gibi, değişik yönlerdeki çizgilerde boy kısalması ve boy uzaması farklı ve karmaşık

Detaylı

Uzamaya ve kısalmaya bağlı olarak gelişen yapılar

Uzamaya ve kısalmaya bağlı olarak gelişen yapılar Uzamaya ve kısalmaya bağlı olarak gelişen yapılar 1.10. Boy değişiminin jeolojik önemi Deformasyon incelemelerinde olduğu gibi, değişik yönlerdeki çizgilerde boy kısalması ve boy uzaması farklı ve karmaşık

Detaylı

1.12.Üç boyutta deformasyon

1.12.Üç boyutta deformasyon 1.12.Üç boyutta deformasyon 1.12.1.Deformasyon elipsoidi Birim çaplı bir kürenin homojen deformasyonu sonucu oluşan elipsoide deformasyon elipsoidi denir. Deformasyon elipsoidinin birbirine dik üç asal

Detaylı

ÇOK EVRELİ KIVRIMLAR. Yaşar EREN-2003 ÜSTELENMIŞ KIVRIMLAR (ÇOK EVRELI KIVRIMLANMA)

ÇOK EVRELİ KIVRIMLAR. Yaşar EREN-2003 ÜSTELENMIŞ KIVRIMLAR (ÇOK EVRELI KIVRIMLANMA) ÜSTELENMIŞ KIVRIMLAR (ÇOK EVRELI KIVRIMLANMA) Çok evreli kıvrımlanmanın nedenleri 1-Bir çok orojenik zonlarda, kıvrımlar geometrik olarak oldukça karmaşık bir yapı sunar. Çoğu kez bu karmaşıklık daha

Detaylı

4. LINEASYON, LINEER YAPILAR ve KALEM YAPISI

4. LINEASYON, LINEER YAPILAR ve KALEM YAPISI 4. LINEASYON, LINEER YAPILAR ve KALEM YAPISI Tektonitlerin önemli bir özelliği de çizgisel yapılar içermeleridir. Cloos (1946), Lineasyonu, kayaç içinde veya üstündeki herhangibir çizgisellik olarak tanımlar.

Detaylı

GİRİŞ. Faylar ve Kıvrımlar. Volkanlar

GİRİŞ. Faylar ve Kıvrımlar. Volkanlar JEOLOJİK YAPILAR GİRİŞ Dünyamızın üzerinde yaşadığımız kesiminden çekirdeğine kadar olan kısmında çeşitli olaylar cereyan etmektedir. İnsan ömrüne oranla son derece yavaş olan bu hareketlerin çoğu gözle

Detaylı

KLİVAJ / KAYAÇ DİLİNİMİ (CLEAVAGE)

KLİVAJ / KAYAÇ DİLİNİMİ (CLEAVAGE) KLİVAJ / KAYAÇ DİLİNİMİ (CLEAVAGE) TERMİNOLOJİ Klivaj. Deformasyon geçirmiş tortul veya metamorfik kayaçlardaki mineral veya tanelerin belirli yönlerde sıralanması ile oluşturduğu düzlemsel yapılara klivaj

Detaylı

4. FAYLAR ve KIVRIMLAR

4. FAYLAR ve KIVRIMLAR 1 4. FAYLAR ve KIVRIMLAR Yeryuvarında etkili olan tektonik kuvvetler kayaçların şekillerini, hacimlerini ve yerlerini değiştirirler. Bu deformasyon etkileriyle kayaçlar kırılırlar, kıvrılırlar. Kırıklı

Detaylı

DOĞRULTU ATIMLI FAYLAR KIRIKLAR VE FAYLAR. Yaşar ar EREN-2003

DOĞRULTU ATIMLI FAYLAR KIRIKLAR VE FAYLAR. Yaşar ar EREN-2003 DOĞRULTU ATIMLI FAYLAR KIRIKLAR VE FAYLAR Yaşar ar EREN-2003 6.DOĞRULTU ATIMLI FAYLAR Bu faylar genellikle dikçe eğimli, ve bloklar arasındaki hareketin yatay olduğu faylardır. Doğrultu atımlı faylar (yanal,

Detaylı

Yaşar EREN-2003. Altınekin-Konya. Altınekin-Konya. Meydanköy-Konya

Yaşar EREN-2003. Altınekin-Konya. Altınekin-Konya. Meydanköy-Konya Altınekin-Konya Altınekin-Konya Meydanköy-Konya Yaşar EREN-2003 Tabakalı kayaçlar homojen olmayan gerilmelerle kıvrımlanırlar. Kıvrımlar kayaç deformasyonunun en göze çarpan yapılarındandır. Meydanköy-Konya

Detaylı

Yaşar EREN Kıvrım boyutları

Yaşar EREN Kıvrım boyutları 5.3.Kıvrım boyutları Kıvrım boyutlarını tanımlamak için dalga boyu ve kıvrım yüksekliği terimleri kullanılır Dalga genişliği:bir kıvrımın iki tarafındaki eksenler arasındaki mesafedir. Kıvrım yüksekliği

Detaylı

VI. KIVRIMLAR (SÜNÜMLÜ / SÜNEK DEFORMASYON) Prof.Dr.Kadir Dirik Ders Notları

VI. KIVRIMLAR (SÜNÜMLÜ / SÜNEK DEFORMASYON) Prof.Dr.Kadir Dirik Ders Notları VI. KIVRIMLAR (SÜNÜMLÜ / SÜNEK DEFORMASYON) 1 VI. 1. Tanım ve genel bilgiler Tabakalı kayaçların tektonik kuvvetlerin etkisiyle kazandıkları dalga şeklindeki deformasyon yapılarına kıvrım, meydana gelen

Detaylı

TABAKALI YAPILAR, KIVRIMLAR, FAYLAR. Prof.Dr. Atike NAZİK Ç.Ü. Jeoloji Mühendisliği Bölümü

TABAKALI YAPILAR, KIVRIMLAR, FAYLAR. Prof.Dr. Atike NAZİK Ç.Ü. Jeoloji Mühendisliği Bölümü TABAKALI YAPILAR, KIVRIMLAR, FAYLAR Prof.Dr. Atike NAZİK Ç.Ü. Jeoloji Mühendisliği Bölümü TABAKA DÜZLEMİNİN TEKTONİK KONUMU Tabaka düzleminin konumunu belirlemek için tabakanın aşağıdaki özelliklerinin

Detaylı

Tabakalı kayaçların dalga şeklindeki deformasyonlarına kıvrım denir. Kıvrımların boyları mm mertebesinden km mertebesine kadar değişir.

Tabakalı kayaçların dalga şeklindeki deformasyonlarına kıvrım denir. Kıvrımların boyları mm mertebesinden km mertebesine kadar değişir. KIVRIM VE KIVRIM TİPLERİ Tabakalı kayaçların dalga şeklindeki deformasyonlarına kıvrım denir. Kıvrımların boyları mm mertebesinden km mertebesine kadar değişir. Deniz veya okyanus diplerinde (jeosenklinallerde)

Detaylı

Laboratuvar 8: Kıvrımlar ve harita görünümleri. Güz 2005

Laboratuvar 8: Kıvrımlar ve harita görünümleri. Güz 2005 Laboratuvar 8: Kıvrımlar ve harita görünümleri Güz 2005 1 Kıvrımlar, deforme kayaçlarda gelişen en yaygın tektonik yapılardan biridir. Kıvrımlar, tortul tabakalanma, metamorfik şist ve gnayslardaki litolojik

Detaylı

Laboratuvar 4: Enine kesitlere giriş. Güz 2005

Laboratuvar 4: Enine kesitlere giriş. Güz 2005 Laboratuvar 4: Enine kesitlere giriş Güz 2005 1 Giriş Yapısal jeologun hedeflerinden birisi deforme kayaçların üç boyutlu geometrisini anlamaktır. Ne yazık ki, tüm bunların doğrudan gözlenebilir olanları

Detaylı

Normal Faylar. Genişlemeli tektonik rejimlerde (extensional tectonic regime) oluşan önemli yapılar olup bu rejimlerin genel bir göstergesi sayılırlar.

Normal Faylar. Genişlemeli tektonik rejimlerde (extensional tectonic regime) oluşan önemli yapılar olup bu rejimlerin genel bir göstergesi sayılırlar. Normal Faylar Genişlemeli tektonik rejimlerde (extensional tectonic regime) oluşan önemli yapılar olup bu rejimlerin genel bir göstergesi sayılırlar. 1 2 Bir tabakanın normal faylanma ile esnemesi (stretching).

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası) ve bu noktadan geçen ve birbirine dik olan üç yönlü doğruyu seçerek sabitlememiz gerekir.

Detaylı

Saf Eğilme(Pure Bending)

Saf Eğilme(Pure Bending) Saf Eğilme(Pure Bending) Saf Eğilme (Pure Bending) Bu bölümde doğrusal, prizmatik, homojen bir elemanın eğilme etkisi altındaki şekil değiştirmesini/ deformasyonları incelenecek. Burada çıkarılacak formüller

Detaylı

VIII. FAYLAR (FAULTS)

VIII. FAYLAR (FAULTS) VIII.1. Tanım ve genel bilgiler VIII. FAYLAR (FAULTS) Kayaçların bir düzlem boyunca gözle görülecek miktarda kayma göstermesi olayına faylanma (faulting), bu olay sonucu meydana gelen yapıya da fay (fault)

Detaylı

KIRIKLAR VE FAYLAR NORMAL FAYLAR. Yaşar ar EREN-2003

KIRIKLAR VE FAYLAR NORMAL FAYLAR. Yaşar ar EREN-2003 NORMAL FAYLAR Yaşar ar EREN-2003 NORMAL FAYLAR KIRIKLAR VE FAYLAR 50 O den fazla eğimli ve eğim atım bileşenin doğrultu bileşenine göre oldukça büyük olduğu faylardır. Normal faylarda tavan bloku taban

Detaylı

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu

Tablo 1 Deney esnasında kullanacağımız numunelere ait elastisite modülleri tablosu BASİT MESNETLİ KİRİŞTE SEHİM DENEYİ Deneyin Amacı Farklı malzeme ve kalınlığa sahip kirişlerin uygulanan yükün kirişin eğilme miktarına oranı olan rijitlik değerin değişik olduğunun gösterilmesi. Kiriş

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş

Kompozit Malzemeler ve Mekaniği. Yrd.Doç.Dr. Akın Ataş Kompozit Malzemeler ve Mekaniği Yrd.Doç.Dr. Akın Ataş Bölüm 4 Laminatların Makromekanik Analizi Kaynak: Kompozit Malzeme Mekaniği, Autar K. Kaw, Çevirenler: B. Okutan Baba, R. Karakuzu. 4 Laminatların

Detaylı

X. KIVRIMLAR, FAYLAR VE KAYAÇLARIN DEFORMASYONU

X. KIVRIMLAR, FAYLAR VE KAYAÇLARIN DEFORMASYONU 1 X. KIVRIMLAR, FAYLAR VE KAYAÇLARIN DEFORMASYONU X.1. GİRİŞ Modern jeolojinin öncüleri olan 18. ve 19. yüzyıl yerbilimcileri, tortul kayaçların çoğunun önce deniz tabanında yatay bir şekilde çökeldiklerini,

Detaylı

Atım nedir? İki blok arasında meydana gelen yer değiştirmeye atım adı verilir. Beş çeşit atım türü vardır. Bunlar;

Atım nedir? İki blok arasında meydana gelen yer değiştirmeye atım adı verilir. Beş çeşit atım türü vardır. Bunlar; 1 FAYLAR Yeryuvarında etkili olan tektonik kuvvetler kayaçların şekillerini, hacimlerini ve yerlerini değiştirirler. Bu deformasyon etkileriyle kayaçlar kırılırlar, kıvrılırlar. Kırıklı yapılar (faylar

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 10 Eylemsizlik Momentleri Kaynak: Mühendislik Mekaniği: Statik, R. C.Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 10. Eylemsizlik Momentleri

Detaylı

Genel Olarak Bir Yüzeyin Diğer Bir Yüzeye Projeksiyonu

Genel Olarak Bir Yüzeyin Diğer Bir Yüzeye Projeksiyonu JEODEZİ9 1 Genel Olarak Bir Yüzeyin Diğer Bir Yüzeye Projeksiyonu u ve v Gauss parametrelerine bağlı olarak r r ( u, v) yer vektörü ile verilmiş bir Ω yüzeyinin, u*, v* Gauss parametreleri ile verilmiş

Detaylı

Yapısal Jeoloji: Tektonik

Yapısal Jeoloji: Tektonik KÜLTELERDE YAPI YAPISAL JEOLOJİ VE TEKTONİK Yapısal Jeoloji: Yerkabuğunu oluşturan kayaçlarda meydana gelen her büyüklükteki YAPI, HAREKET ve DEFORMASYONLARI inceleyen, bunları meydana getiren KUVVET ve

Detaylı

KAYAÇLARDA GÖRÜLEN YAPILAR

KAYAÇLARDA GÖRÜLEN YAPILAR KAYAÇLARDA GÖRÜLEN YAPILAR Kayaçların belirli bir yapısı vardır. Bu yapı kayaç oluşurken ve kayaç oluştuktan sonra kazanılmış olabilir. Kayaçların oluşum sırasında ve oluşum koşullarına bağlı olarak kazandıkları

Detaylı

KIRIKLAR VE FAYLAR. Yaşar EREN-2003. Faylar ve morfoloji. Yrd.Doç.Dr.Yaşar Eren

KIRIKLAR VE FAYLAR. Yaşar EREN-2003. Faylar ve morfoloji. Yrd.Doç.Dr.Yaşar Eren Faylar ve morfoloji Yrd.Doç.Dr.Yaşar Eren Faylar ve morfoloji KIRIKLAR VE FAYLAR Tektonik aktivitesi devam eden fayların (aktif fay, diri fay) bulunduğu bölgelerde, fay tipine bağlı olarak değişik topoğrafik

Detaylı

KAYAÇLARDA GÖRÜLEN YAPILAR

KAYAÇLARDA GÖRÜLEN YAPILAR KAYAÇLARDA GÖRÜLEN YAPILAR Kayaçların belirli bir yapısı vardır. Bu yapı kayaç oluşurken ve kayaç oluştuktan sonra kazanılmış olabilir. Kayaçların oluşum sırasında ve oluşum koşullarına bağlı olarak kazandıkları

Detaylı

BÖLÜM 10 KIVRIMLAR, FAYLAR VE KAYAÇLARIN DEFORMASYONU

BÖLÜM 10 KIVRIMLAR, FAYLAR VE KAYAÇLARIN DEFORMASYONU GİRİŞ BÖLÜM 10 KIVRIMLAR, FAYLAR VE KAYAÇLARIN DEFORMASYONU Modern jeolojinin öncüleri olan 18. ve 19. yüzyıl jeologları, tortul kayaçların çoğunun önce deniz tabanında yatay bir şekilde çökeldiklerini,

Detaylı

II.Hayvansal Dokular. b.bez Epiteli 1.Tek hücreli bez- Goblet hücresi 2.Çok hücreli kanallı bez 3.Çok hücreli kanalsız bez

II.Hayvansal Dokular. b.bez Epiteli 1.Tek hücreli bez- Goblet hücresi 2.Çok hücreli kanallı bez 3.Çok hücreli kanalsız bez II.Hayvansal Dokular Hayvanların embriyonik gelişimi sırasında Ektoderm, Mezoderm ve Endoderm denilen 3 farklı gelişme tabakası (=germ tabakası) bulunur. Bütün hayvansal dokular bu yapılardan ve bu yapıların

Detaylı

Yapısal Jeoloji. 2. Bölüm: Gevrek deformasyon ve faylanma

Yapısal Jeoloji. 2. Bölüm: Gevrek deformasyon ve faylanma MIT Açık Ders Malzemeleri http://ocw.mit.edu 12.113 Yapısal Jeoloji 2. Bölüm: Gevrek deformasyon ve faylanma Güz 2005 Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak için http://ocw.mit.edu/terms

Detaylı

Harita Projeksiyonları

Harita Projeksiyonları Harita Projeksiyonları Bölüm Prof.Dr. İ. Öztuğ BİLDİRİCİ Amaç ve Kapsam Harita projeksiyonlarının amacı, yeryüzü için tanımlanmış bir referans yüzeyi üzerinde belli bir koordinat sistemine göre tanımlı

Detaylı

Doğrultu atımlı fay sistemlerinin geometrisi. Prof.Dr.Kadir Dirik Ders Notları

Doğrultu atımlı fay sistemlerinin geometrisi. Prof.Dr.Kadir Dirik Ders Notları Doğrultu atımlı fay sistemlerinin geometrisi Prof.Dr.Kadir Dirik Ders Notları 1 Fay izinin (fault trace) gidişine göre doğrultu atımlı faylar 1. düz doğrultu atımlı faylar 2. bükümlü doğrultu atımlı faylar

Detaylı

Mohr Dairesi Düzlem Gerilme

Mohr Dairesi Düzlem Gerilme Mohr Dairesi Düzlem Gerilme Bu bölümde düzlem gerilme dönüşüm denklemlerinin grafiksel bir yöntem ile nasıl uygulanabildiğini göstereceğiz. Böylece dönüşüm denklemlerinin kullanılması daha kolay olacak.

Detaylı

ÇATLAKLAR VE FAYLAR sistematik çatlaklar (a) sistematik olmayan çatlaklar (b)

ÇATLAKLAR VE FAYLAR sistematik çatlaklar (a) sistematik olmayan çatlaklar (b) ÇATLAKLAR VE FAYLAR Kayaçların taneleri arasındaki bağın kopmasıyla oluşan süreksizliklere kırık denir. Kırılma yüzeyleri boyunca kayaçlar birbirinden ayrılırlar. Çatlak (Diaklaz), yarık, Fay İki kırılma

Detaylı

Prof. Dr. Cengiz DÜNDAR

Prof. Dr. Cengiz DÜNDAR Prof. Dr. Cengiz DÜNDAR BASİT EĞİLME ETKİSİNDEKİ ELEMANLARIN TAŞIMA GÜCÜ Çekme çubuklarının temel işlevi, çekme gerilmelerini karşılamaktır. Moment kolunu arttırarak donatının daha etkili çalışmasını sağlamak

Detaylı

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme

Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme Elastisite Teorisi Hooke Yasası Normal Gerilme-Şekil değiştirme Gerilme ve Şekil değiştirme bileşenlerinin lineer ilişkileri Hooke Yasası olarak bilinir. Elastisite Modülü (Young Modülü) Tek boyutlu Hooke

Detaylı

Ters ve Bindirme Fayları

Ters ve Bindirme Fayları Ters ve Bindirme Fayları Ters ve bindirme fayları sıkışmalı tektonik rejimlerin (compressional / contractional tectonic regimes) denetimi ve etkisi altında gelişirler. Basınç kuvvetleri, kayaçların dayanımlılıklarını

Detaylı

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak

Şimdi de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor. teoreminini iki kere kullanarak 10.Konu İç çarpım uzayları ve özellikleri 10.1. ve üzerinde uzunluk de [ ] vektörünün ile gösterilen boyu veya büyüklüğü Pisagor teoreminden dir. 1.Ö.: [ ] ise ( ) ( ) ve ( ) noktaları gözönüne alalım.

Detaylı

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması.

Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması. 1 Deneyin Adı Çekme Deneyi Deneyin Amacı Çekme deneyinin incelenmesi ve metalik bir malzemeye ait çekme deneyinin yapılması. Teorik Bilgi Malzemelerin statik (darbesiz) yük altındaki mukavemet özelliklerini

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 9 Ağırlık Merkezi ve Geometrik Merkez Kaynak: Mühendislik Mekaniği: Statik, R. C. Hibbeler, S. C. Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 9. Ağırlık

Detaylı

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07

İÇİNDEKİLER UZAY AKSİYOMLARI... 001-006... 01-03 UZAYDA DOGRU VE DÜZLEMLER... 007-010... 04-05 DİK İZDÜŞÜM... 011-014... 06-07 UZY GEMETRİ İÇİNDEKİLER Safa No Test No UZY KSİYMLRI... 001-00... 01-0 UZYD DGRU VE DÜZLEMLER... 007-010... 0-05 DİK İZDÜŞÜM... 011-01... 0-07 PRİZMLR... 015-0... 08-1 KÜP... 05-00... 1-15 SİLİNDİR...

Detaylı

Kuadratik Yüzeyler Uzayda İkinci Dereceden Yüzeyler

Kuadratik Yüzeyler Uzayda İkinci Dereceden Yüzeyler İÇİNDEKİLER Kuadratik Yüeler Uada İkinci Dereceden Yüeler 1 0.1. Elipsoid 2 0.2. Hiperboloid 4 0.2.1. Tek Kanatlı Hiperboloid 4 0.2.2. Çift Kanatlı Hiperboloid 4 0.3. Paraboloid 5 0.3.1. Eliptik Paraboloid

Detaylı

SEDİMANTER KAYAÇLAR. Masif tabakalanma. Yrd.Doç.Dr.Yaşar EREN

SEDİMANTER KAYAÇLAR. Masif tabakalanma. Yrd.Doç.Dr.Yaşar EREN Masif tabakalanma Slump yapısı Kum daykı Seydişehir yolu- (Konya) Seydişehir yolu- (Konya) Yastık ve top yapıları Nodül ve konkresyon stilolit Kanal yapısı (oygu-dolgu) Topraklı formasyonu- Konya

Detaylı

FAYLAR FAY ÇEŞİTLERİ:

FAYLAR FAY ÇEŞİTLERİ: FAYLAR Fay (Fault); kayaçlarda gözle görülecek kadar kayma hareketi gösteren kırıklara verilen genel bir isimdir. FAY, Yerkabuğundaki deformasyon enerjisinin artması sonucunda, kayaç kütlelerinin bir kırılma

Detaylı

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan

ELASTİSİTE TEORİSİ I. Yrd. Doç Dr. Eray Arslan ELASTİSİTE TEORİSİ I Yrd. Doç Dr. Eray Arslan Mühendislik Tasarımı Genel Senaryo Analitik çözüm Fiziksel Problem Matematiksel model Diferansiyel Denklem Problem ile ilgili sorular:... Deformasyon ne kadar

Detaylı

12.113 Yapısal Jeoloji. Kısım 3: Sünümlü deformasyon, kıvrımlar ve dokular. Güz 2005

12.113 Yapısal Jeoloji. Kısım 3: Sünümlü deformasyon, kıvrımlar ve dokular. Güz 2005 MIT Açık Ders Malzemeleri http://ocw.mit.edu 12.113 Yapısal Jeoloji Kısım 3: Sünümlü deformasyon, kıvrımlar ve dokular Güz 2005 Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak

Detaylı

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25

İÇİNDEKİLER. Ön Söz...2. Noktanın Analitik İncelenmesi...3. Doğrunun Analitiği Analitik Düzlemde Simetri...25 İÇİNDEKİLER Ön Söz...2 Noktanın Analitik İncelenmesi...3 Doğrunun Analitiği...11 Analitik Düzlemde Simetri...25 Analitik Sistemde Eşitsizlikler...34 Çemberin Analitik İncelenmesi...40 Elips...58 Hiperbol...70

Detaylı

KARADENİZ TEKNİK ÜNİVERSİTESİ - MÜHENDİSLİK FAKÜLTESİ

KARADENİZ TEKNİK ÜNİVERSİTESİ - MÜHENDİSLİK FAKÜLTESİ KARADENİZ TEKNİK ÜNİVERSİTESİ - MÜHENDİSLİK FAKÜLTESİ Fakülte Ders Notları No: 1 YAPISAL JEOLOJİ Prof. Dr. Osman BEKTAŞ Arş. Gör. Yener EYÜBOĞLU TRABZON - 2006 I İÇİNDEKİLER GİRİŞ 1 BÖLÜM 1: YAPISAL ANALİZ

Detaylı

Malzemelerin Deformasyonu

Malzemelerin Deformasyonu Malzemelerin Deformasyonu Malzemelerin deformasyonu Kristal, etkiyen kuvvete deformasyon ile cevap verir. Bir malzemeye yük uygulandığında malzeme üzerinde çeşitli yönlerde ve çeşitli şekillerde yükler

Detaylı

BÖLÜM 2. Kristal Yapılar ve Kusurlar

BÖLÜM 2. Kristal Yapılar ve Kusurlar BÖLÜM 2 Kristal Yapılar ve Kusurlar 1- ATOMİK VE İYONİK DÜZENLER Kısa Mesafeli Düzenler-Uzun Mesafeli Düzenler Kısa Mesafeli Düzenler (SRO): Kısa mesafede atomların tahmin edilebilir düzenlilikleridir.

Detaylı

EĞİLME. Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır.

EĞİLME. Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır. EĞİLME Köprünün tabyası onun eğilme gerilmesine karşı koyma dayanımı esas alınarak boyutlandırılır. EĞİLME Mühendislikte en önemli yapı ve makine elemanları mil ve kirişlerdir. Bu bölümde, mil ve kirişlerde

Detaylı

Jeodezi

Jeodezi 1 Jeodezi 5 2 Jeodezik Eğri Elipsoid Üstünde Düşey Kesitler Elipsoid yüzünde P 1 noktasındaki normalle P 2 noktasından geçen düşey düzlem, P 2 deki yüzey normalini içermez ve aynı şekilde P 2 de yüzey

Detaylı

Harita Projeksiyonları

Harita Projeksiyonları Özellikler Harita Projeksiyonları Bölüm 3: Silindirik Projeksiyonlar İzdüşüm yüzeyi, küreyi saran ya da kesen bir silindir seçilir. Silindirik projeksiyonlar genellikle normal konumda ekvator bölgesinde

Detaylı

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Perspektifler

TEKNİK RESİM. Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi. Perspektifler TEKNİK RESİM 2010 Ders Notları: Mehmet Çevik Dokuz Eylül Üniversitesi Perspektifler 2/23 Perspektifler Perspektifler-1 Perspektif Nedir? Perspektif Çeşitleri Paralel Perspektif Aksonometrik Perspektif

Detaylı

İleri Diferansiyel Denklemler

İleri Diferansiyel Denklemler MIT AçıkDersSistemi http://ocw.mit.edu 18.034 İleri Diferansiyel Denklemler 2009 Bahar Bu bilgilere atıfta bulunmak veya kullanım koşulları hakkında bilgi için http://ocw.mit.edu/terms web sitesini ziyaret

Detaylı

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN

Mukavemet-II PROF. DR. MURAT DEMİR AYDIN Mukavemet-II PROF. DR. MURAT DEMİR AYDIN KAYNAK KİTAPLAR Cisimlerin Mukavemeti F.P. BEER, E.R. JOHNSTON Mukavemet-2 Prof.Dr. Onur SAYMAN, Prof.Dr. Ramazan Karakuzu Mukavemet Mehmet H. OMURTAG 1 SİMETRİK

Detaylı

BÖLÜM 5 JEOLOJİK YAPILAR

BÖLÜM 5 JEOLOJİK YAPILAR BÖLÜM 5 JEOLOJİK YAPILAR GİRİŞ Dünyamızın üzerinde yaşadığımız kesiminden çekirdeğine kadar olan kısmında çeşitli olaylar cereyan etmektedir. İnsan ömrüne oranla son derece yavaş olan bu hareketlerin çoğu

Detaylı

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir.

Dik koordinat sisteminde yatay eksen x ekseni (apsis ekseni), düşey eksen ise y ekseni (ordinat ekseni) dir. ANALĐTĐK GEOMETRĐ 1. Analitik Düzlem Bir düzlemde dik kesişen iki sayı doğrusunun oluşturduğu sisteme analitik düzlem denir. Analitik düzlem, dik koordinat sistemi veya dik koordinat düzlemi olarak da

Detaylı

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI

MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI MAT 103 ANALİTİK GEOMETRİ I FİNAL ÇALIŞMA SORULARI SORU 1. Köşeleri (1,4) (3,0) (7,2) noktaları olan ABC üçgeninin bir ikizkenar dik üçgen (İpucu:, ve vektörlerinden yararlanın) SORU 2. Bir ABC üçgeninin

Detaylı

Ders 10: Elastik Gerilim-Deformasyon Bağlantısı

Ders 10: Elastik Gerilim-Deformasyon Bağlantısı Ders 10: Elastik Gerilim-Deformasyon Bağlantısı Elastik malzemelerde gerilim, gerilimin deformasyon hızı ile bağlantılı olduğu ağdalı (viskoz) malzemelerin aksine, deformasyonla çizgisel olarak bağlantılıdır.

Detaylı

Simetrik kıvrım: Kanat açılarının birbirine eşit olduğu kıvrımlardır Asimetrik kıvrım: Kanat açılarının birbirinden farklı olduğu kıvrmlardır

Simetrik kıvrım: Kanat açılarının birbirine eşit olduğu kıvrımlardır Asimetrik kıvrım: Kanat açılarının birbirinden farklı olduğu kıvrmlardır KIVRIMLI YAPI: Kıvrımlı yapının oluşumu: Deniz veya okyanus diplerinde (jeosenklinallerde) çökelmiş tortullar genelde yatay tabakalar halinde görülür. Tortulanmanın olduğu bu sahalarda eğer yan basınçlar

Detaylı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı

BASMA DENEYİ MALZEME MÜHENDİSLİĞİ BÖLÜMÜ. 1. Basma Deneyinin Amacı 1. Basma Deneyinin Amacı Mühendislik malzemelerinin çoğu, uygulanan gerilmeler altında biçimlerini kalıcı olarak değiştirirler, yani plastik şekil değişimine uğrarlar. Bu malzemelerin hangi koşullar altında

Detaylı

JEOLOJİK HARİTALAR Jeolojik Haritalar Ör:

JEOLOJİK HARİTALAR Jeolojik Haritalar Ör: JEOLOJİK HARİTALAR Üzerinde jeolojik bilgilerin (jeolojik birimler, formasyonlar, taş türleri, tabakalaşma durumları, yapısal özellikler vbg.) işaretlendiği haritalara Jeolojik Haritalar denir. Bu haritalar

Detaylı

Yapısal jeoloji. Bölüm 1: Sürekli ortamlar mekaniği ve reolojisi. Güz 2005

Yapısal jeoloji. Bölüm 1: Sürekli ortamlar mekaniği ve reolojisi. Güz 2005 MIT Açık Ders Malzemeleri http://ocw.mit.edu 12.113 Yapısal jeoloji Bölüm 1: Sürekli ortamlar mekaniği ve reolojisi Güz 2005 Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak

Detaylı

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele

EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele EKSENEL YÜKLERDEN OLUŞAN GERILME VE ŞEKİL DEĞİŞİMİ Eksenel yüklü elemanlarda meydana gelen normal gerilmelerin nasıl hesaplanacağı daha önce ele alınmıştı. Bu bölümde ise, eksenel yüklü elemanların şekil

Detaylı

Soru 1: Şekil-1 de görülen düzlem gerilme hali için: b) elemanın saat yönünde 30 0 döndürülmesi ile elde edilen yeni durum için elemana tesir

Soru 1: Şekil-1 de görülen düzlem gerilme hali için: b) elemanın saat yönünde 30 0 döndürülmesi ile elde edilen yeni durum için elemana tesir Soru 1: Şekil-1 de görülen düzlem gerilme hali için: a) elemanın saat yönünde 30 0 döndürülmesi ile elde edilen yeni durum için elemana tesir eden gerilme bileşenlerini, gerilme dönüşüm denklemlerini kullanarak

Detaylı

3. KUVVET SİSTEMLERİ

3. KUVVET SİSTEMLERİ 3. KUVVET SİSTEMLERİ F F W P P 3.1 KUVVET KAVRAMI VE ETKİLERİ Kuvvet, bir cisme etki eden yapısal yüklerdir. Kuvvet Şiddeti, yönü ve uygulama noktası olan vektörel bir büyüklüktür. Bir cismin üzerine uygulanan

Detaylı

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Bölüm-4 MALZEMELERDE ÇEKME-BASMA - KESME GERİLMELERİ VE YOUNG MODÜLÜ. 4.1. Malzemelerde Zorlanma ve Gerilme Şekilleri

TEKNOLOJİNİN BİLİMSEL İLKELERİ. Bölüm-4 MALZEMELERDE ÇEKME-BASMA - KESME GERİLMELERİ VE YOUNG MODÜLÜ. 4.1. Malzemelerde Zorlanma ve Gerilme Şekilleri Bölüm-4 MALZEMELERDE ÇEKME-BASMA - KESME GERİLMELERİ VE YOUNG MODÜLÜ 4.1. Malzemelerde Zorlanma ve Gerilme Şekilleri Malzemeler genel olarak 3 çeşit zorlanmaya maruzdurlar. Bunlar çekme, basma ve kesme

Detaylı

YENİLME KRİTERİ TEORİK GÖRGÜL (AMPİRİK)

YENİLME KRİTERİ TEORİK GÖRGÜL (AMPİRİK) YENİLME KRİTERİ Yenilmenin olabilmesi için kayanın etkisinde kaldığı gerilmenin kayanın dayanımını aşması gerekir. Yenilmede en önemli iki parametre gerilme ve deformasyondur. Tasarım aşamasında bunlarda

Detaylı

3. TABAKA KAVRAMI ve V-KURALI

3. TABAKA KAVRAMI ve V-KURALI 1 3. T VRMI ve V-URLI Tabaka nedir? lt ve üst sınırlarıyla bir diğerinden ayrılan, kendine has özellikleri olan, sabit hidrodinamik koşullar altında çökelmiş, 1 cm den daha kalın, en küçük litostratigrafi

Detaylı

BÖLÜM 3: MATEMATİKSEL KARTOGRAFYA - TANIMLAR

BÖLÜM 3: MATEMATİKSEL KARTOGRAFYA - TANIMLAR BÖLÜM 3: MATEMATİKEL KARTOGRAFYA - TANIMLAR Türkay Gökgöz (www.yildiz.edu.tr/~gokgoz) 3 İÇİNDEKİLER 3. Bir Haritanın Matematiksel Çatısı... 3-3 3.. Ölçek. 3-3 3... Kesir ölçek 3-3 3... Grafik ölçek.. 3-4

Detaylı

KIRIKLAR VE FAYLAR KIRIKLAR VE FAYLAR

KIRIKLAR VE FAYLAR KIRIKLAR VE FAYLAR KIRIKLAR VE FAYLAR KIRIKLAR VE FAYLAR Eğirdir-Isparta Kayaçların taneleri arasındaki bağın kopmasıyla oluşan süreksizliklere kırık denir. Kırılma yüzeyleri boyunca kayaçlar birbirinden ayrılırlar. İki

Detaylı

BİLGİSAYAR DESTEKLİ TASARIM VE ANALİZ (ANSYS) (4.Hafta)

BİLGİSAYAR DESTEKLİ TASARIM VE ANALİZ (ANSYS) (4.Hafta) BİLGİSAYAR DESTEKLİ TASARIM VE ANALİZ (ANSYS) (4.Hafta) GERİLME KAVRAMI VE KIRILMA HİPOTEZLERİ Gerilme Birim yüzeye düşen yük (kuvvet) miktarı olarak tanımlanabilir. Parçanın içerisinde oluşan zorlanma

Detaylı

BÖLÜM 16 YERYÜZÜ ŞEKİLLERİNİN GELİŞMESİ

BÖLÜM 16 YERYÜZÜ ŞEKİLLERİNİN GELİŞMESİ BÖLÜM 16 YERYÜZÜ ŞEKİLLERİNİN GELİŞMESİ TOPOĞRAFYA, YÜKSELTİ VE RÖLİYEF Yeryüzünü şekillendiren değişik yüksekliklere topoğrafya denir. Topoğrafyayı oluşturan şekillerin deniz seviyesine göre yüksekliklerine

Detaylı

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ

DÜZLEMDE GERİLME DÖNÜŞÜMLERİ 3 DÜZLEMDE GERİLME DÖNÜŞÜMLERİ Gerilme Kavramı Dış kuvvetlerin etkisi altında dengedeki elastik bir cismi matematiksel bir yüzeyle rasgele bir noktadan hayali bir yüzeyle ikiye ayıracak olursak, F 3 F

Detaylı

www.kanatlibilgi.com

www.kanatlibilgi.com www.kanatlibilgi.com TAVUK EMBRİYOSUNUN GÜNLÜK GELİŞİM SAFHALARI Kaynak: Dr Stephan WARIN, DVM, Avian Business Unit. CEVA Santé Animale, La Ballastiere, BP 126, 33501 Libourne Cedex, France Çeviren: Barbaros

Detaylı

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10

3. V, R 3 ün açık bir altkümesi olmak üzere, c R. p noktasında yüzeye dik olduğunu gösteriniz.(10 Diferenisyel Geometri 2 Yazokulu 2010 AdıSoyadı: No : 1. ϕ (u, v) = ( u + 2v, v + 2u, u 2 v ) parametrizasyonu ile verilen M kümesinin bir regüler yüzey olduğunu gösteriniz. (15 puan) 3. V, R 3 ün açık

Detaylı

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ

STATIK MUKAVEMET. Doç. Dr. NURHAYAT DEĞİRMENCİ STATIK MUKAVEMET Doç. Dr. NURHAYAT DEĞİRMENCİ STATİK DENGE KOŞULLARI Yapı elemanlarının tasarımında bu elemanlarda oluşan iç kuvvetlerin dağılımının bilinmesi gerekir. Dış ve iç kuvvetlerin belirlenmesinde

Detaylı

3. TABAKA KAVRAMI ve V-KURALI

3. TABAKA KAVRAMI ve V-KURALI 1 3. T VRMI ve V-URLI Tabaka nedir? lt ve üst sınırlarıyla bir diğerinden ayrılan, kendine has özellikleri olan, sabit hidrodinamik koşullar altında çökelmiş, 1 cm den daha kalın, en küçük litostratigrafi

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 5 Rijit Cisim Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 5. Rijit Cisim Dengesi Denge,

Detaylı

ULUSAL STANDART TOPOGRAFİK HARİTA PROJEKSİYONLARI

ULUSAL STANDART TOPOGRAFİK HARİTA PROJEKSİYONLARI ULUSAL STANDART TOPOGRAFİK HARİTA PROJEKSİYONLARI Doç.Dr. Türkay GÖKGÖZ http://www.yarbis.yildiz.edu.tr/gokgoz İnşaat Fakültesi Harita Mühendisliği Bölümü Kartografya Anabilim Dalı BÜYÜK ÖLÇEKLİ HARİTA

Detaylı

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş

Mukavemet-II. Yrd.Doç.Dr. Akın Ataş Mukavemet-II Yrd.Doç.Dr. Akın Ataş Bölüm 7 Gerilme ve Şekil Değiştirme Dönüşümleri Kaynak: Cisimlerin Mukavemeti, F.P. Beer, E.R. Johnston, J.T. DeWolf, D.F. Mazurek, Çevirenler: A. Soyuçok, Ö. Soyuçok.

Detaylı

ATALET MOMENTİ. Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması.

ATALET MOMENTİ. Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması. ATALET MOMENTİ Amaçlar 1. Rijit bir cismin veya rijit cisim sistemlerinin kütle atalet momentinin bulunması. UYGULAMALAR Şekilde gösterilen çark büyük bir kesiciye bağlıdır. Çarkın kütlesi, kesici bıçağa

Detaylı

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş

Mühendislik Mekaniği Statik. Yrd.Doç.Dr. Akın Ataş Mühendislik Mekaniği Statik Yrd.Doç.Dr. Akın Ataş Bölüm 3 Parçacık Dengesi Kaynak: Mühendislik Mekaniği: Statik, R.C.Hibbeler, S.C.Fan, Çevirenler: A. Soyuçok, Ö. Soyuçok. 3 Parçacık Dengesi Bu bölümde,

Detaylı

= e DIŞ MERKEZLİK HAZİNE-1 HAZİNE-2

= e DIŞ MERKEZLİK HAZİNE-1 HAZİNE-2 HAZİNE-1 HAZİNE-2 Bir eksen üzerinde verilen noktadan geçen ve eksen ile belirli açı yaparak dönen doğrunun oluşturduğu yüzeye konik yüzey denir. Konik yüzeyin değişik düzlemler ile arakesit kümeleri çember,

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Öğr. Gör. Volkan ÖĞER MAT 1010 Matematik II 1/ 172 Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası)

Detaylı

mercek ince kenarlı (yakınsak) mercekler kalın kenarlı (ıraksak) mercekle odak noktası odak uzaklığı

mercek ince kenarlı (yakınsak) mercekler kalın kenarlı (ıraksak) mercekle odak noktası odak uzaklığı MERCEKLER Mercekler mikroskoptan gözlüğe, kameralardan teleskoplara kadar pek çok optik araçta kullanılır. Mercekler genelde camdan ya da sert plastikten yapılan en az bir yüzü küresel araçlardır. Cisimlerin

Detaylı

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir.

Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. STATIK VE MUKAVEMET 4. Ağırlık Merkezi AĞIRLIK MERKEZİ Gerçekte yükler yayılı olup, tekil yük problemlerin çözümünü kolaylaştıran bir idealleştirmedir. Statikte çok küçük bir alana etki eden birbirlerine

Detaylı

Üç Boyutlu Uzayda Koordinat sistemi

Üç Boyutlu Uzayda Koordinat sistemi Üç Boyutlu Uzayda Koordinat sistemi Uzayda bir noktayı ifade edebilmek için ilk önce O noktasını (başlangıç noktası) ve bu noktadan geçen ve birbirine dik olan üç yönlü doğruyu seçerek sabitlememiz gerekir.

Detaylı

Katı Cisimlerin Yü zey Alanı Ve Hacmi

Katı Cisimlerin Yü zey Alanı Ve Hacmi Katı Cisimlerin Yü zey Alanı Ve Hacmi Dikdörtgenler Prizması Hacmi ve Yüzey Alanı Paralelkenar Prizmanın Hacmi Kürenin Hacmi ve Kürenin Yüzey Alanı Kürenin temel elemanları; bir merkez noktası, bu merkez

Detaylı

2. Basınç ve Akışkanların Statiği

2. Basınç ve Akışkanların Statiği 2. Basınç ve Akışkanların Statiği 1 Basınç, bir akışkan tarafından birim alana uygulanan normal kuvvet olarak tanımlanır. Basıncın birimi pascal (Pa) adı verilen metrekare başına newton (N/m 2 ) birimine

Detaylı

INS13204 GENEL JEOFİZİK VE JEOLOJİ

INS13204 GENEL JEOFİZİK VE JEOLOJİ 4/3/2017 1 INS13204 GENEL JEOFİZİK VE JEOLOJİ Yrd.Doç.Dr. Orhan ARKOÇ e-posta : orhan.arkoc@klu.edu.tr Web : http://personel.klu.edu.tr/orhan.arkoc 4/3/2017 2 BÖLÜM 4 TABAKALI KAYAÇLARIN ÖZELLİKLER, STRATİGRAFİ,

Detaylı

Yapılma Yöntemleri: » Arazi ölçmeleri (Takeometri)» Hava fotoğrafları (Fotoğrametri) TOPOĞRAFİK KONTURLAR

Yapılma Yöntemleri: » Arazi ölçmeleri (Takeometri)» Hava fotoğrafları (Fotoğrametri) TOPOĞRAFİK KONTURLAR TOPOĞRAFİK HARİTALAR EŞ YÜKSELTİ EĞRİLERİ TOPOĞRAFİK HARİTALAR Yapılma Yöntemleri:» Arazi ölçmeleri (Takeometri)» Hava fotoğrafları (Fotoğrametri) HARİTALAR ve ENİNE KESİT HARİTALAR Yeryüzü şekillerini

Detaylı

Yapısal jeoloji. 3. Bölüm: Normal faylar ve genişlemeli tektonik. Güz 2005

Yapısal jeoloji. 3. Bölüm: Normal faylar ve genişlemeli tektonik. Güz 2005 MIT Açık Ders Malzemeleri http://ocw.mit.edu 12.113 Yapısal jeoloji 3. Bölüm: Normal faylar ve genişlemeli tektonik Güz 2005 Bu materyallerden alıntı yapmak veya Kullanım Şartları hakkında bilgi almak

Detaylı

GEOMETR 7 ÜN TE III S L ND R

GEOMETR 7 ÜN TE III S L ND R ÜN TE III S L ND R 1. S L ND R K YÜZEY VE TANIMLAR 2. S L ND R a. Tan m b. Silindirin Özelikleri 3. DA RESEL S L ND R N ALANI a. Dik Dairesel Silindirin Alan I. Dik Dairesel Silindirin Yanal Alan II. Dik

Detaylı